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FORBIDDEN INDUCED SUBGRAPHS OF DOUBLE-SPLIT GRAPHS

BORIS ALEXEEV, ALEXANDRA FRADKIN, AND ILHEE KIM

ABSTRACT. In the course of proving the strong perfect graph theorem, Chudnovsky, Robertson, Seymour,
and Thomas showed that every perfect graph either belongs to one of five basic classes or admits one of
several decompositions. Four of the basic classes are closed under taking induced subgraphs (and have
known forbidden subgraph characterizations), while the fifth one, consisting of double-split graphs, is not.

A graph is doubled if it is an induced subgraph of a double-split graph. We find the forbidden induced
subgraph characterization of doubled graphs; it contains 44 graphs.

1. INTRODUCTION

A key ingredient in the proof of the strong perfect graph theorem by Chudnovsky, Robertson, Seymour,
and Thomas [CRST06] is a decomposition theorem for all perfect graphs. This decomposition theorem states
that all perfect graphs either belong to one of five basic classes or admit one of several decompositions. The
five basic classes are bipartite graphs, complements of bipartite graphs, line graphs of bipartite graphs,
complements of line graphs of bipartite graphs, and double-split graphs. The first four classes are closed
under taking induced subgraphs and have known characterizations in terms of minimal forbidden induced
subgraphs. Indeed, a forbidden induced subgraph characterization is known for the union of these four
classes [ZZ05]. However, double-split graphs are not closed under taking induced subgraphs, and hence do
not have such a characterization.

In this paper, we consider the downward closure of double-split graphs under induced subgraphs (that is,
double-split graphs and all of their induced subgraphs) and we characterize this class in terms of minimal
forbidden induced subgraphs. Unlike the lists for the other four basic classes, the one for this class of graphs
is finite.

All graphs considered in this paper are finite and have no loops or multiple edges. For a graph G we
denote its vertex set by V(G) and its edge set by E(G). The complement of G is denoted by G. A clique
in a graph G is a set of vertices all pairwise adjacent and a stable set is a clique in G. For A C V(G), we
denote the subgraph of G induced on A by G|A, sometimes further abbreviating G|{u, v, w} by Gluvw. The
notation G = H means G is isomorphic to H. For v € V(G), we denote the set of neighbors of v in G by
N¢(v) and for X C V(G), we denote by Nx (v) the set of neighbors of v in G|X.

Let X, Y C V(G) with X NY = &. We say that X and Y are complete to each other if every vertex of
X is adjacent to every vertex of Y, and we say that they are anticomplete if no vertex of X is adjacent to a
member of Y. For an integer ¢ > 0, let P;, C; denote the path and cycle with i edges, respectively.

For integers a,b > 0, let M, be the graph on 2a + b vertices consisting of the disjoint union of a edges
and b isolated vertices. We say that a graph G is semi-matched if it is isomorphic to M, ; for some a,b > 0
and we say that it is matched if in addition b = 0. Similarly, we say that G is semi-antimatched if it is
isomorphic to some M, ; and antimatched if in addition b = 0.

Let A, B C V(G) such that AN B = &, A is semi-matched, and B is semi-antimatched. We say that A
and B are aligned if the following holds:
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FIGURE 1. The family F: these 23 graphs, and their complements, are the minimal for-
bidden induced subgraphs for double-split graphs. Only Fy = Cs and Fa3 = L(K33) are
self-complementary.



o for all adjacent u,v € A and all w € B, w is adjacent to exactly one of u and v

e for all u € A and non-adjacent z,y € B, u is adjacent to exactly one of x and y.

A graph G is split if its vertex set V(@) can be partitioned into a clique and a stable set. A graph G is
double-split if its vertex set V(G) can be partitioned into two sets, A and B, such that the following holds:

e G|A is matched,
e (G|B is antimatched, and
e A and B are aligned.

It is easy to see that every split graph is an induced subgraph of many double-split graphs. Also, every
induced subgraph of a split graph is also split. Split graphs have a well-known forbidden induced subgraphs

characterization:

1.1. [Foldes and Hammer [FHTT]] A graph is split if and only if it does not contain Cy,Cy, or Cs as an
induced subgraph.

In this paper we consider a class of graphs that includes both split and double-split graphs. We say a
graph G is doubled if there exists a double-split graph H that contains G as an induced subgraph. Notice
that a graph G is double-split if and only if G is double-split, and hence a graph G is doubled if and only if
G is doubled. The main result of this paper is the following:

1.2. A graph is doubled if and only if it does not contain any graphs in F, the family of graphs illustrated
in Figure [l

It follows that F is the list of minimal forbidden induced subgraphs for double-split graphs. The idea for
our proof of is as follows. To prove the "if” part of [L2] we assume that G is not split, hence contains
one of Cy, Cy4, and Cs. Since Cj is in F and the class of doubled graphs is self complementary, we may
assume that G has Cy as an induced subgraph. However, since Cy is a doubled graph in two different ways
(all four vertices can appear on the anti-matched side or 2 vertices can appear on the matched side and
the other 2 vertices on the semi-antimatched side), there is no easy procedure to partition the remaining
vertices of the graph. To avoid this obstacle, we introduce another class of graphs that lies inbetween the
class of split graphs and the class of doubled graphs. In section 2, we find the forbidden induced subgraph

characterization for this class and we use this characterization to prove in section 3.

2. ALMOST-SPLIT GRAPHS

We say a graph G is almost-split if G is doubled and there exists v € V(@) such that G|(V(G) \ {v})
is split. In other words, G is almost-split if there is at most one pair matched or antimatched. Note that
every split graph is almost-split and every almost-split graph is doubled. In this section we present the list

of forbidden induced subgraphs for the class of almost-split graphs.

