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Abstract. The edit distance between two graphs on the same labeled
vertex set is the symmetric difference of the edge sets. The edit distance
function of hereditary property, H, is a function of p ∈ [0, 1] and is the
limit of the maximum normalized distance between a graph of density
p and H.

This paper uses localization, for computing the edit distance function
of various hereditary properties. For any graph H, Forb(H) denotes the
property of not having an induced copy of H. We compute the edit
distance function for Forb(H), where H is any so-called split graph, and
the graph H9, a graph first used to describe the difficulties in computing
the edit distance function.

1. Introduction

This paper uses the method of localization, introduced in [12] as a way
to compute edit distance functions. It uses some properties of quadratic
programming, first applied by Marchant and Thomason [11]. Some results
on the edit distance function can be found in a variety of papers [15, 5, 6, 1,
2, 3, 4, 10, 11, 13, 14]. Much of the background to this paper can be found
in a paper by Balogh and the author. Terminology and proofs of supporting
lemmas that are suppressed here can be found in [12].

1.1. The edit distance function. A hereditary property is a family
of graphs that is closed under isomorphism and the taking of induced sub-
graphs. The edit distance function of a hereditary property H, denoted
edH(p), measures the maximum distance of a density p graph from a hered-
itary property. Formally, if Dist(G,H) = min{|E(G)4E(G′)| : |V (G′)| =
n,G′ ∈ H}, then
(1)

edH(p) = lim
n→∞

max

{
Dist(G,H) : |V (G)| = n, |E(G)| =

⌊
p

(
n

2

)⌋}
/

(
n

2

)
.

In [7], a result of Alon and Stav [1] is generalized to show that the limit in
(1) does indeed exist for nontrivial hereditary properties and, furthermore,
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2 RYAN MARTIN

that
edH(p) = lim

n→∞
Dist(G(n, p),H)/

(
n
2

)
.

For any nontrivial hereditary property H (that is, one that is not finite),
the function edH(p) is continuous and concave down. Hence, it achieves its
maximum at a point (p∗H, d

∗
H). It should be noted that, for some hereditary

properties, p∗H might be an interval.

1.2. Main results. The main results of this paper are Theorem 1 and The-
orem 3.

A split graph is a graph whose vertex set can be partitioned into one
clique and one independent set. If H is a split graph on h vertices with
independence number α and clique number ω, then α+ω ∈ {h, h+ 1}. The
value of (p∗, d∗) had been obtained for the claw by Alon and Stav [2] and for
graphs of the form Ka +Eb (an a-clique with b isolated vertices) by Balogh
and the author [7].

Theorem 1. Let H be a split graph that is neither complete nor empty,
with independence number α and clique number ω. Then,

(2) edForb(H)(p) = min

{
p

ω − 1
,

1− p
α− 1

}
.

It is a trivial result (see, e.g., [12]) that edForb(Kω)(p) = p/(ω − 1) and
edForb(Kα)(p) = (1 − p)/(α − 1). So, we can combine Theorem 1 with the

prior results for which H is either complete or empty.

Corollary 2. Let H be a split graph with independence number α and clique

number ω. Then, (p∗H, d
∗
H) =

(
ω−1

α+ω−2 ,
1

α+ω−2

)
.
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Figure 1. The graph H9.

The graph, H9, as drawn in Figure 1.2, was given in [7] as an example of a
hereditary property H = Forb(H9) such that the maximum value of edH(p)
cannot be determined by CRGs that only have gray edges. In [7] only an
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upper bound of min
{
p
3 ,

p
2+2p ,

1−p
2

}
is provided for edForb(H9)(p). Here we

determine the function itself.

Theorem 3. Let H9 be the graph in Figure 1.2. Then,

edForb(H9)(p) = min

{
p

3
,

p

1 + 4p
,
1− p

2

}
.

Consequently,
(
p∗Forb(H9)

, d∗Forb(H9)

)
=
(
1+
√
17

8 , 7−
√
17

16

)
.
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Figure 2. Plot of edForb(H9)(p) = min{p/3, p/(1 + 4p), (1−
p)/2}. The point (p∗, d∗) =

(
1+
√
17

8 , 7−
√
17

16

)
is indicated.

The rest of the paper is organized as follows: Section 2 gives some of the
general definitions for the edit distance function, such as colored regularity
graphs. Section 3 defines and categorizes so-called p-core colored regularity
graphs introduced by Marchant and Thomason [11]. Section 5 proves The-
orem 1 regarding split graphs. Section 6 proves Theorem 3 regarding the
graph H9. Section 7 is a section of acknowledgements.

2. Background and basic facts

2.1. Notation. All graphs are simple. If S and T are sets, then S + T
denotes the disjoint union of S and T . If v and w are adjacent vertices in a
graph, we denote the edge between them to be vw.

2.2. Colored regularity graphs. A colored regularity graph (CRG),
K, is a simple complete graph, together with a partition of the vertices
into black and white V (K) = VW(K) + VB(K) and a partition of the
edges into black, white and gray E(K) = EW(K) + EG(K) + EB(K). We
say that a graph H embeds in K, (writing H 7→ K) if there is a function
ϕ : V (H) → V (K) so that if h1h2 ∈ E(H), then either ϕ(h1) = ϕ(h2) ∈
VB(K) or ϕ(h1)ϕ(h2) ∈ EB(K) ∪ EG(K) and if h1h2 6∈ E(H), then either
ϕ(h1) = ϕ(h2) ∈ VW(K) or ϕ(h1)ϕ(h2) ∈ EW(K) ∪ EG(K).
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For a hereditary property of graphs, we denote K(H) to be the subset of
CRGs such that no forbidden graph maps into K. That is, if F(H) is defined
so that H =

⋂
H∈F(H) Forb(H), then K(H) = {K : H 67→ K,∀H ∈ F(H)}.

A CRG K ′ is said to be a sub-CRG of K if K ′ can be obtained by deleting
vertices of K.

