Asymptotic behavior of the solution of quasilinear parametric variational inequalities in a beam with a thin neck

Iuliana Marchis
Babeş-Bolyai University
Faculty of Psychology and Educational Sciences
Str. Kogalniceanu, Nr. 4
400084 Cluj-Napoca, Romania
email: krokusz@gmail.com

Abstract

In this paper we study the asymptotic behavior of the solution of quasilinear parametric variational inequalities posed in a cylinder with a thin neck, and we obtain the limit problem.

1 Introduction

The aim of the paper is to study the asymptotic behavior of the solution of quasilinear variational inequalities in a beam with a thin neck. Mathematically, this notched beam is given by

$$
\Omega_{\epsilon}=\left\{\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{3}:-1<x_{1}<1,\left|x^{\prime}\right|<\epsilon \text { if }\left|x_{1}\right|>t_{\epsilon},\left|x^{\prime}\right|<\epsilon r_{\epsilon} \quad \text { if }\left|x_{1}\right| \leq t_{\epsilon}\right\},
$$

where $\epsilon, \mathrm{r}_{\epsilon}$, and t_{ϵ} are positive parameters such that $\frac{\epsilon \mathrm{r}_{\epsilon}}{\mathrm{t}_{\epsilon}} \rightarrow 0$.
Previous work on domains of this type was done by Hale \& Vegas 7, Jimbo [8, 9], Cabib, Freddi, Morassi, \& Percivale [2, Rubinstein, Schatzman \& Sternberg [13], Casado-Díaz, Luna-Laynez \& Murat [3, 4] and Kohn \& Slastikov [10.

[^0]The most recent results are of Casado-Díaz, Luna-Laynez \& Murat [4]. They studied the asymptotic behavior of the solution of a diffusion equation in the notched beam Ω_{ϵ} and obtained at the limit a one-dimensional model.

In the present article the geometrical setting is the same as in [4], but we consider quasilinear variational inequalities instead of linear variational equalities.

The paper is organized as follows. In Section 2 the geometrical setting is described, the studied problem is given, and the assumptions for our results are formulated. In Section 3 the asymptotic behavior of the solution is studied. Some results from [11] are recalled which, unfortunately, don't provide information about what happening near to the notch. Thus we need to prove some auxiliary results. In Section 4 the limit problem is obtained. To prove the results in this section, we combine the ideas from [5] with the adaptation to variational inequalities of the method used in [4].

2 Setting the problem

Let $\epsilon>0$ be a parameter, $r_{\epsilon}\left(r_{\epsilon}>0\right)$ and $t_{\epsilon}\left(t_{\epsilon}>0\right)$ be two sequences of real numbers, with

$$
\mathrm{r}_{\epsilon} \rightarrow 0, \quad \mathrm{t}_{\epsilon} \rightarrow 0, \quad \text { when } \epsilon \rightarrow 0
$$

We assume that

$$
\frac{\mathrm{t}_{\epsilon}}{\mathrm{r}_{\epsilon}^{2}} \rightarrow \mu, \quad \frac{\epsilon}{\mathrm{r}_{\epsilon}} \rightarrow v, \quad \text { with } 0 \leq \mu<+\infty, 0 \leq v<+\infty, \quad \text { when } \epsilon \rightarrow 0 .
$$

Let $S \subset \mathbb{R}^{2}$ be a bounded domain such that $0 \in S$, which is sufficiently smooth to apply the Poincaré-Wirtinger inequality.

Define the following subsets of \mathbb{R}^{3} :

$$
\begin{gathered}
\Omega_{\epsilon}^{-}=\left(-1,-\mathrm{t}_{\epsilon}\right) \times(\epsilon S), \quad \Omega_{\epsilon}^{0}=\left[-\mathrm{t}_{\epsilon}, \mathrm{t}_{\epsilon}\right] \times\left(\epsilon \mathrm{r}_{\epsilon} \mathrm{S}\right), \quad \Omega_{\epsilon}^{+}=\left(\mathrm{t}_{\epsilon}, 1\right) \times(\epsilon \mathrm{S}), \\
\Omega_{\epsilon}=\Omega_{\epsilon}^{-} \cup \Omega_{\epsilon}^{0} \cup \Omega_{\epsilon}^{+}, \quad \text { and } \Omega_{\epsilon}=\Omega_{\epsilon}^{-} \cup \Omega_{\epsilon}^{+} .
\end{gathered}
$$

Ω_{ϵ} is a notched beam, the main part of the beam is Ω_{ϵ}^{1} and the notched part Ω_{ϵ}^{0}. A point of Ω^{ϵ} is denoted by $x=\left(x_{1}, x^{\prime}\right)=\left(x_{1}, x_{2}, x_{3}\right)$.
Denote by

$$
\Gamma_{\epsilon}^{-}=\{-1\} \times(\epsilon S) \text { and } \Gamma_{\epsilon}^{+}=\{1\} \times(\epsilon S)
$$

the two bases of the beam, and let

$$
\Gamma_{\epsilon}=\Gamma_{\epsilon}^{-} \cup \Gamma_{\epsilon}^{+}
$$

be the union of the two bases.
Denote

$$
\mathcal{V}_{\epsilon}=\left\{\mathrm{V} \in \mathrm{H}^{1}\left(\Omega_{\epsilon}\right), \quad \mathrm{V}=0 \text { on } \Gamma_{\epsilon}\right\} .
$$

We consider the following problem:
Find $U_{\epsilon} \in M_{\epsilon}$ such that, for all $V_{\epsilon} \in M_{\epsilon}$,

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}}\left[\mathrm{A}_{\epsilon} \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}, \mathrm{B}_{\epsilon}\right) \nabla \mathrm{u}_{\epsilon}, \nabla\left(\mathrm{V}_{\epsilon}-\mathrm{u}_{\epsilon}\right)\right] \mathrm{d} x \geq 0 \tag{1}
\end{equation*}
$$

with $A_{\epsilon}, B_{\epsilon}$, and Φ_{ϵ}, given functions, M_{ϵ} a closed, convex, nonempty cone in \mathcal{V}_{ϵ}.

This problem has applications in Physics. Bruno [1] observed that when a ferromagnet has a thin neck, this will be preferred location for the domain wall. He also noticed that if the geometry of the neck varies rapidly enough, it can influence and even dominate the structure of the wall.

Consider problem (1). We impose the following assumptions:
(A1) The matrix A_{ϵ} has the following form

$$
A_{\epsilon}(x)=x_{\Omega_{\epsilon}^{1}}(x) A^{1}\left(x_{1}, \frac{x^{\prime}}{\epsilon}\right)+\chi_{\Omega_{\epsilon}^{\circ}}(x) A^{0}\left(\frac{x_{1}}{t_{\epsilon}}, \frac{x^{\prime}}{\epsilon r_{\epsilon}}\right),
$$

where $A^{1}, A^{0} \in L^{\infty}((-1,1) \times S)^{3 \times 3}$.
(A2) The matrix B_{ϵ} has the following form

$$
B_{\epsilon}(x)=x_{\Omega_{\epsilon}^{1}}(x) B^{1}\left(x_{1}, \frac{x^{\prime}}{\epsilon}\right)+\chi_{\Omega_{\varepsilon}^{0}}(x) B^{0}\left(\frac{x_{1}}{t_{\epsilon}}, \frac{x^{\prime}}{\epsilon r_{\epsilon}}\right),
$$

where $B^{1}, B^{0} \in L^{\infty}((-1,1) \times S)^{3 \times 3}$.
(A3) The functions $\Phi_{\epsilon}: \Omega_{\epsilon} \times \mathbb{R} \rightarrow \mathbb{R}^{3 \times 3}$ and $\Psi_{\epsilon}: \Omega_{\epsilon} \times \mathbb{R} \rightarrow \mathbb{R}^{3}$ are Carathéodory mappings having the following form:

$$
\Phi_{\epsilon}(x, \eta)=\chi_{\Omega_{\epsilon}^{1}}(x) \Phi_{\epsilon}^{1}\left(x_{1}, \frac{x^{\prime}}{\epsilon}, \eta\right)+\chi_{\Omega_{\epsilon}^{0}}(x) \Phi_{\epsilon}^{0}\left(\frac{x_{1}}{t_{\epsilon}}, \frac{x^{\prime}}{\epsilon r_{\epsilon}}, \eta\right) ;
$$

for a.e. $x \in \Omega_{\epsilon}$, for all $\eta \in \mathbb{R}$;
for all $\mathrm{U}_{\epsilon} \in \mathrm{L}^{2}\left(\Omega_{\epsilon}\right), \mathrm{W}_{\epsilon} \in \mathrm{L}^{2}\left(\Omega_{\epsilon}\right)^{3}, \Phi_{\epsilon}^{1}\left(\cdot, \mathrm{U}_{\epsilon}(\cdot)\right) \mathrm{W}_{\epsilon}(\cdot), \Phi_{\epsilon}^{0}\left(\cdot, \mathrm{U}_{\epsilon}(\cdot)\right) \mathrm{W}_{\epsilon}(\cdot) \in$ $L^{2}((-1,1) \times S)^{3}$.
(A4) Coercivity condition
There exist $C_{1}, C_{2}>0$ and $k_{1} \in L^{\infty}\left(\Omega_{\epsilon}\right)$ such that for all $\xi \in \mathbb{R}^{3}, \eta \in \mathbb{R}$

$$
\begin{equation*}
\left[A_{\epsilon}(x) \Phi_{\epsilon}(x, \eta) B_{\epsilon}(x) \xi, \xi\right] \geq C_{1}\|\xi\|^{2}+C_{2}|\eta|^{q_{1}}-k_{1}(x) \text { a.e. } x \in \Omega_{\epsilon} \tag{2}
\end{equation*}
$$

