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Abstract. In this paper we study the asymptotic behavior of the solu-
tion of quasilinear parametric variational inequalities posed in a cylinder
with a thin neck, and we obtain the limit problem.

1 Introduction

The aim of the paper is to study the asymptotic behavior of the solution of
quasilinear variational inequalities in a beam with a thin neck. Mathemati-
cally, this notched beam is given by

Ωǫ = {(x1, x
′) ∈ R

3 : −1 < x1 < 1, |x
′| < ǫ if |x1| > tǫ, |x

′| < ǫrǫ if |x1| ≤ tǫ},

where ǫ, rǫ, and tǫ are positive parameters such that ǫrǫ
tǫ

→ 0.
Previous work on domains of this type was done by Hale & Vegas [7], Jimbo

[8, 9], Cabib, Freddi, Morassi, & Percivale [2], Rubinstein, Schatzman & Stern-
berg [13], Casado-Dı́az, Luna-Laynez & Murat [3, 4] and Kohn & Slastikov
[10].
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The most recent results are of Casado-Dı́az, Luna-Laynez & Murat [4]. They
studied the asymptotic behavior of the solution of a diffusion equation in the
notched beam Ωǫ and obtained at the limit a one-dimensional model.
In the present article the geometrical setting is the same as in [4], but

we consider quasilinear variational inequalities instead of linear variational
equalities.
The paper is organized as follows. In Section 2 the geometrical setting is

described, the studied problem is given, and the assumptions for our results
are formulated. In Section 3 the asymptotic behavior of the solution is stud-
ied. Some results from [11] are recalled which, unfortunately, don’t provide
information about what happening near to the notch. Thus we need to prove
some auxiliary results. In Section 4 the limit problem is obtained. To prove
the results in this section, we combine the ideas from [5] with the adaptation
to variational inequalities of the method used in [4].

2 Setting the problem

Let ǫ > 0 be a parameter, rǫ (rǫ > 0) and tǫ (tǫ > 0) be two sequences of real
numbers, with

rǫ → 0, tǫ → 0, when ǫ→ 0.

We assume that

tǫ

r2ǫ
→ µ,

ǫ

rǫ
→ ν, with 0 ≤ µ < +∞, 0 ≤ ν < +∞, when ǫ→ 0.

Let S ⊂ R
2 be a bounded domain such that 0 ∈ S, which is sufficiently smooth

to apply the Poincaré-Wirtinger inequality.
Define the following subsets of R3:

Ω−
ǫ = (−1,−tǫ)× (ǫS), Ω0

ǫ = [−tǫ, tǫ]× (ǫrǫS), Ω
+
ǫ = (tǫ, 1)× (ǫS),

Ωǫ = Ω
−
ǫ ∪Ω0

ǫ ∪Ω
+
ǫ , and Ωǫ = Ω

−
ǫ ∪Ω+

ǫ .

Ωǫ is a notched beam, the main part of the beam is Ω1
ǫ and the notched part

Ω0
ǫ. A point of Ωǫ is denoted by x = (x1, x

′) = (x1, x2, x3).
Denote by

Γ−ǫ = {−1}× (ǫS) and Γ+ǫ = {1}× (ǫS)

the two bases of the beam, and let

Γǫ = Γ
−
ǫ ∪ Γ+ǫ
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be the union of the two bases.
Denote

Vǫ = {V ∈ H1(Ωǫ), V = 0 on Γǫ}.

We consider the following problem:
Find Uǫ ∈Mǫ such that, for all Vǫ ∈Mǫ,

∫

Ωǫ

[AǫΦǫ(x,Uǫ, Bǫ)∇Uǫ,∇(Vǫ −Uǫ)] dx ≥ 0 (1)

with Aǫ, Bǫ, and Φǫ, given functions,Mǫ a closed, convex, nonempty cone in
Vǫ.
This problem has applications in Physics. Bruno [1] observed that when

a ferromagnet has a thin neck, this will be preferred location for the domain
wall. He also noticed that if the geometry of the neck varies rapidly enough,
it can influence and even dominate the structure of the wall.
Consider problem (1). We impose the following assumptions:

(A1) The matrix Aǫ has the following form

Aǫ(x) = χΩ1
ǫ
(x)A1

(

x1,
x ′

ǫ

)

+ χΩ0
ǫ
(x)A0

(

x1

tǫ
,
x ′

ǫrǫ

)

,

where A1, A0 ∈ L∞((−1, 1) × S)3×3.

(A2) The matrix Bǫ has the following form

Bǫ(x) = χΩ1
ǫ
(x)B1

(

x1,
x ′

ǫ

)

+ χΩ0
ǫ
(x)B0

(

x1

tǫ
,
x ′

ǫrǫ

)

,

where B1, B0 ∈ L∞((−1, 1) × S)3×3.