2.1. A graph is almost-split if and only if it does not contain any graphs in the circus, the list of graphs

illustrated in Figure [2 along with their complements.

Proof. The “only if” part is clear, as it is easy to check that none of the graphs in the circus are almost-split.
For the “if” part, suppose that G does not contain any graphs in the circus. By [[LI] we may assume that G

contains Cy or Cy since split graphs are almost-split. Furthermore, since the statement is self-complementary,
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FIGURE 2. The “circus”: these 12 graphs, and their complements, are the minimal forbidden
induced subgraphs for almost-split graphs.

we may assume that G contains Cy. Let a,b,¢,d € V(G) be such that Glabed = Cy and a is adjacent to b
and d. Let S = {a, b, c,d}.

Since Wy 22 Ms ; is in the circus, it follows that for all v € V(G), v is not complete to S. For 0 <i < 3,
let A; CV(G)\ S denote the set of vertices that have ¢ neighbors in S. Our goal is to show that there exist
adjacent z,y € S such that:

o AgUA; UAyU {z,y} contains only one edge (namely zy), and
o AsU(S\ {z,y}) is a clique, and
e every vertex of Az U (S'\ {z,y}) is adjacent to exactly one of z and y.

(1) If As # @, then there exist x,y € S such that Ay is complete to {x,y}. Moreover, Ay is a stable set.

Let Agp € Ao be those vertices that are adjacent to a and b, and define A, Aqd, Abe, Abd, Acq similarly.
First suppose that u € A, U Apg; then Glabedu = Ko 3. Hence, both A, and Apq are empty. Next suppose
there exists u € Ayp and v € Ap.. Then either Glabeduv = tenty or Glacduv = Cs, depending on the
adjacency between v and v. Therefore, at least one of A, and A, is empty, and from symmetry the same
is true for the pairs {Apc, Aca}, {Acd, Aaa}, and {Agp, Aga}. We claim that at least one of A, and Aqq is
empty. For suppose u € Agp and v € A.q. Then Glabeduv = Cg or Glabeduv = domino, depending on the
adjacency between u and v. Similarly, at least one of Ay, and A,q is empty. We conclude that at most
one of Agup, Aac, Aad, Abe, Apg, and A.q is non-empty. Finally suppose that u,v € Ay are adjacent. Then
Glabeduv = watch. Hence, A, is a stable set. This proves (1).

(2) There ezist adjacent x,y € S such that Ng(A1) C {z,y}. Moreover, if As # &, then Ng(A1) C Ng(Asz).



Let A, C A; be those vertices that are adjacent to a, and define Ay, A, and Ay similarly. We show that
at least one of A, and A, is empty. For suppose that u € A, and v € A.. Then either G|abeduv = watch or
Glabcuv = C5, depending on the adjacency between u and v. Similarly, at least one of A, and A, is empty.
This proves the first part of (2).

Next, let uw € Ay and v € As. Suppose that Ng(A41) € Ng(Az). From symmetry, we may assume that
u € A, and v € Ap.. But then either Glabeduv =2 tent; or Glacduv = Cs, depending on the adjacency

between v and v. This proves (2).
(8) Ag U A1 U A is a stable set.

First, let u,v € Ao and suppose that they are adjacent. Then Glabcduv = TV. Hence, Ap is a stable
set. Next, suppose u,v € A; and suppose that they are adjacent. If u,v have a common neighbor in §
then Glabeduv = fish. If u, v have different neighbors in S, then by (2) their neighbors are adjacent and so
Glabeduv = domino. This proves that A; is a stable set. Recall that As is a stable set by (1).

Now we show that Ay, A;, and A, are pairwise anticomplete to each other. Let u € Ag, v € A; and
suppose that u and v are adjacent. Then G|abcduv = flag. Next, let u € Ay and v € Ay and again suppose
that v and v are adjacent. Then G|abcduv = tenty. Finally, let u € Ay and v € A2 and suppose that they
are adjacent. Then Glabeduv = tent;. Therefore, we have shown that Ag U A; U As is stable. This proves

(3)-

(4) There exist adjacent x,y € S such that As is complete to x,y. Moreover, for allu € A1 UAy and v € As,
Ns(u) € Ns(v).

Let Agpe € Az be the set of vertices that are adjacent to a,b and ¢, and define Agpg, Aacd and Apeq
similarly. We claim that at least one of Agp. and Ageq is empty. For suppose that u € Agpe and v € Ageq.
Then either G|(S U {u,v}) = TV or Glacduv = W,, depending on the adjacency between u and v. This
proves the claim. By a similar argument, at least one of Aupq and Apcq is empty. Therefore, there exist (at
least) 2 adjacent vertices of S that are complete to As.

Next, let u € A; U As and v € A3 and suppose that Ng(u) € Ng(v). From symmetry, we may assume
that v € Agpe. If u € Ay, then u € Ay and so either G|abeduv = fish or Glacduv = K3 3. So we may assume
that u € Ay. Again from symmetry, we may assume that v € A.4. But then either G|abcduv = flag or Ps,
depending on the adjacency between w and v. This proves (4).

(5) As is a clique.

Let u,v € A3 and suppose that they are not adjacent. By (4), there exist adjacent x,y € S such that As
is complete to {z,y}, and from symmetry we may assume {xz,y} = {a,b}. First suppose that u,v € Agpe.
Then Glacduv = Ky 3. Therefore, Agpe is a clique, and similarly so is Aupq. Next suppose that u € Agpe and
v € Agpa- Then Glabeduv = Ps. Hence, A3 is a clique, and this proves (5).