2.3. The f and g functions. For every CRG, K, we associate two func-
tions. The function f is a linear function of p and g is found by weighting
the vertices. Let K have a total of k vertices {v1, . . . , vk}, and let MK(p)
be a matrix such that the entries are:

[MK(p)]ij =

 p, if vivj ∈ VW(K) ∪ EW(K);
1− p, if vivj ∈ VB(K) ∪ EB(K);
0, if vivj ∈ EG(K).

Then, we can express the f and g functions over the domain p ∈ [0, 1] as
follows, with VW = VW(K), VB = VB(K), EW = EW(K) and EB =
EB(K):

fK(p) =
1

k2
[p (|VW|+ 2 |EW|) + (1− p) (|VB|+ 2 |EB|)](3)

gK(p) =

 min xTMK(p)x
s.t. xT1 = 1

x ≥ 0
(4)

If we denote 1 to be the vector of all ones, then fK(p) =
(
1
k1
)T

MK(p)
(
1
k1
)
.

So, fK(p) ≥ gK(p).

Theorem 4 ([7]). For any nontrivial hereditary property H,

edH(p) = lim
K∈K(H)

gK(p) = lim
K∈K(H)

fK(p).

2.4. Basic observations on edH(p). The following is a summary of basic
facts about the edit distance function. Item (iii) comes from Alon and
Stav [1]. Item (iv) comes from [7].

Theorem 5. Let H be a nontrivial hereditary property with chromatic num-
ber χ, complementary chromatic number χ, binary chromatic number χB
and edit distance function edH(p).

(i) If χ > 1, then edH(p) ≤ p/(χ− 1).
(ii) If χ > 1, then edH(p) ≤ (1− p)/(χ− 1).
(iii) edH(1/2) = 1/(2(χB − 1)).
(iv) edH(p) is continuous and concave down.
(v) edH(p) = edH(1− p).

3. The p-cores

In Marchant and Thomason [11], it is shown that

edH(p) = inf {gK(p) : K ∈ K(H)} = inf {fK(p) : K ∈ K(H)} .
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Although the setting of that paper is not edit distance, the results can be
translated to our setting. They show, in fact, that edH(p) = min {gK(p) : K ∈ K(H)}.
That is, for any hereditary property H and p ∈ [0, 1], there is a CRG,
K ∈ K(H) such that edH(p) = gK(p). This is found by looking at so-called
p-cores. A CRG, K, is a p-core CRG, or simply a p-core, if gK(p) < gK′(p)
for all nontrivial sub-CRGs K ′ of K. Marchant and Thomason prove that

edH(p) = min {gK(p) : K ∈ K(H) and K is p-core} .

4. Computing edit distance functions using localization

Upper bounds for the edit distance function of H are found by simply
exhibiting some CRGs K ∈ K(H) and computing gK(p) by means of (4).
The localization method obtains lower bounds for edH(p). We have already
seen much of the theoretical underpinnings. We combine the observations
below:

Lemma 6. Let H be a nontrivial hereditary property and p ∈ (0, 1), K(H)
the set of CRGs defined by H and Kp(H) the set of p-core CRGs defined by
H. Then,

(i) edH(p) = min{gK(p) : K ∈ K(H) and K is p-core}.
(ii) If p ≤ 1/2 and K is a p-core CRG, then K has no black edges and

white edges can only be incident to black vertices.
(iii) If p ≥ 1/2 and K is a p-core CRG, then K has no white edges and

black edges can only be incident to white vertices.
(iv) If x is the optimal weight function of a p-core CRG K, then for all

v ∈ V (K), gK(p) = pdW(v) + (1− p)dB(v).

The overall idea is that we need only consider p-core CRGs and their spe-
cial structure, then a great deal of information can be obtained by focusing
on a single vertex. This is referred to as “localization” because we can focus
on one vertex at a time.

Lemma 7 has all of the elements to express dG(v) for any vertex v in a
p-core CRG. It is often useful to focus on the gray neighborhood of vertices.

Lemma 7 (Localization). Let p ∈ (0, 1) and K be a p-core CRG with opti-
mal weight function x.

(i) If p ≤ 1/2, then, x(v) = gK(p)/p for all v ∈ VW(K) and

dG(v) =
p− gK(p)

p
+

1− 2p

p
x(v), for all v ∈ VB(K).

(ii) If p ≥ 1/2, then x(v) = gK(p)/(1− p) for all v ∈ VB(K) and

dG(v) =
1− p− gK(p)

1− p
+

2p− 1

1− p
x(v), for all v ∈ VW(K).

Corollary 8. Let p ∈ (0, 1) and K be a p-core CRG with optimal weight
function x.
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(i) If p ≤ 1/2, then x(v) ≤ gK(p)/(1− p) for all v ∈ VB(K).
(ii) If p ≥ 1/2, then x(v) ≤ gK(p)/p for all v ∈ VW(K).

Remark 9. From this point forward in the paper, if K is a CRG under
consideration and p is fixed, x(v) will denote the weight of v ∈ V (K) under
the optimal solution of the quadratic program in equation (4) that defines
gK .

One more useful observation is Theorem 6 from [12]:

Theorem 10. A sub-CRG, K ′, of a CRG, K, is a component if, for all
v ∈ V (K ′) and all w ∈ V (K) − V (K ′), then vw is gray. Let K be a CRG

with components K(1), . . . ,K(`). Then

(gK(p))−1 =
∑̀
i=1

(gK(i)(p))
−1 .

5. Forb(H), H a split graph

We need to define a special class of graphs. For ω ≥ 2 and a nonnegative
integer vector (ω; a0, a1, . . . , aω), a (ω; a0, a1, . . . , aω)-clique-star1 is a graph
G such that V (G) is partitioned into A and W . The set A induces an
independent set, the set W = {w1, . . . , wω} induces a clique and for i =
1, . . . , ω, vertex wi is adjacent to a set of ai + 1 leaves in A and there are a0
independent vertices. Note that this implies that

∑ω
j=0 ai = α− ω.

