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Delay and Redundancy in Lossless Source Coding

Ofer Shayevitz, Eado Meron, Meir Feder and Ram Zamir

Abstract—The penalty incurred by imposing a finite delay BV code of block lengthh = kd obtained by concatenating
constraint in lossless source coding of a memoryless sourt® k short BV codes of block lengtti. Clearly, the decoder can
investigated. It is well known that for the so-called blockto- reproduce symbols with a delay rather than the much larger

variable and variable-to-variable codes, the redundancy dcays o .
at best polynomially with the delay, which in this case is identified delay . Waiting until the end of the block would mean the

with the block or maximal phrase length, respectively. In sark ~ €ncoder is “holding back” bits it is already certain of, clga
contrast, it is shown that the redundancy can be made to an undesirable trait in a delay constrained setting. Of smur
de(;:ay(;axpone(rj]tilally with the d_9|a)r/] constraibnt.t;rhe gogefspongir;g the redundancy associated with such an encoder still decays
L‘; ?hne ?{%Cr?gi : ri)r/o;);pgpiréé? ; &V\{E;osojrc:ugng frc:r%mabgv?ew polynomially with d, which brings us to the second limitation.
(for almost all sources) in terms of the minimal source symbb In the traditional setting, the enC_Oder never looks beydred t
probability and the alphabet size. end of the current block/phraes, in the sense that the sSeurce
prefix has no effect on the output of the encoder beyond that
point. The encoder is therefore being “reset” roughly evéry

[. INTRODUCTION symbols. Loosely speaking, the penalty incurred by forcing

It is well known that any memoryless source can be asymifiese regularly recurring reset points, is the source of the
totically losslessly compressed to its entropy [1]. Howeire Polynomial delay of the redundancy.
the presence of resource constraints, a rate penaltyredfey With these observations in mind, we recall a lossless coding
asredundancyis unavoidable. In this work we focus on theechnique of a different flavor that does not suffer from
redundancy in the encoding of a memoryless source incurté€ above shortcomings. larithmetic coding[6], a source
by the imposition of atrict end-to-end delay constraidfi.e., Sequence is sequentially mapped into nested subinterfals o
under the requirement thatth encoded symbol must alwaysthe unit interval, with length equal to the sequence prdligpbi
be perfectly reproduced at the decoder by time d. and the common most significant bits of the current subiaterv
Traditionally, lossless source coding is divided into ¢hreare emitted. This way, the encoder never holds back any
classes: 1) Block-to-Variable (BV) codes (e.g. Huffmane)d bits it is already certain of, by definition. Moreover, whase
where a fixed block of source symbols is encoded into BV/VB/VV encoders never look beyond the end of the current
variable length codeword, 2) Variable-to-Block (VB) codeblock/phrase, an arithmetic encoder always looks into the
(e.g. Tunstall code), where the source sequence is par§e@ssibly infinite) future. Unfortunately, this comes at@st
according to a code-tree, and each phrase is encoded intef an unbounded delay (though a bounded expected delay, see
fixed length codeword, and 3) Variable-to-Variable (VV) esd [7], [B], [9]). Nevertheless, the notion of arithmetic codi
(e.g., Khodak codes), where the source sequence is pardeddges point us in the right direction. In a delay constrained
each phrase is encoded into a variable length codewordeln ffRmework, an encoder shouldy definitionbe sequential,
BV regime, a delay constraint is usually interpreted as alkbloemitting all the bits it can at any given instance. Moreover,
length constraint, and the redundancy is known to decay &good delay constrained encoder should always strive to loo
best polynomially with the delay [2][3]. In the VB/VV regimed steps ahead, avoiding “reset” points as much as possible.
(where the delay is a random variable depending on the soufe we shall see, these properties are nicely captured within
sequence) the delay constraint is translated into a maxind&l interval mapping type framework.
phrase length constraint, and the redundancy again detays 4n this paper, we introduce a general framework for lossless
best polynomially with the delay, though sometimes fagtant delay constrained coding of a memoryless source, and study
in the BV casel[[4][5]. the fundamental tradeoff between delay and redundancy. We
In a delay constrained setting, the traditional framewohow that, in stark contrast to the polynomial decay within
above admits two (related) limitations. First, even withiithe traditional framework, the redundar®y P, d) associated
that framework, there is an apparent disparity betweenydeMith a memoryless sourck over a finite alphabet’, can be
and block/phrase length. The reason block/phrase lengéhs made to decagxponentiallywith the delayd. Specifically, we
identified with delay in the first place is since a repeatedafiseshow thad
the same code allows the source reproduction at block/phras 8d
length intervals. However, the delay can sometimes be sig- (pmin> < R(P,d) S pi
nificantly shorter, for essentially the same reason: Cemnsid | X - L e
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sources. We then tighten the upper bound and obtain of symbols inz™. The set of all possible types of sequencés

R(P,d) < o—dH:(P) is denoted@"ée)f(). Thetype classof any type@ € 2" (X)
~ is the setTy, = {2 € &A™ : Ppn = Q}. Fore > 0, let

where H>(P) is the order2 Rényi entropy of the source. 2"(x, P) C 2"(X) be the subset of all type@ for which

For our upper bound, we introduce a construction based PR — Q|| < «.

mismatched arithmetic coding in conjunction with a fictitlo ~ The following facts are well knowri [12].

symbol insertion mechanism. For our lower bound, we provide Lemma 2:For any type € &"(X) and anyz" € Ty:

a useful “generalized interval mapping” representation fo (iy P(z") = 2-(P(QIP)+H(P)),

delay constrained encoders. (i) |22m(x)|~12n Q) < |Tg| < 2n(H(Q),

The paper is organized as follows. Our framework is introiiiy |22"(X)| = ("TQ\(?I‘_I;l) < (n+ 1)1

duced in Sectioll, and some basic lemmas are derived. {v) (AEP) For anys > 0,

SectiorIl, the delay profile of mismatched arithmetic cayi

is analyzed. This analysis is then applied in Sediioh IV wher lim P U T 1
a lower bound on the redundancy-delay exponent is derived. | n—rco 0ePT ) Q

SectionV, a corresponding upper bound on the redundancy- o )
delay exponent for almost all sources is presented. Somie final he Rényi entropy [13] of ordew of a sourceP is

remarks are given in SectiénlVI. g 1 .
9 Ha(P) = ——log > _(P(x))
Il. PRELIMINARIES TEX
A. Notations Lemma 3 (From[[14]): The Rényi entropy of ordexr > 1

admits the following variational characterization:
Lebesgue measure of a sdt C R is denoted by|A|. The

D@QIP) + H@)}
def

fractional partof a number € Ris denoted bya) = a—|a]. For0 < a < 1, replace thenin with a max.

We write s < t to indicate that a string is a prefix of
a stringt, ands < t to indicate thats < ¢t and s # t¢. The H.(P)= min {
“ QeP(X)

a—1

Thedifference modulo-14 — B) between two setsl, B C R For any two sourced, Q over the same alphabéet, we
is the set of all number&: — b) wherea € A,b € B. For any define
function f : R — R and any setd C R, we write f(A) for v(P,Q) L sup P(z)
the image ofA underf. All logarithms are taken to the base vex:P(a)>0 @(2)
of 2. A total order of a finite set is called simply aarder. The following is easy to verify.

The following lemma is easily verified. Lemma 4:v(P,Q) > 1 with equality if and only ifP = Q.