(A3) The functions Φǫ : Ωǫ × R → R
3×3 and Ψǫ : Ωǫ × R → R

3 are
Carathéodory mappings having the following form:

Φǫ(x, η) = χΩ1
ǫ
(x)Φ1ǫ

(

x1,
x ′

ǫ
, η

)

+ χΩ0
ǫ
(x)Φ0ǫ

(

x1

tǫ
,
x ′

ǫrǫ
, η

)

;

for a.e. x ∈ Ωǫ, for all η ∈ R;
for all Uǫ ∈ L2(Ωǫ), Wǫ ∈ L2(Ωǫ)

3, Φ1ǫ(·, Uǫ(·))Wǫ(·),Φ
0
ǫ(·, Uǫ(·))Wǫ(·) ∈

L2((−1, 1) × S)3.
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(A4) Coercivity condition
There exist C1, C2 > 0 and k1 ∈ L

∞(Ωǫ) such that for all ξ ∈ R
3, η ∈ R

[Aǫ(x)Φǫ(x, η)Bǫ(x)ξ, ξ] ≥ C1‖ξ‖
2 + C2|η|

q1 − k1(x) a.e. x ∈ Ωǫ (2)

for some 1 < q1 < 2, for each ǫ > 0.

(A5) Growth condition
There exist C > 0 and α ∈ L∞(Ωǫ) such that for all ξ ∈ R

3, η ∈ R

‖Aǫ(x)Φǫ(x, η)ξ‖ ≤ C‖ξ‖ + C|η| + α(x) a.e. x ∈ Ωǫ, (3)

for each ǫ > 0.

(A6) Monotonicity condition
For all ξ, τ ∈ R

n, η ∈ R,

[Aǫ(x)Φǫ(x, η)Bǫ(x)ξ −Aǫ(x)Φǫ(x, η)Bǫ(x)τ, ξ − τ] ≥ 0, a. e. x ∈ Ωǫ,

for each ǫ > 0.

(A7) If uǫ → u and wǫ ⇀ w in L2(Y1), then

Φ1ǫ(·, uǫ(·))w(·) → Φ1(·, u(·))w(·) strongly in L2(Y1).

If uǫ → u and wǫ ⇀ w in L2(Z), then

Φ0ǫ(·, uǫ(·))w(·) → Φ0(·, u(·))w(·) strongly in L2(Z).

3 Asymptotic behavior of the solution

To study the asymptotic behavior we use the change of variables y = yǫ(x)

given by

y1 = x1 y ′ =
x ′

ǫ
(4)

which transforms the beam (except the notch) in a cylinder of fixed diameter.
This change of variable is classical in the study of asymptotic behavior of
variational equalities in thin cylinders or beams (see [6], [12], [14]). We denote
by Y−ǫ , Y

0
ǫ, Y

+
ǫ , Yǫ, and Y

S
ǫ the images of Ω−

ǫ , Ω
0
ǫ, Ω

+
ǫ , Ωǫ, and Ω

S
ǫ by the

change of variables y = yǫ(x), i.e.

Y−ǫ = (−1,−tǫ)× S, Y
0
ǫ = [−tǫ, tǫ]× (rǫS), Y

+
ǫ = (tǫ, 1)× S,
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Yǫ = Y
−
ǫ ∪ Y0ǫ ∪ Y

+
ǫ , Y

1
ǫ = Y

−
ǫ ∪ Y+ǫ .

Denote by Y−, Y+, and Y1 the ”limits”of Y−ǫ , Y
+
ǫ , and Y

1
ǫ, i.e.

Y− = (−1, 0) × S, Y+ = (0, 1) × S, Y1 = Y− ∪ Y+.

Note that Y1ǫ is contained in its limit Y1.
The two bases of the beam Γ−ǫ and Γ+ǫ are transformed to Λ− and Λ+,

respectively, where

Λ− = {−1}× S and Λ+ = {1}× S.

Γǫ transforms to Λ = Λ− ∪Λ+.
LetUǫ ∈Mǫ be the solution of the variational inequality (1). Define uǫ ∈ Kǫ

by

uǫ(y) = Uǫ(y
−1
ǫ (y)) a.e. y ∈ Yǫ. (5)

Kǫ being the image of Mǫ. Kǫ is a closed, convex, nonempty cone in Dǫ, with
Dǫ = {v ∈ H1(Yǫ) | v = 0 on Λ}. We need the following two assumptions:

(A8) There exists a nonempty, convex cone K in H1(Y1) such that
(i) K ∩H1((−1, 0) ∪ (0, 1)) 6= ∅;
(ii) ǫi → 0, uǫi ∈ Kǫi , u ∈ H1((−1, 0) ∪ (0, 1)), uǫi ⇀ u (weakly) in

H1(Y1) imply u ∈ K.

(A9) There exists a nonempty, convex cone L in L2((−1, 1);H1(S)) such
that
ǫi → 0, wǫi ∈ Kǫi , w ∈ L2((−1, 1);H1(S)), wǫi ⇀ w (weakly) in
L2((−1, 1);H1(S)) imply w ∈ L.

By change of variables y = yǫ(x) the operator ∇ transforms to

∇ǫ· =

(

∂·

∂y1
,
1

ǫ

∂·

∂y2
,
1

ǫ

∂·

∂y3

)

.