Colloquially, a clique-star can be partitioned into stars and independent
sets such that the centers of the stars are connected by a clique and there
are no other edges. (If one of the stars is K2, one of the endvertices is
designated to be the center.) Proving that Theorem 1 is true is much more
difficult in the case where either H or its complement is a clique-star.

5.1. Proof of Theorem 1. Note that, because H is neither complete nor
empty, α, ω ≥ 2. Without loss of generality, we may assume that ω ≤ α.

Let K ∈ K(Forb(H)) be a p-core CRG and denote g = gK(p). By
Lemma 6, any edge between vertices of different colors must be gray. Since
H is a split graph, H would embed into any K with such a pair of vertices.
So, the vertices in K are monochromatic. Let K(ω − 1, 0) denote the CRG
with ω − 1 white vertices and all edges gray. Let K(0, α − 1) denote the
CRG with α− 1 black vertices and all edges gray. So,

edForb(H)(p) ≤ min
{
gK(ω−1,0)(p), gK(0,α−1)(p)

}
= min

{
p

ω − 1
,

1− p
α− 1

}
.

By virtue of the fact that a clique and independent set can intersect in at
most one vertex, h ≤ α+ ω ≤ h+ 1.

1We get the notation from Hung, Sys lo, Weaver and West [9]. Barrett, Jepsen, Lang,
McHenry, Nelson and Owens [8] define a clique-star, but it is a different type of graph.
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Case 1. α+ ω = h+ 1.

In the case of p = 1/2, all p-core CRGs have all gray edges. Hence,
we need only consider K(ω − 1, 0) and K(0, α − 1) and edForb(H)(1/2) =

min
{

1/2
ω−1 ,

1/2
α−1

}
. Let p ∈ (0, 1/2) and let v be a largest-weight vertex such

that x = x(v). By Lemma 6(ii), every vertex is black and all edges are either
white or gray. If v has h− ω neighbors, then H 7→ K.

Thus, because x is the largest weight, Lemma 7(i) gives that

dG(v) ≤ (h− ω − 1)x

p− g
p

+
1− 2p

p
x ≤ (α− 2)x

p− g ≤ (pα− 1)x.

If p < 1/α, then g > p ≥ p/(ω − 1). If p ≥ 1/α, then Corollary 8(i) gives
that

p− g ≤ (pα− 1)
g

1− p
p(1− p) ≤ gp(α− 1)

1− p
α− 1

≤ g,

with equality if and only if K consists of α−1 black vertices. Hence equality
requires that all edges of K be gray.

A similar argument, using Lemma 6(iii), shows that, for p ∈ (1/2, 1), ei-
ther g > 1− p ≥ (1− p)/(α− 1) or g ≥ p/(ω − 1), with equality if and only
if K consists of ω − 1 white vertices and all gray edges.

Case 2. α+ ω = h.

Let V (H) = A∪W in which A is an independent set of size α and W is a

clique of size ω. Similar to Case 1, edForb(H)(1/2) = min
{

1/2
ω−1 ,

1/2
α−1

}
. Next

let p ∈
(
1
2 , 1
)
; hence all vertices are white and all edges are either black or

gray.
Let v1, . . . , v` be a maximal gray clique. That is, any edge between these

vertices is gray and every vertex not in {v1, . . . , v`} has at least one black

neighbor in {v1, . . . , v`}. Let xi = x(vi) for i = 1, . . . , ` and let X =
∑`

i=1 xi.
Each vertex in A is nonadjacent to some member of W , otherwise α +

ω = h + 1. Consequently, ` ≤ ω − 1 because H can be partitioned into ω
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independent sets. Using Lemma 7(ii),

∑̀
i=1

[dG(vi)−X + xi] ≤ (`− 1)(1−X)

∑̀
i=1

[
1− p− g

1− p
+

2p− 1

1− p
xi −X + xi

]
≤ (`− 1)(1−X)

`− ` g

1− p
+

p

1− p
X − `X ≤ (`− 1)(1−X)

1− p− `g ≤ (1− 2p)X.

Hence, g > 1−p
` ≥

1−p
ω−1 ≥

1−p
α−1 . From here on, we may assume p ∈ (0, 1/2)

and so all vertices are black and all edges are either white or gray.

Let p ∈
(

0, ω−1h−1

]
. Let v be a vertex of largest weight x = x(v). Lemma 7(i)

gives that

dG(v) ≤ (h− ω − 1)x

p− g
p

+
1− 2p

p
x ≤ (α− 1)x

p− g ≤ (p(α+ 1)− 1)x.

If p < 1/(α+1), then g > p ≥ p/(ω−1). If p ≥ 1/(α+1), then Corollary 8(i)
gives that

p− g ≤ (p(α+ 1)− 1)
g

1− p
.

Then,

g ≥ 1− p
α
≥

1− ω−1
h−1
α

=
1

h− 1
=

ω−1
h−1
ω − 1

≥ p

ω − 1
.

Equality holds only if K has α black vertices and all edges gray. Since
V (H) =

⋃
a∈AN [a], H 7→ K in that case.

Finally, we may assume that p ∈
(
ω−1
h−1 ,

1
2

)
. We have to split into two

cases according to the structure of H.

Case 2a. α + ω = h and there exists an c ≤ ω − 1 such that H can be
partitioned into c cliques and an independent set of α− c vertices.

Let v1, . . . , v` be a maximal gray clique. That is, any edge between these
vertices is gray and every vertex not in {v1, . . . , v`} has at least one white

neighbor in {v1, . . . , v`}. Let xi = x(vi) for i = 1, . . . , ` and let X =
∑`

i=1 xi.
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Using Lemma 7(i),
c∑
i=1

[dG(vi)−X + xi] ≤ (c− 1)(1−X)

c
p− g
p

+
1− p
p

X − cX ≤ (c− 1)(1−X)

p− cg ≤ (2p− 1)X.

