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Delay and Redundancy in Lossless Source Coding
Ofer Shayevitz, Eado Meron, Meir Feder and Ram Zamir

Abstract—The penalty incurred by imposing a finite delay
constraint in lossless source coding of a memoryless sourceis
investigated. It is well known that for the so-called block-to-
variable and variable-to-variable codes, the redundancy decays
at best polynomially with the delay, which in this case is identified
with the block or maximal phrase length, respectively. In stark
contrast, it is shown that the redundancy can be made to
decayexponentially with the delay constraint. The corresponding
redundancy-delay exponent is shown to be bounded from below
by the Rényi entropy of order 2 of the source, and from above
(for almost all sources) in terms of the minimal source symbol
probability and the alphabet size.

I. I NTRODUCTION

It is well known that any memoryless source can be asymp-
totically losslessly compressed to its entropy [1]. However, in
the presence of resource constraints, a rate penalty, referred to
as redundancy, is unavoidable. In this work we focus on the
redundancy in the encoding of a memoryless source incurred
by the imposition of astrict end-to-end delay constraintd, i.e.,
under the requirement thatn-th encoded symbol must always
be perfectly reproduced at the decoder by timen+ d.

Traditionally, lossless source coding is divided into three
classes: 1) Block-to-Variable (BV) codes (e.g. Huffman code),
where a fixed block of source symbols is encoded into a
variable length codeword, 2) Variable-to-Block (VB) codes
(e.g. Tunstall code), where the source sequence is parsed
according to a code-tree, and each phrase is encoded into a
fixed length codeword, and 3) Variable-to-Variable (VV) codes
(e.g., Khodak codes), where the source sequence is parsed and
each phrase is encoded into a variable length codeword. In the
BV regime, a delay constraint is usually interpreted as a block
length constraint, and the redundancy is known to decay at
best polynomially with the delay [2][3]. In the VB/VV regime
(where the delay is a random variable depending on the source
sequence) the delay constraint is translated into a maximal
phrase length constraint, and the redundancy again decays at
best polynomially with the delay, though sometimes faster than
in the BV case [4][5]1.

In a delay constrained setting, the traditional framework
above admits two (related) limitations. First, even within
that framework, there is an apparent disparity between delay
and block/phrase length. The reason block/phrase lengths are
identified with delay in the first place is since a repeated useof
the same code allows the source reproduction at block/phrase
length intervals. However, the delay can sometimes be sig-
nificantly shorter, for essentially the same reason: Consider a
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1These results hold even in the weaker case of an expected delay constraint

BV code of block lengthn = kd obtained by concatenating
k short BV codes of block lengthd. Clearly, the decoder can
reproduce symbols with a delayd, rather than the much larger
delayn. Waiting until the end of the block would mean the
encoder is “holding back” bits it is already certain of, clearly
an undesirable trait in a delay constrained setting. Of course,
the redundancy associated with such an encoder still decays
polynomially withd, which brings us to the second limitation.
In the traditional setting, the encoder never looks beyond the
end of the current block/phraes, in the sense that the source’s
prefix has no effect on the output of the encoder beyond that
point. The encoder is therefore being “reset” roughly everyd
symbols. Loosely speaking, the penalty incurred by forcing
these regularly recurring reset points, is the source of the
polynomial delay of the redundancy.

With these observations in mind, we recall a lossless coding
technique of a different flavor that does not suffer from
the above shortcomings. Inarithmetic coding[6], a source
sequence is sequentially mapped into nested subintervals of
the unit interval, with length equal to the sequence probability,
and the common most significant bits of the current subinterval
are emitted. This way, the encoder never holds back any
bits it is already certain of, by definition. Moreover, whereas
BV/VB/VV encoders never look beyond the end of the current
block/phrase, an arithmetic encoder always looks into the
(possibly infinite) future. Unfortunately, this comes at a cost
of an unbounded delay (though a bounded expected delay, see
[7], [8], [9]). Nevertheless, the notion of arithmetic coding
does point us in the right direction. In a delay constrained
framework, an encoder shouldby definition be sequential,
emitting all the bits it can at any given instance. Moreover,
a good delay constrained encoder should always strive to look
d steps ahead, avoiding “reset” points as much as possible.
As we shall see, these properties are nicely captured within
an interval mapping type framework.

In this paper, we introduce a general framework for lossless
delay constrained coding of a memoryless source, and study
the fundamental tradeoff between delay and redundancy. We
show that, in stark contrast to the polynomial decay within
the traditional framework, the redundancyR(P, d) associated
with a memoryless sourceP over a finite alphabetX , can be
made to decayexponentiallywith the delayd. Specifically, we
show that2

Å

pmin

|X |

ã8d

/ R(P, d) / pdmax

wherepmin, pmax are the minimal and maximal source sym-
bol probabilities, and the lower bound holds for almost all

2By ad / bd we meanlim infd→∞
1
d
log

bd
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> 0.
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sources3. We then tighten the upper bound and obtain

R(P, d) / 2−dH2(P )

where H2(P ) is the order2 Rényi entropy of the source.
For our upper bound, we introduce a construction based on
mismatched arithmetic coding in conjunction with a fictitious
symbol insertion mechanism. For our lower bound, we provide
a useful “generalized interval mapping” representation for
delay constrained encoders.

The paper is organized as follows. Our framework is intro-
duced in Section II, and some basic lemmas are derived. In
Section III, the delay profile of mismatched arithmetic coding
is analyzed. This analysis is then applied in Section IV where
a lower bound on the redundancy-delay exponent is derived. In
Section V, a corresponding upper bound on the redundancy-
delay exponent for almost all sources is presented. Some final
remarks are given in Section VI.

II. PRELIMINARIES

A. Notations

We write s � t to indicate that a strings is a prefix of
a string t, and s ≺ t to indicate thats � t and s 6= t. The
Lebesgue measure of a setA ⊆ R is denoted by|A|. The

fractional partof a numbera ∈ R is denoted by〈a〉
def
= a−⌊a⌋.

Thedifference modulo-1〈A−B〉 between two setsA,B ⊆ R

is the set of all numbers〈a− b〉 wherea ∈ A , b ∈ B. For any
function f : R 7→ R and any setA ⊆ R, we write f(A) for
the image ofA underf . All logarithms are taken to the base
of 2. A total order of a finite set is called simply anorder.

The following lemma is easily verified.
Lemma 1:Let A,B ⊆ R be any two sets. Then
(i) If b ∈ B and 〈c〉 6∈ 〈A−B〉, thenb+ c 6∈ A.
(ii) If b ∈ B and 〈log c〉 6∈ 〈logA− logB〉, thenbc 6∈ A.

B. Sources

Let X be a finite alphabet of source symbols. The set of all
length-n strings of symbols fromX is denotedXn, the set of
all finite length strings is denotedX ∗, and the set of all infinite
length strings is denotedX∞. We sometime use the notations
xn def

= x1x2 . . . xn andxn
m

def
= xmxm+1 . . . xn for finite source

strings, where the convention is thatxn
m = ∅ when m >

n. A discrete memoryless source (DMS)P is defined by a
probability mass function (p.m.f.){P (x) : x ∈ X} which
naturally induces a product measure overX ∗, via P (st) =
P (s)P (t) for all s, t ∈ X ∗, wherest is the concatenation of
s andt. Specifically, we denote byPn the p.m.f. obtained by
restrictingP to Xn. An infinite random source string emitted
by the sourceP will be denoted byX∞. The entropyof the
source is denotedH(P ). The kullback-Leibler distance, or
divergence, between two sourcesP,Q over the same alphabet
is denotedD(P‖Q). We writeP ≪ Q if Q(x) = 0 implies
P (x) = 0 for all x ∈ X . The set of all p.m.f.’s overX
is denotedP(X ). The type of a sequencexn ∈ Xn is the
p.m.f. Pxn ∈ P(X ) corresponding to the relative frequency

3Note that such a lower bound cannot hold for all sources, since dyadic
sources can attain zero redundancy with zero delay.

of symbols inxn. The set of all possible types of sequencesxn

is denotedPn(X ). The type classof any typeQ ∈ Pn(X )

is the setTQ
def
= {xn ∈ Xn : Pxn = Q}. For ε > 0, let

Pn
ε (X , P ) ⊆ Pn(X ) be the subset of all typesQ for which

‖P −Q‖∞ < ε.
The following facts are well known [12].
Lemma 2:For any typeQ ∈ Pn(X ) and anyxn ∈ TQ:
(i) P (xn) = 2−n(D(Q‖P )+H(P )).
(ii) |Pn(X )|−12nH(Q) ≤ |TQ| ≤ 2n(H(Q).
(iii) |Pn(X )| =

(n+|X |−1
|X |−1

)
≤ (n+ 1)|X |.