for some $1<\mathrm{q}_{1}<2$, for each $\epsilon>0$.
(A5) Growth condition
There exist $C>0$ and $\alpha \in L^{\infty}\left(\Omega_{\epsilon}\right)$ such that for all $\xi \in \mathbb{R}^{3}, \eta \in \mathbb{R}$

$$
\begin{equation*}
\left\|A_{\epsilon}(x) \Phi_{\epsilon}(x, \eta) \xi\right\| \leq \mathrm{C}\|\xi\|+\mathrm{C}|\eta|+\alpha(x) \quad \text { a.e. } x \in \Omega_{\epsilon} \tag{3}
\end{equation*}
$$

for each $\epsilon>0$.
(A6) Monotonicity condition
For all $\xi, \tau \in \mathbb{R}^{n}, \eta \in \mathbb{R}$,

$$
\left[A_{\epsilon}(x) \Phi_{\epsilon}(x, \eta) B_{\epsilon}(x) \xi-A_{\epsilon}(x) \Phi_{\epsilon}(x, \eta) B_{\epsilon}(x) \tau, \xi-\tau\right] \geq 0, \text { a. e. } x \in \Omega_{\epsilon}
$$

for each $\epsilon>0$.
(A7) If $\mathfrak{u}_{\epsilon} \rightarrow u$ and $w_{\epsilon} \rightharpoonup w$ in $L^{2}\left(Y^{1}\right)$, then

$$
\Phi_{\epsilon}^{1}\left(\cdot, \mathfrak{u}_{\epsilon}(\cdot)\right) w(\cdot) \rightarrow \Phi^{1}(\cdot, \mathfrak{u}(\cdot)) w(\cdot) \text { strongly in } \mathrm{L}^{2}\left(\mathrm{Y}^{1}\right)
$$

If $\mathfrak{u}_{\epsilon} \rightarrow u$ and $w_{\epsilon} \rightharpoonup w$ in $L^{2}(Z)$, then

$$
\Phi_{\epsilon}^{0}\left(\cdot, \mathfrak{u}_{\epsilon}(\cdot)\right) w(\cdot) \rightarrow \Phi^{0}(\cdot, u(\cdot)) w(\cdot) \text { strongly in } L^{2}(Z) .
$$

3 Asymptotic behavior of the solution

To study the asymptotic behavior we use the change of variables $y=y_{\epsilon}(x)$ given by

$$
\begin{equation*}
y_{1}=x_{1} \quad y^{\prime}=\frac{x^{\prime}}{\epsilon} \tag{4}
\end{equation*}
$$

which transforms the beam (except the notch) in a cylinder of fixed diameter. This change of variable is classical in the study of asymptotic behavior of variational equalities in thin cylinders or beams (see [6], [12], [14]). We denote by $Y_{\epsilon}^{-}, Y_{\epsilon}^{0}, Y_{\epsilon}^{+}, Y_{\epsilon}$, and Y_{ϵ}^{S} the images of $\Omega_{\epsilon}^{-}, \Omega_{\epsilon}^{0}, \Omega_{\epsilon}^{+}, \Omega_{\epsilon}$, and Ω_{ϵ}^{S} by the change of variables $y=y_{\epsilon}(x)$, i.e.

$$
\mathrm{Y}_{\epsilon}^{-}=\left(-1,-\mathrm{t}_{\epsilon}\right) \times \mathrm{S}, \quad Y_{\epsilon}^{0}=\left[-\mathrm{t}_{\epsilon}, \mathrm{t}_{\epsilon}\right] \times\left(\mathrm{r}_{\epsilon} \mathrm{S}\right), \quad \mathrm{Y}_{\epsilon}^{+}=\left(\mathrm{t}_{\epsilon}, 1\right) \times \mathrm{S},
$$

$$
Y_{\epsilon}=Y_{\epsilon}^{-} \cup Y_{\epsilon}^{0} \cup Y_{\epsilon}^{+}, \quad Y_{\epsilon}^{1}=Y_{\epsilon}^{-} \cup Y_{\epsilon}^{+} .
$$

Denote by Y^{-}, Y^{+}, and Y^{1} the "limits" of $Y_{\epsilon}^{-}, Y_{\epsilon}^{+}$, and Y_{ϵ}^{1}, i.e.

$$
\mathrm{Y}^{-}=(-1,0) \times S, \quad \mathrm{Y}^{+}=(0,1) \times S, \quad \mathrm{Y}^{1}=\mathrm{Y}^{-} \cup \mathrm{Y}^{+} .
$$

Note that Y_{ϵ}^{1} is contained in its limit Y^{1}.
The two bases of the beam Γ_{ϵ}^{-}and Γ_{ϵ}^{+}are transformed to Λ^{-}and Λ^{+}, respectively, where

$$
\Lambda^{-}=\{-1\} \times S \text { and } \Lambda^{+}=\{1\} \times S
$$

Γ_{ϵ} transforms to $\Lambda=\Lambda^{-} \cup \Lambda^{+}$.
Let $\mathrm{U}_{\epsilon} \in \mathrm{M}_{\epsilon}$ be the solution of the variational inequality (11). Define $\mathfrak{u}_{\epsilon} \in \mathrm{K}_{\epsilon}$ by

$$
\begin{equation*}
\mathrm{u}_{\epsilon}(\mathrm{y})=\mathrm{u}_{\epsilon}\left(\mathrm{y}_{\epsilon}^{-1}(\mathrm{y})\right) \quad \text { a.e. } \mathrm{y} \in \mathrm{Y}_{\epsilon} . \tag{5}
\end{equation*}
$$

K_{ϵ} being the image of $\mathrm{M}_{\epsilon} . \mathrm{K}_{\epsilon}$ is a closed, convex, nonempty cone in \mathcal{D}_{ϵ}, with $\mathcal{D}_{\epsilon}=\left\{v \in \mathrm{H}^{1}\left(\mathrm{Y}_{\epsilon}\right) \mid v=0\right.$ on $\left.\Lambda\right\}$. We need the following two assumptions:
(A8) There exists a nonempty, convex cone K in $H^{1}\left(Y^{1}\right)$ such that
(i) $\mathrm{K} \cap \mathrm{H}^{1}((-1,0) \cup(0,1)) \neq \emptyset$;
(ii) $\epsilon_{i} \rightarrow 0, \mathfrak{u}_{\epsilon_{i}} \in \mathrm{~K}_{\epsilon_{i}}, u \in \mathrm{H}^{1}((-1,0) \cup(0,1)), \mathfrak{u}_{\epsilon_{i}} \rightharpoonup \mathfrak{u}$ (weakly) in $H^{1}\left(Y^{1}\right)$ imply $u \in K$.
(A9) There exists a nonempty, convex cone L in $L^{2}\left((-1,1) ; H^{1}(S)\right)$ such that

$$
\begin{aligned}
& \epsilon_{i} \rightarrow 0, w_{\epsilon_{i}} \in \mathrm{~K}_{\epsilon_{i}}, w \in \mathrm{~L}^{2}\left((-1,1) ; \mathrm{H}^{1}(S)\right), w_{\epsilon_{i}} \rightharpoonup w \text { (weakly) in } \\
& \mathrm{L}^{2}\left((-1,1) ; \mathrm{H}^{1}(S)\right) \text { imply } w \in \mathrm{~L} .
\end{aligned}
$$

By change of variables $y=y_{\epsilon}(x)$ the operator ∇ transforms to

$$
\nabla^{\epsilon} \cdot=\left(\frac{\partial \cdot}{\partial y_{1}}, \frac{1}{\epsilon} \frac{\partial \cdot}{\partial y_{2}}, \frac{1}{\epsilon} \frac{\partial \cdot}{\partial y_{3}}\right) .
$$

In the following we recall some results from [11, 4].
Lemma 1 ([11]) Let $\mathrm{U}_{\epsilon} \in \mathrm{M}_{\epsilon}$ be the solution of the inequality (1) and $\mathfrak{u}_{\epsilon} \in$ K_{ϵ} given by (5). If assumptions (A1) - (A6) are verified then the sequence U_{ϵ} satisfies

$$
\begin{equation*}
\mathrm{U}_{\epsilon} \in \mathrm{M}_{\epsilon}, \quad \frac{1}{\left|\Omega_{\epsilon}\right|} \int_{\Omega_{\epsilon}}\left|\nabla \mathrm{U}_{\epsilon}\right|^{2} \mathrm{~d} x \leq \mathrm{C} \tag{6}
\end{equation*}
$$

Theorem 1 ([1]) Let U_{ϵ} be the solution of the variational inequality (1)) and $\mathfrak{u}_{\epsilon} \in \mathrm{K}_{\epsilon}$ defined by

$$
\mathfrak{u}_{\epsilon}(\mathrm{y})=\mathrm{U}_{\epsilon}\left(\mathrm{y}_{\epsilon}^{-1}(\mathrm{y})\right) \quad \text { a.e. } \mathrm{y} \in \mathrm{Y}_{\epsilon} .
$$