Hence, g > p
c ≥

p
` ≥

p
ω−1 .

Which graphs are in Case 2, but not Case 2a? Since α + ω = h, every
w ∈ W has at least one neighbor in A. If any a ∈ A has more than one
neighbor in W , then we can greedily find at most ω − 1 vertices in A such
that the union of their neighborhoods is W . Such a graph would be in Case
2a.

So, the graphs, H with ω ≤ α that are in neither Case 1 nor Case 2a have
the property that N(w) ∩N(w′) ∩A = ∅ for all distinct w,w′ ∈W . This is
exactly the case of a clique-star.

Case 2b. α+ ω = h and G is a clique-star.

Let W = {w1, . . . , wω} such that wi has ai + 1 neighbors in A for i =
1, . . . , ω and there are a0 isolated vertices.

Fact 11. If ω ≥ 2 and H is a (ω; a0, . . . , aω)-clique-star and K is a black-
vertex CRG such that either

• there exists a vertex with at least α gray neighbors, or
• there exist vertices v1, . . . , vω such that

– {v1, . . . , vω} is a gray clique,
– for i = 1, . . . , ω − 1, vi has α− 1 gray neighbors, and
– vω has at least b(α − ω)/ωc + ω − 1 gray neighbors (including
v1, . . . , vω−1).

Then, H 7→ K.

Proof of Fact 11. If K has a vertex, v, with α gray neighbors, then W can
be mapped to v whereas each member of A = V (H) −W can be mapped
to a different gray neighbor of v. Thus H 7→ K. So, we may assume the
maximum gray degree of K is at most α− 1.

Our mapping is done recursively: Map wω and one of its neighbors to vω.
Map its remaining A-neighbors (aω ≤ b(α − ω)/ωc of them) to each of aω
gray neighbors of vω that are not in {v1, . . . , vω−1}.

Having embedded wω, . . . , wi+1 and each of their respective A-neighbors
into a total of at most

∑ω
j=i+1 aj vertices of K, we map wi and one of its

A-neighbors into vi and its remaining ai A-neighbors into arbitrary unused
gray neighbors of vi. After w1 and its neighbors are mapped, we map the
remaining a0 isolated vertices arbitrarily into unused vertices of K.
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This mapping can be accomplished because the fact that each of the vi
have at least α− 1 gray neighbors ensures that, even at the last step, when
w1 and a neighbor is embedded, there are at least α−1 gray neighbors of v1.
The number of gray neighbors of v1 that were used are the ω− 1 vertices vi
and at most

∑ω
j=2 aj = α−ω− a1− a0 others, for a total of α− 1− a1− a0.

So, there are enough gray neighbors of v1 to embed the a1 neighbors of w1

as well as the a0 isolated vertices. Thus, H 7→ K. �

Fact 12. Let p ∈ (0, 1/2) and let K be a black-vertex CRG. If gK(p) ≤
min {p/(ω − 1), (1− p)/(α− 1)}, then either

• there exists a vertex with at least α gray neighbors, or
• there exist vertices v1, . . . , vω such that

– {v1, . . . , vω} is a gray clique,
– for i = 1, . . . , ω − 1, vi has α− 1 gray neighbors, and
– vω has at least b(α − ω)/ωc + ω − 1 gray neighbors (including
v1, . . . , vω−1).

Equality occurs if and only if K ≈ K(0, α− 1).

Proof of Fact 12. Assume that no vertex has α neighbors. We find v1, . . . , vω
greedily. Choose v1 to be a vertex of largest weight. Stop if i = ω or if
NG(v1) ∩ · · · ∩ NG(vi) is empty. Otherwise, let vi+1 be a vertex of largest
weight in that set. We will show later that this process creates at least ω
vertices.

First, we find the number of gray neighbors of v1, using the fact that x1
is the largest weight.

|NG(v1)| ≥
⌈

dG(v1)

x1

⌉
≥ p− g

px1
+

1− 2p

p
.

Using Corollary 8(i), we have that x1 ≤ g/(1− p) and so

|NG(v1)| ≥
1− p− g

g
≥ α− 2.

Equality only occurs if g = (1 − p)/(α − 1) there are α − 1 vertices, all of
weight 1/(α−1), thus K ≈ K(0, α−1). So, we may assume |NG(v1)| ≥ α−1.

For i ∈ {2, . . . , ω − 1}, we let X =
∑i

j=1 xj and consider the gray neigh-

borhood of vi, excluding {v1, . . . , vi−1}. Its total weight is:

(5) dG(vi)− (X − xi)−
i−1∑
j=1

x (NW (vj)) =
p− ig
p

+
1− 2p

p
X > 0,

because i ≤ ω − 1, g ≤ p/(ω − 1), p < 1/2 and X > xi > 0. Thus, vi+1 can
be obtained.

We use these calculations to obtain the size of NG(vi) for i = 2, . . . , ω−1.
First note that vi has i − 1 gray neighbors among {v1, . . . , vi−1} and that
every vertex that is a gray neighbor of each of v1, . . . , vi has weight at most
xi. As to the remaining vertices, partition NG(vi) according to the least
index j for which the vertex is adjacent to vj via a white edge. By the choice
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of v1, . . . , vi, such a vertex has weight at most xj = x(vj). Consequently, we
have a lower bound for |NG(vi)|:

|NG(vi)| ≥ (i− 1) +

⌈
x (NG(v1) ∩ · · · ∩NG(vi))

xi

⌉
+

i−1∑
j=1

⌈
x (NG(vi) ∩NW (vj) ∩ {NG(v1) ∩ · · · ∩NG(vj−1)})

xj

⌉
.