(iv) (AEP) For anyε > 0,

lim
n→∞

P

Ñ

⋃

Q∈Pd
ε (X ,P )

TQ

é

= 1

The Rényi entropy [13] of orderα of a sourceP is

Hα(P )
def
=

1

1− α
log
∑

x∈X
(P (x))α

Lemma 3 (From [14]):The Rényi entropy of orderα > 1
admits the following variational characterization:

Hα(P ) = min
Q∈P(X )

ß

α

α− 1
D(Q‖P ) +H(Q)

™

For 0 < α < 1, replace themin with a max.
For any two sourcesP,Q over the same alphabetX , we

define

ν(P,Q)
def
= sup

x∈X :P (x)>0

P (x)

Q(x)

The following is easy to verify.
Lemma 4:ν(P,Q) ≥ 1 with equality if and only ifP = Q.

C. Encoders

An encoder is a mappingE : X ∗ 7→ {0, 1}∗ such that
for any s ∈ X ∗, E(s) is the longest common prefix of the
bit strings{E(sx) : x ∈ X}. Namely, we are assuming the
encoder does not withhold any bits, at any given time it will
have emitted the longest prefix it was certain about. This will
be referred to asthe integrity property. Note that the integrity
property implies in particular theconsistency property, namely
that E(s) � E(sx).

An encoderE is associated with adelay function, which
returns the minimal number of symbols from a given (infinite)
suffix that needs to be encoded so that a given prefix can
be fully decoded. Formally, the delay function is a mapping
δE : X ∗ ×X∞ 7→ N ∪ {∞}, whereδE(s, x∞) is the minimal
k ∈ N ∪ {0} such thatE(sxk) � E(t) implies thats � t, for
any t ∈ X ∗. If no suchk exists, thenδE(s, x∞)

def
= ∞.

Thedelay profileassociated with an encoderE and a source
P for a given prefixs, is the following extended-real-valued
r.v.:

∆E(s, P )
def
= δE(s,X∞)

The delay profile associated with an encoderE and a source
P is then defined to be

∆E(P )
def
= sup

s∈X ∗

∆E (s, P )

Next, we define several families of encoders.



1) Lossless Encoders:An encoder is said to belossless
w.r.t. P (whereP is omitted when there is no confusion), if

P(∆E(P ) < ∞) = 1,

The family of all encoders that are lossless w.r.t.P is denoted
L(P ).

2) Bounded Expected Delay Encoders:An encoder is said
to admit abounded expected delay w.r.t.P (whereP is omitted
when there is no confusion), if

E(∆E(P )) < ∞

The family of all encoders with bounded expected delay w.r.t.
P is denotedB(P ). Clearly,B(P ) ⊂ L(P ).

3) Delay Constrained Encoders:An encoder is said to be
delay-constrained, if

sup
s∈X ∗,t∈X∞

δE(s, t) < ∞ (1)

More specifically, such an encoder is also said to bed-delay-
constrained, if the supremum above equalsd. The family of
d-constrained encoders is denoted byCd.4 Clearly,Cd ⊂ B(P )
for any sourceP .

4) Phrase/Block Constrained Encoders:An encoder is said
to be phrase-constrained, if for any x∞ ∈ X∞ there exists
a d ∈ N and an index sequence{ik ∈ N}∞k=1 such that0 <
ik+1 − ik ≤ d+ 1, and

δE(xik , x∞
ik+1) = 0 (2)

In this case we also say the encoder isd-phrase-constrained. In
the special case whereik = (d+1)k for all x∞ ∈ X∞, we say
the encoder isd-block-constrainedThe family of alld-phrase-
constrained (resp.d-block-constrained) encoders is denoted by
C
phrase
d (resp.Cblock

d ). Clearly,Cblock
d ⊂ C

phrase
d ⊂ Cd.

Remark 1:Any encoderE ∈ C
block
d (resp.E ∈ C

phrase
d )

corresponds to a (possible time-varying) concatenation ofBV
(resp. VV) codes with block length (resp. maximal phrase
length)d+ 1.

5) Interval-Mapping Encoders:A binary string bk ∈
{0, 1}k is said torepresenta binary interval

[
bk
) def
= [0.b1b2, . . . bk0, 0.b1b2, . . . bk1) ⊆ [0,1)

For any setA ⊂ [0,1) we writebin(A) to denote the minimal
binary interval containingA, i.e.,

bin(A)
def
=

⋂

b∈{0,1}∗:A⊆[b)

[b)

The following lemma is easily observed.
Lemma 5:For anyb, c ∈ {0, 1}∗,
(i) b � c ⇔ [c) ⊆ [b).
(ii) b 6� c andc 6� b ⇔ [b) ∩ [c) = ∅.

Let S
def
= {[ a, b) | 0 ≤ a < b ≤ 1}. An encoderE is said

to be aninterval-mapping encoder, if there exists a mapping
IE : X ∗ 7→ S, i.e., a mapping of finite source sequences
into subintervals of the unit interval, such that the following
properties are satisfied

4Note that growing dictionary encoders such as the LZ encoder[15] do not
belong to this family, as their delay grows unbounded.

(i) Minimality: [E(s)) = bin
(
IE(s)

)
for any s ∈ X ∗.

(ii) Disjoint nesting: For alls ∈ X ∗ and all distinctx, y ∈ X ,

IE(sx) ⊆ IE(s), IE (sx) ∩ IE(sy) = ∅

The minimality property means that an interval-mapping en-
coder emits the bit sequence representing the minimal binary
interval containing the intervalIE(s). It is easily observed that
the minimality and disjoint nesting properties together imply
the integrity property. The family of interval mapping encoders
is denoted byI.

Let < be any order ofX . A special case of an interval-
mapping encoder is anarithmetic encoder w.r.t. the order<
matched to a sourceP , which is defined as follows:

f1(x)
def
=

∑

y<x

P (y)

fn(x
n)

def
= fn−1(x

n−1) + f1(xn)P (xn−1)

IE(xn)
def
= [fn(x

n), fn(x
n) + P (xn))

We omit the reference to a specific order< when there is no
confusion, or when the statement holds for any order.

6) Generalized Interval-Mapping Encoders:Let S∗ be the
set of all finite disjoint unions of subintervals fromS. An
encoderE is said to be ageneralized interval-mapping encoder
if there exists a mappingIE : X ∗ 7→ S

∗ satisfying the
minimality and disjoint nesting properties above. The family
of generalized interval-mapping encoders is denoted byI

∗.
Clearly,I ⊂ I

∗.
The following lemma shows that anyd-delay-constrained

encoder admits a generalized interval-mapping representation.

Lemma 6:Let E ∈ Cd. Then E can be represented as a
generalized interval-mapping encoder with

IE(s) =
⋃

xd∈X d

[
E(sxd)

)
(3)

Hence,Cd ⊂ I
∗.

Proof: See the Appendix.
Remark 2:The representation in (3) is a finite union of

(possibly overlapping) binary intervals. It is worth noting that
an arithmetic encoder matched to a source cannot generally be
written that way, as some of its intervals may only be written
as an infinite union of binary intervals. This sits well with the
fact that generally, an arithmetic encoder has an unbounded
delay.

D. Redundancy

The (per symbol) expected codelengthat timen associated
with an encoderE and a memoryless sourceP is

L̄E
n(P )

def
= n−1

E|E(Xn)| (4)

whereXn ∼ Pn. The (per symbol) expected redundancyat
timen associated with an encoderE and a memoryless source
P is the gap between the expected codelength and the entropy
aftern symbols have been encoded, i.e.,

R
E
n(P )

def
= L̄E

n −H(P )



The correspondingsup-redundancyand inf-redundancyare
defined as

R
E
(P )

def
= lim sup

n→∞
R

E
n(P ) , R

E(P )
def
= lim inf

n→∞
R

E
n(P )

Let us define some useful quantities specific to generalized
interval-mapping encoders, which will enable us to bound their
redundancy in relatively simpler terms. A generalized interval-
mapping encoderE induces a measure overXn, defined by

µE
n(x

n)
def
= |IE(xn)|

and a conditional induced measure, defined as

µE
k (x

k|xn)
def
=

µE
n+k(x

nxk)

µE
n(x

n)

Define:

RE
n(P )

def
=

1

n
D
(
Pn‖µE

n

)

and let
rd(x

n) = D
(
P d‖µE

d (·|x
n)
)

be thed-instantaneous redundancy.
Remark 3:Note thatµE

n andµE
k(·|x

n) are not necessarily
probability distributions, as they may sum to less than unity.
However, for that exact same reason it still holds thatRE

n(P ) ≥
0, rd(x

n) ≥ 0.
The next lemma relates the interval-based notions of re-

dundancy defined above, to the actual operational definition
of redundancy of the associated generalized interval-mapping
encoders. This correspondence will allow us to think of
intervals instead of bits, and will play a central role in the
sequel.

Lemma 7:The following relations hold:

(i) For anyE ∈ I
∗,

R
E
n(P ) ≤ RE

n(P )

(ii) For any E ∈ Cd, there exists a generalized interval-
mapping representationIE (e.g., the one in Lemma 6)
such that

R
E
n(P ) ≥

Å

n+ d

n

ã

RE
n+d(P ) +

d

n
H(P )

R
E(P ) = lim inf

n→∞
1

nd

n∑

k=1

E(rd(X
k))

Proof: See the Appendix.
One would naturally be interested in the redundancy per-

formance that can be guaranteed by employing encoders of
different classes. In general, the expected redundancyR

E
n of

an encoderE can be negative for some, or even alln. However,
the sup and inf-redundancy are nonnegative for all lossless
encoders, and bounds in thed-block/phrase constrained cases
are known.