Lemma 1l:Let A, B C R be any two sets. Then

() If be Band(c) ¢ (A— B), thenb+c ¢ A. C. Encoders

(i) If b€ B and(logc) ¢ (log A —log B), thenbe ¢ A. An encoderis a mapping€ : X* — {0,1}* such that

for any s € X*, £(s) is the longest common prefix of the

B. Sources bit strings {€(sz) : € X}. Namely, we are assuming the

Let X' be a finite alphabet of source symbols. The set of gfcoder does not withhold any bits, at any given time it will
length+ strings of symbols fromt’ is denotedt™, the set of have emitted the Iongest lpreﬂx it was certain aboqt. Th|§ wil
all finite length strings is denotet*, and the set of all infinite P€ referred to athe integrity propertyNote that the integrity
length strings is denote@>. We sometime use the notationg"OPerty implies in particular theonsistency properfynamely
that£(s) < E(sx).

An encoder€ is associated with aelay function which
returns the minimal number of symbols from a given (infinite)
suffix that needs to be encoded so that a given prefix can
be fully decoded. Formally, the delay function is a mapping
58 1 X* x X — NU {oco}, whered® (s, z>°) is the minimal

P(s)P(t) for all s,t € X*, wherest is the concatenation of & o
s andt. Specifically, we denote by" the p.m.f. obtained by k € NU {0} such thatf(sz*) = £(¢) implies “};’;‘}5 =t for

restricting P to X™. An infinite random source string emitted@y ¢ € X*. If no suchk exists, theny® (s, 2°°) = oo

by the sourceP will be denoted byX>. The entropyof the Thedelay profileassociated with an encodérand a source
source is denoted(P). The kullback-Leibler distanceor P for a given prefixs, is the following extended-real-valued
divergencebetween two sourceB, Q over the same alphabet'-V-

. . . . . AE( P) (jﬁf55( Xoo)

is denotedD(P||Q). We write P < Q if Q(x) = 0 implies 5, 17) =015,

P(x) = 0 for all z € X. The set of all p.m.f’s ovelt The delay profile associated with an encodeand a source
is denotedZ?(X). The type of a sequence™ € X™ is the P is then defined to be

p.m.f. P,» € &(X) corresponding to the relative frequency

" d:efxlxz ... Ty andz}, def TmTma1 - - - Ty, fOr finite source
strings, where the convention is thaf, = ) whenm >
n. A discrete memoryless source (DMB)is defined by a
probability mass function (p.m.f)P(z) : = € X'} which
naturally induces a product measure ovet, via P(st) =

A (P) L sup A% (s, P)

SNote that such a lower bound cannot hold for all sources,esityadic sex”

sources can attain zero redundancy with zero delay. Next, we define several families of encoders.



1) Lossless EncodersAn encoder is said to béossless

(i) Minimality: [£(s)) = bin(Z®(s)) for anys € X*.

w.r.t. P (where P is omitted when there is no confusion), if (ii) Disjoint nesting For alls € X* and all distinctz, y € X,

P(A®(P) < 0) = 1,

The family of all encoders that are lossless witis denoted
£(P).

2) Bounded Expected Delay Encodes encoder is said
to admit abounded expected delay w.f.(whereP is omitted
when there is no confusion), if

E(A(P)) < oo

T8 (sx) CT%(s), Z¢(sx)NIE(sy) =10

The minimality property means that an interval-mapping en-
coder emits the bit sequence representing the minimal yinar
interval containing the interval (s). It is easily observed that
the minimality and disjoint nesting properties togetheplyn
the integrity property. The family of interval mapping edeos
is denoted byJ.

Let < be any order ofY¥. A special case of an interval-

The family of all encoders with bounded expected delay w.rmapping encoder is aarithmetic encoder w.r.t. the ordet

P is denotedB(P). Clearly, B(P) C £(P).

3) Delay Constrained EncodersAn encoder is said to be

delay-constrainedif

6% (s,t) < o0 (1)

sup

SEX* tEX ™
More specifically, such an encoder is also said talttelay-
constrained if the supremum above equals The family of
d-constrained encoders is denotedthydl Clearly,¢;  B(P)
for any sourceP.

4) Phrase/Block Constrained Encodersn encoder is said
to be phrase-constrainedf for any z>° € X' there exists
ad € N and an index sequende;, € N}7°, such thatd <
ik+1 — i <d+1, and

6£('rikaa??:+1) =0

)

In this case we also say the encodef-ishrase-constrainedn
the special case wheig = (d+1)k for all z°>° € X>°, we say
the encoder ig-block-constrained he family of all d-phrase-

constrained (respl-block-constrained) encoders is denoted by

ghhrase (resp.eblock). Clearly, €hlock ¢ @b ¢ ¢,
Remark 1:Any encoderé e €hlock (resp.& e ¢hM™°)
corresponds to a (possible time-varying) concatenatioB\of

(resp. VV) codes with block length (resp. maximal phrase

length)d + 1.
5) Interval-Mapping Encoders:A binary string b* ¢
{0,1}* is said torepresenta binary interval

")
For any setd C [0,1) we writebin(A) to denote the minimal
binary interval containing4, i.e.,

M

be{0,1}*:AC[b)

©10.byba, .. b0, 0.byby, ... bx1) € [0,1)

def

bin(A) = [b)

The following lemma is easily observed.
Lemma 5:For anyb, c € {0,1}*,
(i) b=c < [c) C[b).
(i) bAcandcAb < [b)N[c) = 0.
Let & & {[a,b)|0 <a < b<1}. An encoderf is said

to be aninterval-mapping encodgif there exists a mapping .
I¢ . X* &, ie., a mapping of finite source sequence¥nereX

into subintervals of the unit interval, such that the foliogr
properties are satisfied

4Note that growing dictionary encoders such as the LZ encfidgrdo not
belong to this family, as their delay grows unbounded.

matched to a sourc#’, which is defined as follows:

Az £ Y Py)
fala™) E fusi(@ ) + filea) P
T8") € [fal@™), fula”) + P(@™))

We omit the reference to a specific orderwhen there is no
confusion, or when the statement holds for any order.

6) Generalized Interval-Mapping Encoderket &* be the
set of all finite disjoint unions of subintervals fro@. An
encodek is said to be @eneralized interval-mapping encoder
if there exists a mappin@® : X* — G&* satisfying the
minimality and disjoint nesting properties above. The fgmi
of generalized interval-mapping encoders is denotediy
Clearly,7 c 7*.

The following lemma shows that amjfdelay-constrained
encoder admits a generalized interval-mapping represanta

Lemma 6:Let £ € €;. Then& can be represented as a
generalized interval-mapping encoder with

78(s) = |J [E(sa?)) (3)
zdexd
Hence,&; C J*.
Proof: See the Appendix. [ ]

Remark 2: The representation ir](3) is a finite union of
(possibly overlapping) binary intervals. It is worth nagithat
an arithmetic encoder matched to a source cannot generally b
written that way, as some of its intervals may only be written
as an infinite union of binary intervals. This sits well witiet
fact that generally, an arithmetic encoder has an unbounded
delay.

D. Redundancy
The (per symbol) expected codelengthtimen associated
with an encode€ and a memoryless sourde is

LE(P) ¥ tEle(x ™) 4)

~ P"™. The (per symbol) expected redundanaty
time n associated with an encodérand a memoryless source

P is the gap between the expected codelength and the entropy
after n symbols have been encoded, i.e.,

RE(P) E'LE — H(P)

n



The correspondingup-redundancyand inf-redundancyare (i) For any sourceP

defined as . —¢ . & . €
. inf R (P)= inf R (P)= inf R (P)
R(P) LlimsupRE(P),  RE(P) Llim inf RE(P) Ees(P) ECB(P) Ees(p)
n—00 n—00 = inf REP)=0
£EB(P)

Let us define some useful quantities specific to generalized, i
interval-mapping encoders, which will enable us to bourirth (ify (From [1], [2]
redunplancy in relat.ively simpler terms. A generali;edrivﬂé inf ﬁg(p) =0(d™"), inf ﬁg(p) - O(d‘g)
mapping encodef induces a measure ovéi”, defined by Eegylock Ecghhrase

) For any source

(i) (From [3], [2]) For almost all sources,
inf ®E(P)=Q@d™)

ny el 7€ n
RO AICD]

and a conditional induced measure, defined as Eeghlock ™
n : £ _ —2|X|-1—
£/ k| .mn def /Li-ﬁ-k(z xk) £ éIpl]frascz (P)_Q(d E)
pr (2"]z™) = e €ey
py; (27)
] wheree > 0.