We can drop the ceilings to obtain the lower bound

|NG(vi)| ≥ (i− 1) +
1

xi
x (NG(v1) ∩ · · · ∩NG(vi))

i−1∑
j=1

1

xj
x (NG(vi) ∩NW (vj) ∩ {NG(v1) ∩ · · · ∩NG(vj−1)}) .

Now we look at the coefficients 1
x1
< 1

x2
< · · · < 1

xi
. The total weight of

gray neighbors with coefficient 1
x1

is at most x (NW (v1)). The total weight of

gray neighbors with coefficient 1
x1

or 1
x2

is at most x (NW (v1)) +x (NW (v2))
and so on.

|NG(vi)| ≥ (i− 1) +
i−1∑
j=1

1

xj
x (NW (vj))

+
x (NG(vi))− (X − xi)−

∑i−1
j=1 x (NW (vj))

xi

and observe that inequality (5) shows that the last numerator is nonnegative.
Using similar computations as before,

|NG(vi)| ≥ (i− 1) +

i−1∑
j=1

1

xj

(
g

p
− 1− p

p
xj

)

+
1

xi

p− g
p

+
1− 2p

p
xi − (X − xi)−

i−1∑
j=1

(
g

p
− 1− p

p
xj

) .

After some simplification

(6) |NG(vi)| ≥
g

p

i−1∑
j=1

1

xj
− 1− 2p

p
(i− 1) +

p− ig
pxi

+
1− 2p

p

(
X

xi

)
.

Using Janson’s inequality and the fact that X − xi ≥ i−1
i X, we see that

i−1∑
j=1

1

xj
≥ i− 1

(X − xi)/(i− 1)
≥ i(i− 1)

X
.
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So, we return to (6) and then the fact that xi ≤ X/i:

|NG(vi)| ≥
g

p

(
i(i− 1)

X

)
− 1− 2p

p
(i− 1) +

p− ig + (1− 2p)X

pxi

≥ gi(i− 1)

pX
− 1− 2p

p
(i− 1) +

p− ig + (1− 2p)X

p(X/i)

=
i(p− g)

pX
+

1− 2p

p
.

Using the fact that X ≤ ig/(1− p), we see that

|NG(vi)| ≥
1− p− g

g
≥ α− 2.

Equality only occurs if g = (1− p)/(α− 1) and K ≈ K(0, α− 1).
Finally, we try to determine the number of vertices adjacent to vω via a

gray edge. We only need |NG(vω)| ≥ bα/ωc + ω − 2 in order to finish the
proof. First, note that the very existence of vω ensures that |NG(vω)| ≥ ω−1.
Thus, we may assume that α ≥ 2ω.

Second, suppose that ω ≥ 3. Recalling that dG(vω) = p−g
p + 1−2p

p xω and

x1 ≤ g
1−p , the pigeonhole principle gives that for v = vω (indeed, for any

vertex v),

|NG(v)| ≥
⌈
p− g
p
· 1− p

g

⌉

≥


⌈
p− p

ω−1

p · 1−p
p/(ω−1)

⌉
, if p ≤ ω−1

h−2 ;⌈
p− 1−p

α−1

p · 1−p
(1−p)/(α−1)

⌉
, if p ≥ ω−1

h−2 .

≥
⌈

(α− 1)
ω − 2

ω − 1

⌉
.

Let α = qω + r with 0 ≤ r ≤ ω − 1 and note that since α ≥ 2ω, q ≥ 2.
Hence,

|NG(v)| ≥
⌈

(α− 1)
ω − 2

ω − 1

⌉
=

⌈
q(ω − 2) +

(q + r − 1)(ω − 2)

ω − 1

⌉
≥ q(ω − 2) + 1

= q + ω − 2 + (q − 1)(ω − 3)

Since q = bα/ωc, we may conclude that |NG(v)| ≥ bα/ωc + ω − 2, just as
desired.

Third, let ω = 2; i.e., H is a double-star (possibly with isolated vertices).
Recall that α ≥ 2ω = 4. Our goal is to show that |NG(v2)| ≥ bα/ωc+ ω −
2 = bα/2c. The computations are, by now, routine. We use the fact that
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x2 ≥ dG(v1)/(α− 1) and x1 ≤ g/(1− p).

|NG(v2)| ≥
⌈

dG(v2)

x1

⌉
≥

⌈
1

x1

(
p− g
p

+
1− 2p

p
x2

)⌉
≥

⌈
1

x1

(
p− g
p

+
1− 2p

p
· dG(v1)

α− 1

)⌉
≥

⌈
p− g
px1

(
1 +

1− 2p

p(α− 1)

)
+

(
1− 2p

p

)2 1

α− 1

⌉

≥

⌈
(p− g)(1− p)

pg

(
p(α− 3) + 1

p(α− 1)

)
+

(
1− 2p

p

)2 1

α− 1

⌉
.

Recalling that, in the case of ω = 2, g ≤ min {p, (1− p)/(α− 1)},

|NG(v2)| ≥


⌈(

1−2p
p

)2
1

α−1

⌉
, if p ≤ 1/α;⌈

pα−1
p

(
p(α−3)+1
p(α−1)

)
+
(
1−2p
p

)2
1

α−1

⌉
, if p ≥ 1/α.

=


⌈(

1−2p
p

)2
1

α−1

⌉
, if p ≤ 1/α;⌈

α− 2− (1−2p)
p(α−1)

⌉
, if p ≥ 1/α.

In each case, the smallest value of the expression occurs when p = 1/α,
giving

|NG(v2)| ≥
⌈
α− 3 +

1

α− 1

⌉
= α− 2 =

⌊α
2

⌋
+
(⌈α

2

⌉
− 2
)
.

This is at least bα/2c since α ≥ 4. This concludes the proof of Fact 12. �

Summarizing, if H 67→ K, then either g ≥ p/(ω−1) or g ≥ (1−p)/(α−1),
with equality if and only if either K ≈ K(0, h−ω) or K ≈ K(h−α, 0). This
concludes the proof of Theorem 1.