From (1), (2), and (4), it follows that there exist adjacent x,y € S such that Az U Ay is complete to
{z,y} and Ng(4;) C {x,y}. From symmetry, we may assume that {x,y} = {a,b}. Hence, Ag U A; U A, is



anticomplete to {c,d}. Therefore, by (3), Ag U A1 U A3 U {¢,d} contains exactly one edge (namely cd). By
(4) and (5), A3 U{a,b} is a clique. Also, since every member of As is adjacent to exactly 3 members of S,
it follows that for all u € A3 U {a, b}, u is adjacent to exactly one of ¢,d. Hence, we have shown that G is

almost-split and this proves 211 O

3. EXCLUDING 6 GRAPHS

In the previous section, we have seen the 12 minimal forbidden induced subgraphs (up to taking comple-
ments) for almost-split graphs. Six of them are doubled and the other six are not. In this section, we prove

that if a graph contains one of these six doubled graphs but no graphs in F, then it is doubled.
3.1. A graph containing Ma 1 but no graphs in F is doubled.

Proof. Let G be a graph containing M ; but no graphs in F. Let Glabede 2 Ma 1, where be and de are the
two edges; let S = {a,b,c,d,e}. For 0 < i < 4, let A; C V(G)\ S denote the set of vertices that have 4
neighbors in {b, ¢,d, e}. Our goal is to show the following:

e A = A3 = A, =, and
G|(Ap U S) is semi-matched, and
G| Az is semi-antimatched, and
e ApU S and As are aligned.

Together, these statements imply that G is doubled.

(1) Ay = A3 = Ay = @. Also, if v € Ay, then v is adjacent to exactly one of b and ¢, and to exactly one of
d and e.

If v € Ay, then Glabedev = F; or Fg, depending on the adjacency between v and a. Therefore A; is
empty. If v € As, then Glabedev = Fy or Fyp, depending on the adjacency between v and a. Therefore Az
is empty. And if v € Ay, then G|abedev = Fyq or Glabedev 22 Fio, depending on the adjacency between v
and a. Therefore A4 is empty.

Next, let v € Ay. If v is adjacent to b and ¢, then G|bedev =2 Ko 3. By symmetry, v is not adjacent to

both of d and e. Hence, v is adjacent to exactly one of b and ¢ and to exactly one of d and e. This proves

(1)
(2) G|(Ag U S) is semi-matched.

First, we claim that at most one vertex x € Aq is adjacent to a, and if such a vertex x exists, then z is
not adjacent to any other vertices in Ag. For suppose there are two vertices x,y € Ag, both adjacent to a.
If x and y are adjacent, then G|abcry = Ko 3, and if they are not adjacent, G|abcdry = Fy. So there is at
most one vertex in Ag adjacent to a. Moreover if there is a vertex x € Ay adjacent to a, = is not adjacent
to any other vertex y € Ay since otherwise Glabedxy =2 F7. This proves the claim.

To prove (2), it is enough to show that there do not exist vertices u,v,w € Ag U {a,b,c,d, e} such that
Gluvw =2 C3 or Gluvw = P,. If at least one of w, v, w is a member of S, then Gluvw cannot be isomorphic
to C3 nor P, by the claim. So we may assume u,v,w € Ag. But now if Gluvw = Cs, then Glbcuvw = Ko 3

and if Gluvw = Py, then G|beduvw = F7. This proves (2).
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(3) Let u,v € Az be non-adjacent. Then Ny c g3 (u) is disjoint from Ny o q.e3(v). Moreover, evactly one of

u and v is adjacent to a.

From (1) and by symmetry, we may assume that u is adjacent to b and d. Suppose that v is also adjacent
to b and d. Then G|bedeuv = watch. Next, suppose that v is adjacent to b and e (or ¢ and d). Then G|bdeuv
(or G|bcduw) is isomorphic to Cs. Consequently, v is adjacent to ¢ and e.

Moreover, if 4 and v are both adjacent to a, then Glabcuv = C5 and if v and v are both non-adjacent to

a, then Glabedeuv = Fy7. Hence, exactly one of u and v is adjacent to a. This proves (3).
(4) G|As is semi-antimatched.

It follows easily from (3) that there is no stable set of size 3 in As. Therefore, it is enough to show that
there do not exist vertices u, v, w € Ay such that Gluvw contains exactly one edge (say uv). For contradic-
tion, suppose that such w, v, w exist. From (3) and by symmetry, we may assume that {u,v} is complete to
{b,d}, w is complete to {c, e}, and Ny, 1 (a) is either {u, v} or {w}. In the first case, Glacuvw = K3 3 and
in the second case, Glabuvw = Ko 3. Therefore, there do not exist u,v,w € Az such that Gluvw contains

exactly one edge, and this proves (4).

It remains to show that G|(Ap U S) and G|Ay are aligned. In (3), we have shown that for all non-adjacent
u,v € Ay and all w € Ag U S, w is adjacent to exactly one of u and v. Hence, it suffices to show that for
all u € Ay and all adjacent v,w € Ag U S, u is adjacent to exactly one of v, w. So suppose that for some
u,v,w as above, u is adjacent to both of v,w. Let z,y € Ag U S be adjacent such that {x,y} is disjoint
from {v,w} (such z,y exist since AgU S contain at least two edges). Then Gluvwzy = K» 3. Next, suppose
that for some u,v,w as above, u is non-adjacent to both of v, w. Note that by (1), {v,w} is disjoint from
{b,c,d,e}. By (1) and without loss of generality, we may assume that u is adjacent to b and d. But then
G|bceuvw =2 F7. Therefore G is doubled and this proves Bl O

3.2. A graph containing Ps but no graphs in F is doubled.

Proof. Let G be a graph containing Ps but no graphs in F. Let G|abedef = Ps where ab, be, cd, de, and ef
are the five edges. By B.Il we may assume that G or G does not contain Ms1. Let S ={a,b,c,d,e, f}. For
0<i<d4,let A4, CV(G)\ S denote the set of vertices that have ¢ neighbors in {b,¢c,d,e}. Our goal is to
show the following:

e Ag=As = Ay =3, and
G|(A1 U{a,c,d, f}) is semi-matched, and
G|(A3 U {b,e}) is semi-antimatched, and
G|(A1 U{a,c,d, f}) and G|(As U {b,e}) are aligned.
Together, these statements imply that G is doubled.