Lemma 8:The following statements hold5:

5Recall thatf(d) = O(g(d)) ⇒ lim supd→∞

∣∣∣ f(d)g(d)

∣∣∣ < ∞, and

f(d) = Ω(g(d)) ⇒ lim infd→∞

∣∣∣ f(d)g(d)

∣∣∣ > 0

(i) For any sourceP

inf
E∈L(P )

R
E
(P ) = inf

E∈B(P )
R

E
(P ) = inf

E∈L(P )
R

E(P )

= inf
E∈B(P )

R
E(P ) = 0

(ii) (From [1], [2] ) For any source

inf
E∈Cblock

d

R
E
(P ) = O(d−1) , inf

E∈C
phrase

d

R
E
(P ) = O(d−

5
3 )

(iii) ( From [3], [2] ) For almost all sources,

inf
E∈Cblock

d

R
E(P ) = Ω(d−1)

inf
E∈C

phrase

d

R
E(P ) = Ω(d−2|X |−1−ε)

whereε > 0.
We see that employing block/phrase-constrained codes for

compression under a strict delay constraint, the redundancy
decays at best polynomially with the delay constraint6. The
main contribution of this paper is to show that in fact, the re-
dundancy can be made to decayexponentiallywith the delay, if
the more general family of delay-constrained encoders is used.
This reveals a fundamental difference between block/phrase
length and delay in lossless source coding.

The following lemma shows that for an optimald-delay-
constrained encoder, the inf-redundancy and sup-redundancy
coincide.

Lemma 9:For any sourceP ,

inf
E∈Cd

R
E
(P ) = inf

E∈Cd

R
E(P )

def
= R(P, d)

Proof: See the Appendix.
Accordingly,R(P, d) defined above is called theredundancy-
delay functionassociated with the sourceP . The correspond-
ing inf-redundancy-delay and sup-redundancy-delay exponents
associated withP can now be defined:

E(P ) = lim sup
d→∞

−
1

d
logR(P, d)

E(P ) = lim inf
d→∞

−
1

d
logR(P, d)

Our main goal in this paper is to characterizeR(P, d), E(P )
andE(P ).

III. T HE DELAY PROFILE OFARITHMETIC CODING

Consider a case where a source is encoded by a mis-
matched arithmetic encoder, namely where the encoder’s in-
terval lengths match a different source (see Subsection II-C).
In the next theorem we upper bound the probability that the
corresponding delay profile exceeds a given threshold. This
result will serve as a tool in the next section, where we lower
bound the redundancy-delay exponent.

Theorem 1:Suppose a sourceP ∈ P(X ) is encoded using
an arithmetic encoderE matched to a sourceQ ∈ P(X ). Then

P
(
∆E(P ) > d

)
≤ 2pdmax

Å

d log

Å

ν(P,Q)

pmax

ã

+ κ

ã

+ 2qdmax(ν(P,Q))d (5)

6This is in fact true even under the weaker expected delay constraint.



whereκ = log
Ä√

2e
log e

ä

≈ 1.4139 . . .
Corollary 1: Let E be an arithmetic encoder matched to a

sourceQ ∈ P(X ). For any sourceP ∈ P(X ), if

qmax · ν(P,Q) < 1

then the delay profile bound (5) is exponentially decaying with
d, hence the expected delay is finite, i.e.,E ∈ B(P ). This
specifically holds for all non-deterministicP = Q.

Corollary 2: Suppose the sourceP is encoded using the
arithmetic encoder matched to the source. Then

P(∆E(P ) > d) ≤ 2pdmax (d log (1/pmax) + κ+ 1)

Remark 4:An exponential bound on the delay’s tail distri-
bution for matched arithmetic coding was originally observed
in [16][8]. However, that bound depends on bothpmin and
pmax, and can therefore be arbitrarily loose. A bound depend-
ing only onpmax was originally obtained by the authors in [9],
where it is also shown how the proof of [16][8] can be tweaked
to remove the dependency onpmin. The bound obtained here
is tighter than both.

Remark 5:The bound in Theorem 1 can be further tight-
ened by observing that specific orders of the alphabetX are
better than others in terms of the bounding technique used
here. We do not pursue this direction, since we need an order-
independent bound in the sequel.

A. Proof Outline

Recall the definitions of an interval-mapping encoder and of
an arithmetic encoder in particular, given in Subsection II-C.
At time n, the sequencexn has been encoded intoIE(xn), and
the decoder is so far aware only of the intervalbin

(
IE(xn)

)
,

namely the minimal binary interval containingIE(xn). Thus
the decoder is able to decodexm, wherem is maximal such
that bin

(
IE(xn)

)
⊆ IE (xm). Of course,m ≤ n where the

inequality is generally strict. Afterd more source letters are
fed to the encoder,xn+d is encoded intoIE(xn+d), and the
entire sequencexn can be decoded at timen+ d if and only
if7

bin
(
IE(xn+d)

)
⊆ IE(xn). (6)

Now, consider the midpoint ofbin
(
IE(xn)

)
which by the

minimality property (see Subsection II-C) is always contained
in IE(xn). If that midpoint is contained inIE(xn+d) (but
not as a left edge), then condition (6) cannot be satisfied; In
fact, in this case the encoder cannot yield even one further bit.
This observation can be generalized to a set of points which,
if contained inIE (xn+d), xn cannot be completelydecoded.
For each of these points the encoder outputs a number of bits
which may enable the decoder to produce source symbols, but
not enough to fully decodexn. The encoding and decoding
delays are therefore treated here simultaneously, rather than
separately as in [8].

Remark 6:WhenP 6≪ Q there are “holes” in the interval-
mapping, namely intervals corresponding to symbols where
Q(x) > 0 but P (x) = 0. In this case,xn can be decoded at
timen+d if and only if bin

(
IE(xn+d)

)
∩IE(yn) = ∅ for any

7Here we are assuming thatP ≪ Q, see Remark 6.

yn 6= xn. Hence condition (6) is necessary and sufficient if
P ≪ Q, and only sufficient otherwise. This point is important
to note since the case whereP 6≪ Q appears in the sequel.

After having identified the above set offorbidden points,
we clearly need to analyze the probability of avoiding them
within the nextd instances. Loosely speaking, for an arith-
metic encoder matched to the sourceP , the maximal symbol
probability pmax represents the “crudest resolution”, or the
“lowest rate” by which we shrink our intervals, hence intu-
itively dictates our ability to avoid hitting forbidden points.
Indeed, the probability that the encoder avoids these points
is roughlypdmax. For a mismatched encoder, we get a similar
expression involvingpdmax, q

d
max andν(P,Q) as a measure of

the mismatch between the encoder and the source.

B. The Forbidden Points Notion

We now introduce some notations and prove three lemmas,
required for the proof of Theorem 1. LetI = [a, b) ⊆ [0, 1)
be some interval, andp some point in that interval. We say
that p is strictly containedin I if p ∈ (a, b). We define the
left-adjacentof p w.r.t. I to be

ℓI(p)
def
= min

{
x ∈ [a, p) : ∃k ∈ Z

+, x = p− 2−k
}

and thet-left-adjacentof p w.r.t. I as

ℓ
(t)
I (p)

def
=

t︷ ︸︸ ︷
(ℓI ◦ ℓI ◦ · · · ◦ ℓI)(p) , ℓ

(0)
I (p)

def
= p

Notice thatℓ(t)I (p) → a monotonically witht. We also define
the right-adjacentof p w.r.t I to be

rI(p)
def
= max

{
x ∈ (p, b) : ∃k ∈ Z

+, x = p+ 2−k
}

and r
(t)
I (p) as thet-right-adjacentof p w.r.t. [a, b) similarly,

where nowr(t)I (p) → b monotonically. For anyδ < b− a, the
adjacentδ-setof p w.r.t. I is defined as the set of all adjacents
that are not ”too close” to the edges ofI:

Sδ(I, p)
def
=
{
x ∈ [a+ δ, b− δ) : ∃ t ∈ Z

+ ∪ {0} ,

x = ℓ(t)(p) ∨ x = r(t)(p)
©

Notice that forδ > p − a this set may contain only right-
adjacents, forδ > b− p only left-adjacents, forδ > b−a

2 it is
empty, and forδ = 0 it may be infinite.