In the following we recall some results from [11, 4].

Lemma 1 ([11]) Let Uǫ ∈Mǫ be the solution of the inequality (1) and uǫ ∈
Kǫ given by (5). If assumptions (A1) - (A6) are verified then the sequence Uǫ
satisfies

Uǫ ∈Mǫ,
1

|Ωǫ|

∫

Ωǫ

|∇Uǫ|
2dx ≤ C. (6)
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Theorem 1 ([11]) Let Uǫ be the solution of the variational inequality (1)
and uǫ ∈ Kǫ defined by

uǫ(y) = Uǫ(y
−1
ǫ (y)) a.e. y ∈ Yǫ.

If assumptions (A1)-(A6) and (A8)-(A9) are verified, then there exist three
functions u, w, and σ1 with

u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K, u(−1) = u(1) = 0,

w ∈ L, σ1 ∈ L2(Y1)3,

such that up to extraction of a subsequence

χY1ǫuǫ → u in L2(Y1);

χY−ǫ
∂uǫ

∂y1
⇀

∂u

∂y1
in L2(Y−);

χY+ǫ
∂uǫ

∂y1
⇀

∂u

∂y1
in L2(Y+);

χY1ǫ
1

ǫ
∇y ′uǫ ⇀ ∇y ′w in L2(Y1)2;

and

χY1ǫσǫ ⇀ σ1 in L2(Y1)3.

Theorem 2 ([11]) Let Uǫ be the solution of the variational inequality (1)
and u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K given in Theorem 1. If assumptions (A1)-
(A6) and (A8) are verified, then there exists a subsequence of solutions Uǫ,
also denoted by Uǫ, such that

lim
ǫ→0

1

|Ωǫ|

∫

Ωǫ

|Uǫ(x) − u(x1)|
2 dx = 0. (7)

Unfortunately, this change of variables doesn’t provide information about
what happening near the notch. Thus we use another change of variables,
which was given in [4]. Consider the case, when

µ < +∞ and ν < +∞.
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The change of variables z = zǫ(x) is defined as follows

z1 =











1
ǫrǫ

(x1 + tǫ) −
tǫ
r2ǫ
, if −1 ≤ x1 ≤ −tǫ,

x1
r2ǫ
, if −tǫ ≤ x1 ≤ tǫ, if µ = 0,
1
ǫrǫ

(x1 − tǫ) +
tǫ
r2ǫ
, if tǫ ≤ x1 ≤ 1,






µrǫ
ǫtǫ

(x1 + tǫ) − µ, if −1 ≤ x1 ≤ −tǫ,
µ
tǫ
x1, if −tǫ ≤ x1 ≤ tǫ, if µ > 0,

µrǫ
ǫtǫ

(x1 − tǫ) + µ, if tǫ ≤ x1 ≤ 1

z ′ =
x ′

ǫrǫ
.

(8)
This change of variables transforms the notch in a cylinder of fixed diameter
and length, but transforms the rest of the beam in a very large domain. But
it allows to describe the behavior of the solution Uǫ of inequality (1) when x1
is close to zero.
We denote by Z−

ǫ , Z
0
ǫ, Z

+
ǫ , Zǫ, and Z

1
ǫ the images of Ω−

ǫ , Ω
0
ǫ, Ω

+
ǫ , Ωǫ, and

Ω1
ǫ by the change of variables z = zǫ(x), i.e.

Z−
ǫ =

(

−
1 − tǫ

ǫrǫ
−
tǫ

r2ǫ
,−
tǫ

r2ǫ

)

×

(

1

rǫ
S

)

, Z0ǫ =

[

−
tǫ

r2ǫ
,
tǫ

r2ǫ

]

× S,

and Z+
ǫ =

(

tǫ

r2ǫ
,
1 − tǫ

ǫrǫ
+
tǫ

r2ǫ

)

×

(

1

rǫ
S

)

if µ = 0, and

Z−
ǫ =

(

−
µrǫ(1 − tǫ)

ǫtǫ
− µ,−µ

)

×

(

1

rǫ
S

)

, Z0ǫ = [−µ, µ]× S,

and Z+
ǫ =

(

µ,
µrǫ(1 − tǫ)

ǫtǫ
+ µ

)

×

(

1

rǫ
S

)

if µ > 0. We set

Zǫ = Z
−
ǫ ∪ Z0ǫ ∪ Z

+
ǫ , Z

1
ǫ = Z

−
ǫ ∪ Z+

ǫ .

We denote by Z−, Z+, and Z0 the ”limits” of Z−
ǫ , Z

+
ǫ , and Z

0
ǫ, i.e.

Z− = (−∞,−µ)× R
2, Z+ = (µ,+∞)× R

2, Z0 = [−µ, µ]× S,

and define

Z = Z− ∪ Z0 ∪ Z+, Z1 = Z− ∪ Z+.
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Remark 1 ([4]) In (8) there are two definitions of zǫ corresponding to the
cases µ = 0 and µ > 0. Actually when µ > 0, we could define zǫ by the
definition given for µ = 0 because

µ ∼
tǫ

r2ǫ
,
µrǫ

ǫtǫ
∼
1

ǫrǫ
, and

µ

tǫ
∼
1

r2ǫ
.