Define: . def 1 . We see that employing block/phrase-constrained codes for

R, (P)=—D (P r) compression under a strict delay constraint, the redurydanc

decays at best polynomially with the delay constfiffthe
main contribution of this paper is to show that in fact, the re
ra(@™) = D (P uf(-|z")) dundancy can be made to de@gponentiallith the delay, if
the more general family of delay-constrained encodersad.us
This reveals a fundamental difference between block/ghras
length and delay in lossless source coding.
The following lemma shows that for an optiméidelay-

and let

be thed-instantaneous redundancy
Remark 3:Note thatué and ug(-|z™) are not necessarily
probability distributions, as they may sum to less thanyunit

However, for that exact same reason it still holds tRatP) > . .

0, ra(z") > 0 REP) > constrained encoder, the inf-redundancy and sup-redaegdan
d o . . coincide.
The next lemma relates the interval-based notions of re_Lemma 9 For anv source?

dundancy defined above, to the actual operational definition ‘ y '

of redundancy of the associated generalized interval-ingpp inf ﬁg(p) = inf RE(P) dZEfgﬁ(P’ d)

encoders. This correspondence will allow us to think of £etq g€y

intervals instead of bits, and will play a central role in the Proof: See the Appendix. [

sequel. Accordingly,?R(P, d) defined above is called ttredundancy-
Lemma 7:The following relations hold: delay functionassociated with the sourd@. The correspond-
(i) For any€ € 7%, ing inf-redundancy-delay and sup-redundancy-delay exptsn

associated withP? can now be defined:

RE(P) < RE(P = 1
n(P) < B (P) E(P) = limsup — log R(P,d)
d— oo

(i) For any £ € €, there exists a generalized interval-

mapping representatiofi® (e.g., the one in Lemmi 6) E(P) = 1iminf—l log R(P, d)
such that _ o dme0 _ d .
. n+d\ . d Our main goal in this paper is to characteri#¢P, d), E(P)
RE(P) > R ,(P)+ ~H(P) and E(P).

IIl. THE DELAY PROFILE OFARITHMETIC CODING

Consider a case where a source is encoded by a mis-
Proof: See the Appendix matched arithmetic encher, namely where the encoder’s in-
One W6U|d naturally be int.erested in the redundancy p tre_rval lengths match a different source (see SubseCiigh.|I-

95 fthe next theorem we upper bound the probability that the

Ij?]zfgfeﬁed?sastezarrnbgeegg?a:?rgweeeix?aiz? dplroe}g:% deagg;?ferscgrrespc.)nding delay prof!le exceeds a given threshold. This
' S result will serve as a tool in the next section, where we lower

an encode€ can be negative for some, or evenzalHowever, | ' redundancy-delay exponent

the sup and inf-redundancy are nonnegative for all lossles heorem 1:Suppose a source e 9().() is encoded using

encoders, and bounds in theblock/phrase constrained cases , Jrithmetic éncode? matched to a soura@ € Z(X). Then

£ RPN R k
P) = liminf — 3 E(rg(X
R (P) = limin nd; (ra(X"))

are known.
Lemma 8: The following statements hdid P (A(P) > d) < 2L, (dlog (V(P, Q)) n H)
pmax
SRecall thatf(d) = O(g(d)) = limsup,_, ., % < oo, and +2¢¢ . (v(P,Q))? (5)

f(d)

f(d) =Q(g(d)) = liminfy, 0 m’ >0 5This is in fact true even under the weaker expected delaytreons




wherex = log 1\({% ~ 1.4139... y™ # z™. Hence condition[{6) is necessary and sufficient if

Corollary 1: Let £ be an arithmetic encoder matched to & < (), and only sufficient otherwise. This point is important
source@ € Z(X). For any source® € #(X), if to note since the case wheke<£ ) appears in the sequel.
After having identified the above set édrbidden points

Gmax V(P Q) <1 we clearly need to analyze the probability of avoiding them

then the delay profile boundl(5) is exponentially decayingpwiwithin the nextd instances. Loosely speaking, for an arith-
d, hence the expected delay is finite, i.6.,c B(P). This metic encoder matched to the soufegthe maximal symbol

specifically holds for all non-deterministié = Q. probability p.. represents the “crudest resolution”, or the
Corollary 2: Suppose the sourc® is encoded using the “lowest rate” by which we shrink our intervals, hence intu-
arithmetic encoder matched to the source. Then itively dictates our ability to avoid hitting forbidden pus.

£ d Indeed, the probability that the encoder avoids these point

P(A™(P) > d) < 2pfnay (d10g (1/Pmax) + £ +1) is roughlype . . For a mismatched encoder, we get a similar
Remark 4:An exponential bound on the delay’s tail distri-€xpression involvingf, .., 4ihax @ndv (P, Q) as a measure of

bution for matched arithmetic coding was originally obsetv the mismatch between the encoder and the source.

in [16][8]. However, that bound depends on bath;, and

Pmax, and can therefore be arbitrarily loose. A bound depend- The Forbidden Points Notion

ing only onp,., Was originally obtained by the authors in [9], . .

where it is also shown how the proof 6f [16][8] can be tweaked We now introduce some notations and prove three lemmas,

to remove the dependency @n,;,. The bound obtained herereqUIreOl fpr the proof of Theore_[ﬁ 1 Lét:. [a,6) € [0,1)
- be some interval, ang some point in that interval. We say
is tighter than both.

Remark 5: The bound in Theoreml 1 can be further tightzhatp Is strictly containedin I'if p € (a,b). We define the

ened by observing that specific orders of the alphabetre left-adjacentof p w.r.t. I'to be
better than others in terms of the bounding technique used y, (p) d:Efmin{ac €la,p): Fezt z=p—27")
here. We do not pursue this direction, since we need an order-

independent bound in the sequel. and thet-left-adjacentof p w.r.t. I as
t
. —_—
A. Proof Outline /égt)(p) def (Urolro-olp)(p), 40) () d:efp

Recall the definitions of an interval-mapping encoder and of ) , , )
an arithmetic encoder in particular, given in Subsediig@.l Notice thatf;”(p) — a monotonically witht. We also define
At time n, the sequence” has been encoded infs ("), and  tN€ right-adjacentof p w.r.t I to be
the decoder is so far aware only of the interlsal(Z¢ (z")), def , + o —k

- . . - = e€(pb):FkeZ ,z=p+2
namely the minimal binary interval containiri (z™). Thus ri(p) = max {x (p.0) rep }
the decoder is able to decodé&', wherem is maximal such and Tl(rt) (p) as thet-right-adjacentof p w.r.t. [a,b) similarly,

that bin(Z* (")) € Z¢(2™). Of course;m < n where the here nowr" (p) — b monotonically. For any < b — a, the

inequality is generally strict. Afted more source letters are agjacents-setof p w.r.t. I is defined as the set of all adjacents
fed to the encode;"* is encoded intd®(2"*7), and the that are not "too close” to the edges bf

entire sequence™ can be decoded at time+ d if and only st
ifl] Ss(I,p) S {xela+d,b-10):IteZTU{0},
bin(If (xn-ﬁ-d)) C _'z'f,‘ (xn) (6) T = é(t) (p) Vo= ,,,(t) (p)}

Now, consider the midpoint obin(Z¢(z™)) which by the
minimality property (see Subsectibn 1I-C) is always coméi
in Z¢(z™). If that midpoint is contained irZ¢(z"*?) (but
not as a left edge), then conditidi (6) cannot be satisfied;
fact, in this case the encoder cannot yield even one furtiher b
This observation can be generalized to a set of points which,

if contained inZ¢ (z"*?), 2™ cannot be completeldecoded [S5(Z,p)l < 1+2log 5 0
For each of these points the encoder outputs a number of bitgor an intervall, let m(I) denote the midpoint obin(I).

which may enable the decoder to produce source symbols, Rigte thatm(I) e I, by definition ofbin(I) as the minimal
not enough to fully decode™. The encoding and decodingpinary interval containingl. In what follows, we will be
delays are therefore treated here simultaneously, raki@T tspecifically interested in the adjacefset of m(I) w.r.t. I.