5.2. Examples of split graphs. Items (i) and (ii) in Corollary 13 were
proven in [7].

Corollary 13. Let H be a graph on h vertices.

(i) If H ≈ Ka + Eb, then edForb(H)(p) = min
{

p
a−1 ,

1−p
b

}
.

(ii) If H is a star (i.e., H ≈ Eh−1∨K1), then edForb(H)(p) = min
{
p, 1−ph−2

}
.

(iii) If H is a double-star (i.e., there are adjacent vertices u and v to
which every other vertex is adjacent to exactly one), then edForb(H)(p) =

min
{
p, 1−ph−3

}
.



14 RYAN MARTIN

6. Forb(H9)

Marchant and Thomason [11] give the example of H = Forb(C∗6 ), where
C∗6 is a 6-cycle with an additional diagonal edge, such that edH(p) is not
determined by CRGs with all gray edges. More precisely, they prove that

edForb(C∗6 )(p) = min

{
p

1 + 2p
,
1− p

2

}
.

The CRG which corresponds to gK(p) = (1− p)/2 is K(0, 2). The CRG, K,
which has gK(p) = p/(1 + 2p) for p ∈ [0, 1/2] consists of three vertices: two
black vertices connected via a white edge and a white vertex. The remaining
two edges are gray.

The graph H9, shown in Figure 1.2 and cited in [7], generates a hereditary
property H = Forb(H9) such that d∗H cannot be determined by CRGs of the
form K(a, c). Note that dForb(C∗6 ) can be determined by such CRGs, but the

part of the function for p ∈ (0, 1/2) cannot.

6.1. Proof of Theorem 3. Upper bound. We know that χ(H9) = 4 so

let K(1) = K(3, 0) where gK(1)(p) = p/3. We also know that χ(H9) = 3

so let K(4) = K(0, 2) where gK(4)(p) = (1 − p)/2. In [7], another CRG

in K(Forb(H9)) is given, call it K(2). It consists of 4 white vertices, one
black edge and 5 gray edges. It has edit distance function gK(2)(p) =
min{p/3, p/(2 + 2p)}.

There is a CRG with a smaller g function. We call it K(3), it consists of
5 white vertices, two disjoint black edges and the remaining 8 edges gray.
The function gK(2)(p) can be computed by use of Theorem 10. In the setup

of that theorem, K(3) has 3 components. Since the components have g
functions either p (for the solitary white vertex) or min{p, 1/2} (for each of
the other two components), the theorem gives that

gK(3)(p)−1 = p−1 + 2 (min{p, 1/2})−1 = min{p/3, p/(1 + 4p)}.

It is easy to see that H9 67→ K(1) and H9 67→ K(4). In [7], it was shown that

H9 67→ K(2). To finish the upper bound, it remains to show that H9 67→ K(3).
Let v0 be the isolated vertex, {v1, w1} be a black edge and {v2, w2} be a
black edge.

First, we show that no component of K(3) can have 4 vertices from H9.
Since there are no independent sets of size 4 and no induced stars of size 4,
the only way to have a component of size 4 is to have an induced copy of C4

in the component consisting of, say, {v2, w2}. It is not difficult to see that
deleting two vertices from the set {0, 3, 6} yields a C4-free graph. So, any C4

contains exactly two members of {0, 3, 6}. Without loss of generality, the
induced C4 is {1, 3, 6, 8}. But the graph induced by {0, 2, 4, 5, 7} induces
a C5, which cannot be mapped into the sub-CRG induced by {v0, v1, w1}.
Therefore, if H9 were to map to K(3), each component must contain exactly
3 vertices. First we map to v0. The only independent sets of size 3 are
{1, 4, 7} and {2, 5, 8}. Without loss of generality, assume the former. Second,
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we consider the graph induced by {0, 2, 3, 5, 6, 8}. Any partition of these
vertices into two subsets of 3 vertices either has a triangle or a copy of P3,
neither of which maps into {v1, w1} or {v2, w2}. So, these six vertices cannot

be mapped into {v1, w1, v2, w2}. Hence H9 67→ K(3).

The CRGsK(1), K(3) andK(4) give an upper bound of min
{
p
3 ,

p
1+4p ,

1−p
2

}
.

Lower bound, for p ≤ 1/2. Let K be a p-core such that H9 67→ K. If K has
at least 2 white vertices, then it has no black vertices because H9 7→ K(2, 1).
(The independent sets are {1, 4, 7} and {2, 5, 8} and the clique is {0, 3, 6}.)
So, in this case gK(p) ≥ p/3 with equality if and only if K ≈ K(3, 0).

If K has exactly one white vertex, then there is no gray edge among the
black vertices because H9 7→ K(1, 2). (The independent set is {2, 7} and
the cliques are {0, 1, 8} and {3, 4, 5, 6}.) Let w be the white vertex and
K ′ = K −{w} and k′ = |V (K ′)|. Since K ′ is a clique with all black vertices
and all white edges, Proposition 8 from [12] gives that, for p ∈ (0, 1/2),

gK′(p) = p + 1−2p
k′ > p. By Theorem 10, gK(p) > 1/(1/p + 1/p) = p/2,

which is strictly larger than edForb(H9)(p) for p ∈ (0, 1/2].
If K has no white vertices, then let v0 be the vertex with largest weight

and let v1 be a vertex in the gray neighborhood of v0. Let x0 = x(v0) and
x1 = x(v1). Since K can have no gray triangles (H9 can be partitioned into
3 cliques), dG(v0) + dG(v1) ≤ 1.

1 ≥ dG(v0) + dG(v1)

≥ 2
p− g
p

+
1− 2p

p
(x0 + x1)

g ≥ p

2
+

1− 2p

2
(x0 + x1) >

p

2
.

Summarizing, if p ≤ 1/2 and K is a p-core such that H 67→ K, then
gK(p) ≥ p/3 with equality only if K ≈ K(3, 0).