The definition (8) which distinguishes the cases µ = 0 and µ > 0 has the
advantage that the image Zǫ of Ωǫ by the change of variables z = zǫ(x) is
contained in its ”limit” Z for every ǫ > 0 and Z0ǫ is fixed for µ > 0; then a
function defined in Z has a restriction to Zǫ.

Theorem 3 ([4]) Let (Uǫ)ǫ be a sequence which satisfies (6). Define ûǫ ∈
H1(Zǫ) by

ûǫ(z) = Uǫ(z
−1
ǫ (z)), a.e. z ∈ Zǫ. (9)

Then there exists a function û, with

û ∈ H1loc(Z), û − u(0−) ∈ L6(Z−), û − u(0+) ∈ L6(Z+), ∇û ∈ L2(Z)3,

(where u is defined in Corollary 1), such that for every R > 0, up to extraction
of a subsequence,

χZǫ∩B3(0,R)ûǫ → χB3(0,R)û in L2(Z) strongly,

χZǫ
∇ûǫ ⇀ ∇û in L2(Z)3 weakly,

where B3(0, R) denotes the 3-dimensional ball with center (0, 0, 0) and diam-
eter R. Moreover, if µ = 0, then û only depends on z1 and satisfies

û = u(0−) in Z−, û = u(0+) in Z+.

If ν = µ = 0, then u(0−) = u(0+).
If ν = 0 and µ > 0, then there exists a function ŵ ∈ L2((−µ, µ);H1(S)) such
that up to extraction of a subsequence,

rǫ

ǫ
∇z ′ ûǫ ⇀ ∇z ′ŵ in L2(Z0)2 weakly.

Let K̂ǫ be the image of Mǫ by the change of variables z = zǫ(x). K̂ǫ is a
closed, convex, nonempty cone in H1(Zǫ). We need the following two assump-
tions:

(A10) There exists a nonempty subset K̂ of H1
loc

(Z) such that
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ǫi → 0, R > 0, ûǫi ∈ K̂ǫi , û ∈ H1
loc

(Z),

χZǫ∩B3(0,R)ûǫi → χB3(0,R)û (strongly) in L2(Z),

and
χZǫ

∇ûǫi ⇀ ∇û (weakly) in (L2(Z))3,

imply û ∈ K̂.

(A11) There exists a nonempty, convex cone L̂ in L2((−µ, µ);H1(S)) such
that

ǫi → 0, ŵǫi ∈ Kǫi , ŵ ∈ L2((−µ, µ);H1(S)), ŵǫi ⇀ ŵ (weakly) in
L2((−µ, µ);H1(S)) imply ŵ ∈ L̂.

Theorem 4 Let Uǫ ∈ Mǫ be the solution of the variational inequality (1),
u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K defined in Theorem 1, and ûǫ ∈ K̂ǫ given by
(9). If assumptions (A1)-(A6) and (A8)-(A11) are verified, then there exists
a function û ∈ K̂, with

û − u(0−) ∈ L6(Z−), û− u(0+) ∈ L6(Z+), ∇û ∈ L2(Z)3, (10)

such that for every R > 0, up to extraction of a subsequence,

χZǫ∩B3(0,R)ûǫ → χB3(0,R)û in L2(Z) strongly,

χZǫ
∇ûǫ ⇀ ∇û in L2(Z)3 weakly.

Moreover, if µ = 0, then û only depends on z1 and satisfies

û = u(0−) in Z−, û = u(0+) in Z+.

If ν = µ = 0, then u(0−) = u(0+).
If ν = 0 and µ > 0, then there exists a function ŵ ∈ L̂ such that up to
extraction of a subsequence,

rǫ

ǫ
∇z ′ ûǫ ⇀ ∇z ′ŵ in L2(Z0)2 weakly. (11)

Proof. From Lemma 1 it follows that there exists a subsequence of solutions
Uǫ, also denoted by Uǫ, such that (6) is satisfied. Thus by Theorem 3 we
get that there exists a function û ∈ H1

loc
(Z) such that the statement of the

theorem is true. By assumption (A10) we get that û ∈ K̂.
If ν = 0 and µ > 0 then, by Theorem 3, there exists a function ŵ ∈

L2((−µ, µ);H1(S)) such that up to extraction of a subsequence, (11) holds.
Then by assumption (A11) we get that ŵ ∈ L̂. �
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Lemma 2 Let Uǫ be one solution of the variational inequality (1), ûǫ defined
by (8). Assume that (A1)-(A3) and (A5) hold. Then

∥

∥

∥

∥

A0
(

·

µ
, ·

)

Φ0ǫ

(

·

µ
, ·, ûǫ(·)

)

B0
(

·

µ
, ·

)

∇ûǫ(·)

∥

∥

∥

∥

L2(Z0)

is bounded.