Notice that foré > p — a this set may contain only right-
adjacents, fop > b—p only left-adjacents, fos > b—T“ it is
?rrlnpty, and fors = 0 it may be infinite.

Lemma 10:The size ofSs(1,p) is upper bounded by

1]

separately as iri [8]. We therefore suppress the dependencengi) and write
Remark 6:When P <« @ there are “holes” in the interval- st
mapping, namely intervals corresponding to symbols where Ss(I) = Ss(I,m(I))

Q(z) > 0 but P(x) = 0. In this casex™ can be decoded at

time n+d if and only if bin(Ig(x"+d)) AZE (y™) = O for any In particular, the seby(I) will be referred to as thérbidden

points of I. The forbidden points play a central role in the
"Here we are assuming th& < Q, see Remark]6. sequel, for the following reason:



Lemma 11:Condition [6) is satisfied if and only if sharing an edge witd¢ (z"). For anyd > 0, the delay’s tail
¢ (z"*1) does not contain forbidden points &f ("), i.e., probability is bounded as follows:

I (z"+4) (1 So (T (a™)) = 0 (Ag( ", P)>d)

Proof: Write m = m(Z¢(2™)) for short. As already (bm(zf Xn+d)) ng(xn X" = xn)
discussed, ifm is strictly contained inZ€ (z"*?) then [6) is & i .
not satisfied. Otherwise, assurié(z"*?) lies to the left of (S NIZ(X"T) # ¢l X" =)

m. Clearly, if Z¢ (z"+?) C [¢(m), m), thenbin(Z* (z"*?)) C

£ n+d n o __
[£(m), m) as well, hencel(6) is satisfied. However/iin) is (S0\Ss) NZ%(X"™H) # ¢ | X" = 27)
strictly contained irZ¢ (z"*7) thenbin(Z¢(z"*+)) must be +P(S; NIE(X"H) £ ¢| X" = a™)
the left half ofbin(Z* (z™)), which by minimality cannot be (d) S
i (o i sfi <2 (e ) W(P,Q))
a subinterval off* (z™), hencel(B) is not satisfied. The same = |Z€ (z)] Gmax )
rationale also applies ta(m). The lemma follows by iterating +pl 18]
the argument. n “ Pmax|6
<
(g i)

C. Proof of Theorerh]l

The probability that the delayz® (z™, P) is larger thand +pmax (1 + 2log % (= )l) (20)
is equal to (or upper bounded by, whéh& @, see Remark
) the probability that[{6) is not satisfied. By Lemfma 11, thi$he transitions are justified as follows:
in turn equals the probability that (X™*?) contains none of (&) Condition [[(6) is sufficient, see discussion in Subsectio
the forbidden points of ¢ (™). To get a handle on this latter ~ [I-AlIn most cases this would be an equality, as condition
probability, the following lemma is found useful. (6) would be also necessary, see Renidrk 6.

Lemma 12:Suppose a sourck is encoded using an arith- (b) Lemmal1l.
metic encode€ matched to a sourc®, and letpmax, gmax  (€) Union bound overSy = Ss U (Sp \ Ss).
be the corresponding maximal symbol probabilities. Then f¢d) LemmalIP, together with a union bound over the finite
anya € Z¢(z"), number of elements i, \ S;s.
Taking the derivative of the right-hand-side bf(10) wd.tve

find thaté = loge %) |Z¢ (z™)| minimizes the bound.

P(a € I8 (X" )| X" = 2") < pl..

and for any interval/ € Z¢(z™) sharing an endpoint with Substituting into )and noting that the bound is indeernd
¢ (2™), of z", (B) is provef.
£ n+d no_ pn
P(JNTE(X™T) #01X" = ") V. ALOWERBOUND FORE(P)
< (|If|( | o] + qfnax) (v(P,Q))? In this section we use the delay’s probability tail disttibn

mentioned in the previous section, to derive an upper bound
Proof: The set{Z¢(z"y%) : y* € X%} is a partition of for the redundancy-delay function, via a specific arithmeti

7€ (z™) into intervals, and: belongs to a single interval in thecoding scheme. We emphasize that unlike [17], the presented

partition. Therefore, scheme is error free, hence there is zero probability ofduff
& mdst n . overflow. Moreover, our figure of merit is the delay in source
P(aeZ8(X"T)|X" =2") symbols vs. the redundancy in bits per symbol.
n+d _ . d n_ .ny__,d
S ylglea?)((d P(Xn-i—l - |X = ) = Pmax (8)

A. A Finite Delay Result

establishing the first assertion. For the second assetidte; Theorem 2:The redundancy-delay function for a sourée

P(J N ZE(X™H) £ (| X" = 2™) < Z P(y%)  is upper bounded by
d. E (pnqyd 2
. o R(P, d) < 2920 ((d = () 108 (2/ Prna) + 1+ 1)
< Z Qy") - (v(P,Q)) (11)
yd:JNLE (anyd)#£D where 1
S 00) D SR AL o(z) = { 0 < 5
Y- JOTE (7 y ) 20 2 | merm) — 1 ow.
J .
< (|I5|(:v|n)| +qmdx)( (P,Q))* (9)  Corollary 3: The inf-redundancy-delay exponent for a
sourceP is lower bounded by
£(yd|my — d
where we have used the fact thatx, . uj(y*|2") = qmax.. E(P) > log(1/pmas)
Write S; = Ss(Z%(«")) for short. Note thatS; C S, 80bserve that({J0) holds evendf> |Z€ (z™)], in which case our bound

and thatSp\Ss is contained in two intervals of lengthboth becomes trivial.



Proof: Let us first describe the high-level idea behindo that the maximal product probability satisfies the resglir
the proof. We extend the source’s alphabet by adding tveondition (the effect of this aggregation on the delay iated
fictitious symbolsand then encode the source using a slightlater on). To encode the source™, let us now use the
mismatched arithmetic encoder. The encoder keeps trackaothmetic encoder foP:" above together with the following
the decoding delay, and whenever the delay readhed, it fictitious symbol insertion algorithm: The encoder keepslhtr
inserts a fictitious symbol that nullifies the delay. There aof the decoding delay by emulating the decoder. Whenever
three key points: 1) There exists a mapping such that therahss delay reacheg + 1, the encoder finds which one of
always at least one fictitious symbol whose interval costaif® (z");, or Z¢ (z")r contains no forbidden point, and inserts
no forbidden points, 2) The length assigned to the fictitiouhe corresponding fictitious symbal;, or zr respectively,
symbols can be made very small, and 3) The probability bence nullifying the decoding delay. This way, the decoding

insertion, bounded via Theordm 1, is also very small. delay never exceedsand no errors are incurred.
For any intervall = [a,b), let We now bound the redundancy incurred by the encoder
def &' € ¢, described above. There are two different sources of
pr(A) = (1= MNa+ b redundancy. The first is due to the mismatch betwétn
and define define the two disjoint subintervals and P, and the second is due to the coding of the inserted

def def fictitious symbol. At each timé > d, the probabilityw;, for
I = (p1(3/8) , 01 (1/2)), Ir = (1 (1/2) , ¢r (5/8))  an insertion can be bounded via Theofém 1:

The first key point is established in the following Lemma. wy, = P(AZ (X*4, P) > d) < P(AY'(P) > d)
Lemma 13:For any intervall C [0,1), eitherl;,NSy(I) = 1
_ < 2p dlog| ———— |+«
0 or Ir N So(1) = 0. = P AT T =20 pina

Proof of Lemmd_13: Write m = m(Z¢ (z™)) for short.