(1)A0:A2:A4:@.

First suppose v € Ap. If v is non-adjacent to a, then Glabdev = Ms ;. So we may assume that v is

adjacent to a and similarly v is adjacent to f; but then G|abedefv = Fy3. Therefore Ay is empty.
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Next, suppoose v € Ay. If v is not adjacent to both of a and f, then Glabedefv 22 Fi4. If v is adjacent to
exactly one of a and f, then Glabedefv = Fi5. So we may assume that v is adjacent to both a and f; but
then Glabedefv =2 Fig. Therefore Ay is empty.

Finally suppose v € As. Let Ap. C As be those vertices that are adjacent to b and ¢, and define Apq,
Ape, Acdy Aces, Age similarly. Suppose v € Ap.. If v is adjacent to f, then Gledefv = Cs; otherwise,
Glbcefv =2 Ko 3. Therefore Ay, is empty and by symmetry, Age is empty. Next, suppose v € Apg. If v is
not adjacent to a, then G|abcdev = watch and if v is not adjacent to f, then G|bedefv = flag. So we may
assume that v is adjacent to both of a and f; but then G|abdefv 22 fish. Therefore Ay is empty and by
symmetry, A.. is empty. Next, suppose v € Ap.. Then Glbedev = C5. Therefore Ay, is empty. So we may
assume that v € A.q. If v is adjacent to both of a and f, then Glabecefv = flag. If v is adjacent to a and not
to f, then Glabcefv = TV, and if v is adjacent to f and not to a, then Glabdefv = TV. So we may assume

that v is not adjacent to either a or f; but then Glabefv = Ms ;. Therefore A2 = @ and this proves (1).

(2) If v € Ay, then v is adjacent to either b or e and is not adjacent to both a and f. Moreover, Ay is a

stable set.

Let Ay, € A; be those vertices that are adjacent to b, and define A., Ay, A, similarly. Suppose v € A..
If v is adjacent to a, then Glabedev = flag; otherwise, Glabdev = M. Therefore A, is empty, and by
symmetry, A, is empty. Suppose v € Ap. If v is adjacent to a, then G|abdev = K 3 and if v is adjacent to f,
then Glacdfv = Ms 1. Therefore v is anticomplete to {a, f}, and similarly, every vertex in A, is anticomplete
to {a, f}.

Next, suppose that u,v € Aj are adjacent. Then G|bdeuv = Ky 3. Therefore A, is a stable set and
similarly, so is A.. Finally, suppose that u € 4, and v € A, are adjacent. Then G|acduv = Ms 1. Therefore

ApU A, = Ay is a stable set, and this proves (2).

(3) If v € Az, then Ny c q.e3(v) is either {b,c,e} or {b,d,e}. Moreover, if u,v € Az are not adjacent, then
Niww3(€) # Niu,wy(d) and [Nyvy(a)| = [Ngw,oy (f)] = 1.

Let Apcqg € As be those vertices that are adjacent to b, ¢, and d, and define Apce, Apde, Acde Similarly.
Suppose v € Aege. If v is not adjacent to a, then Glabdev = Kj 3, and if v is adjacent to a and f, then
Glabce fv = fish. So we may assume that v is adjacent to a but not to f; but then G|abce fv = flag. Therefore
Acge is empty and similarly, so is Apeq.

Now suppose u, v € Apce are not adjacent; then Glcdeuv = K3 3. Therefore Ay, is a clique and similarly, so
is Apge. Suppose u € Apee and v € Apge are not adjacent. If u, v are both adjacent to a, then Glabdeuv = flag,
and if u,v are both non-adjacent to a, then Glabcdeuv = Fig. Therefore exactly one of u and v is adjacent

to a and similarly, exactly one of u and v is adjacent to f. This proves (3).
(4) G|(As U {b,e}) is semi-antimatched.
It is enough to show that no set of three vertices {u, v, w} C A3 U{b, e} contains fewer than two edges. By

(3), it is obvious that there are no stable sets of size 3 in G|(As U {b,e}). Suppose {u,v,w} contains exactly

one edge uv. From (3) and symmetry, we may assume u, v € Apee and w € Apge. But then Gledevvw =2 %.



This proves (4).

From (2) and (4), we have a candidate of a partition for G to be doubled. The subgraph G|(4; U{a,c,d, f})
contains only one edge (namely cd) and G|(AsU{b, e}) is semi-antimatched. Every v € A3U{b, e} has exactly
one neighbor in {c,d} and from (3), for every non adjacent pair u,v € A3 U {b,e}, Ny 0}(c) # N{yv}(d).
Also by (3), if u,v € A3U{b, e} are nonadjacent, | Ny, 3(a)| = [Ny, (f)| = 1. Moreover, for w € Ay, either
Glabcdew = Ps or Glbedefw = Ps, and so [Ny, .3 (w)| = 1 for every w € A, by an analogous argument
to the one above. Therefore, G|(As U {b,e}) and G|(4; U {a,c,d, f}) are aligned and so G is doubled; this
proves O

3.3. A graph containing Cg but no graphs in F is doubled.

Proof. Let G be a graph containing Cs but no graphs in F. Let G|abcdef = Cg where {a,c,e} and {b,d, f}
are the two triangles and the remaining edges are ad, be, and cf. Let S = {a,b,c,d,e, f}. By Bl we may
assume G or G does not contain My 1. For 0 <i < 6, let A; C V(G)\ S denote the set of vertices that have
i neighbors in S. Our goal is to show that A; = & unless i = 2 and 4 vertices of S induce antimatching side

and the rest of vertices (two in S together with vertices in As) induce matching side so that G is doubled.
(1) A; =@ fori=0,1,3,4,5,6.

