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REFLECTIVE-COREFLECTIVE EQUIVALENCE

ERIK BÉDOS, S. KALISZEWSKI, AND JOHN QUIGG

Abstract. We explore a curious type of equivalence between cer-
tain pairs of reflective and coreflective subcategories. We illustrate
with examples involving noncommutative duality for C∗-dynamical
systems and compact quantum groups, as well as examples where
the subcategories are actually isomorphic.

1. Introduction

Our intent in writing this paper is to explore a special type of equiv-
alence between certain pairs of reflective and coreflective subcategories.
We have noticed that in certain categories involving C∗-algebras, there
is a pair of equivalent subcategories, one reflective and the other core-
flective, and moreover this equivalence really depends only upon cer-
tain categorical properties, and not upon the theory of C∗-algebras. To
highlight the categorical nature of this phenomenon, we will present the
equivalence from a purely abstract category-theoretical point of view,
and then describe several examples from C∗-algebra theory.
We are operator algebraists, and can only claim an amateur-level

expertise in category theory. It seems to us entirely possible that the
type of equivalence we present here is known to category theorists, but
we have been frustrated by our inability to find it in the literature. We
would be interested to learn of other instances of this equivalence.
To give an idea of what our equivalence entails, consider subcate-

gories M and N of a category C. Letting IncM denote the inclusion
functor of M into C and F |M = F ◦ IncM : M → D the restriction
of a functor F : C → D, let us say that M and N are C-equivalent if
M = N or there exist functors S : C → M, T : C → N such that
T |M : M → N and S|N : N → M are quasi-inverses of each other.
Clearly, M and N are then equivalent as categories in the usual sense
and it is easy to check that C-equivalence is an equivalence relation.
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Now assume that M is coreflective in C and N is reflective in C, with
coreflector M : C → M and reflector N : C → N , respectively. The
restriction N |M is then a left adjoint of M |N , and in order to prove
that M and N are C-equivalent, it suffices to show that the adjunction
N |M ⊣ M |N is an adjoint equivalence. When this happens may be
characterized in several ways. One of them involves the counit ψ of
the adjunction IncM ⊣ M and the unit θ of the adjunction N ⊣ IncN ,
which enjoy certain universal properties by definition. We show that
N |M ⊣ M |N is an adjoint equivalence if and only if, when everything
is restricted to the subcategories, each of ψ and θ actually possesses
both universal properties.
Our first main example of the reflective-coreflective equivalence in-

volves normal and maximal coactions of a locally compact group on C∗-
algebras. It has already appeared in the literature [7], but we provide
an alternative development, with several improvements arising from a
close scrutiny of the underlying category theory. To avoid interrupting
the exposition of this equivalence, we have relegated the prerequisite
background on coactions and their crossed products to an appendix.
Our second example deals with reduced and universal compact quan-

tum groups. The equivalence of the two associated categories is surely
known to experts in quantum group theory, but does not seem to be
mentioned in the existing literature. We also include two other ex-
amples involving tensor products of C∗-algebras and group represen-
tations, in which the subcategories are not only equivalent but in fact
isomorphic.

2. Preliminaries

We record here our conventions regarding category theory. All of
this can be found in [10]. We assume familiarity with elementary cat-
egory theory, e.g., adjoint functors, coreflective and reflective subcate-
gories. However, since we want this paper to be readable by operator
algebraists, among others, we give somewhat more detail in this pre-
liminary section than might seem customary to a category theorist.

Notation 2.1. If C and D are categories, we write:

(i) Obj C for the class of objects in C;
(ii) C(x, y) for the set of morphisms with domain x ∈ Obj C and

codomain y ∈ Obj C, and f : x→ y in C to mean f ∈ C(x, y);
(iii) 1x for the identity morphism of the object x;
(iv) (most of the time) Ff rather than F (f) for the value of a

functor F : C → D at a morphism f (although we usually write
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compositions of morphisms as f ◦g rather than the categorists’
fg).

Recall that a functor F : C → D is called full (respectively, faithful)
if it maps C(x, y) surjectively (respectively, injectively) to D(Fx, Fy)
for all x, y ∈ Obj C, and essentially surjective if every object in D is
isomorphic to one in the image of F .

If x ∈ Obj C and G : D → C is a functor, we write x ↓ G for the
comma category whose objects are pairs (y, f), where y ∈ ObjD and
f : x→ Gy in C, and in which h : (y, f) → (z, g) means that h : y → z
in D and (Gh) ◦ f = g. Dually, we write G ↓ x for the comma category
whose objects are pairs (y, f), where y ∈ ObjD and f : Gy → x in
C, and in which h : (y, f) → (z, g) means that h : y → z in D and
g ◦ (Gh) = f . If IncD : D →֒ C is an inclusion functor, we write

x ↓ D = x ↓ IncD and D ↓ x = IncD ↓ x.

Recall that if x ∈ Obj C and G : D → C is a functor, a universal

morphism from x to G is an initial object in the comma category x ↓ G,
and, dually, a universal morphism from G to x is a final object in G ↓ x.
If G = IncD : D →֒ C, we refer to universal morphisms from x to D, or
from D to x.
Thus, a universal morphism (u, η) from x to G is characterized by

the following universal property: whenever f : x → Gy in C there is a
unique morphism g in D making the diagram

x
η

//

f   @
@@

@@
@@

@ Gu

Gg

���
�

�
u

g!

���
�

�

Gy y

commute, and dually a universal morphism (u, ε) from G to x is char-
acterized by the universal property that whenever f : Gy → x in C
there is a unique morphism g in D making the diagram

Gy

Gg

���
�

�
f

  @
@@

@@
@@

@
y

g!

��
�

�

�

Gu ε
// x u

commute.
Also, (u, η) is universal from x to G if and only if for every y ∈ ObjD

the map φ : D(u, y) → C(x,Gy) defined by

φ(g) = (Gg) ◦ η
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is bijective, in which case we have

η = φ(1u),

and dually, (u, ε) is universal from G to x if and only if for every
y ∈ ObjD the map ψ : D(y, u) → C(Gy, x) defined by

ψ(g) = ε ◦Gg

is bijective, in which case we have

ε = ψ(1u).

A functor F : C → D is a left adjoint of a functor G : D → C, or G
is a right adjoint of F , if there are bijections

φx,y : D(Fx, y) → C(x,Gy) for all x ∈ Obj C, y ∈ ObjD

that are natural in x and y. In this case, we write ‘F ⊣ G’, and refer
to F ⊣ G as an adjunction from C to D. As is customary, we usually
drop the subscripts x, y from the φ, which causes no confusion.
If F ⊣ G, with natural bijections φ : D(Fx, y) → C(x,Gy), then

for every x ∈ Obj C the pair (Fx, ηx) is a universal morphism from x
to G, where ηx = φ(1Fx); and for every y ∈ ObjD the pair (Gy, εy)
is a universal morphism from F to y, where εy = φ−1(1Gy). Recall
that η : 1C → GF is called the unit of the adjunction F ⊣ G, and
ε : FG→ 1D is the counit.
Conversely, given a functor G : D → C, if for each x ∈ Obj C we

have a universal morphism (Fx, ηx) from x to G, then the map F on
objects extends uniquely to a functor such that η : 1C → GF is a
natural transformation, and moreover F ⊣ G, with natural bijections
φ : D(Fx, y) → C(x,Gy) defined by φ(g) = Gg ◦ ηx.

1

If, given G : D → C, we only know that for every x ∈ Obj C there
exists a universal morphism from x to G, then an Axiom of Choice for
classes says that we can choose one such universal morphism (Fx, ηx)
for every x; thus G is left-adjointable if and only if every x ∈ Obj C has
a universal morphism to G. Dually, a given functor F : C → D is right-
adjointable if and only if every y ∈ ObjD has a universal morphism
from F .
It follows that F ⊣ G if and only if there exists a natural transforma-

tion η : 1C → GF such that, for every x ∈ Obj C, the pair (Fx, ηx) is
a universal morphism from x to G. There is a similar characterization
in terms of ε.

1Dually, if F : C → D is a functor, and if for all y ∈ ObjD we have a universal
morphism (Gy, εy) from F to y, then the map G extends uniquely to a functor such
that ε : FG → 1D is a natural transformation, and moreover F ⊣ G, with natural
bijections φ : D(Fx, y) → C(x,Gy) determined by φ−1(f) = εy ◦ Ff .
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For any functor G : D → C, the left adjoints of G form a natural
isomorphism class, and dually for any functor F : C → D, the right
adjoints of F form a natural isomorphism class.

Certain properties of adjoints are related to properties of the unit
and counit, as illustrated in the following standard lemma.

Lemma 2.2. Let F ⊣ G, with unit η and counit ε.

(i) F is faithful if and only if every ηx is a monomorphism.

(ii) F is full if and only if every ηx is a split epimorphism.

(iii) F is full and faithful if and only if η : 1C → GF is a natural

isomorphism.

(iv) G is faithful if and only if every εy is an epimorphism.

(v) G is full if and only if every εy is a split monomorphism.

(vi) G is full and faithful if and only if ε : FG → 1D is a natural

isomorphism.

Adjunctions can be composed: if F : C → D, G : D → C,H : D → E ,
and K : E → D are functors with F ⊣ G and H ⊣ K, then H ◦ F ⊣
G ◦K.
Recall that if F : C → D is an equivalence, so that there is a functor

G : D → C such that2 GF ∼= 1C and FG ∼= 1D, then F and G are called
quasi-inverses of each other; F and G are then left and right adjoint
of each other, and C and D are called equivalent.
An adjunction F ⊣ G from C to D is called an adjoint equivalence

if both its unit and counit are natural isomorphisms, i.e., if both F
and G are full and faithful (using Lemma 2.2); clearly, F and G are
then quasi-inverses, and C and D are equivalent.
A functor F : C → D is an equivalence if only if it is full, faithful,

and essentially surjective, in which case a functor from D to C is a
quasi-inverse of F if and only if it is a right adjoint of F , if and only if
it is a left adjoint of F .

Subcategories. A subcategory N of C is reflective if the inclusion
functor IncN : N → C is left-adjointable, and any left adjoint N of
IncN is then called a reflector of C in N .
Such a reflector N : C → N is completely determined by the choice

of a universal morphism (Nx, θx) from x to N for each object x of C.
The universal property says that every morphism in C from x to an

2Between functors, the symbol ‘∼=’ always denotes natural isomorphism.
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object in N factors uniquely through θx:

x
θx //

##G
GGGGGGGG Nx

!
���
�

�

z ∈ N .