Lemma 10:The size ofSδ(I, p) is upper bounded by

|Sδ(I, p)| ≤ 1 + 2 log
|I|

δ
(7)

For an intervalI, let m(I) denote the midpoint ofbin(I).
Note thatm(I) ∈ I, by definition ofbin(I) as the minimal
binary interval containingI. In what follows, we will be
specifically interested in the adjacentδ-set ofm(I) w.r.t. I.
We therefore suppress the dependence onm(I) and write

Sδ(I)
def
= Sδ(I,m(I))

In particular, the setS0(I) will be referred to as theforbidden
points of I. The forbidden points play a central role in the
sequel, for the following reason:



Lemma 11:Condition (6) is satisfied if and only if
IE(xn+d) does not contain forbidden points ofIE(xn), i.e.,

IE (xn+d) ∩ S0(I
E(xn)) = ∅

Proof: Write m = m(IE(xn)) for short. As already
discussed, ifm is strictly contained inIE (xn+d) then (6) is
not satisfied. Otherwise, assumeIE(xn+d) lies to the left of
m. Clearly, if IE (xn+d) ⊆ [ℓ(m),m), thenbin

(
IE(xn+d)

)
⊆

[ℓ(m),m) as well, hence (6) is satisfied. However, ifℓ(m) is
strictly contained inIE (xn+d) thenbin

(
IE(xn+d)

)
must be

the left half ofbin
(
IE (xn)

)
, which by minimality cannot be

a subinterval ofIE(xn), hence (6) is not satisfied. The same
rationale also applies tor(m). The lemma follows by iterating
the argument.

C. Proof of Theorem 1

The probability that the delay∆E(xn, P ) is larger thand
is equal to (or upper bounded by, whenP 6≪ Q, see Remark
6) the probability that (6) is not satisfied. By Lemma 11, this
in turn equals the probability thatIE(Xn+d) contains none of
the forbidden points ofIE (xn). To get a handle on this latter
probability, the following lemma is found useful.

Lemma 12:Suppose a sourceP is encoded using an arith-
metic encoderE matched to a sourceQ, and letpmax, qmax

be the corresponding maximal symbol probabilities. Then for
any a ∈ IE(xn),

P
(
a ∈ IE(Xn+d)|Xn = xn

)
≤ pdmax

and for any intervalJ ∈ IE (xn) sharing an endpoint with
IE(xn),

P(J ∩ IE(Xn+d) 6= ∅|Xn = xn)

≤

Å

|J |

|IE(xn)|
+ qdmax

ã

(ν(P,Q))d

Proof: The set{IE(xnyd) : yd ∈ X d} is a partition of
IE(xn) into intervals, anda belongs to a single interval in the
partition. Therefore,

P
(
a ∈ IE(Xn+d)|Xn = xn

)

≤ max
yd∈X d

P(Xn+d
n+1 = yd|Xn = xn) = pdmax (8)

establishing the first assertion. For the second assertion,write:

P(J ∩ IE(Xn+d) 6= ∅|Xn = xn) ≤
∑

yd:J∩IE(xnyd) 6=∅
P (yd)

≤
∑

yd:J∩IE(xnyd) 6=∅
Q(yd) · (ν(P,Q))d

= (ν(P,Q))d
∑

yd:J∩IE(xnyd) 6=∅
µE
d (y

d|xn)

≤

Å

|J |

|IE (xn)|
+ qdmax

ã

(ν(P,Q))d (9)

where we have used the fact thatmaxyd µE
d (y

d|xn) = qdmax.

Write Sδ = Sδ(I
E(xn)) for short. Note thatSδ ⊆ S0,

and thatS0\Sδ is contained in two intervals of lengthδ both

sharing an edge withIE(xn). For anyδ > 0, the delay’s tail
probability is bounded as follows:

P(∆E(xn, P ) > d)

(a)

≤ P
(
bin
(
IE(Xn+d)

)
6⊆ IE(xn)|Xn = xn

)

(b)
= P

(
S0 ∩ IE(Xn+d) 6= φ|Xn = xn

)

(c)

≤ P
(
(S0\Sδ) ∩ IE(Xn+d) 6= φ

∣∣Xn = xn
)

+ P
(
Sδ ∩ IE(Xn+d) 6= φ|Xn = xn

)

(d)

≤ 2

Å

δ

|IE(xn)|
+ qdmax

ã

(ν(P,Q))d

+ pdmax|Sδ|

(e)

≤ 2

Å

δ

|IE (xn)|
+ qdmax

ã

(ν(P,Q))d

+ pdmax

Å

1 + 2 log
|IE(xn)|

δ

ã

(10)

The transitions are justified as follows:
(a) Condition (6) is sufficient, see discussion in Subsection

III-A. In most cases this would be an equality, as condition
(6) would be also necessary, see Remark 6.

(b) Lemma 11.
(c) Union bound overS0 = Sδ ∪ (S0 \ Sδ).
(d) Lemma 12, together with a union bound over the finite

number of elements inS0 \ Sδ.
Taking the derivative of the right-hand-side of (10) w.r.t.δ we

find that δ = log e
Ä

pmax

ν(P,Q)

äd
|IE(xn)| minimizes the bound.

Substituting into (10) and noting that the bound is independent
of xn, (5) is proved8.

IV. A L OWER BOUND FORE(P )

In this section we use the delay’s probability tail distribution
mentioned in the previous section, to derive an upper bound
for the redundancy-delay function, via a specific arithmetic
coding scheme. We emphasize that unlike [17], the presented
scheme is error free, hence there is zero probability of buffer
overflow. Moreover, our figure of merit is the delay in source
symbols vs. the redundancy in bits per symbol.

A. A Finite Delay Result

Theorem 2:The redundancy-delay function for a sourceP
is upper bounded by

R(P, d) ≤ 2pd−c(pmax)
max

(
(d− c(pmax)) log (2/pmax)+1+κ

)2

(11)
where

c(x) =

®

0 x < 1
16

2
ö

1
log (2/x)

ù

− 1 o.w.

.
Corollary 3: The inf-redundancy-delay exponent for a

sourceP is lower bounded by

E(P ) ≥ log(1/pmax)

8Observe that (10) holds even ifδ > |IE(xn)|, in which case our bound
becomes trivial.



Proof: Let us first describe the high-level idea behind
the proof. We extend the source’s alphabet by adding two
fictitious symbols, and then encode the source using a slightly
mismatched arithmetic encoder. The encoder keeps track of
the decoding delay, and whenever the delay reachesd+ 1, it
inserts a fictitious symbol that nullifies the delay. There are
three key points: 1) There exists a mapping such that there is
always at least one fictitious symbol whose interval contains
no forbidden points, 2) The length assigned to the fictitious
symbols can be made very small, and 3) The probability of
insertion, bounded via Theorem 1, is also very small.

For any intervalI = [a, b), let

ϕI(λ)
def
= (1− λ)a+ λb

and define define the two disjoint subintervals

IL
def
= (ϕI (3/8) , ϕI (1/2)) , IR

def
= (ϕI (1/2) , ϕI (5/8))

The first key point is established in the following Lemma.
Lemma 13:For any intervalI ⊆ [0,1), eitherIL∩S0(I) =

∅ or IR ∩ S0(I) = ∅.
Proof of Lemma 13: Write m = m(IE (xn)) for short.

Without loss of generality, assume thatm ≤ ϕI(1/2). There
are two cases:
(1) m ≤ ϕI(3/8): It is easily verified that the right adjacent

of m satisfiesr(m) > ϕI(1/2), as otherwise

m+ 2(r(m) −m) ∈ I

contradicting the maximality in the definition of the right
adjacent. Therefore in this caseIL contains no forbidden
points ofI.

(2) m > ϕI(3/8): By our assumptionm < ϕn(1/2), hence

r(m) −m ≥
ϕI(1)− ϕI(1/2)

2

Rewriting, we have

r(m) ≥ m+
ϕI(1)− ϕI(1/2)

2
≥ ϕI(5/8)

and thereforeIR contains no forbidden points.

Returning to the proof of Theorem 2, define an extended
alphabetX+ = X ∪{xL, xR} wherexL, xR are twofictitious
symbols. LetP+ ∈ P(X+) be the corresponding extension of
the sourceP to X+, assigning zero probability to the fictitious
symbols. For0 < ε < pmax, let P+

ε ∈ P(X+) be a source
with the following symbol probabilities:

P+
ε (x) =

ß

(1− 2ε)P (x) x ∈ X
ε x ∈ {xL, xR}

Clearly,maxP+
ε (x) = (1− 2ε)pmax < 1

16 andν(P+, P+
ε ) =

1
1−2ε . Let < be any order ofX . Since P+

ε (x) < 1
16 for

all x ∈ X+, and since by Lemma 13|IL| = |IR| = |I|/
8, then it is easy to see there exists a order<+ of X+

that preserves< over X , such that the arithmetic encoderE
w.r.t. <+ matched toP+

ε has the fictitious symbolsxL, xR

mapped into intervals contained inIE (xn)L and IE(xn)R,
respectively. If the condition onpmax is not satisfied, then
we can always aggregate a few symbols into a super-symbol,

so that the maximal product probability satisfies the required
condition (the effect of this aggregation on the delay is treated
later on). To encode the sourceP+, let us now use the
arithmetic encoder forP+

ε above together with the following
fictitious symbol insertion algorithm: The encoder keeps track
of the decoding delay by emulating the decoder. Whenever
this delay reachesd + 1, the encoder finds which one of
IE(xn)L or IE (xn)R contains no forbidden point, and inserts
the corresponding fictitious symbolxL or xR respectively,
hence nullifying the decoding delay. This way, the decoding
delay never exceedsd and no errors are incurred.