_9.\d,d _9\—d
Without loss of generality, assume that < ¢;(1/2). There 21 = 22) Phuax(1 = 2¢)

. 1
are two cases: =2pd (dlog (7> + K+ 1) (12)
(1) m < ¢1(3/8): It is easily verified that the right adjacent (1= 22)Pmax
of m satisfiesr(m) > ¢;(1/2), as otherwise Now, let P*™ be then-product of P*, and write
- / , (@) 1 -
m+ 2r(m) —m) €T R (P) = R (P) < RE (PY) = ~D(P™||uf)

contradicting the maximality in the definition of the right

n

adjacent. Therefore in this cagg contains no forbidden ® 1 E (D(P+|\uf/(-|X’“_1))>
points of . "=
2) m > 3/8): By our assumptiomn < ¢, (1/2), hence c 1 1
(2 m > 1(3/5): By ptionn < ¢,(1/2) O b1+ Liog L S
e1(1) —pr(1/2) o Te
r(m) —m > 5 W k=1
d 1\ 1
Rewriting, we have < 2log (g) Pmax (leg (7(1 — 2€)pmax) + K+ 1)
er(1) —pr(1/2)
Sl it 1
r(m) >m+ 5 > ¢1(5/8) + 08 T
. . . (C)
and therefordr contains no forbidden points. 2 91og (%) pl <2d10g( ) ke 1) e
. pmax

Returning to the proof of Theorel 2, define an extendéthe transitions are justified as follows:
alphabet¥* = X U{z,zr} wherex, zr are twofictitious (@) Lemmdy.
symbolsLet P € #(X") be the corresponding extension ofb) The chain rule for the divergence, and the fact tRat’
the sourceP to X, assigning zero probability to the fictitious s a product (memoryless) distribution.

symbols. For0 < & < pmax, let P € &(X™) be a source (c) GivenXx*!, ;£ follows P~ with an extra multiplication

with the following symbol probabilities: by ¢ if and only if X*~! is such that there is an
N (1-2)P(z) z€X insertion. Hence the the expected divergence gi¥émn!
Pl (z) = { c z € {zr, xR} always yields the ternD(P*||P.F), and an extrdog1/e

. multiplied by the probability of an insertiowy,.
Clearly, max P (z) = (1 — 2¢)pmax < 75 andv(P*,PF) = (d) The bound forw;, given in [I2), andD(P+||PF) =
. Let < be any order ofX. Since P:"(z) < L for log L.
. —4E
all z € X%, and since by Lemma L& .| = [Ir| = [I|/ (e)log L <d4cfor0<e< L.
.. . 1-2e — 16
8, then it is easy to see there exists a order of X+

that preservesc over X, such that the arithmetic encodé&r

Settinge = p¢, .., we get:

w.r.t. <t matched toP has the fictitious symbols,zpr g{i’(P) <2opd (d log( )+ K+ 1) dlog +ap?
mapped into intervals contained Iff (z"); and Z¢(2")pg, B max max
respectively. If the condition omp,,., is not satisfied, then d ( ( ) )2

we can always aggregate a few symbols into a super-symbol, < 2Pmax|dlog Do tr+tl (13)



Finally, we address the case wharg., > % As men- Taking the limit asd — oo, and since there is only a
tioned before, we aggregate a minimal number of sourpelynomial number of types, we obtain
symbolsk into a super-symbol, such thaf . < -. This

means thal < k < | y/>— | We now carry out the above lim - logP (a e ¢ (XY xnd — "‘i)
procedure for thé:- proéuct alp abet. However, since decodmg e 1
is performedk symbols at a time, we set our delay threshold>  inf {D(QHP) + H(Q) + min (D(QHP),log )}
to bed = | 4! — 1|. Substituting the above int (13) we get QEZ(Y) Pmax

& (p ~ N 2 Let V(Q) denote the function over which the infimum above is
R, (P) < 2pmax (dlog(z/pmax) + K+ 1) taken, and assume without loss of generality tRas strictly
< 2pt—clPmax) ((d — ¢(pmax)) 10g (2/pmax) + £ + 1)>  NONZErO OVERrY'. V(Q) is continuous and the infimum is taken
over a compact set, hence is attained for sapiec &(X).
B Suppose thaD(Q*||P) > logl/pmax. Let x € X be such
Remark 7:The scheme described above also allows thkeat P(z) = pmax, and suppose there exists € X such
encoder to change the delay constraintthe fly by inserting that P(y) < pmax @and Q*(y) > 0. Generate a perturbed
a suitable fictitious symbol in accordance to the modifiedistribution @ by increasing the probability assigned by
constraint. Once the decoder is made aware of this chan@¢, to x by some3 > 0, and decreasing the probability
both encoder and decoder need to simultaneously adjust #ssigned byQ* to y by the same3, leaving the other prob-
probability of the fictitious symbols. abilities unchanged. Clearly, we hav®Qf||P) + H(Q') <
D(Q*||P)+H (Q™). By continuity, there exist§ small enough
such thatD(QT||P) > log1/pmax- HenceV(QT) < V(Q*)
for such g, contradicting the minimality of@*. If such y
Theorem 3:The inf-redundancy-delay exponent for aloes not exist, therP(x) = pmax Over the entire support

B. An Asymptotic Result

sourceP is lower bounded by of Q*. Therefore, D(Q*||P) = log1l/pmax — H(Q*) <
log 1/pmax, in contradiction to our assumption. We conclude
E(P) > H»(P) that D(Q*||P) < log1/pmax. Hence,
Proof of Theoreni]3:We construct a unit delay encoder ) 1 ]
for the product sourcé&? using fictitious symbols in a similar Jim — = logP (a € I8 (X )| X = fnd)
way as done in Theoreld 2, with an additional random coding = min {2D(Q||P)+ H(Q)} = Hy(P)
argument. Letc be a order oft'? such that all super-symbols eP(X

in the same type class are adjacent (and otherwise arbitral
Let <,. be a new order which is obtained byratation of
the 0rder< such thaty? is the smallest element w.r& g
and the such that the largest element satisfyifig< yd is
the largest element w.r.& .. Finally, let <+ be the order

of x4+ L' xdy {z; 2p} that preservesc,q over X4, such
that the arithmetic encodeérw.r.t. <, matched taP? has the E (R(P)) = O (274H=(1)) (15)

fictitious symbolszy,, zr mapped into intervals contalned in _ o o
Z¢(z"), andZ€ (2™)g, respectively, and are of the minimal@nd thus there exists a deterministic encofleaichieving at

order satisfying this. least that expected performance, concluding the proof.m

Let us now draw an i.i.d. sequen¢®?, Yy, ...) with a
marginal P¢, independent of the source sequence. At time
instancek (where time is now w.r.t. the product source),
we use an arithmetic encoder w.r.t. the random ordeg, In this section we provide an upper bound for the sup-
and matched taP?. Denote the associated random intervaredundancy-delay exponent faimost anymemoryless source,
mapping encoder by It is easy to see that for any pointwhich is meant w.r.t. the Lebesgue measure over the proba-
a € I¢(2™?), the probability that the interval correspondingility simplex.
to a type@ will include a is upper boundeg? plus the Theorem 4:For almost any memoryless sourBe the sup-
probability of the type clas§,, underP?, where by Lemma redundancy-delay exponent is upper bounded by
the latter is upper bounded &y ?P(QIP) By the same

Where Lemma&]3 was invoked in the last equality. Continuing
this line of argument, we can essentially replace, with
2-d4H2(P) for d large enough, throughout our proofs. There-
fore, the redundancy averaged over the ensemble of random
d-delay constrained encoders is bounded by

V. AN UPPERBOUND FORE(P)

Lemma, the probability of any super-symbol within the type E(P) < 8log (m> (16)
C|assTQ is 2*d(D(QHP)+H(Q))_ Thus, - Pmin
P (a € 76 (XD xnd — Ind> Rema_rk 8:Note that [[I6) cannot hold for all sources, e.g.
for 2-adic sources we can have zero redundancy with zero
< S0 (27P@P) 4 pd )2 dP@IPHHQ) delay, hence an infinite exponent.
Qezd(X) Remark 9:When restricted to interval-mapping encoders

(14) only, a tighter upper bound &flog (1/pmin) holds.