If v € A, then G|(S U {v}) = Fig, so A is empty. Also, if v € Ag, then G|(S U {v}) = Fi7, and so Ag is
empty.

Next, suppose v € A;. From symmetry, we may assume Ng(v) = {a}. Then G|(S U {v}) = Fis and
therefore A; is empty.

Next, suppose v € As. From symmetry, we may assume Ng(v) is one of {a,b,c},{a,b,d},{a,c,e}. If
Ng(v) = {a,b,c}, then Glabdev = Ko 3 and if Ng(v) = {a,b,d}, then Glabefv = Cs. So we may assume
that Ns(v) = {a,c,e}; but then G|abedev = watch and so A3 is empty.

Next, suppose v € Ay. From symmetry, we may assume Ng(v) is one of {a,b,c,d},{a,b,c, e}, and
{a,b,d,e}. If Ns(v) = {a,b,c,d}, then Glbcefv = Ko 3 and if Ng(v) = {a,b,c, e}, then G|acdefv = watch.
So we may assume that Ng(v) = {a,b,d, e}; but then Glabcfv = Cy, and so A4 is empty.

Finally, suppose v € As. From symmetry, we may assume Ng(v) = {b,¢,d,e, f}. Then Glbcefv = Ms ;.
Therefore A is empty and this proves (1).

For u,v € S, let A, C As be those vertices that are adjacent to u and v.
(2) Aab = Abc = Acd = Ade = Aef = Afa =dJ.

Suppose v € Aqp. Then Glabefv = Cs. Therefore A,y is empty and similarly, so are Ape, Acd, Ade, Aey
,and Agg.

(8) For every x,y € S, Agy is a stable set.



Suppose u,v € Age are adjacent. Then Glacdfuv = watch. Therefore A, is a stable set and similarly so
are Age, Ace, Ava, App, and Agr. Suppose u,v € Aqq are adjacent. Then Glacdfuv = watch. Therefore Aqq

is a stable set and similarly so are Ay, and A.¢. This proves (3).
(4) If Aye #+ O, then Age = Ace = Apg = Abf =J.

Suppose u € Age, and v € Age. If u and v are adjacent, then Glaceuv = My 1, and otherwise G|beduv =
My 1. Therefore if A, is not empty, then A,. = & and similarly, A.. = @.

Now suppose v € Apq. If u and v are adjacent, then G|edfuv =2 Cs, and otherwise G|bce fuv = watch.
Therefore if A, is not empty, then Ayq = @ and similarly, Ay; = @. This proves (4).

(5) Iand # @; th@n Ace = Abf = Q'

Suppose u € Agq and v € Age. If u and v are adjacent, then G|edfuv = Cs, and otherwise G|edeuv = Ky 3.
Therefore if A,q is not empty, then A.. is empty and similarly, Ays is empty as well. This proves (5).

(6) If u € Auq, then Ng(u) \ S C Ap. U Acf.

Suppose u € Agq. Then from (5), Ace = Apy = &, and from (3), v has no neighbors in A,q. Now suppose

v € Age is adjacent to u. Then Gledfuv =2 Cs. Therefore u is anticomplete to A,., and similarly, u is
anticomplete to Age, Apa, and Agp as well. Therefore Ng(u) \ S C Ape U Acy, and this proves (6).

(7) If there are adjacent vertices u € Aqq and v € Ape U Acy, then V(G) = S U {u,v} and G is doubled.

From symmetry, we may assume v € Ay is adjacent to u € Ayq. We know that Age UAce UApg UApy = @
by (5). Suppose w € Age U Age. Then from (6), {u,v} is anticomplete to w and so G|beuvw = My ;.
Therefore Ay U Age U Ape U Apg U Abf U Adf = .

Next, suppose w(# v) € A.r. From (3), w is not adjacent to v. If w is adjacent to u, then G|abfuvw =
watch, and otherwise G|beuvw = M, 1. Therefore Aqy = {v} and similarly, A,q = {u}.

Now suppose w € Ape. If w is anticomplete to {u,v}, then Glbeuvw = Ks 3. Therefore w is adjacent
to at least one of {u,v} and by the same logic as above, Ay, = {w}. If w is adjacent to exactly one of u
and v (say u), then Glabcuvw = flag. So we may assume that w is adjacent to both u and v; but then
G|(S U{u,v,w}) = Fa3. Therefore Ap. = @. But then V(G) = S U {u,v}. Since G|uvbe is matched, Glabef

is antimatched, and the two subgraphs are aligned, it follows that G is doubled. This proves (7).
(8) If v € Age, then Ng(v) \ S C Ag.

Suppose v € Age. From (3), v has no neighbors in A,c. From (4), Age = Ace = Apa = Apy = @ and from
(5), Ape = @. Finally, from (6), v is anticomplete to A,q U Acy. Therefore Ng(v) \ S C Aqgr, and this proves

(8)-
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(9) If there are adjacent vertices w € Aqec and v € Agr, then V(G) = S U {u,v} and G is doubled.

From (4) and (5), Age = Ace = Apg = Apy = Ape = D. If w € Ayq U Ay, then from (8), w is anticomplete
to {u,v} and so Glbeuvw = My ;. Therefore Agq U Acy is empty and V(G) \ S = Age U Agp.

