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Abstract. We give a short proof of the following theorem of Sang-hyun Kim:
if A(Γ) is a right-angled Artin group with defining graph Γ, then A(Γ) contains

a hyperbolic surface subgroup if Γ contains an induced subgraph Cn for some
n ≥ 5, where Cn denotes the complement graph of an n-cycle. Furthermore,

we give a new proof of Kim’s co-contraction theorem.

1. Introduction and Definitions

Suppose Γ is a simple finite graph with vertex set VΓ and edge set EΓ. We
say that Γ is the defining graph of the right-angled Artin group defined by the
presentation

A(Γ) = 〈VΓ ; [v, w] := vwv−1w−1 = 1 ∀ {v, w} ∈ EΓ〉.
Right-angled Artin groups are also called graph groups or partially commutative
groups in the literature. All graphs in this article are assumed to be simple and
finite.

Right-angled Artin groups have been studied using both combinatorial and geo-
metric methods. In particular, it is well-known that these groups have simple
solutions to the the word and conjugacy problems. Moreover, each right-angled
Artin group can be geometrically represented as the fundamental group of a non-
positively curved cubical complex XΓ called the Salvetti complex. For these and
other fundamental results, we refer the reader to the survey article by Charney [3].

Let Γ be a graph, and suppose that W ⊂ VΓ. The induced subgraph ΓW is
the maximal subgraph of Γ on the vertex set W . A subgraph Λ ⊂ Γ is called an
induced subgraph if Λ = ΓVΛ . In this case, the subgroup of A(Γ) generated by VΛ

is canonically isomorphic to A(Λ). This follows from the fact that f : A(Γ)→ A(Λ)
given by f(v) = v if v ∈ VΛ and f(v) = 1 if v /∈ VΛ defines a retraction. Therefore,
we identify A(Λ) with its image in A(Γ).

In this article, we study the following problem: find conditions on a graph Γ
which imply or deny the existence of hyperbolic surface subgroup in A(Γ). Herein,
we say that a group is a hyperbolic surface group if it is the fundamental group of
a closed orientable surface with negative Euler characteristic.

Droms, Servatius, and Servatius proved that if Γ contains an induced n-cycle,
i.e. the underlying graph of a regular n-gon, for some n ≥ 5, then A(Γ) has a
hyperbolic surface subgroup [8]. In fact, they construct an isometrically embedded
closed surface of genus 1 + (n − 4)2n−3 in the cover of the Salvetti complex XΓ

corresponding to the commutator subgroup of A(Γ).
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Figure 1. The group given by the graph P on the right injects
into the group given by the graph P ′ on the left. The vertex labeled
by i is referred to as vi in the discussion below.

Kim and, independenly, Crisp, Sageev, and Sapir gave the first examples of
graphs without induced n-cycles, n ≥ 5, which define a right-angled Artin groups
which, nonetheless, contain hyperbolic surface subgroups [6, 4]. We give one such
example here to illustrate the main lemma of this article.

Consider the graphs in Figure 1. The map φ : A(P ′) → A(P ) sending v1 to v2
1 ,

vi to vi, and v′i to vi for i > 1 defines an injective homomorphism onto an index
two subgroup of A(P ) (see the discussion below). Since P ′ contains an induced
circuit of length five (the induced subgraph on the vertices v2, . . . , v5 and v′6), A(P )
contains a hyperbolic surface subgroup; however P does not contain an n-cycle for
any n ≥ 5.

That the map φ is injective can be seen from several persepectives. The ap-
proach of Kim and Crisp, Sageev, and Sapir is to use dissection diagrams; these
are collections of simple closed curves which are dual to van Kampen diagrams on
a surface over the presentation A(Γ). The method was introduced in this context
by Crisp and Wiest and used with much success by Kim and Crisp, Sageev, and
Sapir [5, 6, 4].

The purpose of this article is show how classical methods from combinatorial
group theory can offer a somewhat different perspective and to simplify some of
the arguments. We will use the Reidemeister-Schreier rewriting process to give a
direct proof that the map φ, above, is injective; and we also indicate how this can
be proven using normal forms for splittings of groups. This in turn will lead to a
short proof of Kim’s theorem on co-contractions (Theorem 4.2 in [6]) alluded to in
the abstract; see Theorem 2 in this article.