If assumptions (A1)-(A6) and (A8)-(A9) are verified, then there exist three functions $\mathfrak{u}, \mathfrak{w}$, and σ^{1} with

$$
\begin{gathered}
u \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap K, \quad u(-1)=u(1)=0 \\
w \in \mathrm{~L}, \quad \sigma^{1} \in \mathrm{~L}^{2}\left(Y^{1}\right)^{3}
\end{gathered}
$$

such that up to extraction of a subsequence

$$
\begin{aligned}
& \chi_{Y_{\epsilon}^{1}} \mathrm{u}_{\epsilon} \rightarrow \mathrm{u} \quad \text { in } \quad \mathrm{L}^{2}\left(\mathrm{Y}^{1}\right) \\
& \chi_{Y_{\epsilon}^{-}} \frac{\partial \mathrm{u}_{\epsilon}}{\partial \mathrm{y}_{1}} \rightharpoonup \frac{\partial \mathrm{u}}{\partial y_{1}} \quad \text { in } \quad \mathrm{L}^{2}\left(\mathrm{Y}^{-}\right) \\
& \chi_{Y_{\epsilon}^{+}} \frac{\partial \mathrm{u}_{\epsilon}}{\partial \mathrm{y}_{1}} \rightharpoonup \frac{\partial \mathrm{u}}{\partial \mathrm{y}_{1}} \quad \text { in } \quad \mathrm{L}^{2}\left(\mathrm{Y}^{+}\right) \\
& \chi_{Y_{\epsilon}^{1}} \frac{1}{\epsilon} \nabla_{\mathcal{Y}^{\prime}} \mathrm{u}_{\epsilon} \rightharpoonup \nabla_{\mathcal{y}^{\prime} w} \quad \text { in } \quad \mathrm{L}^{2}\left(\mathrm{Y}^{1}\right)^{2}
\end{aligned}
$$

and

$$
X_{Y_{\epsilon}^{1}} \sigma_{\epsilon} \rightharpoonup \sigma^{1} \quad \text { in } \quad \mathrm{L}^{2}\left(\mathrm{Y}^{1}\right)^{3}
$$

Theorem 2 ([11]) Let U_{ϵ} be the solution of the variational inequality (1) and $u \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap \mathrm{K}$ given in Theorem 11. If assumptions (A1)(A6) and (A8) are verified, then there exists a subsequence of solutions U_{ϵ}, also denoted by U_{ϵ}, such that

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} \frac{1}{\left|\Omega_{\epsilon}\right|} \int_{\Omega_{\varepsilon}}\left|\mathrm{u}_{\epsilon}(x)-u\left(x_{1}\right)\right|^{2} \mathrm{~d} x=0 . \tag{7}
\end{equation*}
$$

Unfortunately, this change of variables doesn't provide information about what happening near the notch. Thus we use another change of variables, which was given in [4]. Consider the case, when

$$
\mu<+\infty \quad \text { and } \quad v<+\infty .
$$

The change of variables $z=z_{\epsilon}(x)$ is defined as follows

$$
z_{1}=\left\{\begin{array}{lll}
\left\{\begin{array}{ll}
\frac{1}{\epsilon r_{\epsilon}}\left(x_{1}+t_{\epsilon}\right)-\frac{t_{\epsilon}}{r_{\epsilon}}, & \text { if }-1 \leq x_{1} \leq-t_{\epsilon}, \\
\frac{x_{1}}{r_{e}}, & \text { if }-t_{\epsilon} \leq x_{1} \leq t_{\epsilon},
\end{array} \quad \text { if } \mu=0,\right. \tag{8}\\
\frac{1}{\epsilon r_{\epsilon}}\left(x_{1}-t_{\epsilon}\right)+\frac{t_{\epsilon}}{r_{\epsilon}}, & \text { if } t_{\epsilon} \leq x_{1} \leq 1, & z^{\prime}=\frac{x^{\prime}}{\epsilon r_{\epsilon}} . \\
\left\{\begin{array}{lll}
\frac{\mu r_{e}}{\epsilon \tau_{\epsilon}}\left(x_{1}+t_{\epsilon}\right)-\mu, & \text { if }-1 \leq x_{1} \leq-t_{\epsilon}, \\
\frac{\mu}{t_{\epsilon}} x_{1}, & \text { if }-t_{\epsilon} \leq x_{1} \leq t_{\epsilon}, & \text { if } \mu>0, \\
\frac{u r_{\epsilon}}{\epsilon t_{\epsilon}}\left(x_{1}-t_{\epsilon}\right)+\mu, & \text { if } t_{\varepsilon} \leq x_{1} \leq 1
\end{array}\right.
\end{array}\right.
$$

This change of variables transforms the notch in a cylinder of fixed diameter and length, but transforms the rest of the beam in a very large domain. But it allows to describe the behavior of the solution U_{ϵ} of inequality (1) when x_{1} is close to zero.

We denote by $Z_{\epsilon}^{-}, Z_{\epsilon}^{0}, Z_{\epsilon}^{+}, Z_{\epsilon}$, and Z_{ϵ}^{1} the images of $\Omega_{\epsilon}^{-}, \Omega_{\epsilon}^{0}, \Omega_{\epsilon}^{+}, \Omega_{\epsilon}$, and Ω_{ϵ}^{1} by the change of variables $z=z_{\epsilon}(x)$, i.e.

$$
\begin{gathered}
Z_{\epsilon}^{-}=\left(-\frac{1-t_{\epsilon}}{\epsilon r_{\epsilon}}-\frac{t_{\epsilon}}{r_{\epsilon}^{2}},-\frac{t_{\epsilon}}{r_{\epsilon}^{2}}\right) \times\left(\frac{1}{r_{\epsilon}} S\right), \quad Z_{\epsilon}^{0}=\left[-\frac{t_{\epsilon}}{r_{\epsilon}^{2}}, \frac{t_{\epsilon}}{r_{\epsilon}^{2}}\right] \times S, \\
\text { and } Z_{\epsilon}^{+}=\left(\frac{t_{\epsilon}}{r_{\epsilon}^{2}}, \frac{1-t_{\epsilon}}{\epsilon r_{\epsilon}}+\frac{t_{\epsilon}}{r_{\epsilon}^{2}}\right) \times\left(\frac{1}{r_{\epsilon}} S\right)
\end{gathered}
$$

if $\mu=0$, and

$$
\begin{gathered}
Z_{\epsilon}^{-}=\left(-\frac{\mu r_{\epsilon}\left(1-t_{\epsilon}\right)}{\epsilon t_{\epsilon}}-\mu,-\mu\right) \times\left(\frac{1}{r_{\epsilon}} S\right), \quad Z_{\epsilon}^{0}=[-\mu, \mu] \times S, \\
\text { and } Z_{\epsilon}^{+}=\left(\mu, \frac{\mu r_{\epsilon}\left(1-t_{\epsilon}\right)}{\epsilon t_{\epsilon}}+\mu\right) \times\left(\frac{1}{r_{\epsilon}} S\right)
\end{gathered}
$$

if $\mu>0$. We set

$$
\mathrm{Z}_{\epsilon}=\mathrm{Z}_{\epsilon}^{-} \cup \mathrm{Z}_{\epsilon}^{0} \cup \mathrm{Z}_{\epsilon}^{+}, \quad \mathrm{Z}_{\epsilon}^{1}=\mathrm{Z}_{\epsilon}^{-} \cup \mathrm{Z}_{\epsilon}^{+}
$$

We denote by Z^{-}, Z^{+}, and Z^{0} the "limits" of $Z_{\epsilon}^{-}, Z_{\epsilon}^{+}$, and Z_{ϵ}^{0}, i.e.

$$
Z^{-}=(-\infty,-\mu) \times \mathbb{R}^{2}, Z^{+}=(\mu,+\infty) \times \mathbb{R}^{2}, Z^{0}=[-\mu, \mu] \times S,
$$

and define

$$
Z=Z^{-} \cup Z^{0} \cup Z^{+}, Z^{1}=Z^{-} \cup Z^{+}
$$

Remark 1 ([4]) In (8) there are two definitions of z_{ϵ} corresponding to the cases $\mu=0$ and $\mu>0$. Actually when $\mu>0$, we could define z_{ε} by the definition given for $\mu=0$ because

$$
\mu \sim \frac{\mathrm{t}_{\epsilon}}{\mathrm{r}_{\epsilon}^{2}}, \quad \frac{\mu \mathrm{r}_{\epsilon}}{\epsilon \mathrm{t}_{\epsilon}} \sim \frac{1}{\epsilon \mathrm{r}_{\epsilon}}, \quad \text { and } \quad \frac{\mu}{\mathrm{t}_{\epsilon}} \sim \frac{1}{\mathrm{r}_{\epsilon}^{2}} .
$$

The definition (8) which distinguishes the cases $\mu=0$ and $\mu>0$ has the advantage that the image Z_{ϵ} of Ω_{ϵ} by the change of variables $z=z_{\epsilon}(x)$ is contained in its "limit" Z for every $\epsilon>0$ and Z_{ϵ}^{0} is fixed for $\mu>0$; then a function defined in \mathbf{Z} has a restriction to \mathbf{Z}_{ϵ}.