Hence, if f : x→ y in C, then Nf is the unique morphism in N making
the diagram

x
θx //

f

��

Nx

Nf!
��
�

�

�

y
θy

// Ny

commute.
The associated natural transformation θ : 1C → IncN ◦N is then the

unit of the adjunction N ⊣ IncN . Its counit ρ : N ◦ IncN → 1N is
the natural transformation given by letting ρy : Ny → y be the unique
morphism in N such that ρy ◦ θy = 1y for each y ∈ ObjN , and (y, ρy)
is then a universal morphism from N to y.
Note that if N is full, then IncN is full and faithful, so the counit ρ

is a natural isomorphism and θy = ρ−1
y when y ∈ ObjN . In this case

we could in fact choose θy = 1y, i.e., we could arrange that N |N = 1N ;
the counit ρ would then be just the identity transformation and the
reflector N : C → N could be thought of as a sort of “projection” of C
onto N .
Dually, a subcategory M of C is coreflective if the inclusion functor

IncM : M → C is right-adjointable, and any right adjoint M of IncM
is called a coreflector of C in M.
Such a coreflector M is completely determined by the choice of a

universal morphism (Mx,ψx) from M to x for each object x of C. The
universal property says that every morphism from an object of M to
x factors uniquely through ψx:

y ∈ M

##G
GG

GG
GG

GG

!
��
�

�

�

Mx
ψx

// x.
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Hence, if g : z → x in C, thenMg is the unique morphism inM making
the diagram

Mz
ψz //

Mg !
���
�

�
z

g

��
Mx

ψx

// x

commute.
The associated natural transformation ψ : IncM ◦M → 1C is then

the counit of the adjunction IncM ⊣M . Its unit σ : 1M →M ◦ IncM is
the natural transformation given by letting σy : y →My be the unique
morphism in M such that ψy ◦σy = 1y for each y ∈ ObjM, and (y, σy)
is then a universal morphism from y to M .
Similarly to reflective subcategories, note that if M is full, then the

unit σ is a natural isomorphism and ψy = σ−1
y when y ∈ ObjM.

In this case we could choose ψy = 1y, i.e., we could arrange that
M |M = 1M and the coreflector M : C → M could be thought of as
a sort of “projection” of C onto N . However, since this projection
property can also be made to happen with reflective subcategories, it
is not terrifically informative.

3. Reflective-coreflective equivalence

We now apply the general theory to a curious sort of equivalence
between subcategories, one reflective and the other coreflective. We
have not been able to find this type of equivalence in the category-
theory literature.
We let M and N be subcategories of a category C, with N reflective

and M coreflective. We will use the following notation:

Notation 3.1.

N : C → N is a reflector,
θ : 1C → IncN ◦N is the unit of the adjunction N ⊣ IncN ,
ρ : N ◦ IncN → 1N is the counit of the adjunction N ⊣ IncN ,
M : C → M is a coreflector,
ψ : IncM ◦M → 1C is the counit of the adjunction IncM ⊣M , and
σ : 1M →M ◦ IncM is the unit of the adjunction IncM ⊣M .

Something interesting happens when we restrict the reflector and
coreflector so that we are only looking at the subcategories M and N .
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Consider the diagram

M
IncM //

N |M

&&
C

N //

M
oo N

IncN

oo

M |N

ff

where N |M = N ◦ IncM and M |N = M ◦ IncN . Since adjunctions
compose, we have N |M ⊣ M |N . Using [10, IV.8, Theorem 1], we get
the following formulas for the unit η : 1M →M |N ◦N |M and the counit
ε : N |M ◦M |N → 1N of this adjunction:

ηx : x→MNx is given by ηx = (Mθx) ◦ σx for each x ∈ ObjM;

εx : NMx → x is given by εx = ρx ◦ (Nψx) for each x ∈ ObjN .

We are interested in conditions ensuring that N |M ⊣ M |N is an
adjoint equivalence, hence that M and N are C-equivalent according
to the discussion of C-equivalence given in the introduction. It appears
that it is relevant to consider the following properties :

Properties 3.2.

(F) For each x ∈ ObjM, (x, θx) is a final object in M ↓ Nx.
(I) For each x ∈ ObjN , (x, ψx) is an initial object in Mx ↓ N .

These conditions may be visualized by the following commutative
diagrams:

M N

y

""D
DD

DD
DD

DD

!

���
�

�

x
θx //

""E
EE

EE
EE

EE
Nx

!
��
�

�

�

z

M N

y

""D
DD

DD
DD

DD

!
���
�

�

Mx
ψx //

""E
EE

EEE
EE

x

!
��
�

�

�

z

In the left half, the top part is Property 3.2 (F), and the bottom part
is guaranteed by reflectivity of N in C. In the right half, the top part
is guaranteed by coreflectivity of M in C, while the bottom part is
Property 3.2 (I).

Theorem 3.3. Suppose N is a reflective subcategory and M is a core-

flective subcategory of a category C, as in Notation 3.1. Then the fol-

lowing conditions are equivalent:
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(i) Property 3.2 (F) holds.
(ii) N |M is full and faithful.

(iii) η is a natural isomorphism.

If M is full, these conditions are also equivalent to

(iv) For each x ∈ ObjM, Mθx : Mx → MNx is an isomorphism

(in M and therefore) in C.

Similarly, the following conditions are equivalent:

(v) Property 3.2 (I) holds.
(vi) M |N is full and faithful.

(vii) ε is a natural isomorphism.

If N is full, conditions (v) – (vii) are also equivalent to

(viii) For each x ∈ ObjN , Nψx : NMx → Nx is an isomorphism

(in N and therefore) in C.

As an immediate consequence we get the following more precise ver-
sion of [7, Proposition 2.1]:

Corollary 3.4. The pair N |M ⊣M |N is an adjoint equivalence if and

only if Properties 3.2 (F) and (I) hold, in which case N |M : M → N
is an equivalence, and M |N is a quasi-inverse.

Proof of Theorem 3.3. Assume first that (i) is true. Let x, y ∈ ObjM
and g : Nx → Ny be a morphism in N . Consider the morphism
g ◦ θx : x → Ny in C. Since (y, θy) is final in M ↓ Ny, there exists a
unique f : x→ y in M such that the diagram

x
θx //

f !

���
�

� Nx

g

��
y

θy

// Ny

commutes. But then, given this f , since (Nx, θx) is an initial object
in x ↓ N , there is only one morphism g in N making the diagram
commute, namely g = Nf . We have thereby shown that there is a
unique morphism f in N such that g = Nf . Hence N |M is full and
faithful, i.e., (ii) is true.
For the converse, assume that (ii) is true. Let x, y ∈ ObjM and

consider a morphism h : x→ Ny in C. As (Nx, θx) is an initial object
in x ↓ N , there exists a unique morphism g : Nx→ Ny in N such that
h = g ◦ θx. As N |M is full (by assumption), there exists a morphism
f : x→ y in M such that Nf = g. Then we have

θy ◦ f = (Nf) ◦ θx = g ◦ θx = h .
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Now, if h = θy ◦ f ′ for some f ′ : x → y in M, then θy ◦ f ′ = g ◦ θx.
This means that g = Nf ′, so Nf ′ = g = Nf . As N |M is faithful (by
assumption), this implies that f ′ = f . We have thereby shown that
f : x → y is the unique morphism in M such that θy ◦ f = h. This
proves that (y, θy) is a final object in M ↓ Ny for each y ∈ ObjM,
i.e., (i) is true.
The equivalence of (ii) and (iii) follows from Lemma 2.2. If M is

full, then we have seen in Section 2 that σx is an isomorphism for each
x ∈ ObjM. Hence, in this case, the equivalence of (iii) and (iv) follows
readily from the formula for η given at the beginning of this section.
This finishes the proof of the first half of the theorem. The second

half follows from a dual argument. �

4. “Maximal-normal” type equivalence

In this section we keep the hypotheses of Section 3, so N is a reflec-
tive subcategory of a category C and M is a coreflective subcategory
of C; we also retain Notation 3.1. Further we assume that the adjunc-
tion N |M ⊣ M |N is an adjoint equivalence, that is, we assume that
both Properties 3.2 (F) and (I) are satisfied (cf. Corollary 3.4). More-
over, in order to capture the complete “maximal-normal equivalence”
phenomenon exhibited by C∗-coactions in [7], we also assume that the
following condition is satisfied:

Hypothesis 4.1. For every x ∈ Obj C, (Nx, θx◦ψx) is an initial object
in the comma category Mx ↓ N .

We immediately apply our new hypothesis:

Proposition 4.2. N ∼= N |M ◦M .

Proof. Let x ∈ Obj C. In the diagram

Mx
θMx //

ψx

��

NMx

Nψx!
��
�

�

�

x
θx

// Nx,

both (NMx, θMx) and (Nx, θx ◦ ψx) are initial in Mx ↓ N , so the
unique morphism Nψx in N making the diagram commute in C is an
isomorphism. Since N is functorial and ψ is a natural transformation,
the composition

Nψ : N |M ◦M → N

is natural, and the result follows. �
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Remark 4.3. The proof shows that Hypothesis 4.1 implies that Nψx
is an isomorphism in N for each x ∈ Obj C. It is quite obvious from
the diagram above that the converse implication is also true. Moreover,
we see from Theorem 3.3 that if N is full, then the property assumed
in Hypothesis 4.1 is a strengthening of Property 3.2 (I) (where the
condition is only imposed for x ∈ ObjN ). This can also be seen
directly.

Corollary 4.4. M ∼=M |N ◦N .

Proof. We have

M |N ◦N ∼=M |N ◦N |M ◦M
∼= 1M ◦M

=M. �

We could deduce various consequences of the foregoing results; for
example, Proposition 4.2 and Corollary 4.4 immediately give:

Corollary 4.5. N |M ◦M is a reflector of C in N , and M |N ◦N is a

coreflector of C in M.

Another consequence is:

Corollary 4.6. The following conditions are equivalent:

(i) For every x ∈ Obj C, ψx :Mx → x is an epimorphism in C.
(ii) M is faithful.

(iii) N is faithful.

(iv) For every x ∈ Obj C, θx : x→ Nx is a monomorphism in C.