Lemma 1. Suppose A(Γ) is a graph group, and let n be a positive integer. Choose
a vertex z ∈ V (Γ), and define φ : A(Γ)→ 〈x ; xn = 1〉 ∼= Z/nZ by φ(v) = 1 if v 6= z
and φ(z) = x. Then kerφ is a graph group whose defining graph Γ′ is obtained by
gluing n copies of Γ\ st(z) to st(z) along lk(z), where st and lk are the star and
link, respectively. Moreover, the vertices of Γ′ naturally correspond to the following
generating set:

{z2} ∪ lk(z) ∪ {u : u /∈ st(z)} ∪ {zuz−1 : u /∈ st(z)} ∪ · · · ∪ {zn−1uz1−n :/∈ st(z)}.

The proof is a fairly straightforward computation (or geometric observation from
the point of view of covering space theory) using the Reidemeister- Schreier method.
The details are given in Section 2. Applying Lemma 1 to the graphs in Figure 1,
proves that A(P ′) injects into A(P ): if φ : A(P )→ Z/2Z maps z = v1 to 1 mod 2,
then A(P ′) = kerφ.
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Another way to prove Lemma 1 is to take advantage of “visual” splittings of the
groups A(Γ) and A(Γ′) as an HNN extension or amalgamated free product. This
second approach is stated in the article by Crisp, Sageev, and Sapir (see Remark
4.1 in [4]).

We illustrate the utility of Lemma 1 by giving a short proof of the following
theorem of Kim.

Theorem 1 (Kim [6], Corollary 4.3 (2)). Let Cn denote the complement graph
of an n-cycle. For each n ≥ 5, the group A(Cn) contains a hyperbolic surface
subgroup.

In fact, we give a new proof of Kim’s more general theorem (Theorem 4.2 in [6])
on co-contractions of right-angled Artin groups in Section 3. Kim’s proof used the
method of dissection diagrams. Kim has also discovered a short proof using visual
splittings (personal communication).

In preparing this article, we found that the Reidemeister-Schreier method has
been used previously to study certain Bestvina-Brady subgroups of right-angled
Artin groups (see [7] and [2]).

This work was inspired by a desire to better understand Crisp, Sageev, and
Sapir’s very interesting classification of the graphs on fewer than nine vertices which
define right-angled Artin groups with hyperbolic surface subgroups. We hope that
our retelling of this small piece of theirs and Kim’s work will help to clarify some
aspects of the general problem.

The author would like to thank several colleagues for advice and feedback: Jon
Hall, Ian Leary, Ulrich Meierfrankenfeld, and especially Mike Davis and Tadeusz
Januskiewicz. Furthermore, the author owes many of the ideas herein to Kim,
Crisp, Sageev, and Sapir, as this article is essentially an account of some of his
attempts to better understand their body of work on this problem.

2. The Reidemeister-Schreier Method and proof of Lemma 1

The Reidemeister-Schreier method solves the following problem: suppose that
G is a group given by the presentation 〈X ; R〉, and suppose H ⊂ G is a subgroup;
find a presentation for H. The treatment below is brisk; see [1] for details and
complete proofs.

Let F = F (X) be free with basis X, and let π : F → G extend the identity
map on X. Consider the preimage P = π−1(H). Let T ⊂ F be a right Schreier
transversal for P in F , i.e. T is a complete set of right coset representatives that is
closed under the operation of taking intial subwords (of freely reduced words over
X). Given w ∈ F , let [w] be the unique element of T such that Pw = P [w]. For
each t ∈ T and x ∈ X, let s(t, x) = tx[tx]−1. Define S = {s(t, x) : t ∈ T, x ∈
X, and s(t, x) 6= 1}. Then S is a basis for the free group P . Define a rewriting
process τ : F → P on freely reduced words over X by