Theorem 3 ([4]) Let $\left(\mathrm{U}_{\epsilon}\right)_{\epsilon}$ be a sequence which satisfies (6). Define $\widehat{\mathfrak{u}}_{\epsilon} \in$ $\mathrm{H}^{1}\left(\mathrm{Z}_{\epsilon}\right)$ by

$$
\begin{equation*}
\widehat{\mathfrak{u}}_{\epsilon}(z)=\mathrm{U}_{\epsilon}\left(z_{\epsilon}^{-1}(z)\right), \quad \text { a.e. } z \in Z_{\epsilon} . \tag{9}
\end{equation*}
$$

Then there exists a function $\hat{\mathfrak{u}}$, with

$$
\hat{\mathfrak{u}} \in \mathrm{H}_{\mathrm{loc}}^{1}(\mathrm{Z}), \widehat{\mathfrak{u}}-\mathfrak{u}\left(0^{-}\right) \in \mathrm{L}^{6}\left(\mathrm{Z}^{-}\right), \hat{\mathfrak{u}}-\mathfrak{u}\left(0^{+}\right) \in \mathrm{L}^{6}\left(\mathrm{Z}^{+}\right), \quad \nabla \hat{\mathfrak{u}} \in \mathrm{L}^{2}(Z)^{3},
$$

(where \mathfrak{u} is defined in Corollary 1), such that for every $\boldsymbol{R}>0$, up to extraction of a subsequence,

$$
\begin{aligned}
\chi_{Z_{\epsilon} \cap \mathrm{B}_{3}(0, R)} \hat{\mathfrak{u}}_{\epsilon} & \rightarrow \chi_{\mathrm{B}_{3}(0, \mathrm{R})} \hat{\mathrm{U}} \quad \text { in } \mathrm{L}^{2}(\mathrm{Z}) \text { strongly, }, \\
\chi_{\mathrm{Z}_{\epsilon}} \nabla \hat{\mathfrak{u}}_{\epsilon} & \rightharpoonup \nabla \hat{\mathrm{u}} \quad \text { in } \mathrm{L}^{2}(\mathrm{Z})^{3} \text { weakly, },
\end{aligned}
$$

where $\mathrm{B}_{3}(0, \mathrm{R})$ denotes the 3-dimensional ball with center ($0,0,0$) and diameter R. Moreover, if $\mu=0$, then $\hat{\mathfrak{u}}$ only depends on z_{1} and satisfies

$$
\hat{u}=\mathfrak{u}\left(0^{-}\right) \text {in } \mathbf{Z}^{-}, \quad \hat{\mathfrak{u}}=\mathfrak{u}\left(0^{+}\right) \text {in } \mathbf{Z}^{+} .
$$

If $v=\mu=0$, then $\mathfrak{u}\left(0^{-}\right)=\mathfrak{u}\left(0^{+}\right)$.
If $\hat{v}=0$ and $\mu>0$, then there exists a function $\hat{\omega} \in \mathrm{L}^{2}\left((-\mu, \mu) ; \mathrm{H}^{1}(\mathrm{~S})\right)$ such that up to extraction of a subsequence,

$$
\frac{\mathrm{r}_{\epsilon}}{\epsilon} \nabla_{z^{\prime}} \hat{\mathrm{u}}_{\epsilon} \rightharpoonup \nabla_{z^{\prime}} \hat{w} \quad \text { in } \mathrm{L}^{2}\left(Z^{0}\right)^{2} \text { weakly. }
$$

Let \widehat{R}_{ϵ} be the image of M_{ϵ} by the change of variables $z=z_{\epsilon}(x) . \widehat{K}_{\epsilon}$ is a closed, convex, nonempty cone in $\mathrm{H}^{1}\left(\mathrm{Z}_{\epsilon}\right)$. We need the following two assumptions:
(A10) There exists a nonempty subset \hat{K} of $H_{\text {loc }}^{1}(Z)$ such that

$$
\begin{aligned}
& \epsilon_{i} \rightarrow 0, R>0, \hat{u}_{\epsilon_{i}} \in \hat{\mathrm{~K}}_{\epsilon_{i}}, \hat{u} \in \mathrm{H}_{\mathrm{loc}}^{1}(Z), \\
& \chi_{Z_{e} \cap B_{3}(0, R)} \hat{\mathfrak{u}}_{\mathfrak{e}_{\mathfrak{i}}} \rightarrow \chi_{\mathrm{B}_{3}(0, R)} \hat{\mathfrak{u}} \text { (strongly) in } L^{2}(Z),
\end{aligned}
$$

and

$$
\chi_{Z_{\mathrm{e}}} \nabla \hat{\mathfrak{u}}_{e_{\mathrm{i}}} \rightharpoonup \nabla \hat{\mathfrak{u}} \quad(\text { weakly }) \text { in }\left(\mathrm{L}^{2}(\mathrm{Z})\right)^{3},
$$

imply $\widehat{u} \in \hat{K}$.
(A11) There exists a nonempty, convex cone \hat{L} in $L^{2}\left((-\mu, \mu) ; H^{1}(S)\right)$ such that
$\epsilon_{i} \rightarrow 0, \widehat{w}_{\epsilon_{i}} \in \mathrm{~K}_{\epsilon_{i}}, \hat{w} \in \mathrm{~L}^{2}\left((-\mu, \mu) ; \mathrm{H}^{1}(S)\right), \hat{w}_{\epsilon_{i}} \rightharpoonup \widehat{w}$ (weakly) in $\mathrm{L}^{2}\left((-\mu, \mu) ; \mathrm{H}^{1}(S)\right)$ imply $\hat{w} \in \hat{\mathrm{~L}}$.

Theorem 4 Let $\mathrm{U}_{\epsilon} \in \mathrm{M}_{\epsilon}$ be the solution of the variational inequality (1), $u \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap \mathrm{K}$ defined in Theorem $\mathbf{1}$, and $\widehat{\mathfrak{u}}_{\epsilon} \in \widehat{\mathrm{K}}_{\epsilon}$ given by (9). If assumptions (A1)-(A6) and (A8)-(A11) are verified, then there exists a function $\hat{\mathfrak{u}} \in \widehat{\mathrm{K}}$, with

$$
\begin{equation*}
\widehat{\mathfrak{u}}-\mathfrak{u}\left(0^{-}\right) \in \mathrm{L}^{6}\left(\mathrm{Z}^{-}\right), \widehat{\mathfrak{u}}-\mathfrak{u}\left(0^{+}\right) \in \mathrm{L}^{6}\left(\mathrm{Z}^{+}\right), \quad \nabla \hat{u} \in \mathrm{~L}^{2}(Z)^{3}, \tag{10}
\end{equation*}
$$

such that for every $\mathrm{R}>0$, up to extraction of a subsequence,

$$
\begin{aligned}
\chi_{\mathrm{Z}_{e} \cap \mathrm{~B}_{3}(0, R)} \hat{\mathfrak{u}}_{\epsilon} & \rightarrow \mathrm{X}_{\mathrm{B}_{3}(0, R)} \widehat{\mathrm{U}} \quad \text { in } \mathrm{L}^{2}(\mathrm{Z}) \text { strongly, } \\
\chi_{\mathrm{Z}_{\epsilon}} \nabla \hat{\mathfrak{u}}_{\epsilon} & \rightharpoonup \nabla \hat{u} \quad \text { in } \mathrm{L}^{2}(\mathrm{Z})^{3} \text { weakly. }
\end{aligned}
$$

Moreover, if $\mu=0$, then \widehat{u} only depends on z_{1} and satisfies

$$
\hat{\mathfrak{u}}=\mathfrak{u}\left(0^{-}\right) \quad \text { in } \mathrm{Z}^{-}, \quad \hat{\mathfrak{u}}=\mathfrak{u}\left(0^{+}\right) \quad \text { in } \mathbf{Z}^{+} .
$$

If $v=\mu=0$, then $\mathfrak{u}\left(0^{-}\right)=\mathfrak{u}\left(0^{+}\right)$.
If $v=0$ and $\mu>0$, then there exists a function $\hat{w} \in \hat{\mathrm{~L}}$ such that up to extraction of a subsequence,

$$
\begin{equation*}
\frac{\mathrm{r}_{\epsilon}}{\epsilon} \nabla_{z^{\prime}} \hat{\mathrm{u}}_{\epsilon} \rightharpoonup \nabla_{z^{\prime}} \hat{\boldsymbol{w}} \quad \text { in } \mathrm{L}^{2}\left(Z^{0}\right)^{2} \text { weakly. } \tag{11}
\end{equation*}
$$

Proof. From Lemma 1 it follows that there exists a subsequence of solutions U_{ϵ}, also denoted by U_{ϵ}, such that (6) is satisfied. Thus by Theorem 3 we get that there exists a function $\hat{\mathcal{u}} \in \mathrm{H}_{\mathrm{loc}}^{1}(Z)$ such that the statement of the theorem is true. By assumption (A10) we get that $\hat{u} \in \widehat{K}$.

If $v=0$ and $\mu>0$ then, by Theorem 3, there exists a function $\hat{\omega} \in$ $\mathrm{L}^{2}\left((-\mu, \mu) ; \mathrm{H}^{1}(S)\right)$ such that up to extraction of a subsequence, (11) holds. Then by assumption (A11) we get that $\hat{\omega} \in \hat{\mathrm{L}}$.

Lemma 2 Let U_{ϵ} be one solution of the variational inequality (11), $\hat{\mathfrak{u}}_{\epsilon}$ defined by (8). Assume that (A1)-(A3) and (A5) hold. Then

$$
\left\|A^{0}\left(\frac{-}{\mu}, \cdot\right) \Phi_{\epsilon}^{0}\left(\frac{\dot{\mu}}{\mu}, \cdot, \hat{u}_{\epsilon}(\cdot)\right) \mathrm{B}^{0}\left(\frac{\dot{\mu}}{\mu}, \cdot\right) \nabla \hat{\mathfrak{u}}_{\epsilon}(\cdot)\right\|_{\mathrm{L}^{2}\left(Z^{0}\right)}
$$

is bounded.
Proof. Taking the square of the first growth condition from (A5), multiplying by $\frac{1}{\epsilon^{2}}$, and integrating on Ω_{ϵ}^{0}, we obtain

$$
\begin{aligned}
& \frac{1}{\epsilon^{2}} \int_{\Omega_{\varepsilon}^{0}}\left\|A_{\epsilon}(x) \Phi\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \nabla \mathrm{U}_{\epsilon}(x)\right\|^{2} \mathrm{~d} x \leq \\
& \leq \frac{1}{\epsilon^{2}} \int_{\Omega_{\varepsilon}^{0}}\left\|\nabla \mathrm{U}_{\epsilon}(x)\right\|^{2} \mathrm{dx}+\frac{1}{\epsilon^{2}} \int_{\Omega_{\varepsilon}^{0}}\left|\mathrm{U}_{\epsilon}(x)\right|^{2} \mathrm{~d} x+\frac{\left|\Omega_{\epsilon}^{0}\right|}{\epsilon^{2}}\|\alpha\|_{\infty} .
\end{aligned}
$$