A. Proof Outline Namely,d; is the maximal distance between two consecutive

Since the proof is somewhat tedious, we find it instructii@rbidden points in somé;,, normalized by the measure &f
to provide a rough outline under the assumption that tigat is smaller thamg,;, /4.
encoder admits an interval-mapping representation (rétiaa Lemma 14:rq(z") > dze (yn)
a generalized one). This assumption will be removed in the Proof: Let [ = I¥(z™) throughout the proof. Let
proof itself. Due to the strict delay constraint, at any time d def argmin & (y]2")
instance the encoder must map the neéxtsymbols into yleyd d
intervals that do not contain any forbidden pdﬂnt‘ﬁypically def
(for almost every interval), we will find an infinite number ofand lety = u§(2%z™). If v < &7, thenz? has been assigned
forbidden points concentrated near the edges, with a typigdth a measure at least four times smaller than its prokgbili
“concentration region” whose size depends on the specif?c{zd). Thed-instantaneous redundancy can be lower bounded
interval. Clearly, the distances between consecutive tpoi@s follows:
diminishes exponentially to zero. Therefore, mapping syisb . p @ 4 (b) 4
to the concentration region will result in a significant métoh ra(z") = D(P%||pa(-|z"™)) = D(P(z)[l7) = D(phiallv)

between the symbol probability and the interval length, and o 1& 1 pd ] 1—pd.
this phenomena incurs redundancy. This observation is made = Pmin 108 v (1= Piuin) log 1—7
precise in Lemma14. (©) pd

Now, loosely speaking, there are two opposing strategies > 2pli, — (1 —piin)ﬁ = Phuin = 01
the encoder may use when mapping symbols to intervals. Pmin

The first is to think short-range, namely to be as faithful t§) (&) we _have used the data processing inequality for the
the source as possible by assigning interval lengths Mosgp’vergenc@. In (b) we have used the fact that< pf;, <
matching symbol probabilities (within the forbidden paintP(2?) together with the monotonicity of the scalar relative
constraint). This will likely cause the next source intéria €Ntropy. In (c) we have usddg(1—p) > —3£, for0 <p < 1.
have a relatively large concentration region, resultingaim  If on the other hand, > 4;, then all of thed-fold alphabet
inevitable redundancy at the subsequent mapping. The decBﬁS bgen assigned to a measure at mostj; which results
strategy is to think long-range, by mapping to intervalshwitin & d-instantaneous redundancy lower bounded by

a small concentration region. This in general cannot be done n

while still being faithful to the source’s distribution, imee ra(e") 2 log 1— 5,

this strategy also incurs in an inevitable redundancy. atten -
observation is made precise in Lemfnd 18. Our lower boupdA numbera € [0,1) is called (m, £)—constrainedif
results from the tension between these two counterbalgncin

sources of redundancy_ a=20.00...0 l(bgf) 00...0 d)

m/’(a) m l

>drloge > d;

B. Proof of Theorerll4 wherem/(a) is the length of the zeros prefix af and ¢ is
In light of Lemma[®, we can restrict our discussion tehe “don’t care” symbol. Thém, ¢)—constrained regiorC,,

generalized interval-mapping encoders of the fdrin (3). Hows the set of all such numbers. A numbee [0,1) is called

ever, we will find it more flexible to consider a broadefm,¢)-violating if

family of generalized interval-mapping encoders, saiigfy

the following conditions: a=0.00...01¢...¢0 d............ ¢ o... a7
(i) For any s € &x*, Z%(s) is a union of at most.Xx|< m’(a)  m_ ¢ bits, notall 0" or all '
intervaldl The (m, £)—violating regonvmj is the set of all such num-
(i) Foranys € X*, 2% € X4, I¢(sz?) contains no forbid- bers. The complemen?,,, = [0,1) \ V., is called the
den points of any of the intervals comprisifg§ (s) (m, £)—permissible regionDefine the regio
Let I C [0,1) be a finite union of disjoint interval§l; } <, . def — def —
Define het LCr¢ = (—10gCrmy), LV S (—logVim.e)
def LKJ la — b| ’ and let
an = J {1 b e 500, 0.0 n s =) b e, o D & oo
k=1 |I| Dfn?l = <Lvm,€ - LCmJ) ) Dfn?l = <D£n,)f - DSn?E)
and let The following two lemmas are easily observed.
51 = 6:1(P,d) d:efmax{a € A(I):a < pt. /4} Letnma 15:let u > 0. If a € V,, 0 andb € Cyy, 0 Where
£ < ?, then
9As mentioned in Remark] 6, avoiding forbidden points is notags a —m’ _ Y a . _ ¢
necessary condition. However, in the next section we vetifg is not a |a - b| >27" (@ 2 (m+o) 2 5 -2 (m+6)
restriction.
%OTO_ disambiguate the statement, we cIari_fy that any two walerwhose 12Recall thatyy(-|z™) sums to at most unity, hence can be complemented
union is an interval are counted as a single interval. to a probability distribution by adding an auxiliary symhelto X4 and

1INote that this is satisfied byl(3), Sinbﬁ'ﬂn(lg(sxd)) is always contained defining P4(w) = 0.
in one of the intervals comprising® (s). 13The log and (-) operations are taken pointwise on the set elements.



Lemma 16:1f I,J C [0,1) are each a union of at mo3f Proof: We will assume hereinafter that < %pmin. Let
intervals of size no larger than each, then(I — J) can be vy, z be the symbols attaining, and define a transformation
written as a union of at most/2 + 1 intervals of size no larger o : 2¢(X) — 24(X) on types:
than 2r each.

The (m, £)—permissible region within the intervgl/2,1) is Q(x) xe{y,z} V Qly) =
comprised o2™~! + 1 subintervals. By definition, the size of ¢(Q)(z) = -1 r=y AN Qy) >0
each is upper-bounded ky (™' +m+0+1_ Applying (— log(-)) 1
to all such intervals in th¢l/2,1) interval (corresponding to (20)
m’ = 0) will stretch each of them by a factor of at mosiNamely,o exchanges one appearanceofith the appearance
2loge < 4. All other permissible intervals (those with’ > 0f z as long as this is possible, i.e., as longHg) > 0. Now,

0) coincide on the unit interval after applying tie-log(\)) ~SUPPOS&l > o= SO that [(1B) is satisfied. Noting that
operator. Hencd.V,, . can be written as a union of at mosthe setA¢ o, 1S a union of type classes, l6t € 24X, P) be
2m=1 1 1 intervals, each of size at mo®t (™ +9+3, A similar a type such thaTQ N A% ;= 0. Clearly o(Q) # Q, and for
argument shows thatV,, g can also be written that vv@z any z? € To andz¢ e T Q)