Now suppose w(# v) € Agr. From (3), w is not adjacent to v. If w is adjacent to u, then Glcdevvw = flag,
and otherwise G|beuvw = My ;. Therefore Ag = {v} and similarly, A, = {u}. Hence, V(G) = S U {u, v}.
Since Gluvbe is matched, Glabef is antimatched, and the two subgraphs are aligned, it follows that G is
doubled. This proves (9).

(10) If G|(V(G) \ S) is a stable set, then G is doubled.

Suppose G|(V(G) \ S) is a stable set. First, suppose Age U Ace U Age U Apg U Apy U Agr # @. From
symmetry, we may assume A, # @. Then from (4), Age = Ace = Apa = Apy = @ and from (5), Ape = @.
Therefore every vertex in V(G) \ S has exactly one neighbor in {a, f} and exactly one neighbor in {c,d}.
Now it is easy to see that G is doubled with G|acdf as the antimatched part.

Therefore we may assume AgcUAce UAge UApqUAps UAg = @. Suppose all three of the sets Aqq, Ape, and
Acyp are not empty. Then for v € Agq,v € Ape, and w € Agy, Glafuvw = My ;. Therefore from symmetry,
we may assume Ap, is empty. Now again, every vertex in V(G) \ S has exactly one neighbor in {a, f} and

exactly one neighbor in {¢,d}, so G is doubled with G|acdf as the antimatched part. This proves (10).

By (10), we may assume that G|V (G) \ S contains an edge uv. From symmetry, we may assume u € A,q or
u € Age. If u € Ayq, then by (6) and (7), v € Ape U Acy and G is doubled. So we may assume that v € Age;
but then by (8) and (9), v € Ay and G is doubled. This proves 3.3l O

3.4. A graph containing domino but no graphs in F is doubled.

Proof. Let G be a graph containing domino but no graphs in F. By Bl B2l and B3] we may assume that G
does not contain Ms 1, Ps, Cs, or their complements as induced subgraphs. Let G|abedef & domino, where
ab, be, ca, bd, ce, de, df, and ef are the edges; let S = {a,b,c,d,e, f}. For 0 <i <4, let A; CV(G)\S
denote the set of vertices that have i neighbors in {b,c,d,e}. Our goal is to show the following:

e Ay = A = A3 = A, =@, and

e G|(A2U{a, f}) is a stable set, and

e Glbede is antimatched, and

e Ay U{a, f} and {b,c,d, e} are aligned.
Together, these statements imply that G is doubled.

(1)A0:A1:A3:A4:®.

Suppose v € Ap. If v is complete to {a, f}, then Glabdfv = C5, and if v is anticomplete to {a, [},
then Glacdfv = Ms;. So we may assume that v is adjacent to exactly one of a and f, say a; but then
Gladefv = K3 3. Therefore Ay = @.

Next, suppose v € A;. From symmetry, we may assume Ny, ¢ g.01(v) = {b}. If v is complete to {a, f},

then Glacefv =2 Cs, and if v is anticomplete to {a, f}, then Glacdfv = My ;. Furthermore, if v is adjacent
11



to a but not to f, then Glabefv = Ks3. So we may assume that v is adjacent to f but not to a; but then
Glbecefv = Cs. Therefore A; = @.

Next, suppose v € A3. From symmetry, we may assume Ny, ¢ g.1(v) = {b,c,e}. If v is not adjacent to f,
then G|bcdefv = flag, and if v is complete to {a, f}, then G|abcdfv = watch. So we may assume that v is
adjacent to f but not to a; but then G|abdefv = fish. Therefore A3 = @.

Finally, suppose v € Ay. Then G|bcdev = My 1. Therefore Ay = @. This proves (1).

For u,v € {b,¢,d, e}, let Ay, C As be those vertices that are adjacent to u and v.
(2) Ape = Aca = &. Moreover, Ax U {a, f} is a stable set.

Suppose v € Ape U Agg; then Glbedev = Ky 3. Therefore Ape = Acq = @. Next, suppose v € Ap.. If v
is adjacent to a, then G|abcdev = watch and if v is adjacent to f, then G|bedefv = Cg. Therefore Ay is
anticomplete to {a, f}, and from symmetry, so is Age.

Now suppose v € Apg. If v is adjacent to a, then Glacdev = C5 and if v is adjacent to f, then Gledefv = Cs.
Therefore Apg is anticomplete to {a, f}, and from symmetry, so is Ag.. It follows that As is anticomplete
to {a, f}. Note that for v € Apc U Age, either Glabedev = domino or Glbedefv = domino, and so by an
argument analogous to the one above, we conclude that Ap. U Age is anticomplete to Apg U Ace and that
Ape U Age s a stable set; hence Ap. U Age U {a, f} is a stable set.

It remains to show that Apqy U A is a stable set. For suppose u,v € Apq are adjacent; then G|bedeuv =
watch. Therefore Apq is a stable set and from symmetry, so is A... Next, suppose u € Apg and v € A, are
adjacent; then G|bedeuv = Cg. Therefore Ay U {a, f} is a stable set and this proves (2).