Applying the change of variable z_{ϵ} and taking out $\frac{1}{r_{\epsilon}^{2}}$ from $\nabla^{\epsilon} \hat{\mathfrak{u}}_{\epsilon}$, we get

$$
\begin{aligned}
& \int_{Z^{0}}\left\|A^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \Phi_{\epsilon}^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}, \hat{u}_{\epsilon}(z)\right) \mathrm{B}^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \nabla \hat{u}_{\epsilon}(z)\right\|^{2} \mathrm{~d} z \leq \\
& \leq C \int_{Z^{0}}\left\|\left(\frac{\partial \hat{u}_{\epsilon}(z)}{\partial z_{1}}, \frac{\mathrm{r}_{\epsilon}}{\epsilon} \frac{\partial \hat{u}_{\epsilon}(z)}{\partial z_{2}}, \frac{\mathrm{r}_{\epsilon}}{\epsilon} \frac{\partial \hat{u}_{\epsilon}(z)}{\partial z_{3}}\right)\right\|^{2} \mathrm{~d} z+\mathrm{r}_{\epsilon}^{4} \mathrm{C} \int_{Z^{0}}\left|\hat{u}_{\epsilon}(z)\right|^{2} \mathrm{~d} z+\bar{\alpha}
\end{aligned}
$$

By Theorem 33, $\left\|\nabla \hat{\mathfrak{u}}_{\epsilon}\right\|_{L^{2}\left(Z^{0}\right)^{3}}$ and $\left\|\hat{\mathfrak{u}}_{\epsilon}\right\|_{L^{2}\left(Z^{0}\right)}$ are bounded, thus the statement of the lemma holds.

Corollary 1 Suppose that the assumptions of Lemma 图 are verified. Then there exists $\sigma^{0} \in \mathrm{~L}^{2}\left(Z^{0}\right)$ such that

$$
\mathrm{A}^{0}\left(\frac{\cdot}{\mu}, \cdot\right) \Phi_{\epsilon}^{0}\left(\frac{\dot{\mu}}{\mu}, \cdot, \hat{\mathfrak{u}}_{\epsilon}(\cdot)\right) \mathrm{B}^{0}\left(\frac{\dot{\mu}}{\mu}, \cdot\right) \nabla \hat{\mathfrak{u}}_{\epsilon}(\cdot) \rightharpoonup \sigma^{0} \quad \text { in } \mathrm{L}^{2}\left(Z^{0}\right) .
$$

4 The limit variational inequality

In this section we obtain the limit problem in two cases: when $0<\mu<+\infty$ and $v=0$ respectively when $\mu=+\infty$ and $0<\nu<+\infty$. In these cases

$$
\frac{\epsilon r_{\epsilon}}{\mathrm{t}_{\epsilon}}=\frac{\epsilon}{\mathrm{r}_{\epsilon}} \cdot \frac{\mathrm{r}_{\epsilon}^{2}}{\mathrm{t}_{\epsilon}} \rightarrow \frac{v}{\mu}=0
$$

thus the beam has a thin neck.

4.1 The case $0<\mu<\infty$ and $v=0$

Theorem 5 Let $0<\mu<\infty$ and $v=0$.
Assume that (A1)-(A11) are verified and the following four conditions are satisfied:
(C1) $\varphi \in K$ implies $\chi_{Y_{\epsilon}^{1}} \varphi \in K_{\epsilon}$;
(C2) $\psi \in \mathrm{L}$ implies $\chi_{Y_{\epsilon}^{\prime}} \psi \in \mathrm{K}_{\epsilon}$;
(C3) $\hat{\varphi} \in \widehat{R}$ implies $\chi_{Z_{e}^{0}} \hat{\varphi} \in \widehat{\mathrm{R}}_{\epsilon}$;
(C4) $\hat{\psi} \in \hat{L}$ implies $\chi_{z_{\epsilon}^{0}} \hat{\psi} \in \hat{\mathrm{R}}_{\epsilon}$.
Then the following three statements hold:

1) There exists a subsequence of the sequence U_{ϵ} of solutions of (11), also denoted by U_{ϵ}, and a function $\mathrm{u} \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap \mathrm{K}$ such that (7) is satisfied.
2) Let \mathfrak{u} and \mathfrak{w} be as given in Theorem $\mathbb{1}$ and \widehat{u} and \widehat{w} as in Theorem 4 . Then $(\mathfrak{u}, \mathfrak{w}, \widehat{\mathfrak{u}}, \widehat{\mathfrak{w}})$ solves the limit variational problem:
find $u \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap K, u(-1)=u(1)=0, w \in \mathrm{~L}$, and $\widehat{\mathfrak{u}} \in \widehat{\mathrm{K}}, \widehat{\mathfrak{u}}(-\mu)=$ $\mathfrak{u}\left(0^{-}\right), \hat{u}(\mu)=u\left(0^{+}\right), \hat{w} \in \hat{L}$ such that for all $v \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap K$, $v(-1)=v(1)=0, h \in \mathrm{~L}$, and $\hat{v} \in \widehat{\mathrm{~K}}, \hat{v}(-\mu)=v\left(0^{-}\right), \widehat{v}(\mu)=v\left(0^{+}\right), \widehat{h} \in \hat{\mathrm{~L}}$,

$$
\begin{align*}
& \int_{Y^{1}}\left[A^{1}(y) \Phi^{1}\left(y, u\left(y_{1}\right)\right) B^{1}(y) \nabla^{\prime}(u, w)(y), \nabla^{\prime}(v, h)(y)-\nabla^{\prime}(u, w)(y)\right] \tag{12}\\
& +\int_{Z^{0}}\left[A^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \Phi^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}, \hat{u}(z)\right) B^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \nabla^{\prime}(\hat{u}, \hat{w})(z)\right. \\
& \left.\nabla^{\prime}(\hat{v}, \hat{\mathfrak{h}})(z)-\nabla^{\prime}(\hat{u}, \hat{w})(z)\right] d z \geq 0 .
\end{align*}
$$

3) Let σ^{1} be as given in Theorem 1, σ^{0} as given in Corollary 1, Then

$$
\begin{aligned}
& \sigma^{1}(y)=A^{1}(y) \Phi^{1}(y, u(y)) B^{1}(y) \nabla^{\prime}(u, w)(y) \text { for a.e. } y \in Y^{1}, \\
& \sigma^{0}(z)=A^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \Phi^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}, \hat{u}(z)\right) B^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \nabla^{\prime}\left(\hat{u}, \frac{1}{v} \hat{u}\right)
\end{aligned}
$$

for a.e. $z \in Z^{0}$.
Proof. Statement 1) follows from Theorem 2,
2) Since $v=0$, from Theorem 4 it follows that $\hat{u} \in \widehat{K}$ only depends on z_{1} with

$$
\hat{u}=\mathfrak{u}\left(0^{-}\right) \text {in } Z^{-}, \quad \hat{u}=\mathfrak{u}\left(0^{+}\right) \text {in } Z^{+}
$$

and there exists a function $\hat{w} \in \hat{L}$ such that up to extraction of a subsequence,

$$
\frac{\mathrm{r}_{\epsilon}}{\epsilon} \nabla_{z^{\prime}} \hat{\mathrm{u}}_{\epsilon}-\nabla_{z^{\prime}} \hat{\boldsymbol{w}} \quad \text { in } \mathrm{L}^{2}\left(Z^{0}\right)^{2} \text { weakly. }
$$

Let $\varphi^{-} \in \mathrm{H}^{1}([-1,0])$ and $\varphi^{+} \in \mathrm{H}^{1}([0,1])$ and define $\varphi \in \mathrm{H}^{1}((-1,0) \cup$ $(0,1)) \cap K$ such that

$$
\varphi\left(x_{1}\right)= \begin{cases}\varphi^{-}\left(x_{1}\right), & \text { if } x_{1} \in(-1,0) \\ \varphi^{+}\left(x_{1}\right), & \text { if } x_{1} \in(0,1) .\end{cases}
$$

Let $\psi \in \mathrm{L}, \hat{\varphi} \in \hat{R}$, and $\hat{\psi} \in \hat{L}$. For ϵ small enough, the sequence V_{ϵ} defined by

$$
\begin{aligned}
V_{\epsilon}(x) & =\chi_{\Omega_{\epsilon}^{1}}(x)\left(\varphi\left(x_{1}\right)+\epsilon \psi\left(x_{1}, \frac{x^{\prime}}{\epsilon}\right)\right)+ \\
& +\chi_{\Omega_{\epsilon}^{0}}(x)\left(\hat{\varphi}\left(\frac{\mu x_{1}}{t_{\epsilon}}\right)+\frac{\epsilon}{r_{\epsilon}} \hat{\psi}\left(\frac{\mu x_{1}}{t_{\epsilon}}, \frac{x^{\prime}}{\epsilon r_{\epsilon}}\right)\right), \quad \text { a.e. } x \in \Omega_{\epsilon}
\end{aligned}
$$

belongs to M_{ϵ}.
Putting $\eta=\mathrm{U}_{\epsilon}(x), \xi=\nabla \mathrm{U}_{\epsilon}(\mathrm{x})$ and

$$
\begin{aligned}
\tau=\tau_{\epsilon}(x) & =\chi_{\Omega_{\epsilon}^{1}}(x)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)\left(y_{\epsilon}(x)\right)+ \\
& +\chi_{\Omega_{\varepsilon}^{o}}(x) \frac{1}{r_{\epsilon}^{2}}\left(\nabla^{\prime}(\hat{\varphi}, \hat{\psi})+\lambda f_{2}\right)\left(z_{\epsilon}(x)\right), \quad \text { a.e. } x \in \Omega_{\epsilon}
\end{aligned}
$$