Proof. Taking the square of the first growth condition from (A5), multiplying
by 1

ǫ2
, and integrating on Ω0

ǫ, we obtain

1

ǫ2

∫

Ω0
ǫ

‖Aǫ(x)Φ(x,Uǫ(x))Bǫ(x)∇Uǫ(x)‖
2 dx ≤

≤
1

ǫ2

∫

Ω0
ǫ

‖∇Uǫ(x)‖
2 dx+

1

ǫ2

∫

Ω0
ǫ

|Uǫ(x)|
2 dx+

|Ω0
ǫ|

ǫ2
‖α‖∞.

Applying the change of variable zǫ and taking out 1
r2ǫ

from ∇̂ǫûǫ, we get

∫

Z0

∥

∥

∥

∥

A0
(

z1

µ
, z ′
)

Φ0ǫ

(

z1

µ
, z ′, ûǫ(z)

)

B0
(

z1

µ
, z ′
)

∇ûǫ(z)

∥

∥

∥

∥

2

dz ≤

≤ C

∫

Z0

∥

∥

∥

∥

(

∂ûǫ(z)

∂z1
,
rǫ

ǫ

∂ûǫ(z)

∂z2
,
rǫ

ǫ

∂ûǫ(z)

∂z3

)∥

∥

∥

∥

2

dz+ r4ǫC

∫

Z0

|ûǫ(z)|
2 dz+ ᾱ.

By Theorem 3, ‖∇ûǫ‖L2(Z0)3 and ‖ûǫ‖L2(Z0) are bounded, thus the statement
of the lemma holds. �

Corollary 1 Suppose that the assumptions of Lemma 2 are verified. Then
there exists σ0 ∈ L2(Z0) such that

A0
(

·

µ
, ·

)

Φ0ǫ

(

·

µ
, ·, ûǫ(·)

)

B0
(

·

µ
, ·

)

∇ûǫ(·) ⇀ σ0 in L2(Z0).

4 The limit variational inequality

In this section we obtain the limit problem in two cases: when 0 < µ < +∞
and ν = 0 respectively when µ = +∞ and 0 < ν < +∞. In these cases

ǫrǫ

tǫ
=
ǫ

rǫ
·
r2ǫ
tǫ

→
ν

µ
= 0,

thus the beam has a thin neck.
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4.1 The case 0 < µ <∞ and ν = 0

Theorem 5 Let 0 < µ <∞ and ν = 0.
Assume that (A1)-(A11) are verified and the following four conditions are

satisfied:

(C1) ϕ ∈ K implies χY1ǫϕ ∈ Kǫ;

(C2) ψ ∈ L implies χY1ǫψ ∈ Kǫ;

(C3) ϕ̂ ∈ K̂ implies χZ0
ǫ
ϕ̂ ∈ K̂ǫ;

(C4) ψ̂ ∈ L̂ implies χZ0
ǫ
ψ̂ ∈ K̂ǫ.

Then the following three statements hold:

1) There exists a subsequence of the sequence Uǫ of solutions of (1), also
denoted by Uǫ, and a function u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K such that (7) is
satisfied.

2) Let u and w be as given in Theorem 1 and û and ŵ as in Theorem 4.
Then (u,w, û, ŵ) solves the limit variational problem:
find u ∈ H1((−1, 0)∪(0, 1))∩K, u(−1) = u(1) = 0, w ∈ L, and û ∈ K̂, û(−µ) =
u(0−), û(µ) = u(0+), ŵ ∈ L̂ such that for all v ∈ H1((−1, 0) ∪ (0, 1)) ∩ K,
v(−1) = v(1) = 0, h ∈ L, and v̂ ∈ K̂, v̂(−µ) = v(0−), v̂(µ) = v(0+), ĥ ∈ L̂,

∫

Y1
[A1(y)Φ1(y, u(y1))B

1(y)∇ ′(u,w)(y),∇ ′(v, h)(y) −∇ ′(u,w)(y)] (12)

+

∫

Z0

[

A0
(

z1

µ
, z ′
)

Φ0
(

z1

µ
, z ′, û(z)

)

B0
(

z1

µ
, z ′
)

∇ ′(û, ŵ)(z),

∇ ′(v̂, ĥ)(z) −∇ ′(û, ŵ)(z)
]

dz ≥ 0.

3) Let σ1 be as given in Theorem 1, σ0 as given in Corollary 1. Then

σ1(y) = A1(y)Φ1(y, u(y))B1(y)∇ ′(u,w)(y) for a.e. y ∈ Y1,

σ0(z) = A0
(

z1

µ
, z ′
)

Φ0
(

z1

µ
, z ′, û(z)

)

B0
(

z1

µ
, z ′
)

∇ ′

(

û,
1

ν
û

)

for a.e. z ∈ Z0.

Proof. Statement 1) follows from Theorem 2.
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2) Since ν = 0, from Theorem 4 it follows that û ∈ K̂ only depends on z1
with

û = u(0−) in Z−, û = u(0+) in Z+,

and there exists a function ŵ ∈ L̂ such that up to extraction of a subsequence,

rǫ

ǫ
∇z ′ûǫ ⇀ ∇z ′ŵ in L2(Z0)2 weakly.