τ(y1y2 · · · yn) = s(1, y1)s([y1], y2) · · · s([y1 · · · yn−1], yn),

where y ∈ X ∪X−1. Then τ(w) = w[w]−1 for every reduced word w ∈ F , and

H = 〈S ; τ(t−1rt) = 1 ∀ t ∈ T, r ∈ R〉.
This rewriting process together with the resulting presentation for the given sub-
group H of G = 〈X;R〉 is called the Reidemeister-Schreier Method.
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Proof of Lemma 1. Let Γ be a graph, G = A(Γ) the corresponding right-angled
Artin group, and z a distinguished vertex of Γ. Let φ : G → 〈x ; xn〉 be given by
φ(v) = 1 if v 6= z and φ(z) = x.

Let F be free on X = VΓ and let R be the set of defining relators corresponding
to EΓ. Let H = kerφ, and let P be the inverse image of H in F under the natural
map F → G. The set T = { 1, z, . . . , zn−1 } is a right Schreier transversal for
P < F . One verifies (directly) that the following equations hold:

s(zk, v) = zkvz−k if v 6= z and k = 0, . . . , n− 1
s(zk, z) = 1 if k = 0, . . . , n− 2
s(zk, z) = zn if k = n− 1.

Thus, we have a set S of generators for kerφ; however, many of these genera-
tors are redundant. Again, one verifies (using τ(w) = w[w]−1) that the following
equations hold:

τ(zk[u, v]z−k) = [(s(zk, u), s(zk, v)] if u, v 6= z and k = 0, . . . , n− 1
τ(zk[z, v]z−k) = s(zk+1, v) · s(zk, v)−1 if v 6= z and k = 0, . . . n− 2
τ(zk[z, v]z−k) = zn · s(1, v) · z−n · s(zn−1, v)−1 if v 6= z and k = n− 1.

Therefore, if [z, v] = 1 is a relation in A(Γ), then

v = s(1, v) = s(z, v) = · · · = s(zn−1, v) and [zn, v] = 1

hold in kerφ. It follows that kerφ is generated by zn, the vertices adjacent to z in
Γ, and n copies (u, zuz−1, . . . , zn−1uz1−n) of each vertex u 6= z and not adjacent
to z in Γ. Moreover, the relations are such that kerφ is presented as a right-angled
Artin group where the defining graph is obtained from Γ by taking the star of z
and n copies of the complement of the star of z and gluing these copies along the
link of z. This completes the proof of Lemma 1.

3. A short proof of two theorems of Kim

Suppose that Γ is a graph. The complement graph Γ is the graph having the
same vertices as Γ but which has edges complementary to the edges of Γ. Recall
that an n-cycle Cn is the underlying graph of a regular n-gon.

Theorem 1 follows from Kim’s co-contraction theorem (see Theorem 2 below);
however, we present a short independent proof here.

Proof of Theorem 1. Suppose that Γ is a graph which contains an induced
C5. Then A(Γ) contains a hyperbolic surface subgroup by [8]. Since C5

∼= C5,
Theorem 1 follows from the following Lemma 2.

Lemma 2 (Kim [6], Corollary 4.3 (1)). For each n ≥ 4, A(Cn−1) < A(Cn).

Proof. Let VCn = {x1, . . . , xn} = VCn
. Define φ : A(Cn) → 〈a ; a2〉 by φ(xn) = a

and φ(xi) = 1 for i 6= n. By Lemma 1, the defining graph Γ of kerφ has vertex
set VΓ = {z2} ∪ {x1, . . . , xn−1} ∪ {y1, yn−1}, where z = xn and yi = zxiz

−1. Let
S = {y1, x2, . . . , xn−1}. Consider the induced subgraph ΓS . The vertices y1 and
xi are not adjacent if and only if i ∈ {2, n − 1}. The vertices xi and xj are not

adjacent if and only if |i− j| ≤ 1. Therefore, ΓS
∼= Cn−1. �
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Kim proved a more general theorem about subgroups of a right-angled Artin
group A(Γ) defined by “co-contractions”. Let S ⊂ VΓ, and let S′ = VΓ\S. If ΓS is
connected, then the contraction CO(Γ, S) of Γ relative to S is defined by taking the
induced subgraph ΓS′ together with a vertex vS and declaring vS to be adjacent to
w ∈ S′ if w is adjacent in Γ to some vertex in S. The co-contraction CO(Γ, S) is
defined as follows:

CO(Γ, S) = CO(Γ, S)

Kim insists that ΓS be connected whenever he considers the contraction CO(Γ, S).
This assumption is not necessary. Moreover, the following lemma shows that the
structure of ΓS is immaterial; the proof follows directly from the definitions.