We now bound the redundancy incurred by the encoder
E ′ ∈ Cd described above. There are two different sources of
redundancy. The first is due to the mismatch betweenP+

andP+
ε , and the second is due to the coding of the inserted

fictitious symbol. At each timek > d, the probabilitywk for
an insertion can be bounded via Theorem 1:

wk = P(∆E′

(Xk−d, P ) > d) ≤ P(∆E′

(P ) > d)

≤ 2pdmax

Å

d log

Å

1

(1− 2ε)pmax

ã

+ κ

ã

+ 2(1− 2ε)dpdmax(1− 2ε)−d

= 2pdmax

Å

d log

Å

1

(1− 2ε)pmax

ã

+ κ+ 1

ã

(12)

Now, let P+n be then-product ofP+, and write

R
E′

n (P ) = R
E′

n (P+)
(a)

≤ RE′

n (P+) =
1

n
D(P+n‖µE′

n )

(b)
=

1

n

n∑

k=1

E

Ä

D(P+‖µE′

1 (·|Xk−1))
ä

(c)
= D(P+‖P+

ε ) +
1

n
log

1

ε

n∑

k=1

wk

(d)

≤ 2 log

Å

1

ε

ã

pdmax

Å

d log

Å

1

(1 − 2ε)pmax

ã

+ κ+ 1

ã

+ log
1

1− 2ε
(e)

≤ 2 log

Å

1

ε

ã

pdmax

Å

2d log

Å

2

pmax

ã

+ κ+ 1

ã

+ 4ε

The transitions are justified as follows:
(a) Lemma 7.
(b) The chain rule for the divergence, and the fact thatP+n

is a product (memoryless) distribution.
(c) GivenXk−1, µE

1 follows P+
ε with an extra multiplication

by ε if and only if Xk−1 is such that there is an
insertion. Hence the the expected divergence givenXk−1

always yields the termD(P+‖P+
ε ), and an extralog 1/ε

multiplied by the probability of an insertionwk.
(d) The bound forwk given in (12), andD(P+‖P+

ε ) =
log 1

1−2ε .
(e) log 1

1−2ε ≤ 4ε for 0 < ε < 1
16 .

Settingε = pdmax, we get:

R
E′

n (P ) ≤ 2pdmax

Å

d log

Å

2

pmax

ã

+ κ+ 1

ã

d log
1

pmax
+ 4pdmax

≤ 2pdmax

Å

d log

Å

2

pmax

ã

+ κ+ 1

ã2

(13)



Finally, we address the case wherepmax > 1
16 . As men-

tioned before, we aggregate a minimal number of source
symbolsk into a super-symbol, such thatpkmax < 1

16 . This
means that1 < k <

ö

4
log 1/pmax

ù

. We now carry out the above
procedure for thek-product alphabet. However, since decoding
is performedk symbols at a time, we set our delay threshold
to be d̃ =

⌊
d+1
k − 1

⌋
. Substituting the above into (13) we get

R
E′

n (P ) ≤ 2pkd̃max

Ä

d̃ log(2/pkmax) + κ+ 1
ä2

≤ 2pd−c(pmax)
max ((d− c(pmax)) log (2/pmax) + κ+ 1)

2

Remark 7:The scheme described above also allows the
encoder to change the delay constrainton the fly, by inserting
a suitable fictitious symbol in accordance to the modified
constraint. Once the decoder is made aware of this change,
both encoder and decoder need to simultaneously adjust the
probability of the fictitious symbols.

B. An Asymptotic Result

Theorem 3:The inf-redundancy-delay exponent for a
sourceP is lower bounded by

E(P ) ≥ H2(P )

Proof of Theorem 3:We construct a unit delay encoder
for the product sourceP d using fictitious symbols in a similar
way as done in Theorem 2, with an additional random coding
argument. Let< be a order ofX d such that all super-symbols
in the same type class are adjacent (and otherwise arbitrary).
Let <yd be a new order which is obtained by arotation of
the order<, such thatyd is the smallest element w.r.t.<yd ,
and the such that the largest element satisfyingzd < yd is
the largest element w.r.t.<yd . Finally, let <+

yd be the order

of X d+ def
= X d ∪ {xL, xR} that preserves<yd overX d, such

that the arithmetic encoderE w.r.t.<+
yd matched toP d

ε has the
fictitious symbolsxL, xR mapped into intervals contained in
IE(xn)L and IE(xn)R, respectively, and are of the minimal
order satisfying this.

Let us now draw an i.i.d. sequence(Y d
1 , Y

d
2 , . . .) with a

marginalP d, independent of the source sequence. At time
instancek (where time is now w.r.t. the product source),
we use an arithmetic encoder w.r.t. the random order<Y d

k
,

and matched toP d
ε . Denote the associated random interval-

mapping encoder byE . It is easy to see that for any point
a ∈ IE(xnd), the probability that the interval corresponding
to a typeQ will include a is upper boundedpdmax plus the
probability of the type classTQ underP d, where by Lemma
2 the latter is upper bounded by2−dD(Q‖P ). By the same
Lemma, the probability of any super-symbol within the type
classTQ is 2−d(D(Q‖P )+H(Q)). Thus,

P

Ä

a ∈ IE (Xn(d+1))|Xnd = xnd
ä

≤
∑

Q∈Pd(X )

Ä

2−dD(Q‖P ) + pdmax

ä

2−d(D(Q‖P )+H(Q))

(14)

Taking the limit asd → ∞, and since there is only a
polynomial number of types, we obtain

lim
d→∞

−
1

d
logP

Ä

a ∈ IE (Xn(d+1))|Xnd = xnd
ä

≥ inf
Q∈P(X )

ß

D(Q‖P ) +H(Q) + min

Å

D(Q‖P ), log
1

pmax

ã™

Let V (Q) denote the function over which the infimum above is
taken, and assume without loss of generality thatP is strictly
nonzero overX . V (Q) is continuous and the infimum is taken
over a compact set, hence is attained for someQ∗ ∈ P(X ).
Suppose thatD(Q∗‖P ) > log 1/pmax. Let x ∈ X be such
that P (x) = pmax, and suppose there existsy ∈ X such
that P (y) < pmax and Q∗(y) > 0. Generate a perturbed
distribution Q† by increasing the probability assigned by
Q∗ to x by someβ > 0, and decreasing the probability
assigned byQ∗ to y by the sameβ, leaving the other prob-
abilities unchanged. Clearly, we haveD(Q†‖P ) +H(Q†) <
D(Q∗‖P )+H(Q∗). By continuity, there existsβ small enough
such thatD(Q†‖P ) > log 1/pmax. HenceV (Q†) < V (Q∗)
for such β, contradicting the minimality ofQ∗. If such y
does not exist, thenP (x) = pmax over the entire support
of Q∗. Therefore,D(Q∗‖P ) = log 1/pmax − H(Q∗) ≤
log 1/pmax, in contradiction to our assumption. We conclude
thatD(Q∗‖P ) ≤ log 1/pmax. Hence,

lim
d→∞

−
1

d
logP

Ä

a ∈ IE (Xn(d+1))|Xnd = xnd
ä

= min
Q∈P(X )

{2D(Q‖P ) +H(Q)} = H2(P )

where Lemma 3 was invoked in the last equality. Continuing
this line of argument, we can essentially replacepdmax with
2−dH2(P ) for d large enough, throughout our proofs. There-
fore, the redundancy averaged over the ensemble of random
d-delay constrained encoders is bounded by

E
(
R

E (P )
)
= O

Ä

2−dH2(P )
ä

(15)

and thus there exists a deterministic encoderE achieving at
least that expected performance, concluding the proof.

V. A N UPPERBOUND FORE(P )

In this section we provide an upper bound for the sup-
redundancy-delay exponent foralmost anymemoryless source,
which is meant w.r.t. the Lebesgue measure over the proba-
bility simplex.

Theorem 4:For almost any memoryless sourceP , the sup-
redundancy-delay exponent is upper bounded by

E(P ) ≤ 8 log

Å

|X |

pmin

ã

(16)

Remark 8:Note that (16) cannot hold for all sources, e.g.
for 2-adic sources we can have zero redundancy with zero
delay, hence an infinite exponent.

Remark 9:When restricted to interval-mapping encoders
only, a tighter upper bound of8 log (1/pmin) holds.



A. Proof Outline

Since the proof is somewhat tedious, we find it instructive
to provide a rough outline under the assumption that the
encoder admits an interval-mapping representation (rather than
a generalized one). This assumption will be removed in the
proof itself. Due to the strict delay constraint, at any time
instance the encoder must map the nextd symbols into
intervals that do not contain any forbidden points9. Typically
(for almost every interval), we will find an infinite number of
forbidden points concentrated near the edges, with a typical
“concentration region” whose size depends on the specific
interval. Clearly, the distances between consecutive points
diminishes exponentially to zero. Therefore, mapping symbols
to the concentration region will result in a significant mismatch
between the symbol probability and the interval length, and
this phenomena incurs redundancy. This observation is made
precise in Lemma 14.