Proof. Since ψ is the counit of IncM ⊣M and θ is the unit of N ⊣ IncN ,
Lemma 2.2 gives (i)⇔(ii) and (iii)⇔(iv). Since N ∼= N |M◦M and N |M
is an equivalence, we have (ii)⇔(iii). �

Remark 4.7. Even if we now also assume that M and N are full and
ψx is an epimorphism for every x ∈ Obj C (or, equivalently, θx is a
monomorphism for every x ∈ Obj C), N : C → N itself can still fail
to be an equivalence of categories: N is faithful by Corollary 4.6, and
it is essentially surjective because the counit ρ : N ◦ IncN → 1N is a
natural isomorphism (as N is full). But, although θx : x → Nx is a
monomorphism for all x ∈ C, it is in general not an isomorphism for
all x, in which case θx will not be a split epimorphism, and hence by
Lemma 2.2 N is not full. The point we are making here is that this is
the only property of equivalences that N can fail to possess.
Similarly, the coreflector M : C → M is then faithful (by Corol-

lary 4.6 again), essentially surjective (because the unit σ is a natural
isomorphism), but in general will not be full.
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Remark 4.8. Instead of Hypothesis 4.1, we could have made the
“dual” hypothesis that (Mx, θx ◦ ψx) is final in M ↓ Nx for each
x ∈ Obj C. We leave to the reader to check that this dual hypothesis
is equivalent to the assumption that Mθx is an isomorphism in M for
each x ∈ Obj C. Moreover, an argument dual to the one used in the
proof of Proposition 4.2 implies that M ∼= M |N ◦ N , from which one
deduces that N ∼= N |M ◦ M and therefore that Corollaries 4.5 and
4.6 also hold. Both this hypothesis and Hypothesis 4.1, as well as the
assumptions in Remark 4.7, are satisfied in the case of the examples
in the following section. But we don’t know if these hypotheses follow
from each other. Nor do we know whether it is necessarily true that θx
is an epimorphism for all x ∈ Obj C and that ψx is a monomorphism for
all x ∈ Obj C, although these properties are satisfied in our examples.

5. Examples

All our examples will involve C∗-algebras. We record here a few
conventions which are not totally standard. By a homomorphism from
a C∗-algebra (or just a ∗-algebra) into another, we will always mean
a ∗-homomorphism. If X and Y are ∗-algebras, X ⊙ Y will represent
the algebraic tensor product; if X and Y are C∗-algebras, X ⊗ Y will
represent the minimal (i.e., spatial) C∗-tensor product [12, Chapter 6].

5.1. Coactions. Our first — in fact the “original” — example of
the “maximal-normal” equivalence involves coactions of groups on C∗-
algebras.
Fix a locally compact Hausdorff group G. Coactions of G on C∗-

algebras are dual to actions; see [8] for an introduction (including an
exposition of the equivalence we will now describe), or [4, Appendix A].
We will give here a development of the equivalence between maximal

and normal coactions of G. Most of the main results have appeared
in the literature (mainly in [7]), but we will give an alternative de-
velopment, with new proofs, and, in some cases, improvements upon
existing results. We emphasize that these improvements arose from a
close scrutiny of the underlying category theory.
One of our motivations for making this exposition essentially self-

contained is that we find the existing literature on group coactions
somehow unsatisfying, and in particular we sometimes find it inconve-
nient to dig specific results out of the currently available papers.
For the theory of coactions, we adopt the conventions of [4]. All our

coactions will be full and coaction-nondegenerate.

Notation 5.1.
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(i) C∗ will denote the category whose objects are C∗-algebras
and whose morphisms are nondegenerate homomorphisms into
multiplier algebras, so that φ : A → B in C∗ means that
φ : A→ M(B) is a homomorphism such that φ(A)B = B. For
such a homomorphism, there is always a canonical extension
φ : M(A) → M(B), and we have (for example) ψ ◦ φ = ψ ◦ φ
when ψ : B → C in C∗.

(ii) C(G) will denote the category whose objects are coactions of
G on C∗-algebras, and whose morphisms are morphisms of C∗

that are equivariant for the coactions, so that φ(A, δ) → (B, ε)
in C(G) means that the diagram

A
δ //

φ

��

A⊗ C∗(G)

φ⊗id
��

B ε
// B ⊗ C∗(G)

commutes in C∗.

In this example of the maximal-normal equivalence, the coreflective
and reflective subcategories of C∗ are given by the maximal and normal
coactions, respectively. To introduce these, it behooves us to say a
few words about crossed-product duality for C∗-dynamical systems: for
every coaction (A, δ) there is a crossed product C∗-algebra, denoted
A ×δ G, that encodes the representation theory of the coaction, and

there is a dual action δ̂ of G on A×δ G and a canonical surjection

Φ : A×δ G×
δ̂
G→ A⊗K(L2(G)),

where K denotes the compact operators. (A, δ) is maximal if Φ is an
isomorphism, and normal if Φ factors through an isomorphism of the
reduced crossed product by the dual action:

A×δ G×δ̂ G
Φ //

Λ
��

A⊗K

A×δ G×
δ̂,r
G,

∼=

77o
o

o
o

o
o

where Λ is the regular representation. The full subcategories of C(G)
obtained by restricting to maximal or normal coactions will be denoted
by Cm(G) and Cn(G), respectively.
In practice, the following normality criterion is often useful: a coac-

tion (A, δ) is normal if and only if jA : A → M(A ×δ G) is injective,
where jA is the “A-part” of the canonical covariant homomorphism
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(jA, jG) of (A,C0(G)) in the multiplier algebra of the crossed product.
It is also useful to note that we can take

jA = (id⊗ λ) ◦ δ,

where λ is the left regular representation of G.

Notation 5.2. For any object (A, δ) in C(G), an object ((B, ε), φ) in
the comma category Cm(G) ↓ (A, δ) will be denoted simply as a triple
(B, ε, φ), and similarly for the comma category (A, δ) ↓ Cn(G).

Thus, to say (B, ε, φ) is an object in Cm(G) ↓ (A, δ) means that
(B, ε) is a maximal coaction and φ : B → M(A) is a nondegenerate
homomorphism that is ε − δ equivariant, i.e., φ : (B, ε) → (A, δ) in
C(G).

Definition 5.3. Let (A, δ) be a coaction.

(i) A normalizer of (A, δ) is an initial object (B, ε, η) in (A, δ) ↓
Cn(G), and we say (B, ε) is a normalization of (A, δ).

(ii) A maximalizer of (A, δ) is a final object (B, ε, ζ) in Cm(G) ↓
(A, δ), and we say (B, ε) is a maximalization of (A, δ).

Remark 5.4. Note that just knowing that (B, ε) is a normalization
of (A, δ) doesn’t uniquely determine a normalizer — indeed, in general
there will be many normalizers for a single normalization3. Our choice
of terminology (particularly “normalizer”) was designed to allow us to
keep track of this distinction. Similarly for maximalization.

Normalizations. We need to know that normalizations exist:

Proposition 5.5 ([13, Proposition 2.6]). If (A, δ) is a coaction, then

jA : (A, δ) → (jA(A),Ad jG) is a normalizer.

In the above proposition, we’ve committed a mild abuse of notation:
by our earlier use of the notation “Ad”, Ad jG would refer to an inner
coaction, for example on A×δ G; here of course we are using the same
notation for the restriction of Ad jG to jA(A). Moreover, we should
formally have said “(jA(A),Ad jG, jA) is a normalizer”. We will from
now on sometimes be sloppy and refer to an object (y, f) in a comma
category just by the morphism f .

Proof. Corollary A.14 tells us that jA is a morphism of (A, δ) to the
normal coaction (jA(A),Ad jG), and by construction jA is surjective.

3and every normalizer can be obtained from any particular one by pre- (alter-
natively, post-) composing with an automorphism of the respective coaction
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Let φ : (A, δ) → (B, ε) in C(G) with (B, ε) normal. We need to know
that there is a unique morphism ρ in C(G) making the diagram

(A, δ)
jA //

φ ''NNNNNNNNNNN
(jA(A),Ad jG)

ρ!
���
�

�

(B, ε)

commute. It suffices to show that ker jA ⊂ ker φ. By functoriality of
crossed products, we have a commutative diagram

A
jA //

φ

��

A×δ G

φ×G
��

B
jB

// B ×ε G,

so that

ker jA ⊂ ker
(
(φ×G) ◦ jA

)
= ker

(
jB ◦ φ) = ker φ

because jB is injective. �

Upon examining the above particular normalizer, we discern a hidden
property:

Corollary 5.6. Every normalizer is surjective.

Proof. This follows immediately from the following two observations:
it is true for the particular normalizer in Proposition 5.5, and all nor-
malizers are isomorphic by universality of initial objects. �

In the following characterization of normalizations, the proof of the
converse direction is essentially due to Fischer [5, Lemma 4.2] (see also
[3, Lemma 2.1] — the hypothesis in [3] that the homomorphisms map
into the C∗-algebras themselves rather into the multipliers is not used
in the proof of [3, Lemma 2.1]). We say “essentially” regarding [5]
because Fischer doesn’t explicitly address equivariance.

Proposition 5.7. An object (B, ε, η) of (A, δ) ↓ Cn(G) is a normalizer

if and only if the morphism

η ×G : A×δ G→ B ×ε G

in C∗ is an isomorphism.

Proof. First assume that (B, ε, η) is a normalizer. By Lemma A.12, to
see that η×G : A×δG→ B×εG is an isomorphism it suffices to show
that (B×εG, jB ◦η, jG) is a crossed product of (A, δ). Since η is surjec-
tive by Corollary 5.6, B×εG is generated by jB ◦η(A)jG(C0(G)). Thus
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by Lemma A.6 it suffices to show that every covariant homomorphism
(π, µ) of (A, δ) factors through (jB ◦ η, jG). By universality there is a
unique morphism ρ in C(G) making the diagram

(A, δ)
η

//

π
%%K

KKKK
KKK

KK
(B, ε)

ρ!
��
�

�

�

(C,Adµ)

commute. Then by Lemma A.3, (ρ, µ) is a covariant homomorphism of
(B, ε) in M(C), and the morphism ρ× µ : B ×ε G→ C in C∗ satisfies

(ρ× µ) ◦ jB ◦ η = ρ ◦ η = π,

and of course
(ρ× µ) ◦ jG = µ.