Lower bound, for p ≥ 1/2. Let K be a p-core such that H9 67→ K. If K
has at least 2 black vertices, then there are no white vertices because H9 7→
K(1, 2) and so gK(p) ≥ (1− p)/2 with equality if and only K ≈ K(0, 2).

If K has exactly one black vertex, then there is no gray edge among
the white vertices because H9 7→ K(2, 1). Let b be the black vertex and
K ′ = K−{b} and k′ = |V (K ′)|. Similar to the above, Proposition 8 from [12]

can be used to show that, for p ∈ (1/2, 1), gK′(p) = 1−p+ 2p−1
k′ > 1−p. By

Theorem 10, gK(p) > (1 − p)/2, which is strictly larger than edForb(H9)(p)
for p ∈ [1/2, 1).

From now on, we will assume that K has only white vertices and, since
it is p-core for p ≥ 1/2, all edges are black or gray. Fact 14 and Fact 15
establish some of the structural theorems.
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Fact 14. Let p ∈ [1/2, 1) and K be a p-core CRG with white vertices and
black or gray edges. Let v and v′ be vertices connected by a gray edge. Then,
NG(v) ∩NG(v′) has at most two vertices.

Proof. If NG(v) ∩NG(v′) has three vertices, then map H9 vertices 0, 3 and
6 to each of them, map {1, 4, 7} to v and {2, 5, 8} to v′. This is a map
demonstrating that H9 7→ K. �

Fact 15. Let p ∈ [1/2, 1) and K be a p-core CRG with white vertices and
black or gray edges. Let v0 be a vertex of largest weight and v1 be a vertex that
has largest weight among those in NG(v0). Then, either NG(v0) ∩ NG(v1)
has exactly two vertices or gK(p) > (1 − p)/2 or gK(p) ≥ p/3 with equality
if and only if K ≈ K(3, 0).

Proof. Let g = gK(p). If the statement of Fact 15 is not true, then NG(v0)∩
NG(v1) has at most one vertex which, by the choice of v1, has weight at most
x(v1) and, by inclusion-exclusion, has weight at least dG(v0) + dG(v1) − 1.
Therefore,

x(v1) ≥ dG(v0) + dG(v1)− 1

≥ 2
1− p− g

1− p
+

2p− 1

1− p
(x(v0) + x(v1))− 1

g ≥ 1− p
2

+
2p− 1

2
x(v0)−

2− 3p

2
x(v1).(7)

If p ≥ 2/3, then g > (1− p)/2. If p < 2/3, then use x(v1) ≤ x(v0) in (7).

(8) g ≥ 1− p
2

+
5p− 3

2
x(v1)

If p ≥ 3/5, then g > (1 − p)/2. If p < 3/5, then use the fact that Corol-
lary 8(ii) gives x(v0) ≤ g/p, which we use in (8).

g ≥ 1− p
2

+
5p− 3

2
x(v1) ≥

1− p
2

+
5p− 3

2

(
g

p

)
g ≥ p

3
.

It is easy to see that equality can only occur if x(v2) = x(v1) = g/p = 1/3
and their common gray neighborhood is a vertex of weight 1 − 2g/p =
1/3. �

Given Fact 14 and Fact 15, we can identify v0, a vertex of maximum
weight, v1 a vertex of maximum weight among those inNG(v0) and {v2, w2} =
NG(v0)∩NG(v1). Without loss of generality, let x(v2) ≥ x(w2). For ease of
notation, let xi = x(vi) for i = 0, 1, 2. If NG(v0)∩NG(v2)−{v1} is nonempty,
then let its unique vertex be denoted w1. (Uniqueness is a consequence of
Fact 14.)

Case 1. The vertex w1 does not exist.
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Most of our observations come from inclusion-exclusion: |A|+ |B| = |A∪
B| + |A ∩ B|. Inequality (9) comes from the fact that NG(v0) ∩ NG(v1) =
{v2, w2}. Inequality (10) comes from the fact that NG(v0)∩NG(v2) = {v1}.
Observe that x(w2) ≤ x2, hence,

dG(v0) + dG(v1) ≤ 1 + 2x2(9)

dG(v0) + dG(v2) ≤ 1 + x1.(10)

Solve for x2 in each case, recalling that Lemma 7(ii) gives that dG(v2) =
1−p−g
1−p + 2p−1

1−p x2. Inequality (9) gives a lower bound for x2 and inequality

(10) gives an upper bound:

1

2
(dG(v0) + dG(v1)− 1) ≤ x2 ≤

1− p
2p− 1

(
1 + x1 − dG(v0)−

1− p− g
1− p

)
.

Some simplification gives

2g ≥ dG(v0) + (2p− 1)dG(v1)− 2(1− p)x1 − 2p+ 1

≥ 2p
1− p− g

1− p
+

2p− 1

1− p
x0 +

2p2 − 1

1− p
x1 − 2p+ 1

g ≥ 1− p
2

+
2p− 1

2
x0 +

2p2 − 1

2
x1.

If 2p2 − 1 > 0 (i.e, p > 1/
√

2), then g > (1− p)/2. Otherwise, we use the
bound x1 ≤ x0.

g ≥ 1− p
2

+
2p− 1

2
x0 +

2p2 − 1

2
x0

≥ 1− p
2

+ (p2 + p− 1)x0.

If p2 + p− 1 > 0 (i.e, p > (
√

5− 1)/2), then g > (1− p)/2. Otherwise, we
use the bound from Corollary 8(ii) that x0 ≤ g/p.

g ≥ 1− p
2

+ (p2 + p− 1)x0

≥ 1− p
2

+ (p2 + p− 1)
g

p

≥ p

2(1 + p)
.

Equality occurs only if x0 = x1 = g/p and x(w2) = x2 = 1/2− g/p. This is

precisely the CRG denoted K(2).