Now, loosely speaking, there are two opposing strategies
the encoder may use when mapping symbols to intervals.
The first is to think short-range, namely to be as faithful to
the source as possible by assigning interval lengths closely
matching symbol probabilities (within the forbidden points
constraint). This will likely cause the next source interval to
have a relatively large concentration region, resulting inan
inevitable redundancy at the subsequent mapping. The second
strategy is to think long-range, by mapping to intervals with
a small concentration region. This in general cannot be done
while still being faithful to the source’s distribution, hence
this strategy also incurs in an inevitable redundancy. The latter
observation is made precise in Lemma 18. Our lower bound
results from the tension between these two counterbalancing
sources of redundancy.

B. Proof of Theorem 4

In light of Lemma 6, we can restrict our discussion to
generalized interval-mapping encoders of the form (3). How-
ever, we will find it more flexible to consider a broader
family of generalized interval-mapping encoders, satisfying
the following conditions:

(i) For any s ∈ X ∗, IE(s) is a union of at most|X |d

intervals.10

(ii) For any s ∈ X ∗, xd ∈ X d, IE(sxd) contains no forbid-
den points of any of the intervals comprisingIE(s).11

Let I ⊆ [0,1) be a finite union of disjoint intervals{Ik}Kk=1.
Define

A(I)
def
=

K⋃

k=1

ß

|a− b|

|I|
: a, b ∈ S(Ik), (a, b) ∩ S(Ik) = ∅

™

and let

δI = δI(P, d)
def
= max{a ∈ A(I) : a < pdmin/4}

9As mentioned in Remark 6, avoiding forbidden points is not always a
necessary condition. However, in the next section we verifythis is not a
restriction.

10To disambiguate the statement, we clarify that any two intervals whose
union is an interval are counted as a single interval.

11Note that this is satisfied by (3), sincebin
(
IE(sxd)

)
is always contained

in one of the intervals comprisingIE (s).

Namely,δI is the maximal distance between two consecutive
forbidden points in someIk, normalized by the measure ofI,
that is smaller thanpdmin/4.

Lemma 14:rd(xn) > δIE(xn)

Proof: Let I = IE (xn) throughout the proof. Let

zd
def
= argmin

yd∈Yd

µE
d(y

d|xn)

and letγ
def
= µE

d (z
d|xn). If γ < δI , thenzd has been assigned

with a measure at least four times smaller than its probability
P (zd). Thed-instantaneous redundancy can be lower bounded
as follows:

rd(x
n) = D(P d‖µd(·|x

n))
(a)

≥ D(P (zd)‖γ)
(b)

≥ D(pdmin‖γ)

= pdmin log
pdmin

γ
+ (1− pdmin) log

1− pdmin

1− γ
(c)

≥ 2pdmin − (1 − pdmin)
pdmin

1− pdmin

= pdmin ≥ δI

In (a) we have used the data processing inequality for the
divergence12. In (b) we have used the fact thatγ < pdmin ≤
P (zd) together with the monotonicity of the scalar relative
entropy. In (c) we have usedlog(1−p) ≥ − p

1−p for 0 < p < 1.
If on the other handγ ≥ δI , then all of thed-fold alphabet

has been assigned to a measure at most1− δI which results
in a d-instantaneous redundancy lower bounded by

rd(x
n) ≥ log

1

1− δI
≥ δI log e ≥ δI

A numbera ∈ [0,1) is called(m, ℓ)–constrainedif

a = 0. 00 . . .0︸ ︷︷ ︸
m′(a)

1φ . . . φ︸ ︷︷ ︸
m

00 . . .0︸ ︷︷ ︸
ℓ

φ . . .

wherem′(a) is the length of the zeros prefix ofa, andφ is
the “don’t care” symbol. The(m, ℓ)–constrained regionCm,ℓ

is the set of all such numbers. A numbera ∈ [0,1) is called
(m, ℓ)–violating if

a = 0. 00 . . .0︸ ︷︷ ︸
m′(a)

1φ . . . φ︸ ︷︷ ︸
m

φ . . . . . . . . . . . . φ︸ ︷︷ ︸
ℓ bits, not all ’0’ or all ’1’

φ . . . (17)

The (m, ℓ)–violating regionVm,ℓ is the set of all such num-
bers. The complementVm,ℓ = [0,1) \ Vm,ℓ is called the
(m, ℓ)–permissible region. Define the regions13

LCm,ℓ
def
= 〈− log Cm,ℓ〉 , LVm,ℓ

def
= 〈− logVm,ℓ〉

and let

D
(1)
m,ℓ

def
= 〈LVm,ℓ − LCm,ℓ〉 , D

(2)
m,ℓ

def
= 〈D

(1)
m,ℓ −D

(1)
m,ℓ〉

The following two lemmas are easily observed.
Lemma 15:Let µ > 0. If a ∈ Vm,ℓ and b ∈ Cm,ℓ′ where

ℓ < ℓ′, then

|a− b| ≥ 2−m′(a) · 2−(m+ℓ) ≥
a

2
· 2−(m+ℓ)

12Recall thatµd(·|x
n) sums to at most unity, hence can be complemented

to a probability distribution by adding an auxiliary symbolω to X d and
definingP d(ω) = 0.

13The log and 〈·〉 operations are taken pointwise on the set elements.



Lemma 16:If I, J ⊆ [0,1) are each a union of at mostM
intervals of size no larger thanr each, then〈I − J〉 can be
written as a union of at mostM2+1 intervals of size no larger
than2r each.

The(m, ℓ)–permissible region within the interval[1/2, 1) is
comprised of2m−1+1 subintervals. By definition, the size of
each is upper-bounded by2−(m′+m+ℓ)+1. Applying 〈− log(·)〉
to all such intervals in the[1/2, 1) interval (corresponding to
m′ = 0) will stretch each of them by a factor of at most
2 log e < 4. All other permissible intervals (those withm′ >
0) coincide on the unit interval after applying the〈− log(·)〉
operator. HenceLVm,ℓ can be written as a union of at most
2m−1+1 intervals, each of size at most2−(m+ℓ)+3. A similar
argument shows thatLVm,ℓ can also be written that way14.
Appealing to Lemma 16,D(1)

m,ℓ can be written as a union of at
most(2m−1+1)2+1 intervals, each of size at most2−(m+ℓ)+4.
Applying the Lemma again, we find thatD(2)

m,ℓ can be written
as a union of at most((2m−1+1)2+1)2+1 ≤ 24m+1 intervals
each of size at most2−(m+ℓ)+5. Hence,

|D
(2)
m,ℓ| < 24m+1 · 2−(m+ℓ)+5 = 23m−ℓ+6 (18)

A sourceP is called(µ0, λ)-regular if there exists a pair
of symbolsy, z ∈ X andm0 ∈ N such that for anyµ ≥ µ0

λ =

≠

log
P (y)

P (z)

∑

6∈
∞⋃

m=m0

D
(2)
m,⌈µm⌉ (19)

Remark 10:0 ∈ D
(2)
m,⌈µm⌉ for any m and µ, hence no

source can be(µ0, 0)–regular. Since for a dyadic sourceλ = 0
for any pairy, z, a dyadic source is never(µ0, λ)-regular.

The following two lemmas establish some properties of
(µ0, λ)-regularity.

Lemma 17:Let µ0 > 3. Almost any source is(µ0, λ)-
regular for someλ > 0.

Proof: Note thatCm,ℓ+1 ⊂ Cm,ℓ and Vm,ℓ+1 ⊃ Vm,ℓ,
henceD(2)

m,ℓ+ ⊂ D
(2)
m,ℓ. By (18), we have that for anyµ0 > 3

lim
m0→∞

∣∣∣∣∣∣

⋃

µ≥µ0

∞⋃

m=m0

D
(2)
m,⌈µm⌉

∣∣∣∣∣∣
= lim

m0→∞

∣∣∣∣∣

∞⋃

m=m0

D
(2)
m,⌈µ0m⌉

∣∣∣∣∣

≤ lim
m0→∞

∞∑

m=m0

2m(3−µ0)+6

= lim
m0→∞

2m0(3−µ0)+6

1− 23−µ0
= 0

The statement of the lemma follows easily.
Define the following set:

Ad
α,β

def
=
¶

xd ∈ X d : 〈− logP (xd)〉 6∈ D
(1)
⌈αd⌉,⌈βd⌉

©

Lemma 18:SupposeP is a (µ0, λ)-regular source. Then
for anyα, β > 0 with β/α > µ0

lim inf
d→∞

P (Ad
α,β) ≥

1

2

14It can in fact be written as a union of less and smaller intervals, but that
adds nothing to our argument.