Conversely, suppose η × G is an isomorphism, and let (C, γ, φ) be
an object in (A, δ) ↓ Cn(G). We need to show that there is a unique
morphism ψ in C(G) making the diagram

(A, δ)
η

//

φ $$H
HH

HH
HH

HH
(B, ε)

ψ!
���
�

�

(C, γ)

commute. It suffices to observe that ker φ ⊃ ker η, since

jC ◦ φ = (φ×G) ◦ jA

= (φ×G) ◦ (η ×G)−1 ◦ (η ×G) ◦ jA

= (φ×G) ◦ (η ×G)−1 ◦ jB ◦ η

and jC is injective. �

Remarks 5.8. (i) For the first half of the above proof, we could have
alternatively argued4 as in Proposition 5.11 below: note that by Corol-
lary A.15 and Lemma 5.5 there is at least one normalizer (C, γ, σ) for
which σ × G is an isomorphism, and since any two normalizers are
isomorphic it follows that η ×G is also an isomorphism.
(ii) Since Corollary A.15 shows that jA × G is an isomorphism, the

above proposition implies that (jA(A),Ad jG, jA) is a normalizer, giving
an independent proof of Lemma 5.5.

Notation 5.9. For every coaction (A, δ) we make the following choice
of normalizer qn : (A, δ) → (An, δn):

4and in fact there is some redundancy in the results presented here
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• An = A/ ker jA;
• δn is the unique coaction of G on An corresponding to the
coaction Ad jG under the canonical isomorphism An ∼= jA(A);

• qn = qn(A,δ) : A→ An is the quotient map.

Thus it follows from Proposition 5.5 that there is a unique functor
Nor : C(G) → Cn(G) that takes each object (A, δ) to (An, δn) and is a
left adjoint to the inclusion functor, so that Cn(G) is a reflective sub-
category of C(G) and Nor is a reflector, with unit qn. Moreover, by our
construction we can identify the normalization of every normal coaction
with itself, so that the counit of this reflector is the identity transfor-
mation on the identity functor on the subcategory Cn(G). What the
normalization functor does to morphisms is characterized as follows: if
φ : (A, δ) → (B, ε) in C(G), then the normalization of φ is the unique
morphism φn in Cn(G)5 making the diagram

(A, δ)
qn

//

φ

��

(An, δn)

φn

��

(B, ε)
qn

// (Bn, εn)

commute.

Maximalizations. The existence of maximalizations is established in
[3, Theorem 3.3] and [5, Theorem 6.4]. The construction in [3] is non-
canonical (involving a choice of minimal projection in the compacts),
while Fischer’s construction in [5] is canonical (involving an appropri-
ate relative commutant of the image of K in the multipliers of the
double crossed product). However, having a specific formula for max-
imalizations has not turned out to be particular useful, and in fact
from a categorical perspective is clearly deprecated. In certain situa-
tions where the cognoscenti “know” what the maximalization should
be, we’ll be careful to say “a maximalization” (or “a maximalizer”).
For instance, if (A,G, α) is an action, then the regular representation

Λ : (A×α G, α̂) → (A×α,r G, α̂
n)

is the normalization of the dual coaction on the full crossed product, but
is only a maximalization of the dual coaction on the reduced crossed
product. The point is that, given only the coaction (A×α,r G, α̂

n), we
can’t reconstruct what the action (A, α) was, and so we can’t recon-
struct the full crossed product. Again, Fischer tells us how to pick a
canonical maximalization, but we will not do that.

5indeed, unique in C(G), since the subcategory Cn(G) is full
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As with normalizers, we have an automatic surjectivity for maximal-
izers:

Lemma 5.10. Every maximalizer is surjective.

Proof. The argument is similar to Corollary 5.6: the maximalizers con-
structed in both [3] and [5] are surjective, and by universality all max-
imalizers are isomorphic. �

Proposition 5.11. An object (B, ε, ζ) of Cm(G) ↓ (A, δ) is a maxi-

malizer if and only if the morphism

ζ ×G : B ×ε G→ A×δ G

in C∗ is an isomorphism.

Proof. First suppose that (B, ε, ζ) is a maximalizer. To see that ζ ×G
is an isomorphism, it will suffice to know that there is at least one

maximalizer (C, γ, σ) for which σ ×G is an isomorphism; for example,
this holds for the constructions of maximalizers in both [5] and [3]. By
universality of maximalizers there is an isomorphism

θ : (B, ε, ζ) → (C, γ, σ).

Then in particular θ gives an isomorphism (B, ε) ∼= (C, γ) of coactions,
and we have a commuting diagram

B ×ε G
θ×G

∼=
//

ζ×G %%LLLLLLLLLL
C ×γ G

σ×G∼=
��

A×δ G.

Thus ζ ×G is an isomorphism.
Conversely, suppose that ζ ×G is an isomorphism, and let (C, γ, φ)

be an object in Cm(G) ↓ (A, δ). We need to show that there is a unique
morphism ψ in C(G) making the diagram

(C, γ)
φ

$$H
HH

HH
HH

HH

ψ !
��
�

�

�

(B, ε)
ζ

// (A, δ)

commute.
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Consider the diagram

C
id⊗1 //

ψ !

��
�

�

�

�

�

�

�
φ

��?
??

??
??

?
C ⊗K

σ

��

φ⊗id

%%K
KKK

KK
KK

KK
C ×G×G

ΦC

∼=
oo

φ×G×G

((PPPPPPPPPPPP

A
id⊗1 // A⊗K A×G×G

ΦA

oo

B
id⊗1 //

ζ

??��������
B ⊗K

ζ⊗id

99ssssssssss

B ×G×G
ΦB

∼=oo
ζ×G×G

∼=
66nnnnnnnnnnnn

in C∗, where we define

σ = ΦB ◦ (ζ ×G×G)−1 ◦ (φ×G×G) ◦ (ΦC)
−1,

so that the diagram (without ψ) commutes. We must show that there is
a unique morphism ψ making the left triangle commute, and moreover
that ψ is γ − ε equivariant.
Note that by crossed-product duality theory we have

σ
∣∣(

1M(C)⊗K
)= 1M(B) ⊗ idK.

It follows that σ maps C⊗1M(K) into (the canonical image inM(B⊗K)
of)M(B)⊗1K. Thus there is a unique homomorphism ψ : C → M(B)
such that

σ = ψ ⊗ 1M(K),

and moreover ψ is nondegenerate since σ is.
For the equivariance of ψ, note that, again by the general theory

of crossed-product duality, the morphism σ is (γ ⊗∗ id) − (ε ⊗∗ id)
equivariant, where by “⊗∗” we mean that, in order to have an honest
coaction, tensoring with idK must be followed by a switching of the last
two factors in the triple tensor product, so that, for example,

γ ⊗∗ id = (id⊗ Σ) ◦ (γ ⊗ id),

where
Σ : C∗(G)⊗K → K⊗ C∗(G)

is the flip isomorphism. Thus we have

(id⊗ Σ) ◦
(
(ε ◦ ψ)⊗ id

)
= (id⊗ Σ) ◦ (ε⊗ id) ◦ (ψ ⊗ id)

= (ε⊗∗ id) ◦ σ

= (σ ⊗ id) ◦ (γ ⊗∗ id)

= (ψ ⊗ id⊗ id) ◦ (id⊗ Σ) ◦ (γ ⊗ id)

= (id⊗ Σ) ◦ (ψ ⊗ id⊗ id) ◦ (γ ⊗ id)

= (id⊗ Σ) ◦
((

(ψ ⊗ id) ◦ γ
)
⊗ id

)
,
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so because id⊗Σ is injective we have (ε ◦ψ)⊗ id =
(
(ψ⊗ id) ◦ γ

)
⊗ id,

and therefore ε ◦ ψ = (ψ ⊗ id) ◦ γ. �

Remarks 5.12. (i) The above property of giving isomorphic crossed
products was in fact the definition of maximalization given in [5] and
[3]. In Definition 5.3 we use the universal property as the definition
because it can be stated completely within the original category. Also,
in [5] and [3] the property involving isomorphic crossed products was
only shown to imply the universal property of Definition 5.3, not that
the two properties are in fact equivalent, as proved above.
(ii) In [7, Lemma 3.2] it is shown that in fact any morphism φ :

(A, δ) → (B, δ) in C(G) for which φ × G is an isomorphism is surjec-
tive. Moreover, in [7, Proposition 3.1] it is shown that φ is in fact an
isomorphism if either (A, δ) is normal or (B, ε) is maximal.

Notation 5.13. For every coaction (A, δ) we assume that a maximal-
izer

qm : (Am, δm) → (A, δ)

has been chosen, with the proviso that if (A, δ) is maximal then

(Am, δm) = (A, δ) and qm = idA.

Thus it follows that there is a unique functor Max : C(G) → Cm(G)
that takes each object (A, δ) to (Am, δm) and is a right adjoint to the
inclusion functor, so that Cm(G) is a coreflective subcategory of C(G)
and Max is a coreflector, with counit qm. Moreover, since we have
chosen the coreflector to do nothing to maximal coactions, the unit of
this coreflector is the identity transformation on the identity functor
on the subcategory Cm(G). What the maximalization functor does to
morphisms is characterized as follows: if φ : (A, δ) → (B, ε) in C(G),
then the maximalization of φ is the unique morphism φm in Cm(G)6

making the diagram

(Am, δm)
qm

//

φm

��

(A, δ)

φ

��

(Bm, εm)
qm

// (B, ε)

commute.
We have now defined a coreflector Max : C(G) → Cm(G) and a

reflector Nor : C(G) → Cn(G). The following two lemmas show that
Max and Nor satisfy Properties 3.2 (F) and (I).

6indeed, unique in C(G), since the subcategory Cm(G) is full
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Lemma 5.14. Let (A, δ) be a normal coaction. Then not only is qm :
(Am, δm) → (A, δ) a maximalizer, it is also a normalizer.

Thus, not only is qm final in Cm(G) ↓ (A, δ), it is also initial in
(Am, δm) ↓ Cn(G).

Proof. (A, δ) is normal, so (A, δ, qm) is an object of (Am, δm) ↓ Cn(G).
Since qm × G : Am ×δm G → A ×δ G is an isomorphism, the result
follows from Proposition 5.7. �

Lemma 5.15. Let (A, δ) be a maximal coaction. Then not only is

qn : (A, δ) → (An, δn) a normalizer, it is also a maximalizer.

Thus, not only is qn initial in (A, δ) ↓ Cn(G), it is also final in
Cm(G) ↓ (An, δn).