Let ϕ− ∈ H1([−1, 0]) and ϕ+ ∈ H1([0, 1]) and define ϕ ∈ H1((−1, 0) ∪
(0, 1)) ∩ K such that

ϕ(x1) =

{
ϕ−(x1), if x1 ∈ (−1, 0)

ϕ+(x1), if x1 ∈ (0, 1).

Let ψ ∈ L, ϕ̂ ∈ K̂, and ψ̂ ∈ L̂. For ǫ small enough, the sequence Vǫ defined by

Vǫ(x) = χΩ1
ǫ
(x)

(

ϕ(x1) + ǫψ

(

x1,
x ′

ǫ

))

+

+ χΩ0
ǫ
(x)

(

ϕ̂

(

µx1

tǫ

)

+
ǫ

rǫ
ψ̂

(

µx1

tǫ
,
x ′

ǫrǫ

))

, a.e. x ∈ Ωǫ

belongs to Mǫ.
Putting η = Uǫ(x), ξ = ∇Uǫ(x) and

τ = τǫ(x) = χΩ1
ǫ
(x)(∇ ′(ϕ,ψ) + λf1)(yǫ(x))+

+ χΩ0
ǫ
(x)

1

r2ǫ
(∇ ′(ϕ̂, ψ̂) + λf2)(zǫ(x)), a.e. x ∈ Ωǫ

in the monotonicity condition, we get

0 ≤
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x) −Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),

∇Uǫ(x) − τǫ(x)] dx =

=
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Uǫ(x)] dx−

−
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x), τǫ(x)] dx+

−
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),∇Uǫ(x)] dx−

+
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x), τǫ(x)] dx =

= Tǫ1 − Tǫ2 − Tǫ3 + Tǫ4 .



Asymptotic behavior of the solution of parametric variational inequalities 17

In the following we study each term separately. The first term

Tǫ1 =
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Uǫ(x)] dx ≤

≤
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Vǫ(x)] dx

=
1

ǫ2

∫

Ω1
ǫ

[

A1ǫ(yǫ(x))Φ
1
ǫ(yǫ(x), Uǫ(x))B

1
ǫ(yǫ(x))∇Uǫ(x),

(

dϕ(x1)

dx1
+ ǫ

∂ψ(yǫ(x))

∂x1
,
∂ψ(yǫ(x))

∂x2
,
∂ψ(yǫ(x))

∂x3

)]

dx+

+
1

ǫ2

∫

Ω0
ǫ

[

A0ǫ(zǫ(x))Φ
0
ǫ(zǫ(x), Uǫ(x))B

0
ǫ(zǫ(x))∇Uǫ(x),





µ

tǫ

∂ϕ̂
(

µx1
tǫ

)

∂x1
+
ǫµ

rǫtǫ

∂ψ̂(zǫ(x))

∂x1
,
1

r2ǫ

∂ψ̂(zǫ(x))

∂x2
,
1

r2ǫ

∂ψ̂(zǫ(x))

∂x3







 dx

(using the change of variable y = yǫ(x) in the integral over Ω1
ǫ and the change

of variables z = zǫ(x) in the integral over Ω0
ǫ)

=

∫

Y1ǫ

[

A1(y)Φ1ǫ(y, uǫ(y))B
1(y)∇ǫuǫ(y),

(

dϕ(y1)

dy1
+ ǫ

∂ψ(y)

∂y1
,
∂ψ(y)

∂y2
,
∂ψ(y)

∂y3

)]

dy+

+
1

µ
tǫr

2
ǫ

∫

Z0

[

A0
(

z1

µ
, z ′
)

Φ0ǫ

(

z1

µ
, z ′, û(z)

)

B0
(

z1

µ
, z ′
)

·

·

(

µ

tǫ

∂ûǫ(z)

∂z1
,
1

ǫrǫ

∂ûǫ(z)

∂z2
,
1

ǫrǫ

∂ûǫ(z)

∂z3

)

,

(

µ

tǫ

dϕ̂(z1)

dz1
+

ǫ

rǫtǫ

∂ψ̂(z)

∂z1
,
1

r2ǫ

∂ψ̂(z)

∂z2
,
1

r2ǫ

∂ψ̂(z)

∂z3

)]

dz

Taking the limit, we get

Tǫ1 →

∫

Y1

[

σ1(y),∇ ′(ϕ,ψ)(y)
]

dy+

∫

Z0

[

σ0(z),∇ ′(ϕ̂, ψ̂)(z)
]

dz.
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The second term

Tǫ2 =
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x), τǫ(x)] dx→

→

∫

Y1

[

σ1(y), (∇ ′(ϕ,ψ) + λf1)(y)
]

dy+

+

∫

Z0

[

σ0(z), (∇ ′(ϕ̂, ψ̂) + λf2)(z)
]

dz,

when ǫ tends to zero.
The third term

Tǫ3 =
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),∇Uǫ(x)] dx→

→

∫

Y1

[

A1(y)Φ1(y, u(y))B1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇
′(u,w)(y)