in the monotonicity condition, we get

$$
\begin{aligned}
& 0 \leq \frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[A_{\epsilon}(x) \Phi_{\epsilon}\left(x, U_{\epsilon}(x)\right) B_{\epsilon}(x) \nabla \mathrm{U}_{\epsilon}(x)-A_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) B_{\epsilon}(x) \tau_{\epsilon}(x),\right. \\
& \left.\nabla \mathrm{U}_{\epsilon}(\mathrm{x})-\tau_{\epsilon}(\mathrm{x})\right] \mathrm{d} \mathrm{x}= \\
& =\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(\mathrm{x}) \nabla \mathrm{U}_{\epsilon}(\mathrm{x}), \nabla \mathrm{U}_{\epsilon}(\mathrm{x})\right] \mathrm{d} \mathrm{x}- \\
& -\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(\mathrm{x})\right) \mathrm{B}_{\epsilon}(\mathrm{x}) \nabla \mathrm{U}_{\epsilon}(\mathrm{x}), \tau_{\epsilon}(\mathrm{x})\right] \mathrm{d} \mathrm{x}+ \\
& -\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(\mathrm{x})\right) \mathrm{B}_{\epsilon}(\mathrm{x}) \tau_{\epsilon}(\mathrm{x}), \nabla \mathrm{U}_{\epsilon}(\mathrm{x})\right] \mathrm{d} \mathrm{x}- \\
& +\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[A_{\epsilon}(x) \Phi_{\epsilon}\left(x, U_{\epsilon}(x)\right) B_{\epsilon}(x) \tau_{\epsilon}(x), \tau_{\epsilon}(x)\right] d x= \\
& =\mathrm{T}_{1}^{\epsilon}-\mathrm{T}_{2}^{\epsilon}-\mathrm{T}_{3}^{\epsilon}+\mathrm{T}_{4}^{\epsilon} \text {. }
\end{aligned}
$$

$\underline{\text { Asymptotic behavior of the solution of parametric variational inequalities } 17}$
In the following we study each term separately. The first term

$$
\begin{aligned}
\mathrm{T}_{1}^{\epsilon}= & \frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \nabla \mathrm{U}_{\epsilon}(x), \nabla \mathrm{U}_{\epsilon}(x)\right] \mathrm{d} x \leq \\
\leq & \frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \nabla \mathrm{U}_{\epsilon}(x), \nabla \mathrm{V}_{\epsilon}(x)\right] \mathrm{d} x \\
= & \frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}^{1}}\left[A_{\epsilon}^{1}\left(\mathrm{y}_{\epsilon}(x)\right) \Phi_{\epsilon}^{1}\left(\mathrm{y}_{\epsilon}(x), \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}^{1}\left(\mathrm{y}_{\epsilon}(x)\right) \nabla \mathrm{U}_{\epsilon}(x),\right. \\
& \left.\left(\frac{\mathrm{d} \varphi\left(\mathrm{x}_{1}\right)}{\mathrm{d} x_{1}}+\epsilon \frac{\partial \psi\left(\mathrm{y}_{\epsilon}(\mathrm{x})\right)}{\partial x_{1}}, \frac{\partial \psi\left(\mathrm{y}_{\epsilon}(x)\right)}{\partial x_{2}}, \frac{\partial \psi\left(\mathrm{y}_{\epsilon}(x)\right)}{\partial x_{3}}\right)\right] \mathrm{d} x+ \\
& +\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}^{0}}\left[A_{\epsilon}^{0}\left(z_{\epsilon}(x)\right) \Phi_{\epsilon}^{0}\left(z_{\epsilon}(x), \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}^{0}\left(z_{\epsilon}(x)\right) \nabla \mathrm{U}_{\epsilon}(x),\right. \\
& \left.\left(\frac{\mu}{\mathrm{t}_{\epsilon}} \frac{\partial \hat{\varphi}\left(\frac{\mu x_{1}}{\mathrm{t}_{\epsilon}}\right)}{\partial x_{1}}+\frac{\epsilon \mu}{\mathrm{r}_{\epsilon} \mathrm{t}_{\epsilon}} \frac{\partial \hat{\psi}\left(z_{\epsilon}(x)\right)}{\partial x_{1}}, \frac{1}{r_{\epsilon}^{2}} \frac{\partial \hat{\psi}\left(z_{\epsilon}(x)\right)}{\partial x_{2}}, \frac{1}{r_{\epsilon}^{2}} \frac{\partial \hat{\psi}\left(z_{\epsilon}(x)\right)}{\partial x_{3}}\right)\right] \mathrm{d} x
\end{aligned}
$$

(using the change of variable $y=y_{\epsilon}(x)$ in the integral over Ω_{ϵ}^{1} and the change of variables $z=z_{\epsilon}(x)$ in the integral over $\left.\Omega_{\epsilon}^{0}\right)$

$$
\begin{aligned}
=\int_{Y_{\epsilon}^{1}} & {\left[A^{1}(y) \Phi_{\epsilon}^{1}\left(y, u_{\epsilon}(y)\right) B^{1}(y) \nabla^{\epsilon} u_{\epsilon}(y)\right.} \\
& \left.\left(\frac{d \varphi\left(y_{1}\right)}{d y_{1}}+\epsilon \frac{\partial \psi(y)}{\partial y_{1}}, \frac{\partial \psi(y)}{\partial y_{2}}, \frac{\partial \psi(y)}{\partial y_{3}}\right)\right] d y+ \\
+\frac{1}{\mu} t_{\epsilon} r_{\epsilon}^{2} \int_{Z^{0}} & {\left[A^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \Phi_{\epsilon}^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}, \hat{u}(z)\right) B^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) .\right.} \\
& \cdot\left(\frac{\mu}{t_{\epsilon}} \frac{\partial \widehat{u}_{\epsilon}(z)}{\partial z_{1}}, \frac{1}{\epsilon r_{\epsilon}} \frac{\partial \widehat{u}_{\epsilon}(z)}{\partial z_{2}}, \frac{1}{\epsilon r_{\epsilon}} \frac{\partial \widehat{u}_{\epsilon}(z)}{\partial z_{3}}\right), \\
& \left.\left(\frac{\mu}{t_{\epsilon}} \frac{d \hat{\varphi}\left(z_{1}\right)}{d z_{1}}+\frac{\epsilon}{r_{\epsilon} t_{\epsilon}} \frac{\partial \hat{\psi}(z)}{\partial z_{1}}, \frac{1}{r_{\epsilon}^{2}} \frac{\partial \hat{\psi}(z)}{\partial z_{2}}, \frac{1}{r_{\epsilon}^{2}} \frac{\partial \hat{\psi}(z)}{\partial z_{3}}\right)\right] d z
\end{aligned}
$$

Taking the limit, we get

$$
\mathrm{T}_{1}^{\epsilon} \rightarrow \int_{\mathrm{Y}^{1}}\left[\sigma^{1}(y), \nabla^{\prime}(\varphi, \psi)(y)\right] \mathrm{d} y+\int_{Z^{0}}\left[\sigma^{0}(z), \nabla^{\prime}(\hat{\varphi}, \hat{\psi})(z)\right] \mathrm{d} z
$$

The second term

$$
\begin{aligned}
\mathrm{T}_{2}^{\epsilon} & =\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[A_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \nabla \mathrm{u}_{\epsilon}(x), \tau_{\epsilon}(x)\right] \mathrm{d} x \rightarrow \\
& \rightarrow \int_{Y^{1}}\left[\sigma^{1}(y),\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y)\right] \mathrm{d} y+ \\
& +\int_{Z^{0}}\left[\sigma^{0}(z),\left(\nabla^{\prime}(\hat{\varphi}, \hat{\psi})+\lambda f_{2}\right)(z)\right] \mathrm{d} z
\end{aligned}
$$

when ϵ tends to zero.
The third term

$$
\begin{aligned}
T_{3}^{\epsilon} & =\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[A_{\epsilon}(x) \Phi_{\epsilon}\left(x, U_{\epsilon}(x)\right) B_{\epsilon}(x) \tau_{\epsilon}(x), \nabla U_{\epsilon}(x)\right] d x \rightarrow \\
& \rightarrow \int_{Y^{1}}\left[A^{1}(y) \Phi^{1}(y, u(y)) B^{1}(y)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y), \nabla^{\prime}(u, w)(y)\right] d y+ \\
& +\int_{Z^{0}}\left[A^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \Phi^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}, \hat{u}(z)\right) B^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right)\left(\nabla^{\prime}(\hat{\varphi}, \hat{\psi})+\lambda f_{2}\right)(z)\right. \\
& \left.\nabla^{\prime}(\hat{u}, \hat{w})(z),\right] d z
\end{aligned}
$$

when ϵ tends to zero.
The last term

$$
\begin{aligned}
\mathrm{T}_{4}^{\epsilon} & =\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[A_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \tau_{\epsilon}(x), \tau_{\epsilon}(x)\right] \mathrm{d} x \rightarrow \\
& \rightarrow \int_{Y^{1}}\left[A^{1}(y) \Phi^{1}(y, u(y)) B^{1}(y)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y)\right. \\
& \left.+\int_{Z^{0}}\left[\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y)\right] d y+ \\
& \left.\left(\nabla^{\prime}(\hat{\varphi}, \hat{\psi})+\lambda f_{2}\right)(z)\right] d z
\end{aligned}
$$

when ϵ tends to zero.
Adding the limits of $\mathrm{T}_{1}^{\epsilon}, \mathrm{T}_{2}^{\epsilon}, \mathrm{T}_{3}^{\epsilon}$, and $\mathrm{T}_{4}^{\epsilon}$, we get

$$
\begin{align*}
& -\int_{Y^{1}}\left[\sigma^{1}(y), \lambda f_{1}(y)\right] d y-\int_{Z^{0}}\left[\sigma^{0}(z), \lambda f_{2}(z)\right] d z+ \tag{13}\\
& +\int_{Y^{1}}\left[A^{1}(y) \Phi^{1}\left(y, u\left(y_{1}\right)\right) B^{1}(y)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y), \nabla^{\prime}(\varphi, \psi)(y)-\right. \\
& \left.\quad-\nabla^{\prime}(u, w)(y)+\lambda f_{1}(y)\right]+
\end{align*}
$$