Proof. The proof is similar to the above: (A, δ) is maximal, so (A, δ, qn)
is an object of Cm(G) ↓ (An, δn). Since qn×G : A×δ G→ An ×δn G is
an isomorphism, the result follows from Proposition 5.11. �

Corollary 5.16 ([7, Theorem 3.3]). Nor |Cm(G) ⊣ Max |Cn(G) is an ad-

joint equivalence. In particular, Nor |Cm(G) : Cm(G) → Cn(G) is an

equivalence, and Max |Cn(G) is a quasi-inverse.

Proof. This follows immediately from the above two lemmas and Corol-
lary 3.4. �

We now show that Max and Nor satisfy the extra property recorded
in Hypothesis 4.1 and its dual analog mentioned in Remark 4.8.

Lemma 5.17. Let (A, δ) be a coaction. Then qn ◦ qm : (Am, δm) →
(An, δn) is both a normalizer and a maximalizer.

The notation in the above lemma is unambiguous, but just to be
clear: in the composition qn ◦ qm the maps are

qn : A→ An and qm : Am → A.

Proof. We only prove the first statement; the second one is similar. The
coaction (An, δn) is normal, and qn ◦ qm is an equivariant surjection,
since qn and qm are. By functoriality of crossed products, we have

(qn ×G) ◦ (qm ×G) = (qn ◦ qm)×G : Am ×δm G→ An ×δn G.

Since both qn × G and qm × G are isomorphisms, so is (qn ◦ qm) ×G.
Thus qn ◦ qm is a normalizer, by Proposition 5.7. �

The following three consequences may be new, and result from care-
ful consideration of the categorical perspective:

Corollary 5.18. Nor ∼= Nor |Cm(G) ◦Max and Max ∼= Max |Cn(G) ◦Nor.
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Proof. This now follows immediately from Proposition 4.2 and Corol-
lary 4.4 �

Corollary 5.19. Max and Nor are both faithful.

Proof. Since maximalizers are surjective, they are epimorphisms in
C(G), so this follows immediately from Corollary 4.6. �

Corollary 5.20. If (A, δ) is a coaction, then the map qn : (A, δ) →
(An, δn), and hence every normalizer of (A, δ), is a monomorphism

in C(G).

Proof. The first part follows immediately from Lemma 2.2, and then
the second part follows since any two normalizers of (A, δ) are isomor-
phic in C(G). �

Remark 5.21. The preceding corollary surprised us at first. Certainly
qn : A→ An is not generally a monomorphism in C∗, because it would
then have to be injective, which it frequently fails to be — for example,
if G is a locally compact group then qn : (C∗(G), δG) → (C∗

r (G), δ
n
G) is

the integrated form of the regular representation, which is noninjective
if G is nonamenable.
It is instructive to repeat Remark 4.7 in the present context: let us

examine exactly how the functor Nor : C(G) → Cn(G) itself fails to be
an equivalence of categories. We have seen that Nor is faithful, and
it is not only essentially surjective, as any reflector in a full reflective
subcategory must be, but in our case is actually surjective on objects,
because we have insisted that the reflector satisfy

Nor |Cn(G) = 1|Cn(G).

Thus the unit qn, although it is always both an epimorphism and a
monomorphism in C(G), is not generally an isomorphism. In particular,
it is not a split epimorphism, so by Lemma 2.2 Nor is not full, and that
is the only property of equivalences that it fails to possess.

5.2. Compact quantum groups. Our next example of the reflective-
coreflective equivalence involves compact quantum groups as defined by
S.L. Woronowicz [14, 15] – see also [9, 11, 2]. For the ease of the reader,
we begin by recalling some basic facts about these objects.
A compact quantum group (A,∆) consists of a unital C∗-algebra A

(with unit 1 = 1A) and a unital homomorphism ∆ : A→ A⊗A (called
the co-multiplication) satisfying

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆,

and such that the linear spans of (1 ⊗ A)∆(A) and (A ⊗ 1)∆(A) are
each dense in A ⊗ A. For any compact quantum group (A,∆), there
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exists a unique state h = hA on A, called the Haar state of (A,∆),
which satisfies

(h⊗ id) ◦∆ = (id⊗ h) ◦∆ = h(·)1.

(These conditions are known, respectively, as left- and right-invariance

of h.)
By a Hopf ∗-subalgebra A of (A,∆) we mean a Hopf ∗-algebra A

which is a unital ∗-subalgebra of A with co-multiplication given by
restricting the co-multiplication ∆ from A to A. (As a Hopf ∗-algebra,
A has a co-unit and a co-inverse, but they won’t play any role in our
discussion).
Any compact quantum group (A,∆) has a canonical dense Hopf

∗-subalgebra A, called the associated Hopf ∗-algebra of (A,∆); A
is the linear span of the matrix entries of all finite dimensional
co-representations of (A,∆). Here, when n ∈ N, an n-dimensional

co-representation of (A,∆) means a unitary matrix U = (uij) ∈Mn(A)
satisfying

∆(uij) =

n∑

k=1

uik ⊗ ukj, i, j = 1, . . . , n .

The associated Hopf ∗-algebra of (A,∆) is the unique dense Hopf ∗-
subalgebra of (A,∆) (see the appendix of [2] for a proof). It is known
(cf. [15]) that the Haar state of (A,∆) is faithful on A, but not on A
in general.
Now let (A,∆) and (B,∆′) be compact quantum groups with asso-

ciated Hopf ∗-algebras A and B, respectively. A quantum group mor-

phism from (A,∆) to (B,∆′) is a unital homomorphism π : A→ B
satisfying

∆′ ◦ π = (π ⊗ π) ◦∆.

Using this equation, one easily sees that if U = (uij) ∈ Mn(A) is
a co-representation of (A,∆), then V = (π(uij)) ∈ Mn(B) is a co-
representation of (B,∆′). It follows that π(A) ⊆ B.
The obvious category whose objects are compact quantum groups

and morphisms are quantum group morphisms has too many mor-
phisms for our purposes; our category C will be obtained by considering
only those morphisms satisfying a certain natural condition. The fol-
lowing lemma illustrates two ways of describing this condition. When-
ever π satisfies one of these equivalent conditions, we will say that π is
a strong quantum group morphism.

Lemma 5.22. Let π be a quantum group morphism from (A,∆) to

(B,∆′). Then the restriction of π to A is injective if and only if hA =
hB ◦ π.
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Proof. Assume first that π|A : A → B is injective, and set h′ = hB ◦ π.
We will show that h′ = hA.
Let a ∈ A. Then we have

π(h′(a) 1A) = h′(a) 1B = hB(π(a)) 1B =
(
(hB ⊗ idB) ◦∆

′
)
(π(a))

=
(
(hB ⊗ idB) ◦ (π ⊗ π)

)
(∆(a))) = π

(
(h′ ⊗ idA)(∆(a))

)
.

As ∆(a) ∈ A⊙A, we have (h′ ⊗ idA)(∆(a)) ∈ A. The injectivity of π
on A then implies that (h′ ⊗ idA)(∆(a)) = h′(a) 1A.
In the same way, one gets (idA ⊗ h′)(∆(a)) = h′(a) 1A. Hence the

state h′ is left- and right-invariant on A, and therefore also on A, by
density of A and continuity of the involved maps. By the uniqueness
property of the Haar state on A, it follows that h′ = hA, as desired.
Assume now that hA = hB ◦ π. To show that π is injective on A,

consider a ∈ A satisfying π(a) = 0. Then we have

hA(a
∗a) = hB(π(a

∗a)) = hB(π(a)
∗π(a)) = hB(0) = 0

But hA is faithful on A, so a = 0. �

It is straightforward to check that the usual composition (as maps)
of two strong quantum group morphisms, whenever it makes sense, is
again a strong quantum group morphism. The following definition is
therefore meaningful.

Definition 5.23. The category C has compact quantum groups as
objects. Its morphisms are strong quantum group morphisms. Com-
position of morphisms is given by usual composition of maps, while the
identity morphisms are just the identity maps.

Reduced compact quantum groups. Let (A,∆) be a compact quantum
group with associated Hopf ∗-algebra A. The left kernel NA = {a ∈
A | hA(a

∗a) = 0} of hA is then known to be a two-sided ideal of A. Set
Ar = A/NA and let θA denote the quotient map from A onto Ar.
The C∗-algebra Ar can be made into a compact quantum group

(Ar,∆r), called the reduced quantum group of (A,∆) (cf. [14] and [2,
Section 2] for details):
The co-multiplication ∆r is determined by the equation ∆r ◦ θA =

(θA ⊗ θA) ◦ ∆. The quotient map θA is injective on A and θA(A) is
the Hopf ∗-algebra of (Ar,∆r). In particular, this means that θA is a
morphism in C from (A,∆) to (Ar,∆r). Moreover, the Haar state of
(Ar,∆r) is faithful and is the unique state hr of Ar such that hA =
hr ◦ θA.
We will say that (A,∆) is reduced whenever hA is faithful on A,

i.e. whenever NA = {0}, in which case we will identify (Ar,∆r) with
(A,∆). Clearly, the reduced quantum group of any (A,∆) is reduced.
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Definition 5.24. The category R is the full subcategory of C whose
objects are reduced compact quantum groups.

To see that reduction gives a functor R from C to R, we will use the
following lemma.

Lemma 5.25. Let π be a strong quantum group morphism from (A,∆)
to (B,∆′). Then there exists a unique strong quantum group morphism

πr from (Ar,∆r) to (Br,∆
′
r) such that πr ◦ θA = θB ◦ π, that is, making

the diagram

(A,∆)
θA //

π

��

(Ar,∆r)

πr

��

(B,∆′)
θB

// (Br,∆
′
r)

commute.

Proof. As hA(a
∗a) = hB(π(a)

∗π(a)) for a ∈ A, it follows readily that
π(NA) ⊆ NB.

7 Hence we may define πr : Ar → Br by

πr(θA(a)) = θB(π(a)), a ∈ A.

It is easy to check that ∆′
r◦πr◦θA = (πr⊗πr)◦∆r◦θA. This implies that

πr is a quantum group morphism from (Ar,∆r) to (Br,∆
′
r) satisfying

πr ◦ θA = θB ◦ π.
Letting hr and h

′
r denote the respective Haar states of (Ar,∆r) and

(Br,∆
′
r), we have

(h′r ◦ πr) ◦ θA = h′r ◦ θB ◦ π = hB ◦ π = hA.