Proof: We will assume hereinafter thatε < 1
2pmin. Let

y, z be the symbols attainingλ, and define a transformation
σ : Pd(X ) 7→ Pd(X ) on types:

σ(Q)(x) =





Q(x) x 6∈ {y, z} ∨ Q(y) = 0
Q(x)− d−1 x = y ∧ Q(y) > 0
Q(x) + d−1 x = z ∧ Q(y) > 0

(20)
Namely,σ exchanges one appearance ofy with the appearance
of z as long as this is possible, i.e., as long asQ(y) > 0. Now,
supposed > m0

log(1/pmin)
so that (19) is satisfied. Noting that

the setAd
α,β is a union of type classes, letQ ∈ Pd

ε (X , P ) be
a type such thatTQ ∩ Ad

α,β = ∅. Clearly σ(Q) 6= Q, and for
anyxd ∈ TQ and x̃d ∈ Tσ(Q),

〈− logP (x̃d)〉 = 〈− logP (xd) + λ〉

Now sinceλ 6∈ D
(2)
m,⌈µm⌉ for any m ≥ m0 and µ > µ0,

and sinceβ/α > µ0, then λ 6∈ D
(2)
⌈αd⌉,⌈βd⌉. Recalling the

definition ofD(2)
⌈αd⌉,⌈βd⌉ and appealing to Lemma 1, we have

that 〈− logP (x̃d)〉 6∈ D
(1)
⌈αd⌉,⌈βd⌉, hence we conclude that

σ(Q) ∈ Ad
α,β . Therefore, sinceσ is one-to-one when restricted

to Pd
ε (X , P ), thenσ uniquely matches any type inPd

ε (X , P )
that is outsideAd

α,β , to a type that is insideAd
α,β .

Let us now get a handle on the variation in the probability
of a type class incurred by applyingσ. It is easy to check that
for anyQ ∈ Pd

ε (X , P ), andn large enough,

P (Tσ(Q)) ≥ P (TQ)

Å

(P (y)− ε)d

(P (z) + ε)d+ 1

ãÅ

P (z)

P (y)

ã

≥ P (TQ)

Å

1−
ε

P (y)

ãÅ

1−
ε+ d−1

P (z)

ã

= P (TQ)
(
1 +O(ε) +O(d−1)

)

Namely, the probability of a type class for a typeQ ∈
Pd

ε (X , P ) underP , remains almost the same after applying
σ. Therefore:

1− P (Ad
α,β)

≤ P

Ñ

⋃

Q6∈Pd
ε (X ,P )

TQ

é

+
∑

Q∈Pd
ε (X ,P ):TQ∩Ad

α,β
=∅

P (TQ)

≤ o(1) +
∑

Q∈Pd
ε (X ,P ),TQ∩Ad

α,β
=∅

P (Tσ(Q))

1 +O(ε) +O(d−1)

≤ o(1) +
∑

Q:TQ⊂Ad
α,β

P (TQ)

1 +O(ε) +O(d−1)

= o(1) +
P (Ad

α,β)

1 +O(ε) +O(d−1)

Where we have used the AEP (Lemma 2) in the second
inequality. The result now follows by rearranging the terms
above, taking the limit asd → ∞, and noting thatε > 0 can
be taken to be arbitrarily small.



From this point forward we assumeP is (µ0, λ)-regular
with µ0 > 3. Let µ < µ′, and define the indexed sets

Bk
def
=
¶

xk ∈ X k : δIE(xk) > pµdmin

©

C(xk)
def
=
¶

yd ∈ X d : δIE(xkyd) > pµ
′d

min

©

For xk ∈ Bk, Lemma 14 implies that

rd(x
k) > pµdmin (21)

On the other hand,xk 6∈ Bk implies that the
length of each interval comprisingIE(xk) must be in
C⌈d log(1/pmin)⌉,⌈µd log(1/pmin)⌉. Since there are at most|X |d

such intervals, it must be that

|IE(xk)| ∈ C⌈αd⌉,⌈βd⌉ (22)

where

α
def
= log(1/pmin) + log |X | , β

def
= µ log(1/pmin)− log |X |

Similarly, if yd 6∈ C(xk) then

|IE(xkyd)| ∈ C⌈αd⌉,⌈β′d⌉ (23)

where
β′ def

= µ′ log(1/pmin)− log |X |

For Lemma 18 to apply, we setµ, µ′ such thatβ/α > µ0 and
β′/α > µ0. This yields the constraints:

µ′ > µ > µ0 +
(µ0 + 1) log |X |

log (1/pmin)

In what follows, we will think ofµ′ as arbitrarily close toµ.
For anyxk 6∈ Bk we have:

E
(
rd(X

k) + rd(X
k+d) | Xk = xk

)

(a)
≥

Ö

∑

yd∈Ad
α,β

∩C(xk)

∣∣∣P (yd)− µE
d (y

d|xk)
∣∣∣

è2

+ pµ
′d

minP (C(xk))

=

Ö

∑

yd∈Ad
α,β

∩C(xk)

∣∣∣∣
P (yd)|IE (xk)| − |IE(xkyd)|

|IE(xk)|

∣∣∣∣

è2

+ pµ
′d

minP (C(xk))

(b)
≥

Ö

1

|IE(xk)|

∑

yd∈Ad
α,β

∩C(xk)

P (yd)|IE (xk)|

2
p
⌈αd⌉+⌈βd⌉
min

è2

+ pµ
′d

minP (C(xk))

=

(
P (Ad

α,β ∩ C(xk))

2

)2

· p
2(α+β)d+4
min + pµ

′d
minP (C(xk))

(c)
≥

1

4

[
Ä

P (Ad
α,β ∩C(xk))

ä2
+ P (C(xk))

]
p
dmax(2(α+β),µ′)+4
min

(d)
≥

1

4

[(
P (Ad

α,β)− P (Ad
α,β ∩ C(xk))

)2
+ P (Ad

α,β ∩ C(xk))
]

× p
2d(µ+1) log (1/pmin)+4
min

(e)
≥

1

4

(
P (Ad

α,β)
)2

· p
2d(µ+1) log (1/pmin)+4
min

=

Å

1

16
+ o(1)

ã

· p
2d(µ+1) log (1/pmin)+4
min (24)

The inequalities are justified as follows:
(a) Pinsker’s inequality for the divergence was used, together

with Lemma 14 and the nonnegativity ofrd(·).
(b) (22) and (23) hold for all the union-of-intervals lengths

in the summation. Since〈− logP (yd)〉 6∈ D
(1)
⌈αd⌉,⌈βd⌉ for

eachyd in the summation, then appealing to Lemma 1,
we have thatP (yd)|IE(xk)| ∈ V⌈αd⌉,⌈β′d⌉. The inequality
now follows by virtue of Lemma 15.

(c) P (A ∩C) = P (A)− P (A ∩ C) andP (C) ≥ P (A ∩ C).
(d) µ′ can be taken to be arbitrarily close toµ.
(e) Lemma 18 was used to lower bound the probability of the

setAd
α,β .

Combining (21) and (24), we get:

E(rd(X
k) + rd(X

k+d))

≥ min

Å

pµdmin,

Å

1

16
+ o(1)

ã

· p
2d(µ+1) log (1/pmin)+4
min

ã

=

Å

1

16
+ o(1)

ã

· p
2d(µ+1) log (1/pmin)+4
min

This holds for anyd-constrained encoderE ∈ Cd, hence and
plugging into Lemma 7 we get

R
E(P ) = lim inf

n→∞
1

2nd

n∑

k=1

E(rd(X
k) + rd(X

k+d))

≥

Å

1

16
+ o(1)

ã

·
1

2d
· p

2d(µ+1) log (1/pmin)+4
min

This lower bound holds for anyµ > µ0 + (µ0+1) log |X |
log (1/pmin)

.
Moreover, by Lemma 17 almost any source is(µ0, λ)-regular
for anyµ0 > 3. Therefore, we have that for almost any source

R
E(P ) ≥

Å

1

16
+ o(1)

ã

·
1

2d
· p

8d log
(

|X|
pmin

)
+o(d)

min

and hence

E(P ) ≤ 8 log

Å

|X |

pmin

ã

As mentioned in Remark 9, if the encoder is restricted to
be interval-mapping then a tighter upper bound8 log(1/pmin)
holds. In this caseIE(·) is a single interval rather than a union
of |X |d intervals, hence the proof remains the same up to the
substitution|X | ↔ 1.

VI. CONCLUSIONS

The redundancy in lossless coding of a memoryless source
incurred by imposing a strict end-to-end delay constraint was
analyzed, and shown to decay exponentially with the delay.
This should be juxtaposed against traditional results in source
coding, showing a polynomial decay of the redundancy with
the delay. In the traditional framework, the delay is identified
with the block length or the maximal phrase length, which in
our framework imposes a harsh restriction: The decoder is not
allowed to start reproducing source symbols in the midst of a
block/phrase, and the delay is repeatedly nullified at the end



of each block/phrase. This means the encoder is reset at these
instances, i.e., the prefix has no effect on its future behavior.
Loosely speaking, the gain of exponential versus polynomial
is reaped via a tighter control over the delay process, making
such reset events rare.

Nevertheless, the block/phrase based codes allow the en-
coder to start-over in roughly constant intervals, and therefore
such coding scheme are more efficient in aprecision limited
setting. The more general encoders discussed in this paper can
hence attain their superior performance by allowing a finer
precision for keeping the encoder’s state. However, it should
be noted that only a finite precision is necessary to attain
exponentially decaying redundancy, and that precision canbe
easily derived from Lemma 14. Therefore, the redundancy of
our interval-mapping encoder when operating in a resource
limited setting is dominated by the larger of two sources: The
aforementioned delay-precision constraint, and the external
complexity-precision constraint.