Appealing to Lemmﬂﬁpmyg can be written as a union of at

most(2™~14-1)2+1 intervals, each of size at mazt (" +)+4, (=log P(7%)) = (—log P(z%) + \)
Applying the Lemma again, we find thmff?z can be written
as a union of at mog(2™ ! +1)?+1)24+1 < 2™+l intervals Now since A ¢ D(Q) 1 foranym > mo and > po,

each of size at mog—(m+H+5 Hence,

) .
and sinces/a > Mo, then)\ ¢ D(mﬂ (] Recalling the

|ij?g| < 24mAL 9= (mF0)+5 _ 93m—L46 (18) definition ofD[ .15 @nd appealing to Lemnid 1, we have

A sourceP is called (1o, \)-regular if there exists a pair that (—log P(¥7)) ¢ D((L)(ﬂ rpd]’ hence we conclude that
of symbolsy, z € X andmg € N such that for any: > o o(Q) € A‘f!ﬁ. Therefore, since is one-to-one when restricted
to 24(Xx, P), theno uniquely matches any type i?d(X, P)
\ = < > ¢ U Dmﬂ (19) thatis outsided?, 5, to a type that is insidet, ,
Let us now get a handle on the variation in the probability
of a type class incurred by applying It is easy to check that
Remark 10:0 e D(z)m 1 for any m and u, hence no for anyQ e L@ﬁ()@p% andn large enough,
source can béug, 0)—regular. Since for a dyadic sourge= 0
for any pairy, z, a dyadic source is nevér,, \)-regular. (T > P(T < (P(y) —e)d ) ( (z))
The following two lemmas establish some properties of (To@) = P(Tq) (P(z) +e)d + 1 (y)
(1o, \)-regularity. - - d
Lemma 17:Let uo > 3. Almost any source i, \)- > P(Ig) < P() ) (1 - )
regular for some\ > 0.
Proof: Note thatcm 41 C Ce @and Vo, 41 O Vo, - P(TQ)( +0(e) +0(d ))
henceD( ) . C D - By (18), we have that for any, > 3

Namely, the probability of a type class for a tyge €

0o 24(x, P) under P, remains almost the same after applying
. L @) .
i U U ,“mﬂ = lim U D o. Therefore:
W= o M=mo m=mg
~ P(A3 5)
< lim Z om(3—10)+6 :
mo—>00
m=mg <
9mo(3—po)+6 =P U To | + Z P(Tq)
= lim ———— =0 QEPH(X,P) QEPLX,P)ToNAL =0
mo—oo 1 — 23—Ho '
P(Tr@)
The statement of the lemma follows easily. ] <o(1)+ Z 1+0(e) +0d 1)
Define the following set: QEPL(X,P),TQNA; ;=0
def f d _ pd . _ d (1) P(Tq)
Aaﬁ_ {96 e X (—log P(x )>¢D(mﬂ,(ﬂd1} <o(l)+ Z 1500 1+ 0T
Q:TQCAZ,B
. i - P(A? )
Lemma 18:SupposeP is a (uo, A)-regular source. Then — o ]

for any a, 5 > 0 with 8/a > g 14+ 0(e) + 0(d~1)

Where we have used the AEP (Lemiih 2) in the second

inequality. The result now follows by rearranging the terms
1)t can in fact be written as a union of less and smaller intspJaut that above, taking the I'_m't _ad — oo, and noting that > 0 can

adds nothing to our argument. be taken to be arbitrarily small. [ |

. d >
liminf P(AG 5) >

N =



From this point forward we assume is (ug, A)-regular
with 1o > 3. Let u < ¢/, and define the indexed sets

def{ e &R oze oy > phit )
C(:vk) = {y e x?. 078 (zhyd) >pﬁu‘f]}
For z* € By, Lemma1% implies that
ra(a®) > phi, (21)

On the other hand,z* ¢ B, implies that the
length of each interval comprising@®(z*) must be in

C"dlog(l/pmin)—la“"dlog(l/pminﬂ' Slnce there are at mo$'?(|d
such intervals, it must be that

178 (2%)] € Crad),[8d] (22)
where
o Eog(1/puin) +log| x|, B % j110g(1/pmin) — log | X|
Similarly, if y? ¢ C(«*) then
78 (2"y*)| € Craar. a1 (23)

where dof
e
B = 1 10g(1/pmin) — log | X|

For Lemmd 1B to apply, we set p’ such that3/a > 1o and
B'/a > pp. This yields the constraints:
(ko +1)log |X|

10g (1/pmin)

In what follows, we will think of’” as arbitrarily close tqu.
For anyz* ¢ B, we have:

f > > po +

E (ra(X*) + rq(X*H9) | X* = 2F)
2

Wi

> ’P(yd) - ui(ydlw’“)’

ydeAd 3NC(z*)

+ Pl P(C ()

P(y?)|Z8 (a*)] — |Z° (z*y)
|78 (%))

deAd mc

+p"dP C(a")

min

(.2
% |

VB

3 Pyh)|Z¢ (=) plad1+6d]

2 mll’l

y GAd ﬂC(LEk)

+ Pl P(C ()

<p 5N C( :ck))> ROt L pid k)

2 L[(peat, 0T pctaby] e
() 2
> i [( (AL g) — P(AL 5N C(z"))) "+ P(AS 50 C(a"))

2d(u+1) log (1/Pmin)+4
mm

® 1 5 . _
> 1 (P(A55)" 2t 1) 1og (1/pmin) -4

min

1 . »
(16 + 0(1)) -de.(““)l g (1/Pmin)+4 (24)

min

The inequalities are justified as follows:

(a) Pinsker’s inequality for the divergence was used, togret
with Lemma[1# and the nonnegativity of(-).

(b) (22) and [(ZB) hold for all the union-of-intervals length
in the summation. Sincé—1log P(y%)) ¢ D’(—L)tﬂ,’—ﬁd“ for
eachy? in the summation, then appealing to Lema 1,
we have thatP(y?)|Z¢ (¢*)| € Viaay,[5741- The inequality
now follows by virtue of Lemma_15.

(c) P(ANC) = P(A) - P(ANC) andP(C) > P(ANC).

(d) i/ can be taken to be arbitrarily close to

(e) LemmdIB was used to lower bound the probability of the
setA? ;

Combining [21) and{24), we get:
E(ra(X*) + ra(X**%)

1 o )
> min (p“]‘fn, (16 + 0(1)) ,deiE]qul)l g(l/pmm)+4)
1 o _
(16 0(1))  poag D108 (1 pmin) 4

This holds for anyd-constrained encodef € ¢,, hence and
plugging into Lemma&17 we get

RE(P) = liminf ﬁld iE(Td(Xk) + g (X))

1 L 2d(ut1) log (1/pmin)+4
> . 1 L. ' min
= (16 of )) 94 ~Pmin

This lower bound holds for anys > pg + %

Moreover, by Lemma-7 almost any sourceig, A)-regular
for any o > 3. Therefore, we have that for almost any source

1 1 8dlog(2XL)+o(d)
5(P) > (4 0(1)) - o pe )

and hence

E(P) <8log (m)

Pmin
As mentioned in Remark] 9, if the encoder is restricted to
be interval-mapping then a tighter upper bouidg(1/pmin)
holds. In this cas&® (-) is a single interval rather than a union
of |X|¢ intervals, hence the proof remains the same up to the
substitution|X| < 1.