Now {b,c,d, e} is anti-matched by definition and Ay U {a, f} is a stable set by (2). It remains to show
that Ay U {a, f} and {b, ¢, d, e} are aligned. Since Ay U {a, f} is a stable set, it suffices to show that for all
v € Ay U {a, f}, v is adjacent to exactly one of b, e and exactly one of ¢,d. For v € {a, f} this is true by
definition, and for v € Ay this follows from (2). Therefore G is doubled and this proves [3.4 O

3.5. A graph containing tenty but no graphs in F is doubled.
Proof. Let G be a graph containing tent; but no graphs in 7. By Bl B2 B3 and B4, we may assume that

G does not contain Ms 1, Ps, Cg, domino or their complements as induced subgraphs. Let G|abedef 2 tenty,
where ab, be, cd, de, fa, fb, fc, and fe are the edges; let S = {a,b,c,d,e, f}. For 0 <i <4, let A; CV(G)\S
denote the set of vertices that have ¢ neighbors in {b,¢,d, e}. Our goal is to show the following:

e Ay = Ay = Ay =@, and
G|(A; U {a,c,d}) is semi-matched, and
G|(A3 U {b,e, f}) is semi-antimatched, and
Ay U{a,c,d} and Az U {b, e, f} are aligned.

Together, these statements imply that G is doubled.
(1)A0:A2:A4:@.

Suppose v € Ag. If v is adjacent to a, then G|abedev = Ps, and if v is not adjacent to a, then Glabdev =

My 1. Therefore Ag = @.
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Next, suppose v € Ay. If v is adjacent to f, then Gledefv =2 My 1, and if v is not adjacent to f, then
G|bede fv =2 Ps. Therefore Ay = @.

Next, we show that Ay = &. For u,v € {b,c,d, e}, let Ay, C As be those vertices that are adjacent to u
and v. If v € Ape, then Glbedev = Cs, and so Ape = F. Now suppose v € Ap.. If v is adjacent to a, then
Glabdev = K, 3 and if v is adjacent to f, then G|bedefv = watch. So we may assume that v is not adjacent
to either a or f; but then G|S U {v} = Fyy. Therefore Ap. = .

Next, suppose v € Apq. If v is not adjacent to f, then G|bdefv = C5, and if v is not adjacent to a, then
G|abedev = watch. Hence, we may assume that v is adjacent to both @ and f; but then G|abdefv = watch.
Therefore Apg = @.

Next, suppose v € A.q. If v is adjacent to both a and f, then Glabcfv =2 My ;. Next, if v is adjacent to a
but not to f, then G|abedfv = flag, and if v is adjacent to f but not to a, then G|abde fv = fish. So we may
assume that v is not adjacent to a or f; but then G|abdfv = K 3. Therefore A.q = @.

Next, suppose v € Ag.. Then Glabedev = domino or flag depending on the adjacency between v and a.
Therefore A.. = @.

So we may assume that v € Age. If v is adjacent to a, then G|abedv = C5, and if v is not adjacent to a,
then Glabdev = K, 3. Therefore Ay = @ and this proves (1).

(2) Ay is complete to b.

For u € {b,c,d, e}, let A, C A; be those vertices that are adjacent to u. We will show that A. = Ay =
A, = 4.

Suppose v € A.. If v is adjacent to a, then Glabcdev = flag, and if v is not adjacent to a, then
Glabdev = My 1. Therefore A, = @.

Next, suppose v € A.. Then G|abedev =2 Ps or Cg depending on the adjacency between v and a. Therefore
A, = 4.

Next, suppose v € Ay. If v is adjacent to a, then Glabedv =2 C5, and if v is adjacent to f but not to a,
then G|abde fv 2 fish. So we may assume that v is not adjacent to either a or f; but then Glacdefv = watch.
Therefore A; = &. This completes that proof of (2).

(3) A1 U{a} is a stable set.

Suppose v € A; and a are adjacent; then Glabdev = Ko 3. Therefore A; is anticomplete to a. Next,
suppose u,v € Ay are adjacent. Then G|bdeuv = Ko 3. Therefore A; U {a} is a stable set and this proves

(3).
(4) If v € As, then v € Apee U Apge-
For u,v,w € {b,c,d, e}, let Ay C Az be those vertices that are adjacent to u,v and w.
Suppose v € Apeq. If v is not adjacent to f, then G|bdefv = Cs, and if v is adjacent to f but not to a,

then G|S U {v} = Fy;. So we may assume that v is adjacent to both a and f; but then G|abdefv = watch.
Therefore Ap.q = &.
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Next, suppose v € Agge. If v is adjacent to f, then Gledefv = M 1, and if v is not adjacent to f, then
G|bcdefv = flag. Therefore A.q. = @. This proves (4).

(5) AsU{f} is a clique.

Suppose v € Apge and v is not adjacent to f. Then G|bedefv = Cg. Next, suppose v € Ape. not adjacent
to f. Then Gledefv = Ky 3. Therefore Ag is complete to f.

Next, suppose u, v € Apge U Apce are not adjacent. If u,v € Apge, then Glbeduv = Ko 3 and if u, v € Apee
then Gledeuv = Ko 3. So we may assume that u € Apge and v € Apee; but then Glbedeuv = Cs. Therefore
Az U{f} is a clique and this proves (5).

From (2) and (3), it follows that A; U {a,c,d} is semi-matched with one edge (namely, cd). From (4)
and (5), A3 U{b,e, f} is semi-antimatched with one nonedge (namely, be). Furthermore, it follows by def-
inition and from (2) that for all u € Ay U {a,c,d}, u is adjacent to exactly one of b and e. It also follows
by definition and from (4) that for all v € A3 U {b, e, f}, v is adjacent to exactly one of ¢ and d. Therefore
Ay U{a,c,d} and Az U {b,e, f} are aligned and this proves O