Lemma 3. Suppose Γ is a graph and S ⊂ VΓ. Let Γ′ be the graph obtained from Γ
by removing any edges joining two elements of S. Then CO(Γ, S) = CO(Γ′, S).

Corollary 1. Suppose Γ is a graph and S ⊂ VΓ. Let Γ′ be a graph obtained from
Γ by adding or deleting any collection of edges with both of their vertices belonging
to S. Then CO(Γ, S) = CO(Γ′, S) and CO(Γ, S) = CO(Γ′, S).

Lemma 4. Suppose Γ is a graph and n ≥ 2. Suppose S = {s1, . . . , sn} ⊂ VΓ. Let
Λ = CO(Γ, {s1, . . . , sn−1) and S′ = S\{sn}. Then CO(Γ, S) = CO(Λ, {vS′ , sn}).

Proof. It suffices to compare the collection of vertices which are adjacent to vS in
Γ1 = CO(Γ, S) and Γ2 = CO(Λ, {vS′ , sn}); in the latter case, we are identifying
the vertex vS′∪{sn} with vS .

A vertex w in Γ1 not belonging to S is adjacent to vS if and only if w is adjacent
to every si in Γ. A vertex w in Γ2 not equal to vS′ nor sn is adjacent to vS if and
only if w is adjacent to vS′ and sn in Λ; but this, in turn, means that w is adjacent
to every si in Γ. (Note that the case of n = 2 is trivial since CO(Γ, {s1}) = Γ).) �

A collection of vertices S ⊂ VΓ is said to be anti-connected if ΓS is connected.
(Note: (Γ)S = (ΓS).)

Theorem 2 (Kim [6], Theorem 4.2). Suppose Γ is a graph and S ⊂ V (Γ) is an
anti-connected subset. Then A(CO(Γ, S)) embeds in A(Γ).

Proof. First consider the case when S consists of two non-adjacent vertices z, z′ ∈
VΓ. Define φ : A(Γ) → 〈x ; x2〉 by φ(z) = x, and φ(v) = 1 if v 6= z. Let
A(Γ′) = kerφ. Let

T = (V (Γ)\{z2, z′}) ∪ {zz′z−1} ⊂ V (Γ′).

We claim that Γ′T
∼= CO(Γ, S) via v 7→ v if v 6= zz′z−1 and zz′z−1 7→ vS .

If v and w are distinct from z and z′, then v and w are adjacent in CO(Γ, S) if
and only if they are adjacent in Γ.

On the other hand, a vertex w is adjacent to vS in CO(Γ, S) if and only if w is
adjacent to z and z′, whereas a vertex w is adjacent to zz′z−1 in Γ′T if and only
if w belongs to the link of z and to the link of z′, i.e. w is adjacent to z and z′.
Therefore, Γ′T

∼= CO(Γ, S) and, hence, A(CO(Γ, S)) embeds in A(Γ).

Now we prove the general statement by induction on |S|. Suppose S = {s1, . . . , sn}
is anti-connected, and suppose we have chosen the ordering so that S′ = {s1, . . . , sn−1}
is also anti-connected. (This is always possible: choose sn so that it is not a cut
point of ΓS .) Let Λ = CO(Γ, S′). Suppose that A(Λ) embeds in A(Γ). By the
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case of two vertices above, A(CO(Λ, {vS′ , sn})) embeds in A(Λ). (Note that vS′

and sn are not adjacent in Λ for, otherwise, sn would be adjacent to every si,
i = 1, . . . n − 1, which would contradict the hypothesis that S is anti-connected.)
This proves the inductive step. The proof of the theorem is completed by applying
Lemma 4.

�
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