]

dy+

+

∫

Z0

[

A0
(

z1

µ
, z ′
)

Φ0
(

z1

µ
, z ′, û(z)

)

B0
(

z1

µ
, z ′
)

(∇ ′(ϕ̂, ψ̂) + λf2)(z),

∇ ′(û, ŵ)(z),
]

dz,

when ǫ tends to zero.
The last term

Tǫ4 =
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x), τǫ(x)] dx→

→

∫

Y1

[

A1(y)Φ1(y, u(y))B1(y)(∇ ′(ϕ,ψ) + λf1)(y),

(∇ ′(ϕ,ψ) + λf1)(y)
]

dy+

+

∫

Z0

[

A0
(

z1

µ
, z ′
)

Φ0
(

z1

µ
, z ′, û(z)

)

B0
(

z1

µ
, z ′
)

(∇ ′(ϕ̂, ψ̂) + λf2)(z),

(∇ ′(ϕ̂, ψ̂) + λf2)(z)
]

dz,

when ǫ tends to zero.
Adding the limits of Tǫ1 , T

ǫ
2 , T

ǫ
3 , and T

ǫ
4 , we get

−

∫

Y1
[σ1(y), λf1(y)] dy−

∫

Z0

[σ0(z), λf2(z)] dz+ (13)

+

∫

Y1
[A1(y)Φ1(y, u(y1))B

1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇
′(ϕ,ψ)(y)−

−∇ ′(u,w)(y) + λf1(y)]+
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+

∫

Z0

[

A0
(

z1

µ
, z ′
)

Φ0
(

z1

µ
, z ′, û(z)

)

B0
(

z1

µ
, z ′
)

(∇ ′(ϕ̂, ψ̂) + λf2)(z),

∇ ′(ϕ̂, ψ̂)(z) −∇ ′(û, ŵ)(z) + λf2(z),
]

dz ≥ 0.

Setting

ϕ− u = θ(v − u), ψ−w = θ(h −w), ϕ̂ = θv̂, and ψ̂ = θĥ,

where θ > 0, dividing by θ, then letting θ → 0, we get the limit variational
inequality.
Putting

(ϕ,u) = (ψ,w) and (ϕ̂, û) = (ψ̂, ŵ),

dividing by λ, and letting λ→ 0, we get
∫

Y1
[σ1(y) −A1(y)Φ1(y, u(y1))B

1(y)∇ ′(u,w)(y), f1(y)] dy+

+

∫

Z0

[

σ0(z) −A0
(

z1

µ
, z ′
)

Φ0
(

z1

µ
, z ′, û(z)

)

B0
(

z1

µ
, z ′
)

∇ ′ (û, ŵ) (z),

f2(z)] dz ≥ 0, ∀f1 ∈ H
1(Y1),∀f2 ∈ H

1(Z).

Then 3) follows. �

4.2 The case µ = +∞ and 0 < ν < +∞

Theorem 6 Let µ = +∞ and 0 < ν < +∞. Assume that (A1)-(A9) are
verified and the following two conditions are satisfied:

(C1) ϕ ∈ K implies χY1ǫϕ ∈ Kǫ;

(C2) ψ ∈ L implies χY1ǫψ ∈ Kǫ.

Then the following three statements hold:

1) There exists a subsequence of the sequence Uǫ of solutions of (1), also
denoted by Uǫ, and a function u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K such that (7) is
satisfied.

2) Let u and w be given as in Theorem 1. Then (u,w) solves the limit
variational problem:
find u ∈ H1((−1, 0) ∪ (0, 1)) ∩ K, u(−1) = u(1) = 0 and w ∈ L such that for
all v ∈ H1((−1, 0) ∪ (0, 1)) ∩ K, v(−1) = v(1) = 0 and h ∈ L

∫

Y1
[A1(y)Φ1(y, u(y1))B

1(y)∇ ′(u,w)(y),∇ ′(v, h)(y) −∇ ′(u,w)(y)] ≥ 0.

(14)
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3) Let σ1 given in Theorem 1. Then

σ1(y) = A1(y)Φ1(y, u(y))B1(y)∇ ′(u,w)(y) for a.e. y ∈ Y1.

Proof. Statement 1) follows from Theorem 2.
To prove statement 2), let ϕ− ∈ H1([−1, 0]) and ϕ+ ∈ H1([0, 1]) and define

ϕ ∈ H1((−1, 0) ∪ (0, 1)) ∩ K such that

ϕ(x1) =

{
ϕ−(x1), if x1 ∈ (−1, 0)

ϕ+(x1), if x1 ∈ (0, 1).