3.6. A graph containing tenty but no graphs in F is doubled.

Proof. Let G be a graph containing tents but no graphs in 7. By Bl 32 B3 B4 and B3 we may assume
that G' does not contain My 1, Ps, Cs, domino, tent; or their complements as induced subgraphs. Let
Glabede f = tenty, where ab, be, cd, de, fa, fb, fd, and fe are the edges; let S = {a,b,c,d, e, f}. First, we
show that if v € V(G) \ S, then Ng(v) is equal to {b, f}, {d, f}, or {a,b,d,e, f}.
Let Ay be those vertices whose neighbor set in S is {b, f} and define Ay and Agpges similarly. We also
prove that at least one of Ays, Agr and Agpaes is empty. Then our goal is to show the following:
If Agpger = @, then
e G|(A2 U {a,e}) is semi-matched, and
e G|{b,c,d, f} is antimatched, and
e Ay U{a,e} and {b,c,d, f} are aligned.
If Ay = @, then
e G|(A2U{a,c,d}) is semi-matched, and
o G|(A5 U {b,e, f}) is semi-antimatched, and
o AyU{a,c,d} and As U {b,e, f} are aligned.
If Ay = @, then
o G|(A2 U {b,c,e}) is semi-matched, and
e G|(A5 U{a,d, f}) is semi-antimatched, and
e AyU{b,c,e} and A5 U{a,d, f} are aligned.
Together, these statements imply that G is doubled.

(1) Forve V(G)\ S, Ng(v) is equal to {b, f}, {d, f}, or {a,b,d,e, f}.
We show that Ny ¢ q1(v) is equal to {b}, {d}, or {b,d} and for each case, Ns(v) is equal to {b, f}, {d, f},

or {a,b,d, e, f}, respectively.
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First, suppose Ny cq1(v) = @. If v is complete to {a,e}, then Glabcdev = Cs, and if v is adjacent to
exactly one of a and e, then Glabedev = P5. So we may assume that v is anticomplete to {a, e}; but then
Glabdev = My ;. Therefore Ny . 41(v) cannot be empty.

Next, suppose Ny c,q1(v) = {b}. If v is adjacent to e, then G|bcdev = Cs, and if v is adjacent to a, then
Glabdev = Ko 3. If v is not adjacent to f, then G|bedefv = tent;. Therefore Ng(v) = {b, f}. Similarly if
Nip,e,ay(v) = {d}, then Ns(v) = {d, f}.

Next, suppose Ny c.q1(v) = {c}. If v is complete to {a, e}, then Glabedev = domino, and if v is adjacent
to exactly one of a and e, then G|abcdev = flag. So we may assume that v is anticomplete to {a,e}; but
then Glabdev = My ;. Therefore Ny, . 43(v) cannot be equal to {c}.

Next, suppose Nyp ¢ q3(v) = {b,c}. If v is complete to {e, f}, then G|bcdefv = Ps. If v is adjacent to e
but not to f, then G|bcdefv = Cg, and if v is adjacent to f but not to e, then G|bcdefv = flag. So we may
assume that v is anticomplete to {e, f}; but then G|bcdefv 2 domino. Therefore Ny, . 43(v) cannot be {b, c}
and from symmetry, Ny, . 43(v) cannot be {c,d}.

Next, suppose Ny ..qy(v) = {b,d}. If v is not adjacent to f, then Glbcdfv = Ko 3. If v is anticomplete
to {a,e}, then Glabcdev = watch. If v is adjacent to one of a and e, then G|abcdev = tent;. Therefore
Ng(v) ={a,b,d,e, f}.

Finally, suppose Ny c.q3(v) = {b,¢,d}. If v is adjacent to f, then G|bedfv = Ma ;. If v is not adjacent to
a, then Glabedfv = flag, while if v is adjacent to a, then G|abcdfv = P5. Therefore v cannot be complete to
{b,¢c,d}.

Together, these statements prove (1).

(2) Apy U Ags is a stable set, and Agpger is a clique complete to Apy U Agy.

Suppose u,v € Aps are adjacent; then G|bedfuv = watch. Therefore A, ¢ is a stable set and similarly, so
is Aqs. Now suppose u € Ay and v € Agp are adjacent. Then G|bcduv = Cs. Therefore Ayr U Agr is a stable
set.

Next, suppose u, v € Agpges are not adjacent; then Glbeduv = Ky 5. Therefore Agpges is a clique.

Finally, suppose v € Apy and v € Agpger are not adjacent. Then Glabedev = tents and u has only one
neighbor in {a, b, ¢, d, e, v}, which is impossible by (1). Therefore Aspqer is complete to Ay and similarly to
Agf, and this proves (2).

(8) At least one of Aps, Aap, and Agpaey is empty.

Suppose u € Apf, v € Agr, and w € Agpges. From (2), w is complete to {u, v} and u is not adjacent to v. It
follows that G|abcde fuvw = Fye. Therefore at least one of Ay 7, Agr, and Agpger is empty and this proves (3).

If Agpaey = @, then it follows from (2) that G|(Ayy U Agr U {a,e}) is a stable set. Also, G|bedf is anti-
matched by assumption and Ayy U Agr U {a, e} and {b,c,d, f} are aligned by assumption and definition.
Hence, G is doubled.

So we may assume that Agpger # @. Then by (3), one of Ayy and Ay is empty and from symmetry, we may

assume Agr is empty. Then G|(Ays U {a,c,d}) is semi-matched with an edge cd, and G|(Agpaes U {b, €, })
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is semi-antimatched with a non-edge be. It also follows from assumption and definition that for all u €
Apr U {a,c,d}, u is adjacent to exactly one of b and e and for all v € Agpaer U {b, €, f}, v is adjacent to
exactly one of ¢ and d. Hence, G is doubled. This proves |

We are now ready to prove the main result.

Proof of[L2 The “only if” part is obvious since none of the graphs in F are doubled. For the “if” part, we
may assume G is not almost-split and hence G or G contains one of My 1, Ps, Cg, domino, tent;, and tents
as an induced subgraph. But then we are done by B.1l B2 3.3 B4l B.5 or B.6] applied to G or G, keeping
in mind that the complement of a doubled graph is doubled. g
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