From the uniqueness property of hr, we get hr = h′r ◦ πr, so πr is a
strong quantum group morphism. The uniqueness property of πr is
evident. �

If now π and π′ are two composable morphisms in C, it is straight-
forward to deduce from the uniqueness property that (π◦π′)r = πr ◦π

′
r.

Hence, we may define R as follows.

Definition 5.26. The functor R : C → R takes each object (A,∆)
in C to (Ar,∆r) in R, and each morphism π in C to the morphism πr
in R.

Proposition 5.27. The functor R is a left adjoint to the inclusion

functor IncR : R → C, and the unit θ of R ⊣ IncR is given by θx = θA
for each x = (A,∆) in C. In particular, R is reflective in C.

7This is not necessarily true if π is not strong. Consequently, Lemma 5.25 is not
true for general quantum group morphisms.
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Proof. For each compact quantum group x = (A,∆), let θx : x → Rx
be the morphism in C given by θx = θA. Then Lemma 5.25 implies
that the map θ which sends each x to θx is a natural transformation
from 1C to IncR ◦R.
Moreover, Lemma 5.25 also implies that (Rx, θx) is a universal mor-

phism from x to R for each object x = (A,∆) in C. Indeed, consider
an object y = (B,∆′) in R and a morphism π : x → y in C. Then
(Br,∆

′
r) = (B,∆′) = y and θB = idB. Hence πr : Rx→ y is the unique

morphism in R such that π = πr ◦ θx.
This shows that R ⊣ IncR and θ is the unit of this adjunction. �

Universal compact quantum groups. Let (A,∆) be a compact quantum
group with associated Hopf ∗-algebra A. We recall the construction
of the universal compact quantum group associated to (A,∆) (cf. [2,
Section 3] for more details).
When a ∈ A, set ‖a‖u = supφ ‖φ(a)‖, where the variable φ runs over

all unital homomorphisms φ from A into any unital C∗-algebra B. The
function ‖·‖u : A → [0,∞] is then a C∗-norm on A which majorises any
other C∗-norm on A. Let Au be the C∗-algebra completion8 of A with
respect to the C∗-norm ‖·‖u. As usual, we identify A with its canonical
copy inside Au. The C∗-algebra Au has the universal property that
every unital homomorphism from A to a unital C∗-algebra B, extends
uniquely to a unital homomorphism from Au to B.
In particular, ∆ : A → A⊙A ⊆ Au ⊗ Au extends to a homomor-

phism

∆u : Au → Au ⊗ Au,

and (Au,∆u) is then seen to be a compact quantum group, called the
universal quantum group of (A,∆). Since A is, by construction, a dense
Hopf ∗-subalgebra of (Au,∆u), it is the Hopf ∗-algebra associated to
(Au,∆u), by uniqueness.
By the universal property of Au, there is a canonical homomorphism

ψA from Au onto A extending the identity map from A to itself. Then
∆ ◦ ψA = (ψA ⊗ ψA) ◦∆u, and hA ◦ ψA is the Haar state of (Au,∆u),
which just means that ψA is a morphism in C from (Au,∆u) to (A,∆).
A compact quantum group (A,∆) is called universal if ψA is injec-

tive. Equivalently, (A,∆) is universal if, and only if, the given norm on
A is its greatest C∗-norm. Obviously, the universal compact quantum
group associated to any (A,∆) is universal.

8As such a completion is unique only up to isomorphism, we actually make a
choice here for each compact quantum group.
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Definition 5.28. The category U is the full subcategory of C whose
objects are universal compact quantum groups.

To see that universalization gives a functor U from C to U , we will
use the following lemma.9

Lemma 5.29. Let π be a strong quantum group morphism from (A,∆)
to (B,∆′). Then there exists a unique strong quantum group morphism

πu from (Au,∆u) to (Bu,∆
′
u) such that ψB◦πu = π◦ψA, that is, making

the diagram

(Au,∆u)
ψA //

πu

��

(A,∆)

π

��

(Bu,∆
′
u) ψB

// (B,∆′)

commute.

Proof. We have π : A → B ⊆ Bu. Hence, by the universal property
of Au, we may uniquely extend this map to a unital homomorphism
πu : Au → Bu.
Let a ∈ A. Then we have

(πu ⊗ πu)(∆u(a)) = (π ⊗ π)(∆(a)) = ∆′(π(a)) = ∆′
u(πu(a)).

By density of A and continuity, we see that πu is a quantum group
morphism. As πu agrees with π on A, πu is injective on A. Hence, πu
is a strong quantum group morphism.
Further, as ψB ◦ πu = π = π ◦ ψA clearly holds on A, we have

ψB ◦ πu = π ◦ ψA (again by density of A and continuity). Finally, if φ
is a another morphism which satisfies ψB ◦ φ = π ◦ ψA, then φ agrees
with π on A, so φ = πu. �

If now π and π′ are two composable morphisms in C, it is straightfor-
ward to deduce from the uniqueness property that (π ◦ π′)u = πu ◦ π′

u.
Hence, we may define U as follows.

Definition 5.30. The functor U : C → U takes each object (A,∆)
in C to (Au,∆u) in U , and each morphism π in C to the morphism πu
in U .

Proposition 5.31. The functor U is a right adjoint to the inclusion

functor IncU : U → C and the counit ψ of the adjunction IncU ⊣ U
is given by ψy = ψB for each y = (B,∆′) in C. In particular, U is

coreflective in C.

9As will be apparent from its proof, Lemma 5.29 is also valid if we consider
quantum group morphisms instead of strong quantum group morphisms.
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Proof. For each compact quantum group y = (B,∆′), let ψy be the
morphism in C defined by ψy = ψB. Then Lemma 5.29 implies that
the map ψ which sends each y to ψy is a natural transformation from
IncU ◦U to 1C.
Lemma 5.29 also implies that each ψy is a universal morphism from

U to y for each object y = (B,∆′) in C. Indeed, consider a universal
compact quantum group x = (A,∆) and a morphism π : x → y in C.
Then ψA is an isomorphism and π′ = πu ◦ ψ

−1
A : (A,∆) → (Bu,∆

′
u) is

clearly the unique morphism in U(x, Uy) such that π = ψy ◦ π′. �

Equivalence of R and U . It follows from Propositions 5.27 and 5.31
that R|U ⊣ U |R is an adjunction from U to R. To see that this is an
adjoint equivalence, we will use the following:

Proposition 5.32. Let (A,∆) be a compact quantum group. Then:

(i) UθA = (θA)u is an isomorphism in U ;
(ii) RψA = (ψA)r is an isomorphism in R.

Proof. (i) Lemma 5.29, applied to θA, gives that

(θA)u : (Au,∆u) →
(
(Ar)u, (∆r)u

)

is a morphism in U satisfying ψAr ◦ (θA)u = θA ◦ ψA.
Since θA is injective on A, the map θA(a) 7→ a ∈ A ⊆ Au gives a

well-defined homomorphism from θA(A) to Au. Hence, by universality,
it extends to a homomorphism from (Ar)u to Au, which is easily seen
to be a morphism in U and the inverse of (θA)u.
(ii) Lemma 5.25, applied to ψA, gives that

(ψA)r :
(
(Au)r, (∆u)r

)
→ (Ar,∆r)

is a morphism in R satisfying (ψA)r ◦ θAu = θA ◦ ψA. As (ψA)r ◦
θAu = θA ◦ ψA is surjective (because θA and ψA are both surjective by
construction), it is clear that (ψA)r is surjective.
Moreover, as hr ◦ θA ◦ ψA is the Haar state of (Au,∆u) and hr is

faithful, we have ker(θA ◦ ψA) = NAu = ker(θAu). Since (ψA)r ◦ θAu =
θA ◦ ψA, it readily follows that (ψA)r is injective.
Hence, (ψA)r is a bijection. But any quantum group morphism which

is a bijection is easily seen to be an isomorphism in C. So (ψA)r is an
isomorphism in R. �

Theorem 5.33. The adjunction R|U ⊣ U |R is an adjoint equivalence.

In particular, the categories R and U are equivalent.

Proof. Proposition 5.32 (i) (respectively 5.32 (ii)) implies that the ad-
junction R|U ⊣ U |R satisfies condition (iv) (respectively (viii)) in The-
orem 3.3. As U (respectively R) is full, Theorem 3.3 gives that the unit
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(respectively the counit) of this adjunction is a natural isomorphism.
Hence, the assertion follows. �

Remark 5.34. Proposition 5.32 may be reformulated by saying that
for every x ∈ Obj C, (Rx, θx ◦ ψx) is initial in Ux ↓ R and (Ux, θx ◦
ψx) is final in U ↓ Rx (cf. Remarks 4.3 and 4.8), which means that
Hypothesis 4.1 and its dual analog are satisfied. Being surjective by
construction, ψx is an epimorphism in C for each x ∈ Obj C, so we can
conclude from Corollary 4.6 that U and R are faithful.

5.3. Other examples. Here we describe two other examples of the
maximal-normal equivalence, in which the subcategories are not only
equivalent but in fact isomorphic. These concern tensor products and
group representations, and it should be clear that one can readily con-
struct an abundance of such examples.

Tensor products. We show that the categories of maximal and minimal
C∗-tensor products are equivalent, indeed isomorphic.10 More precisely,
we show that, for a fixed C∗-algebra D, the categories of maximal
tensor products A⊗max D and minimal tensor products A⊗min D are
isomorphic. We thank Chris Phillips for this suggestion.
We could easily have done everything with both variables free, i.e.,

allowing D to vary as well as A, but we merely wanted to present
examples, and the result we establish is more readily compared with
the maximal-normal equivalence for coactions. To see the relation, let
G be a locally compact group, and take D = C∗(G). For any C∗-
algebra A, let ι be the trivial action of G. Then the full and reduced
crossed products are

A⋊ι G = A⊗max C
∗(G) and A⋊ι,r G = A⊗min C

∗
r (G),

and in each case the dual coaction is trivial. The maximal-normal
equivalence relates the maximal coaction (A ⋊ι G, ι̂) to its normaliza-
tion (A ⋊ι,r G, ι̂

n), i.e., the maximal tensor product A ⊗max C
∗(G) to

the minimal one A ⊗min C
∗
r (G), both with the trivial coaction. The

“maximal-normal isomorphism” we exhibit here relates only the C∗-
algebras A⊗maxC

∗(G) and A⊗minC
∗(G) (not A⊗minC

∗
r (G)); thus the

comparison is not perfect (and so even in with D = C∗(G) the results
we present here are not a special case of the maximal-normal equiva-
lence for coactions), but clearly there is a strong similarity between the
two types of equivalence.