In our framework, we have isolated the impact of the delay
on the redundancy by letting the transmission timen go to
infinity. This also makes sense complexity-wise, since the
per-symbol encoding complexity is determined primarily by
the delay, and not by the length of the encoded sequence. In
practice however, a finite transmission time forces the encoder
to terminate the codeword, which in turn incurs an additional
penalty of O(n−1) in redundancy. Settingd = O(log n)
renders this additional redundancy term commensurate with
the redundancy incurred by the delay constraint. Therefore,
our results imply that the delay can be made logarithmic in the
block length, while maintaining the same order of redundancy.
Conversely, for almost all sources this is the best possible
tradeoff between block length and delay. A similar statement
in the context of universal source coding was mentioned in
[18], though for a somewhat different definition of the delay.

There is still a large gap between the lower and upper
bounds on the redundancy-delay exponent, where the upper
bound seems particularly loose. Furthermore, it remains tobe
seen whether the zero-measure set of sources for which the
upper bound may fail to hold, can be reduced from the set of
sources that do not satisfy our intricate regularity condition, to
the set of dyadic sources only, which is the smallest possible.

APPENDIX

Proof of Lemma 6: Let us first show thatIE satisfies
the conditions for a generalized interval-mapping encoder.
IE(sx) ⊆ IE(s) is immediate from the consistency property.
Let y, z ∈ X be distinct, and assume thatIE (sy)∩IE(sz) 6= ∅.
Then since any two binary intervals are either disjoint or
one is contained in the other, then without loss of generality
there existxd, x̃d such that

[
E(syxd)

)
⊆
[
E(szx̃d)

)
, i.e., such

that E(szx̃d) � E(syxd). SinceδE(·, ·) ≤ d, it must be that
sz � syxd , in contradiction. This verifies the disjoint nesting
property.

By the consistency property,IE(s) ⊆ [E(s)). Suppose that
there exists a binary interval[b) such thatIE(s) ⊆ [b) ⊂
[E(s)). Then E(s) ≺ b � E(sxd) for any xd ∈ X d, and
hence by the integrity property it must be thatb � E(s), in

contradiction. Hencebin
(
IE (s)

)
= [E(s)) for any s ∈ X ∗,

verifying the minimality property.
Proof of Lemma 8:An arithmetic encoder matched to the

sourceP is well known to achieve zero asymptotic redundancy
[6], and a bounded expected delay [7], [8], [9]. Therefore

inf
E∈L(P )

R
E
(P ) ≤ inf

E∈B(P )
R

E
(P ) ≤ 0

Let E ∈ L(P ). DefineBd to be the set of all suffixes that
allow decoding of any prefix with delay at mostd, i.e.,

Bd
def
= {y∞ ∈ X∞ : δE(s, y∞) ≤ d , ∀s ∈ X ∗}

The lossless property implies that for anyε > 0 there exists
d large enough such that

P (Bd) ≥ 1− ε (25)

Define B̄d to be the set of all prefixes inBd, i.e.,

B̄d
def
= {zd ∈ X d : zd ≺ y∞ ∈ Bd}

Note that by the very definition ofBd, each prefix inB̄d must
appear inBd with all possible suffixes. Therefore,P (B̄d) =
P (Bd) ≥ 1 − ε for d large enough. Furthermore the lossless
property also implies that for anyzd ∈ B̄d, the BV codebook
Czd : Xn 7→ {0, 1}∗ defined by

Czd(xn)
def
= E(xnzd) (26)

is a prefix-free lossless codebook, and hence must satisfy
E|Czd(Xn)| ≥ nH(P ). Write:

L̄E
n+d(P ) =

1

n+ d

∑

zd∈X d

P (zd)
∑

xn∈Xn

P (xn)|E(xnzd)|

≥
1

n+ d

∑

zd∈B̄d

P (zd)
∑

xn∈Xn

P (xn)|E(xnzd)|

≥
1

n+ d

∑

zd∈B̄d

P (zd)E|Czd (Xn)|

≥
1

n+ d
· P (B̄d) · nH(P ) ≥

(1− ε)n

n+ d
H(P )

Therefore,

R
E = lim inf

n→∞
R

E
n+d(P ) ≥ lim

n→∞

Å

(1 − ε)n

n+ d
− 1

ã

H(P )

= −εH(P )

This holds for anyε > 0, henceRE ≥ 0.
Proof of Lemma 9: Let E ∈ Cd, and set anyε > 0. We

show that there exists another encoderE ′ ∈ Cd such that

R
E′

(P ) ≤ R
E(P ) + ε

which immediately establishes the Lemma. The encoderE ′

will be constructed by properly terminatingE . Set n large
enough such that both

n > d+min{d,
2dRE(P )

ε
} (27)

and
R

E
n(P ) ≤ R

E(P ) + ε/4 (28)



For anyxn−d ∈ Xn−d, define

yd(xn−d)
def
= argmin

zd∈X d

{|E(xn−dzd)|}

namely, yd(xn−d) is the suffix that results in the minimal
codelength after having encodedxn−d. Clearly,

n−1
E|E(Xn−dyd(Xn−d))| ≤ L̄E

n(P ) (29)

Construct the new encoderE ′ as follows. For anyk < n−d,
let E ′(xk) = E(xk), and letE ′(xn−d) = E(xn−dyd(xn−d)).
For k > n−d, dividexk into blocks of equal sizen−d (with
the last one possibly shorter), apply the rule above to each
separately, and letE ′(xk) be the concatenation thereof. Using
(29), we have

R
E′

n−d(P ) = (n− d)−1
E|E ′(Xn−d)| −H(P )

(a)

≤
n

n− d
L̄E
n(P )−H(P ) ≤

n

n− d
R

E
n(P )

(b)

≤ R
E(P ) +

Å

d

n− d
R

E(P ) +
n

n− d
· ε/4

ã

(c)

≤ R
E(P ) + ε

where (a) follows from (29), (b) follows from (28), and (c)
follows from the assumption (27). Now, from the concatenated
construction we have that for anym > n− d

R
E′

m(P ) ≤
⌈m/(n− d)⌉

m
· (n− d) ·RE′

n−d(P )

≤
m+ n− d

m

Ä

R
E(P ) + ε

ä

and hence

R
E′

(P ) = lim sup
m→∞

R
E′

m(P ) ≤ R
E(P ) + ε

as desired.
Proof of Lemma 7:

(i)

R
E
n(P ) = L̄E

n −H(P )

=
1

n
E
(
− log

∣∣bin
(
IE(Xn)

)∣∣)−H(P )

≤
1

n

(
E
(
− logµE(Xn)

)
−H(Pn)

)

=
1

n

∑

xn∈Xn

P (xn) log

Å

P (xn)

µE(xn)

ã

= RE
n(P )

(ii) Consider the generalized interval mapping representation
of E given in Lemma 6. This representation satisfies
IE (xn+d) ⊆ IE(xn). Thus similarly to the above:

R
E
n(P ) =

1

n
E
(
− log

∣∣bin
(
IE(Xn)

)∣∣)−H(P )

≥
1

n

Å

E
(
− logµE(Xn+d)

)
−

n

n+ d
H(Pn+d)

ã

=

Å

n+ d

n

ã

RE
n+d(P ) +

d

n
H(P )

(iii) For any fixedd ∈ N,

1

nd

n∑

k=1

Erd(X
k)

= −H(P ) + E

(
1

nd

n∑

k=1

log
µE
k(X

k)

µE
k+d(X

k+d)

)

= −H(P ) +
1

nd

d∑

k=1

E logµE
k (X

k)

−
1

nd

d∑

k=1

E logµE
n+k(X

n+k)

≤ O(n−1)−H(P )−
1

n
E logµE

n+d(X
n+d)

= O(n−1) +

Å

n+ d

n

ã

RE
n+d +

d

n
H(P )

≤ R
E
n +O(n−1)

Similarly,

1

nd

n∑

k=1

Erd(X
k) ≥ O(n−1)−H(P )−

1

n
E logµE

n(X
n)

= RE
n +O(n−1) ≥ R

E
n +O(n−1)

Proof of Lemma 10:It is easy to see that the number of
t-left-adjacents ofp that are larger thana + δ is the number
of ones in the binary expansion of(p− a) up to resolutionδ.
Similarly, the number of t-right-adjacents ofp that are smaller
than b − δ is the number of ones in the binary expansion of
(b− p) up to resolutionδ. Defining⌈x⌉+

def
= max(⌈x⌉, 0), we

get:

|Sδ(I, p)| ≤ ⌈log
p− a

δ
⌉+ + ⌈log

b − p

δ
⌉+

≤

®

2 + log (p−a)(b−p)
δ2 , δ < p− a, b− p

1 + log |b−a|
δ , o.w.

≤ 1 + 2 log
|b− a|

δ
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