Case 2. The vertex w1 exists.

Inequality (11) comes from the fact that NG(v0)∩NG(v1) = {v2, w2} and
x(w2) ≤ x(v2) = x2. Inequality (12) comes from the fact that NG(v0) ∩
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NG(v2) = {v1, w1} and x(w1) ≤ x(v1) = x1. Observe that x(w2) ≤ x2 and
x(w1) ≤ x1, hence,

dG(v0) + dG(v1) ≤ 1 + 2x2(11)

dG(v0) + dG(v2) ≤ 1 + 2x1.(12)

Adding (11) and (12) gives

2dG(v0) + dG(v1) + dG(v2) ≤ 2 + 2(x1 + x2)

2dG(v0)−
2g

1− p
≤ 3− 4p

1− p
(x1 + x2).(13)

If p ≥ 3/4, then (13) gives that 2dG(v0) − 2g
1−p ≤ 0. Consequently, g >

(1− p)/2. So, we assume p < 3/4.
Next, we use Fact 16 to conclude that v0 is the only common gray neighbor

of v1 and v2.

Fact 16. Let p ≥ 1/2 and K be a p-core with white vertices and black or
gray edges. Let a0, a1, a2, b0, b1, b2 ∈ V (K) such that {a0, a1, a2} is a gray
triangle and {bi, aj} is a gray edge as long as i and j are distinct. Then,
H9 7→ K.

Proof. The following map shows the embedding:

2, 7 7→ a0 1, 5 7→ a1 4, 8 7→ a2
0 7→ b0 3 7→ b1 6 7→ b2.

�

If v1 and v2 have a gray neighbor in K other than v0, call it w0 and
observe that by setting ai := vi and bi := wi for i = 0, 1, 2, Fact 16 would
imply that H9 7→ K.

Since v0 is the only common gray neighbor of v1 and v2

dG(v1) + dG(v2) ≤ 1 + x0
2p− 1

1− p
(x1 + x2) ≤ 1 + x0 − 2

1− p− g
1− p

.(14)

Inequality (13) gives a lower bound for x1+x2 and inequality (14) gives an

upper bound. Recall that Lemma 7(ii) gives that dG(v) = 1−p−g
1−p + 2p−1

1−p x(v)

for any vertex v ∈ V (K). Recall that we assume p ≤ 3/4.

1− p
3− 4p

(
2dG(v0)−

2g

1− p

)
≤ x1 + x2 ≤

1− p
2p− 1

(
1 + x0 − 2

1− p− g
1− p

)
.

Some simplification gives

2(2p− 1) ((1− p)dG(v0)− g) ≤ (3− 4p) ((1− p)(1 + x0)− 2(1− p− g))

and so

g ≥ 1− p
2

+
4p2 − p− 1

2
x0.
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If 4p2 − p− 1 > 0 (i.e, p > (
√

17 + 1)/8), then g > (1− p)/2. Otherwise,
we use the bound x0 ≤ g/p from Corollary 8(ii).

g ≥ 1− p
2

+
4p2 − p− 1

2

(
g

p

)
≥ p

1 + 4p
.

Equality occurs only if x0 = g/p, x1 = x2 = p
1+4p and x(wi) = xi for i = 1, 2.

This is precisely the CRG denoted K(3).
Therefore, for p ∈ [1/2, 1] and in each case, g ≥ min {p/(1 + 4p), (1− p)/2}.

Combining this with the fact that for p ∈ [0, 1] that g ≥ p/3. This
concludes the proof of the lower bound. Consequently, edForb(H9)(p) =
min {p/3, p/(1 + 4p), (1− p)/2}. This concludes the proof of Theorem 3.
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[5] M. Axenovich, A. Kézdy and R. Martin, On the editing distance of graphs, J. Graph
Theory 58 (2008), no. 2, 123–138.

[6] M. Axenovich and R. Martin, Avoiding patterns in matrices via a small number of
changes. SIAM J. Discrete Math. 20 (2006), no. 1, 49–54 (electronic).

[7] J. Balogh and R. Martin, Edit distance and its computation. Electron. J. Combin.
15 (2008), no. 1, Research paper 20, 27pp.

[8] W. Barrett, C. Jepsen, R. Lang, E. McHenry, C. Nelson and K. Owens, Inertia sets
for graphs on six or fewer vertices 20 (2010), 53–78.

[9] L.T.Q. Hung, M. Sys lo, M. Weaver and D. West, Bandwidth and density for block
graphs, Discrete Math. 189 (1989), no. 1-3, 163–176.

[10] E. Marchant, (in preparation).
[11] E. Marchant and A. Thomason, Extremal graphs and multigraphs with two weighted

colours, preprint.
[12] R. Martin, Edit distance and localization, submitted, arXiv:1007.1897v3.

arXiv:1007.1897v3


20 RYAN MARTIN

[13] R. Martin and T. McKay, On the edit distance from K2,t-free graphs I: Cases t = 3, 4,
submitted, arXiv:1012.0800.

[14] R. Martin and T. McKay, On the edit distance from K2,t-free graphs II: Cases t ≥ 5,
submitted, arXiv:1012.0802.

[15] D.C. Richer, Ph.D. thesis, University of Cambridge (2000).

Department of Mathematics, Iowa State University, Ames, Iowa 50011
E-mail address: rymartin@iastate.edu

arXiv:1012.0800
arXiv:1012.0802

	1. Introduction
	1.1. The edit distance function
	1.2. Main results

	2. Background and basic facts
	2.1. Notation
	2.2. Colored regularity graphs
	2.3. The f and g functions
	2.4. Basic observations on edH(p)

	3. The p-cores
	4. Computing edit distance functions using localization
	5. Forb(H), H a split graph
	5.1. Proof of Theorem ??
	5.2. Examples of split graphs

	6. Forb(H9)
	6.1. Proof of Theorem ??

	7. Thanks
	References