10Of course, the tensor-product C∗-algebras themselves will usually not be
isomorphic!
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Fix a C∗-algebra D. Our ambient category C will comprise C∗-
tensor products with D. More precisely, the objects in C are pairs
(A, σ), where A is a C∗-algebra and σ is a C∗-norm on the algebraic
tensor product A ⊙ D; and a morphism π : (A, σ) → (B, τ) in C is a
C∗-homomorphism π : A→ B such that the homomorphism

π ⊙ id : A⊙D → B ⊙D

between the algebraic tensor products is σ − τ bounded.
Thus, for any object (A, σ) in C, idA : (A,max) → (A, σ) and

idA : (A, σ) → (A,min) are morphisms in C, where max and min
denote the maximal and minimal C∗-norms, respectively. Also, any
C∗-homomorphism π : A → B gives two morphisms π : (A,max) →
(B,max) and π : (A,min) → (B,min) in C.
A moment’s thought reveals that C really is a category: the identity

morphism on an object (A, σ) is idA, and the composition of morphisms
π : (A, σ) → (B, τ) and φ : (B, τ) → (C, γ) is φ ◦ π : (A, σ) → (C, γ).
Our subcategories M and N will comprise the maximal and mini-

mal tensor products, respectively. That is, M is the full subcategory
of C with objects of the form (A,max), and N is the full subcategory
with objects of the form (A,min). The following proposition is almost
trivial.

Proposition 5.35. The subcategories M and N of C are coreflective

and reflective, respectively.

Proof. To show thatM is coreflective, we must construct a right adjoint
M of the inclusion functor IncM : M → C. It suffices to find, for each
object (A, σ) in C, a universal morphism (M(A, σ), ψ(A,σ)) from M to
(A, σ), because there would then be a unique way to extend M to a
right adjoint such that ψ : IncM ◦M :→ 1C is a natural transformation.
So, let (B,max) be an object in M, and let π : (B,max) → (A, σ) be
a morphism.
Then obviously π : (B,max) → (A,max) is the unique morphism

making the diagram

(B,max)

π

%%K
KK

KKK
KKK

K

π !
��
�

�

�

(A,max)
idA

// (A, σ)

commute, so we can take

M(A, σ) = (A,max) and ψ(A,σ) = idA
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It is just as easy to construct a left adjoint N for the inclusion functor
IncN : N → C. �

Note that the adjunctions IncM ⊣ M and N ⊣ IncN implicitly con-
structed in the above proof are given by

M(A, σ) = (A,max) Mπ = π

N(A, σ) = (A,min) Nπ = π,

where (A, σ) and π are an object and a morphism, respectively, of C.
Moreover, the counit of IncM ⊣M and the unit of N ⊣ IncN are both
given by identity maps:

ψ(A,σ) = idA : (A,max) → (A, σ)

θ(A,σ) = idA : (A, σ) → (A,min)

We could now apply the results of Sections 3 and 4, after verifying
the relevant hypotheses therein, but in this context all this reduces
to almost a triviality, and in fact the restriction N |M is not only an
equivalence, but in fact an isomorphism of subcategories: N |M and
M |N are easily seen to be inverses of each other.

Remark 5.36. The components of both the counit ψ : IncM ◦M → 1C
and θ : 1C → IncN ◦N are both monomorphisms and epimorphisms,
since these components reduce to idA for each object (A, σ). Of course,
in spite of all this we must still keep in mind that neither the counit
nor the unit is an isomorphism.

Group representations. Another example of the “maximal-normal iso-
morphism” is given by group representations weakly containing the
trivial representation. More precisely, this time our ambient category
C will have

• objects: triples (G, u,A), where G is a locally compact group,
A is a C∗-algebra, and u : G → M(A) is a strictly continuous
unitary homomorphism that weakly contains the trivial rep-
resentation 1G : G → C (given by 1G(s) = 1 for all s ∈ G),
and for which the associated morphism πu : C

∗(G) → A in C∗

maps C∗(G) onto A;
• morphisms: (φ, π) : (G, u,A) → (H, v, B) in C means that
φ : G → H is a continuous homomorphism, π : A → B is a
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morphism in C∗ and the diagram

G
u //

φ

��

M(A)

π
��

A?
_oo

π
||zz

zz
zz

zz
z

H v
// M(B)

commutes.

Thus, for each object (G, u,A) in C, the weak containment hypothesis
means that there is a morphism γu in C∗ making the diagram

G
u //

1G ""E
EE

EE
EE

EE
E M(A)

γu

��

A

γu
||yy

yy
yy

yy
yy

? _oo

C

commute. It is routine to check that this is a category.
This time, our full subcategories M and N will have objects of

the form (G, iG, C
∗(G)) and (G, 1G,C), respectively, where iG : G →

M(C∗(G)) is the canonical inclusion.

Proposition 5.37. The subcategories M and N of C are coreflective

and reflective, respectively.

Proof. As usual, it suffices to find, for each object (G, u,A) of C, a
universal morphism (M(G, u,A), ψ(G,u,A)) from M to (G, u,A), and a
universal morphism (N(G, u,A), θ(G,u,A)) from (G, u,A) to N . Note
that we have a commutative diagram

M(C∗(G))

πu
��

C∗(G)

πuxxrrrrrrrrrr

? _oo

G

iG
::uuuuuuuuuu u //

1G %%J
JJJJJJJJJJ M(A)

γu

��

A

γu
xxqqqqqqqqqqqqqq

? _oo

C.

Claim: it follows that we can take

M(G, u,A) = (G, iG, C
∗(G))

ψ(G,u,A) = (idG, πu)

N(G, u,A) = (G, 1G,C)

θ(G,u,A) = (idG, γu).

To verify the claim, first we show that

(idG, πu) : (G, iG, C
∗(G)) → (G, u,A)
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is final in the comma category M ↓ (G, u,A):
Given an object (H, iH , C

∗(H)) in M and a morphism
(φ, ω) : (H, iH , C

∗(H)) → (G, u,A), we must show that the
diagram

(H, iH , C
∗(H))

(φ,ω)

''PPPPPPPPPPPP

(σ,τ) !
��
�

�

�

(G, iG, C
∗(G))

(idG,πu)
// (G, u,A)

can be uniquely completed. We will show that we can take

(σ, τ) = (φ, C∗(φ)),

where C∗(φ) : C∗(H) → C∗(G) is the morphism in C∗ corresponding
to the continuous homomorphism φ : H → G. First of all, note that
(φ, C∗(φ)) : (H, iH , C

∗(H)) → (G, iG, C
∗(G)) is a morphism in C (in

fact, inM, since M is full and both objects are inM), by the universal
property of group C∗-algebras. Of course φ = idG ◦ φ, so it remains to
show that

ω = πu ◦ C
∗(φ)

in C∗. This time, because we are “mixing categories”, we take some
care with the “barring” of nondegenerate homomorphisms into multi-
plier algebras (see [1, Appendix A]). So, we must show that

πu ◦ C
∗(φ) = ω : C∗(H) → M(A).

Since all the above homomorphisms are nondegenerate, it suffices to
show that

πu ◦ C∗(φ) = ω :M(C∗(H)) →M(A).

Furthermore, by the universal property of group C∗-algebras it suffices
to show that the above equation holds after pre-composing both sides
with iH : H →M(C∗(H)):

πu ◦ C∗(φ) ◦ iH = πu ◦ C∗(φ) ◦ iH (properties of barring)

= πu ◦ iG ◦ φ ((φ, C∗(φ)) is a morphism)

= u ◦ φ (universal property of πu)

= ω ◦ iH ((φ, ω) is a morphism).

To finish, we need to verify that

(idG, γu) : (G, u,A) → (G, 1G,C)

is initial in the comma category (G, u,A) ↓ N : given an object
(H, 1H,C) in N and a morphism (φ, ω) : (G, u,A) → (H, 1H ,C), we
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must show that the diagram

(G, u,A)
(idG,γu)//

(φ,ω) &&NNNNNNNNNNN
(G, 1G,C)

(σ,τ)!
���
�

�

(H, 1H ,C)

can be uniquely completed. We will show that we can take (σ, τ) =
(φ, idC). Again, the only nontrivial thing to show is ω = idC ◦ γu = γu.
Note that γu : A→ C is the unique homomorphism such that γu ◦ u =
1G. Thus the following computation finishes the proof:

ω ◦ u = 1H ◦ φ = 1G. �

Proposition 5.38. With the above notation, the restriction N |M :
M → N is an isomorphism of categories.

Proof. Again N |M andM |N are easily seen to be inverses of each other.
�

Appendix A.

In this appendix we take the opportunity to reinterpret much of
the existing theory of coaction crossed products in the present, more
categorical, context.
To begin, we explicitly record a few properties of the category C∗.

Since C(G) is obtained from C∗ by adding extra structure, some of the
following observations will be relevant for C(G) as well.
A morphism φ : A → B in C∗ is a monomorphism if and only it

is injective. Thus, monomorphicity is completely determined by the
kernel. What about epimorphicity? One direction is elementary: If
φ : A → B in C∗ and φ is surjective (i.e., φ(A) = B), then φ is an
epimorphism. Of course, the converse is false for general morphisms in
C∗. For example, if φ(A) properly contains A then φ is an epimorphism
in C∗. There is a positive result, which does not seem to have become
a standard tool among operator algebraists:

Lemma A.1 ([6]). Suppose φ : A → B is a homomorphism — so we

are requiring φ to map A into B itself rather than merely M(B). Then
φ is an epimorphism in C∗ if and only if it is surjective.