Asymptotic behavior of the solution of parametric variational inequalities 19

$$
\begin{aligned}
+\int_{Z^{0}} & {\left[A^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \Phi^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}, \hat{u}(z)\right) \mathrm{B}^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right)\left(\nabla^{\prime}(\hat{\varphi}, \hat{\psi})+\lambda f_{2}\right)(z),\right.} \\
& \left.\nabla^{\prime}(\hat{\varphi}, \hat{\psi})(z)-\nabla^{\prime}(\hat{u}, \hat{w})(z)+\lambda f_{2}(z),\right] \mathrm{d} z \geq 0 .
\end{aligned}
$$

Setting

$$
\varphi-u=\theta(v-u), \quad \psi-w=\theta(h-w), \quad \hat{\varphi}=\theta \hat{v}, \quad \text { and } \hat{\psi}=\theta \hat{h},
$$

where $\theta>0$, dividing by θ, then letting $\theta \rightarrow 0$, we get the limit variational inequality.

Putting

$$
(\varphi, \mathfrak{u})=(\psi, w) \quad \text { and } \quad(\hat{\varphi}, \widehat{\mathfrak{u}})=(\hat{\psi}, \widehat{w})
$$

dividing by λ, and letting $\lambda \rightarrow 0$, we get

$$
\begin{aligned}
& \int_{Y^{1}}\left[\sigma^{1}(y)-A^{1}(y) \Phi^{1}\left(y, u\left(y_{1}\right)\right) B^{1}(y) \nabla^{\prime}(u, w)(y), f_{1}(y)\right] d y+ \\
& +\int_{Z^{0}}\left[\sigma^{0}(z)-A^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \Phi^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}, \hat{u}(z)\right) B^{0}\left(\frac{z_{1}}{\mu}, z^{\prime}\right) \nabla^{\prime}(\hat{u}, \hat{w})(z),\right. \\
& \left.f_{2}(z)\right] d z \geq 0, \quad \forall f_{1} \in H^{1}\left(Y^{1}\right), \forall f_{2} \in H^{1}(Z) .
\end{aligned}
$$

Then 3) follows.

4.2 The case $\mu=+\infty$ and $0<v<+\infty$

Theorem 6 Let $\mu=+\infty$ and $0<\nu<+\infty$. Assume that (A1)-(A9) are verified and the following two conditions are satisfied:
(C1) $\varphi \in \mathrm{K}$ implies $\chi_{Y_{\epsilon}^{1}} \varphi \in \mathrm{~K}_{\epsilon}$;
(C2) $\psi \in \mathrm{L}$ implies $\chi_{Y_{\epsilon}^{\prime}} \psi \in \mathrm{K}_{\epsilon}$.
Then the following three statements hold:

1) There exists a subsequence of the sequence U_{ϵ} of solutions of (11), also denoted by U_{ϵ}, and a function $\mathrm{u} \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap \mathrm{K}$ such that (7) is satisfied.
2) Let \mathfrak{u} and \mathfrak{w} be given as in Theorem 1. Then (u, w) solves the limit variational problem:
find $\mathfrak{u} \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap \mathrm{K}, \mathfrak{u}(-1)=\mathfrak{u}(1)=0$ and $w \in \mathrm{~L}$ such that for all $v \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap \mathrm{K}, v(-1)=v(1)=0$ and $\mathrm{h} \in \mathrm{L}$

$$
\begin{equation*}
\int_{Y^{1}}\left[A^{1}(y) \Phi^{1}\left(y, u\left(y_{1}\right)\right) B^{1}(y) \nabla^{\prime}(u, w)(y), \nabla^{\prime}(v, h)(y)-\nabla^{\prime}(u, w)(y)\right] \geq 0 . \tag{14}
\end{equation*}
$$

3) Let σ^{1} given in Theorem (1) Then

$$
\sigma^{1}(y)=A^{1}(y) \Phi^{1}(y, u(y)) B^{1}(y) \nabla^{\prime}(u, w)(y) \quad \text { for a.e. } y \in Y^{1} .
$$

Proof. Statement 1) follows from Theorem 2,
To prove statement 2), let $\varphi^{-} \in \mathrm{H}^{1}([-1,0])$ and $\varphi^{+} \in \mathrm{H}^{1}([0,1])$ and define $\varphi \in \mathrm{H}^{1}((-1,0) \cup(0,1)) \cap K$ such that

$$
\varphi\left(x_{1}\right)= \begin{cases}\varphi^{-}\left(x_{1}\right), & \text { if } x_{1} \in(-1,0) \\ \varphi^{+}\left(x_{1}\right), & \text { if } x_{1} \in(0,1)\end{cases}
$$

Let $\psi \in \mathrm{L}$ and $\gamma^{0}:[0,+\infty) \rightarrow \mathbb{R}$ defined by

$$
\gamma^{0}(\tau)= \begin{cases}\tau, & \text { if } 0 \leq \tau \leq 1 \\ 1, & \text { if } \tau \geq 1\end{cases}
$$

and

$$
V_{\epsilon}(x)=\varphi\left(x_{1}\right) \gamma^{0}\left(\frac{\left|x_{1}\right|}{t_{\epsilon}}\right)+\epsilon \psi\left(x_{1}, \frac{x^{\prime}}{\epsilon}\right), \text { a.e } \in \Omega_{\epsilon}
$$

which belongs to M_{ϵ}.
For ϵ small enough, by a simple calculation we obtain

$$
\begin{aligned}
& \frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}^{1}}\left|\nabla V_{\epsilon}-\frac{\mathrm{d} \varphi\left(x_{1}\right)}{\mathrm{d} x_{1}} e_{1}-\nabla_{\mathcal{y}^{\prime}} \psi\left(x_{1}, \frac{x^{\prime}}{\epsilon}\right)\right| \mathrm{d} x+\frac{1}{\epsilon^{2}} \int_{\Omega_{\varepsilon}^{0}}\left|\nabla V_{\epsilon}\right| \mathrm{d} x \leq \\
& \quad \leq \mathrm{C}\left(\epsilon^{2}+\frac{\mathrm{r}_{\epsilon}^{2}}{\mathrm{t}_{\epsilon}}\right)
\end{aligned}
$$

which tends to zero since $\mu=+\infty$.
Putting $\eta=\mathrm{U}_{\epsilon}(\mathrm{x}), \xi=\nabla \mathrm{U}_{\epsilon}(\mathrm{x})$ and

$$
\tau=\tau_{\epsilon}(x)= \begin{cases}\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)\left(y_{\epsilon}(x)\right), & \text { if } x \in \Omega_{\epsilon}^{1} \\ 0, & \text { if } x \in \Omega_{\epsilon}^{0}\end{cases}
$$

in the monotonicity condition, we get

$$
\begin{aligned}
0 & \leq \frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[A_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \nabla \mathrm{U}_{\epsilon}(x)-A_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \tau_{\epsilon}(x),\right. \\
& =\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(x)-\tau_{\epsilon}(x)\right] \mathrm{d} x= \\
& \left.-\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \nabla \mathrm{U}_{\epsilon}(x), \nabla \mathrm{U}_{\epsilon}(x)\right] \mathrm{d} x- \\
& \left.-\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[A_{\epsilon}(x) \mathrm{U}_{\epsilon}(x)\right) \Phi_{\epsilon}\left(x, \mathrm{~B}_{\epsilon}(x) \nabla \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \tau_{\epsilon}(x)\right] \mathrm{d} x- \\
& +\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[A_{\epsilon}(x), \nabla \mathrm{U}_{\epsilon}(x)\right] \mathrm{d} x+ \\
& \left.\left.=\mathrm{T}_{1}^{\epsilon}-\mathrm{T}_{2}^{\epsilon}-\mathrm{T}_{3}^{\epsilon}+\mathrm{T}_{4}^{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \tau_{\epsilon}(x), \tau_{\epsilon}(x)\right] \mathrm{d} x=
\end{aligned}
$$