VI. CONCLUSIONS

The redundancy in lossless coding of a memoryless source
incurred by imposing a strict end-to-end delay constraias w
analyzed, and shown to decay exponentially with the delay.
This should be juxtaposed against traditional results irs®
coding, showing a polynomial decay of the redundancy with
the delay. In the traditional framework, the delay is idfed
with the block length or the maximal phrase length, which in
our framework imposes a harsh restriction: The decodertis no
allowed to start reproducing source symbols in the midst of a
block/phrase, and the delay is repeatedly nullified at thet en



of each block/phrase. This means the encoder is reset @& themntradiction. Hencéin(Z¢(s)) = [£(s)) for any s € X,
instances, i.e., the prefix has no effect on its future beaviverifying the minimality property. ]
Loosely speaking, the gain of exponential versus polynbmia  Proof of Lemma&]8:An arithmetic encoder matched to the
is reaped via a tighter control over the delay process, ngakisourceP is well known to achieve zero asymptotic redundancy
such reset events rare. [6], and a bounded expected delay [7], [8], [9]. Therefore

Nevertheless, the block/phrase based codes allow the en-
coder to start-over in roughly constant intervals, andefoe
such coding scheme are more efficient ipracision limited ] ]
setting. The more general encoders discussed in this paper ¢ Lt € € £(P). Define B, to be the set of all suffixes that
hence attain their superior performance by allowing a finéflow decoding of any prefix with delay at moéti.e.,
precision for keeping the encoder’s state. However, it khou def oo o . <& oo X
be noted that only a finite precision is necessary to attain Ba ={y™ € X% :07(s,y™) = d,¥s € A7}
exponentially decaying redundancy, and that precisionbean The lossless property implies that for any> 0 there exists
easily derived from Lemmia_14. Therefore, the redundancy @flarge enough such that
our interval-mapping encoder when operating in a resource
limited setting is dominated by the larger of two sourcese Th P(Ba) > 1~-¢ (25)
aforementioned delay-precision constraint, and the Bater pefine B, to be the set of all prefixes iBy, i.e.,
complexity-precision constraint.

In our framework, we have isolated the impact of the delay By L zde xd: 2?2y e By)
on the redundancy by letting the transmission timeo to

inf ®(P)< inf R (P)<0
EcL(P) EeB(P)

S . L : ote that by the very definition aB,, each prefix inB; must
infinity. This also makes sense complexity-wise, since tﬁa\léppear inB, with all possible suffixes. Thereford(By) —

per-symbol encoding complexity is determined primarily b
the delay, and not by the length of the encoded sequence%ﬂ\Bd) = 1—¢ for d large enough. Furthermore the lossless

practice however, a finite transmission time forces the daco propert)r/L also |mplles that for any” € By, the BV codebook

to terminate the codeword, which in turn incurs an additiona " &7 = {0,1}" defined by

penalty of_O(nfll). in redundancy. Settingl = O(logn) . C.a(a™) d:efg(xnzd) (26)
renders this additional redundancy term commensurate with

the redundancy incurred by the delay constraint. Therefoie a prefix-free lossless codebook, and hence must satisfy
our results imply that the delay can be made logarithmicén tfE|C.« (X™)| > nH(P). Write:

block length, while maintaining the same order of redunglanc e 1 4 4
Conversely, for almost all sources this is the best possible Ly+q(P) = ntd Z P(z%) Z P(a")|E(x"2")|
tradeoff between block length and delay. A similar stateimen zdexd zrexn
in the context of universal source coding was mentioned in > 1 Z P(z4) Z P (z"2%)|
[18], though for a somewhat different definition of the delay n+d e i

There is still a large gap between the lower and upper 1 !
bounds on the redundancy-delay exponent, where the upper > > PEHEC.(X™M)
bound seems particularly loose. Furthermore, it remairiseto 24€By
seen whether the zero-measure set of sources for which the 1 _ (I—¢e)n

> - P(By) - nH(P) > H(P)

upper bound may fail to hold, can be reduced from the set of “n+d
sources that do not satisfy our intricate regularity cdoditto

. o . Therefore,
the set of dyadic sources only, which is the smallest passibl

n+d

1—
R = liminf RE, ,(P) > lim (( f;n - 1) H(P)
n—oo n—00
APPENDIX "
= —cH(P)
Proof of LemmdJ6: Let us first show thaf® satisfies e

the conditions for a generalized interval-mapping encoddmis holds for anye > 0, henceR™ > 0. u
7€ (sz) C Z¢(s) is immediate from the consistency property. ~ Proof of Lemmd9:Let £ € &4, and set any > 0. We
Lety, z € X be distinct, and assume tH&f (sy)NZ¢ (sz) # 0. show that there exists another encodlee ¢, such that
Then since any two binary intervals are either disjoint or —£'

£
one is contained in the other, then without loss of gengralit R(P) <R (P)+e
there existz?, 7% such thatl€(syz?)) C [£(s22%)), i.e., such which immediately establishes the Lemma. The encaier
that £(sz2%) < E(syx?). Sinced®(-,-) < d, it must be that will be constructed by properly terminating. Setn large
sz =< syz? , in contradiction. This verifies the disjoint nestingenough such that both
property. ¢

By the consistency propert§? (s) C [£(s)). Suppose that n > d + min{d, 2dR (P)} (27)
there exists a binary intervdb) such thatZ¢(s) C [b) C €
[E(s)). Then&(s) < b = E(sz?) for any 2¢ € &9, and and
hence by the integrity property it must be that £(s), in RE(P) < RE(P) +¢/4 (28)



For anyz"~¢ € xn~4, define

s (") € argmin{jE (@02}
zdexd

namely, y?(z"~9) is the suffix that results in the minimal

codelength after having encodeti—?. Clearly,

n~EE(X" (X)) < Li(P) (29)

Construct the new encodéf as follows. For any: < n—d,
let & (zF) = £(2%), and let&’ (z"~4) = £(an~dyd(zn9)).
For k > n—d, divide z* into blocks of equal size — d (with

the last one possibly shorter), apply the rule above to each
) be the concatenation thereof. Using

separately, and lef’ (z*

(i) For any fixedd € N,
1 & i
E;Erd(x )
o ( S 7>>
k+d
4= XEre)
&
_ 4 vk
= H(P)+nd;Eloguk(X)
d
——ZElogunJr (Xn+k)

<O(n™) -

=0(mn )+ (
<R +0(n

H(P) ~ “Elog S (X")

+d d
nn )Rngd""

H(P)

Similarly,

L S Bra(X*) > 0(™") — H(P) - “Blogus (x7)

=RE+O0mn™ N >R +0(n™)

follows from the assumption (27). Now, from the concatedate ]

(29), we have
R 4(P) = (n—d) 'EIE'(X")| - H(P)
@ n e &
< SLHP) - H(P) < omi(P)
S £ n
<we(p)+ (ot p) ¢ )
(2 RE(P) + ¢
where (a) follows from[(29), (b) follows froni_(28), and (c)
construction we have that for any > n —d
o, (p) < =Dy gy ()
m+n—d /¢
< (e () 4o
and hence
ﬁg,(P) = limsup RE, (P) < RE(P) +«
as desired. [ |
Proof of Lemmal7:
0]
Ry (P) = Ly, — H(P)
1
= —E (~log [bin(Z°(X™))|) — H(P)
1
< — (B (= logpu®(X")) = H(P"))
_ 1 n P(a")
= MGZXH P(z"™)log (ug(a:"))
= R} (P)

(i) Consider the generalized interval mapping repredanta

of &£ given in Lemma[6. This representation satisfied”]

¢ (z™+4) C Z¢(2™). Thus similarly to the above:

RE(P) = —E (—log |bin(Z%(X™))|) — H(P)
>+ (B (- log st (X"4) = (P )

<n+d

n

) RS a(P)+ LH(P)

Proof of Lemma&_1l0:1t is easy to see that the number of
t-left-adjacents ofp that are larger tham + ¢ is the number
of ones in the binary expansion ¢f — a) up to resolution.
Similarly, the number of t-right-adjacents pfthat are smaller
thanb — ¢ is the number of ones in the binary expansion of
(b —p) up to resolutiony. Defining [z]* d:Efmax((:ﬂ,O), we
get:

—a b —
S5(1.p)| < [log P + [log =1*
2—|—10g7( géb ) ,0<p—ab—p
1+ log b=dl a' , 0.10.
b — al
< 1+42log——
]
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