The above results lead to an obvious question, which does not seem
to be addressed in the literature: if φ : A → B is an epimorphism
in C∗, must φ(A) ⊃ B?
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Factorizability in C∗ is also often controlled by kernels: if φ : A→ B
and ψ : A → C in C∗, with φ surjective, then there is a morphism ρ
in C∗ making the diagram

A
φ

//

ψ ��@
@@

@@
@@

B

ρ

���
�

�

C

commute if and only if ker φ ⊂ kerψ, and moreover ρ is unique. We do
not know whether the conclusion still holds if we weaken the surjectivity
hypothesis on φ to epimorphicity of φ in C∗.
The above factorizability criterion carries over to C(G) (a routine

diagram chase shows the required equivariance): if φ : (A, δ) → (B, ε)
and ψ : (A, δ) → (C, γ) in C(G), with φ surjective, then there is a
morphism ρ in C(G) making the diagram

(A, δ)
φ

//

ψ $$H
HH

HH
HH

HH
(B, ε)

ρ

���
�

�

(C, γ)

if and only if ker φ ⊂ kerψ, and moreover ρ is unique.

Lemma A.2 ([13, Lemma 1.11]). Every morphism µ : C0(G) → B
in C∗ implements an inner coaction Adµ of G on B, and all inner

coactions are normal.

Of course “Adµ” is an abuse of notation — it is intended to be in an
obvious way dual to the notation Ad u for the inner action determined
by a strictly continuous unitary homomorphism u : G → M(B). The
notation stands for the morphism Adµ : B → B⊗C∗(G) in C∗ defined
by

Adµ(b) = Adµ⊗ id(wG)(b⊗ 1),

where wG denotes the unitary element of M(C0(G) ⊗ C∗(G)) deter-
mined by the canonical embedding G →֒M(C∗(G)).

Lemma A.3. Let (A, δ) be a coaction, and let µ : C0(G) → B and

π : A → B in C∗. Then the pair (π, µ) is a covariant homomorphism

of (A, δ) in M(B) if and only if π is δ −Adµ equivariant.

We will show presently that the crossed-product functor for coac-
tions is right-adjointable. Of course, this will follow from the universal
property of crossed products. It will be a little clearer to consider
this universality for an individual coaction first. Let’s recall Raeburn’s
definition of crossed product:
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Definition A.4. Let (η, ν) be a covariant homomorphism of a coaction
(A, δ) inM(C). Then (C, η, ν) is a crossed product of (A, δ) if for every
covariant homomorphism (π, µ) of (A, δ) in M(B) there is a unique
morphism ρ in C∗ making the diagram

(A.1) A
η

//

π
��>

>>
>>

>>
> C

ρ!

��
�

�

�
C0(G)

νoo

µ
||yy

yy
yy

yy
y

B

commute. The existence of ρ is expressed by saying that (π, µ) factors
through (η, ν), and existence and uniqueness together are expressed by
saying that (π, µ) factors uniquely through (η, ν).

Remark A.5. In addition to the above axioms, Raeburn explicitly
hypothesizes that the C∗-algebra C is generated by products of the
form η(a)ν(f) for a ∈ A and f ∈ C0(G). This hypothesis is redundant:
the theory of crossed products tells us that if (C, η, ν) and (D, σ, ω)
are crossed products of (A, δ), then there is a unique isomorphism θ :
C → D such that θ ◦ η = σ and θ ◦ ν = ω in C∗. Since there is
at least one crossed product (C, η, ν) for which C is generated by11

the set of products η(A)ν(C0(G)), it must therefore be true for every
crossed product (D, σ, ω). That being said, we can nevertheless turn
this redundancy around to find a useful replacement for the uniqueness
clause:

Lemma A.6. Let (η, ν) be a covariant homomorphism of a coaction

(A, δ) in M(C), and suppose that every covariant homomorphism of

(A, δ) factors through (η, µ). Then (C, η, ν) is a crossed product of

(A, δ) if and only if C is generated by η(A)ν(C0(G)).

We will use Lemma A.3 to show that crossed products give universal
morphisms. We need a functor:

Notation A.7. Ad denotes the functor that takes an object (B, µ) of
C0(G) ↓ C∗ to the object (B,Adµ) of C(G), and takes a morphism ψ
in C0(G) ↓ C∗ to ψ, now regarded as a morphism in C(G).

Note that the above definition of Ad makes sense on morphisms,
because if ψ : (B, µ) → (C, ν) in C0(G) ↓ C∗ then (computing in the
usual category of C∗-algebras and ∗-homomorphisms)

Ad ν ⊗ id(wG)
(
ψ(b)⊗ 1

)
= ψ ◦ µ⊗ id(wG)

(
ψ(b)⊗ 1

)

= ψ ⊗ id
(
Adµ⊗ id(b⊗ 1)

)
,

11in fact is the closed span of
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so that (Ad ν) ◦ ψ = (ψ ⊗ id) ◦ (Adµ) in C∗.

Lemma A.8. Let (A, δ) be a coaction of G, let (C, ν) be an object in

C0(G) ↓ C∗, and let η : (A, δ) → (C,Ad ν) in C(G). If (C, η, ν) is a

crossed product of (A, δ) then (C, ν, η) is a universal morphism from

(A, δ) to the functor Ad.

Proof. Let (B, µ) be an object in C0(G) ↓ C∗, and let π : (A, δ) →
(B,Adµ) in C(G). By Lemma A.3 the pair (π, µ) is a covariant homo-
morphism of (A, δ) in M(B). Thus, since (C, η, ν) is a crossed product
of (A, δ) there is a unique morphism ρ : C → B in C∗ making dia-
gram (A.1) commute. Then ρ : (C, ν) → (B, µ) in C0(G) ↓ C∗, so ρ
is also a morphism from (C,Ad ν) to (B,Adµ) in C(G), and it is the
unique such morphism making the diagram

(A.2) (A, δ)
η

//

π
%%KKKKKKKKKK

(C,Ad ν)

ρ!
���
�

�

(B,Adµ)

commute. We have shown that (C, ν, η) is a universal morphism from
(A, δ) to Ad. �

Question A.9. Is the converse of the above lemma true? That is,
if (C, ν, η) is a universal morphism from (A, δ) to Ad, is (C, η, ν) a
crossed product of (A, δ)? The naive approach would be to take any
covariant homomorphism (π, µ) of (A, δ) in M(B), then note that by
Lemma A.3 we have a morphism π : (A, δ) → (B,Adµ) in C(G),
so by universality we have a unique morphism ρ in C(G) making the
diagram (A.2) commute. But this only says that the coactions Adµ
and (Ad ρ) ◦ ν on B coincide, which does not imply that µ = ρ ◦ ν.

Now we promote the above universal property to a functor: once we
choose a universal morphism (A×δ G, jG, jA) for each coaction (A, δ),
there is a unique functor from C(G) to C0(G) ↓ C∗ that takes an object
(A, δ) to (A×δ G, jG) and is a left adjoint to the functor Ad.

Definition A.10. The above functor, taking (A, δ) to (A×δ G, jG), is
the crossed-product functor, denoted by

CP : C(G) → C0(G) ↓ C∗.

The value of CP on a morphism φ in C(G) is written φ×G.

The above discussion can be summarized by:
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Corollary A.11. CP is a left adjoint for Ad, with unit j : 1C(G) →
Ad ◦CP given by

j(A,δ) = jA : (A, δ) → (A×δ G, jG).

The following easy observation is another summary of the above dis-
cussion, and follows from essential uniqueness of universal morphisms:

Corollary A.12. Let (η, ν) be a covariant homomorphism of a coac-

tion (A, δ) in M(C). Then (C, ν, η) is a crossed product of (A, δ) if

and only if

η × ν : A×δ G→ C

is an isomorphism in C∗.

Lemma A.13 (“Epi-mono factorization” in C(G)). If φ : (A, δ) →
(B, ε) in C(G), then there is a unique coaction γ on φ(A) such that the

diagram

(A, δ)
φ

//

φ %%K
KK

KKK
KKK

K
(φ(A), γ)

� _

��

(B, ε)

commutes in C(G). Moreover, γ is normal if ε is.

Proof. We claim that γ = ε|φ(A) does the job. First, note that

ε(φ(A)) = φ⊗ id(δ(A))

⊂ φ⊗ id(M(A⊗G∗(G))

⊂M(φ(A)⊗ C∗(G)).

Further, γ is injective since ε is injective on M(B), and γ satisfies the
coaction identity because ε does. Finally,

γ
(
φ(A)

)(
1M(φ(A)) ⊗ C∗(G)

)
= ε

(
φ(A)

)(
1M(B) ⊗ C∗(G)

)

= φ⊗ id
(
δ(A)

)(
1M(B) ⊗ C∗(G)

)

= φ⊗ id
(
δ(A)

(
1M(A) ⊗ C∗(G)

))
,

which has closed span φ(A)⊗C∗(G) since δ(A)(1⊗C∗(G)) has closed
span A⊗ C∗(G).
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For the last part, suppose that ε is normal. The inclusion map gives
a morphism ι : (φ(A), γ) →֒ (B, ε), so we have a commutative diagram

φ(A)
ι //

jφ(A)

��

B

jB

��
φ(A)×γ G

ι×G
// B ×ε G

in C∗. Since jB and ι are injective, so is jφ(A), so γ is normal. �

As a consequence of the above, we have another effective means to
recognize normal coactions:

Corollary A.14 ([13, Lemma 2.2 and Proposition 2.3]). If (π, µ) is a
covariant homomorphism of (A, δ) in M(B), then Adµ restricts to a

normal coaction δµ on π(A), and then π : (A, δ) → (π(A), δµ) in C(G).
Moreover, if π is injective then it is an isomorphism of (A, δ) onto

(π(A), δµ). Thus, (A, δ) is normal if and only if it has a covariant

homomorphism (π, µ) with π injective.

Corollary A.15 ([13, Proposition 2.5]). For every coaction (A, δ), the
morphism

jA ×G : A×δ G→ jA(A)×Ad jG G

is an isomorphism.

Proof. Since jA : A → jA(A) is surjective, by Lemma A.6 and Corol-
lary A.12 it suffices to show that every covariant homomorphism of
(A, δ) factors through (jjA(A) ◦ jA, jG), and then by Lemma A.3 it suf-
fices to show that for every morphism π : (A, δ) → (B,Adµ) to an
inner coaction there is a morphism ρ making the diagram

(A.3) (A, δ)
jA //

π
''NNNNNNNNNNN

(jA(A),Ad jG)

ρ

��
�

�

�

(B,Adµ)

commute in C(G). Define

ρ = π × µ|jA(A) : jA(A) →M(B).

Applying Corollary A.14 to the morphism

jA : (A, δ) → (A×δ G,Ad jG),

then post-composing with the morphism

π × µ : (A×δ G,Ad jG) → (B,Adµ),

we see that ρ gives a suitable morphism in C(G). �
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