In the following we study each term separately. The first term

$$
\begin{aligned}
\mathrm{T}_{1}^{\epsilon} & =\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(\mathrm{x}) \Phi_{\epsilon}\left(\mathrm{x}, \mathrm{U}_{\epsilon}(\mathrm{x})\right) \mathrm{B}_{\epsilon}(\mathrm{x}) \nabla \mathrm{U}_{\epsilon}(\mathrm{x}), \nabla \mathrm{U}_{\epsilon}(\mathrm{x})\right] \mathrm{d} \mathrm{x} \leq \\
& \leq \frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(\mathrm{x}) \Phi_{\epsilon}\left(\mathrm{x}, \mathrm{U}_{\epsilon}(\mathrm{x})\right) \mathrm{B}_{\epsilon}(\mathrm{x}) \nabla \mathrm{U}_{\epsilon}(\mathrm{x}), \nabla \mathrm{V}_{\epsilon}(\mathrm{x})\right] \mathrm{d} \mathrm{x}= \\
& =\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}^{!}}\left[\mathrm{A}_{\epsilon}(\mathrm{x}) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(\mathrm{x})\right) \mathrm{B}_{\epsilon}(\mathrm{x}) \nabla \mathrm{U}_{\epsilon}(\mathrm{x}), \nabla \mathrm{V}_{\epsilon}(\mathrm{x})\right] \mathrm{d} x+ \\
& +\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}^{0}}\left[\mathrm{~A}_{\epsilon}(\mathrm{x}) \Phi_{\epsilon}\left(\mathrm{x}, \mathrm{U}_{\epsilon}(\mathrm{x})\right) \mathrm{B}_{\epsilon}(\mathrm{x}) \nabla \mathrm{U}_{\epsilon}(\mathrm{x}), \nabla \mathrm{V}_{\epsilon}(\mathrm{x})\right] \mathrm{d} \mathrm{x},
\end{aligned}
$$

where the second term tends to zero. We use the change of variables $y=y_{\epsilon}(x)$ in the first term:

$$
\begin{aligned}
T_{1}^{\epsilon} \leq \int_{Y_{\epsilon}^{1}} & {\left[A^{1}(y) \Phi_{\epsilon}^{1}\left(y, u_{\epsilon}(y)\right) B^{1}(y) \nabla^{\epsilon} u_{\epsilon}(y),\right.} \\
& \left.\left(\frac{d \varphi\left(y_{1}\right)}{d y_{1}}+\epsilon \frac{\partial \psi(y)}{\partial y_{1}}, \frac{\partial \psi(y)}{\partial y_{2}}, \frac{\partial \psi(y)}{\partial y_{3}}\right)\right] d y+O_{\epsilon}= \\
= & \int_{Y^{1}}\left[A^{1}(y) \Phi_{\epsilon}^{1}\left(y, u_{\epsilon}(y)\right) B^{1}(y) \nabla^{\epsilon} u_{\epsilon}(y),\right. \\
& \left.\left(\frac{d \varphi\left(y_{1}\right)}{d y_{1}}+\epsilon \frac{\partial \psi(y)}{\partial y_{1}}, \frac{\partial \psi(y)}{\partial y_{2}}, \frac{\partial \psi(y)}{\partial y_{3}}\right)\right] d y+O_{\epsilon} .
\end{aligned}
$$

Taking the limit of both sides, we get

$$
\lim _{\epsilon \rightarrow 0} T_{1}^{\epsilon} \leq \int_{Y^{1}}\left[\sigma^{1}(y), \nabla^{\prime}(\varphi, \psi)(y)\right] \mathrm{d} y .
$$

The third term

$$
\begin{aligned}
& \mathrm{T}_{3}^{\epsilon}= \frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}}\left[\mathrm{A}_{\epsilon}(x) \Phi_{\epsilon}\left(x, \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}_{\epsilon}(x) \tau_{\epsilon}(x), \nabla \mathrm{U}_{\epsilon}(x)\right] \mathrm{d} x= \\
&=\frac{1}{\epsilon^{2}} \int_{\Omega_{\epsilon}^{1}}\left[A^{1}\left(\mathrm{y}_{\epsilon}(x)\right) \Phi_{\epsilon}\left(\mathrm{y}_{\epsilon}(x), \mathrm{U}_{\epsilon}(x)\right) \mathrm{B}^{1}\left(\mathrm{y}_{\epsilon}(x)\right)\left(\nabla^{\prime}(\varphi, \psi)+\lambda \mathrm{f}_{1}\right)\left(\mathrm{y}_{\epsilon}(x)\right)\right. \\
&\left.\nabla \mathrm{U}_{\epsilon}(x)\right] \mathrm{d} x
\end{aligned}
$$

as the integral on Ω_{ϵ}^{0} is equal with zero because $\tau_{\epsilon}=0$ on Ω_{ϵ}^{0}. Using the change of variable $y=y_{\epsilon}(x)$ we get

$$
\begin{aligned}
T_{3}^{\epsilon} & =\int_{Y_{\epsilon}^{1}}\left[A^{1}(y) \Phi_{\epsilon}\left(y, u_{\epsilon}(y)\right) B^{1}(y)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{j}(y), \nabla^{\epsilon} \mathfrak{u}_{\epsilon}(y)\right] d y=\right. \\
& =\int_{Y^{1}}\left[A^{1}(y) \Phi_{\epsilon}\left(y, u_{\epsilon}(y)\right) B^{1}(y)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y), \nabla^{\epsilon} u_{\epsilon}(y)\right] d y+O_{\epsilon} .
\end{aligned}
$$

Taking the limit when $\epsilon \rightarrow 0$, we get

$$
\mathrm{T}_{3}^{\epsilon} \rightarrow \int_{\mathrm{Y}^{1}}\left[A^{1}(y) \Phi\left(y, u\left(y_{1}\right)\right) B^{1}(y)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y), \nabla^{\prime}(u, w)(y)\right] d y
$$

Similarly

$$
\mathrm{T}_{2}^{\epsilon} \rightarrow \int_{\mathrm{Y}^{1}}\left[\sigma^{1}(\mathrm{y}),\left(\nabla^{\prime}(\varphi, \psi)+\lambda \mathrm{f}_{1}\right)(\mathrm{y})\right] \mathrm{d} \mathrm{y}
$$

and

$$
\begin{gathered}
\mathrm{T}_{4}^{\epsilon} \rightarrow \int_{Y^{1}}\left[A^{1}(y) \Phi\left(y, u\left(y_{1}\right)\right) B^{1}(y)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y)\right. \\
\left.\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y)\right] d y
\end{gathered}
$$

when $\epsilon \rightarrow 0$.
Adding the limits of $\mathrm{T}_{1}^{\epsilon}, \mathrm{T}_{2}^{\epsilon}, \mathrm{T}_{3}^{\epsilon}$, and $\mathrm{T}_{4}^{\epsilon}$, we get

$$
\begin{align*}
\int_{Y^{1}} & {\left[A^{1}(y) \Phi^{1}\left(y, u\left(y_{1}\right)\right) B^{1}(y)\left(\nabla^{\prime}(\varphi, \psi)+\lambda f_{1}\right)(y), \nabla^{\prime}(\varphi, \psi)(y)-\right.} \tag{15}\\
& \left.-\nabla^{\prime}(u, w)(y)+\lambda f_{1}(y)\right] d z-\int_{Y^{1}}\left[\sigma^{1}(y), \lambda f_{1}(y)\right] d y \geq 0 .
\end{align*}
$$

Asymptotic behavior of the solution of parametric variational inequalities 23

Setting

$$
\varphi-u=\theta(v-u), \quad \text { and } \quad \psi-w=\theta(h-w),
$$

where $\theta>0$, dividing by θ, then letting $\theta \rightarrow 0$, we get the limit variational inequality.
3) Putting

$$
(\varphi, u)=(\psi, w),
$$

dividing by λ, and letting $\lambda \rightarrow 0$, we get

$$
\begin{aligned}
& \int_{Y^{1}}\left[\sigma^{1}(y)-A^{1}(y) \Phi^{1}\left(y, u\left(y_{1}\right)\right) B^{1}(y) \nabla^{\prime}(u, w)(y), f_{1}(y)\right] d y \geq 0 \\
& \forall f_{1} \in H^{1}\left(Y^{1}\right) .
\end{aligned}
$$

Then 3) follows.

Acknowledgement

This research was partially supported by the research grant CNCSIS PN II IDEI523/2007.

References

[1] P. Bruno, Geometrically constrained magnetic wall, Phys. Rev. Lett., 83 (1999), 2425-2428.
[2] E. Cabib, L. Freddi, A. Morassi, D. Percivale, Thin notched beams, J. Elasticity, 64 (2002), 157-178.
[3] J. Casado-Díaz, M. Luna-Laynez, F. Murat, Asymptotic behavior of diffusion problems in a domain made of two cylinders of different diameters and lengths, C. R. Acad. Sci. Paris, Sér. I, 338 (2004), 133-138.
[4] J. Casado-Díaz, M. Luna-Laynez, F. Murat, The diffusion equation in a notched beam, Calculus of Variations, 31 (2008), 297-323.
[5] P. Courilleau, J. Mossino, Compensated compactness for nonlinear homogenization and reduction of dimension, Calculus of Variations, 20 (2004), 65-91.
[6] B. Gustafsson, J. Mossino, Non-periodic explicit homogenization and reduction of dimension: the linear case, IMA Journal of Applied Mathematics 68 (2003), 269-298.
[7] J. K. Hale, J. Vegas, A nonlinear parabolic equation with varying domain, Arch. Rat. Mech. Anal., 86 (1984), 99-123.
[8] S. Jimbo, Singular perturbation of domains and semilinear elliptic equation, J. Fac. Sci. Univ. Tokyo, 35 (1988), 27-76.
[9] S. Jimbo, Singular perturbation of domains and semilinear elliptic equation 2, J. Diff. Equat., 75 (1988), 264-289.
[10] R. V. Kohn, V. V. Slastikov, Geometrically constrained walls, Calculus of Variations and Partial Differential Equations, 28 (2007), 33-57.
[11] I. Marchis, Asymptotic behavior of the solution of nonlinear parametric variational inequalities in notched beams, accepted in Studia Universitatis Babess-Bolyai, Mathematica.
[12] F. Murat, A. Sili, Problèmes monotones dans des cylindres de faible diamètre formés de matériaux hétérogènes, C. R. Acad. Sci. Paris, Sér. I, 320 (1995), 1199-1204.
[13] J. Rubinstein, M. Schatzman, P. Sternberg, Ginzburg-Landau model in thin loops with narrow contrictions, SIAM J. Appl. Math., 64 (2004), 2186-2204.
[14] A. Sili, Asymptotic behavior of the solutions of monotone problems in flat cylinders, Asymptotic Analysis, 19 (1999), 19-33.

Received: October 11, 2009; Revised: April 3, 2010

[^0]: 2010 Mathematics Subject Classification: 35B40, 35B45
 Key words and phrases: asymptotic behavior, quasilinear parametric variational inequality