Let ψ ∈ L and γ0 : [0,+∞) → R defined by

γ0(τ) =

{
τ, if 0 ≤ τ ≤ 1

1, if τ ≥ 1.

and

Vǫ(x) = ϕ(x1)γ
0

(

|x1|

tǫ

)

+ ǫψ

(

x1,
x ′

ǫ

)

, a.e ∈ Ωǫ,

which belongs to Mǫ.
For ǫ small enough, by a simple calculation we obtain

1

ǫ2

∫

Ω1
ǫ

∣

∣

∣

∣

∇Vǫ −
dϕ(x1)

dx1
e1 −∇y ′ψ

(

x1,
x ′

ǫ

)∣

∣

∣

∣

dx+
1

ǫ2

∫

Ω0
ǫ

|∇Vǫ| dx ≤

≤ C

(

ǫ2 +
r2ǫ
tǫ

)

which tends to zero since µ = +∞.
Putting η = Uǫ(x), ξ = ∇Uǫ(x) and

τ = τǫ(x) =

{
(∇ ′(ϕ,ψ) + λf1)(yǫ(x)), if x ∈ Ω1

ǫ

0, if x ∈ Ω0
ǫ
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in the monotonicity condition, we get

0 ≤
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x) −Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),

∇Uǫ(x) − τǫ(x)] dx =

=
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Uǫ(x)] dx−

−
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x), τǫ(x)] dx−

−
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),∇Uǫ(x)] dx+

+
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x), τǫ(x)] dx =

= Tǫ1 − Tǫ2 − Tǫ3 + Tǫ4 .

In the following we study each term separately. The first term

Tǫ1 =
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Uǫ(x)] dx ≤

≤
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Vǫ(x)] dx =

=
1

ǫ2

∫

Ω1
ǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Vǫ(x)] dx+

+
1

ǫ2

∫

Ω0
ǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)∇Uǫ(x),∇Vǫ(x)] dx,

where the second term tends to zero. We use the change of variables y = yǫ(x)

in the first term:

Tǫ1 ≤

∫

Y1ǫ

[

A1(y)Φ1ǫ(y, uǫ(y))B
1(y)∇ǫuǫ(y),

(

dϕ(y1)

dy1
+ ǫ

∂ψ(y)

∂y1
,
∂ψ(y)

∂y2
,
∂ψ(y)

∂y3

)]

dy+Oǫ =

=

∫

Y1

[

A1(y)Φ1ǫ(y, uǫ(y))B
1(y)∇ǫuǫ(y),

(

dϕ(y1)

dy1
+ ǫ

∂ψ(y)

∂y1
,
∂ψ(y)

∂y2
,
∂ψ(y)

∂y3

)]

dy+Oǫ.
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Taking the limit of both sides, we get

lim
ǫ→0

Tǫ1 ≤

∫

Y1

[

σ1(y),∇ ′(ϕ,ψ)(y)
]

dy.

The third term

Tǫ3 =
1

ǫ2

∫

Ωǫ

[Aǫ(x)Φǫ(x,Uǫ(x))Bǫ(x)τǫ(x),∇Uǫ(x)] dx =

=
1

ǫ2

∫

Ω1
ǫ

[

A1(yǫ(x))Φǫ(yǫ(x), Uǫ(x))B
1(yǫ(x))(∇

′(ϕ,ψ) + λf1)(yǫ(x)),

∇Uǫ(x)] dx,

as the integral on Ω0
ǫ is equal with zero because τǫ = 0 on Ω0

ǫ. Using the
change of variable y = yǫ(x) we get

Tǫ3 =

∫

Y1ǫ

[

A1(y)Φǫ(y, uǫ(y))B
1(y)(∇ ′(ϕ,ψ) + λf)(y),∇

ǫuǫ(y)
]

dy =

=

∫

Y1

[

A1(y)Φǫ(y, uǫ(y))B
1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇

ǫuǫ(y)
]

dy+Oǫ.

Taking the limit when ǫ→ 0, we get

Tǫ3 →

∫

Y1

[

A1(y)Φ(y, u(y1))B
1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇

′(u,w)(y)
]

dy.

Similarly

Tǫ2 →

∫

Y1

[

σ1(y), (∇ ′(ϕ,ψ) + λf1)(y)
]

dy

and

Tǫ4 →

∫

Y1

[

A1(y)Φ(y, u(y1))B
1(y)(∇ ′(ϕ,ψ) + λf1)(y),

(∇ ′(ϕ,ψ) + λf1)(y)
]

dy,

when ǫ→ 0.
Adding the limits of Tǫ1 , T

ǫ
2 , T

ǫ
3 , and T

ǫ
4 , we get

∫

Y1
[A1(y)Φ1(y, u(y1))B

1(y)(∇ ′(ϕ,ψ) + λf1)(y),∇
′(ϕ,ψ)(y)− (15)

−∇ ′(u,w)(y) + λf1(y)] dz−

∫

Y1
[σ1(y), λf1(y)] dy ≥ 0.
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Setting
ϕ− u = θ(v − u), and ψ−w = θ(h −w),

where θ > 0, dividing by θ, then letting θ → 0, we get the limit variational
inequality.
3) Putting

(ϕ,u) = (ψ,w),

dividing by λ, and letting λ→ 0, we get
∫

Y1
[σ1(y) −A1(y)Φ1(y, u(y1))B

1(y)∇ ′(u,w)(y), f1(y)] dy ≥ 0

∀f1 ∈ H
1(Y1).

Then 3) follows. �
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