
Generic Execution State Synchronization Framework for
Authenticated Key Exchange Protocol

Zheng Yang
Ruhr University Bochum,Germany

Zheng.Yang@rub.de

Ruhr University Bochum,
D-44801 Bochum, Germany

Abstract. Nowadays, most of sensitive applications over insecure network are protected by some
authenticated secure channel which is highly relies on specific authenticated key exchange (AKE)
protocol. Nevertheless, the leakage of authentication credential used in AKE protocol somehow result in
unauthorized exploitation of credential information via identity impersonation (IDI) attack. To address
the problem of IDI through the use of stolen or compromised authentication secrets, in this paper,
we propose a framework of execution state synchronization for authenticated key exchange protocol
to either prevent IDI attack by detecting attempts thereof, or limit its consequences by detecting
situations of previously unidentified IDI. In this framework, we introduce a generic protocol execution
state representation mechanism, based on which we formalize the issue of execution synchronization by
presenting a confirmation sub-protocol and corresponding synchronization rules. Our goal is to enhance
the security by enduing with the capability of IDI detecting without modifications on the authenticated
key exchange protocol, and withstand the interference of adversary. We also show a generic scheme to
realize the proposed framework and some concrete applications.
Keywords: authenticated key exchange, impersonation detection,state synchronization

1 Introduction

Authenticated Key Exchange (AKE) protocols are foundation for building secure channel to pro-
tect communication over insecure networks. AKE protocol not only provide shared key for securing
transmitted data, but also ensure the authenticity of the parties. The latter refers to some ver-
ification procedure which relies on authentication credential related to party’s identity, and the
commonly used authentication credential form including user password, private key of certification,
fingerprint etc. There are diverse of reason for leaking party’s authentication secrets, e.g., phishing
or key logging, weak certificate, server intrusion etc. Since most of the AKE protocols always public
known, a direct damage result of losing those secrets is the possibility of identity impersonation
which might lead privacy loss, financial loss, and public discredit etc. Unfortunately, many users
learn that their identity has been impersonated after some damage has been done. While the cre-
dential issuer always encourage user to armed with the knowledge of how to protect themselves and
take action to monitor their accounts periodically on a regular basis. Although that is quite neces-
sary to the users, sometimes the consequences of identity impersonation would not be perceptible
immediately if there is no evident trail to track. Hence one of the motivations of this paper is try
to detect the impersonation on protocol level for saving time to remedy.1 More specifically, besides
the authentication of the parties while proceeding with the AKE protocol instance, it is necessary
to authenticate the established communication channel either.

At present, commonly accepted methods for automatically on-line detecting are based on
somehow comparing the recorded execution states of protocol. As for the existing pre-shared states

1 We prefer the term ”identity impersonation” over ”identity theft” (IDT) or ”identity fraud”(IDF). Although the
term ”identity impersonation” might be consequence of theft, or even of form of fraud, the IDT and IDF encompass
wider scope of crimes concerning different identities which are not our focus.

mechanism, which can be categorized as: (i) secret related, e.g. distinct (evolving) authentication
key for each protocol instance, (ii) constant sequence, e.g., cumulative or degressive. Other methods
can be deemed as the variant or combination of those two forms, in the following we denote those
two schemes by abbreviation SR and CS respectively. The shortcoming of SR scheme is that the
adversary is able to impersonate the victim after learning current long-term authentication secrets.
Whereas the CS is predictable as long as the adversary learn the previous state at some point.
Combining these two schemes is not much improvement, because that would inherit their defect
either. Therefore in this paper, we seek new mechanism to represent execution states for protocol
instance which is able to withstand the interference by adversary and enjoys the advantages of SR
and CS, namely existing at least one state such that it is uniformly random distributed for each
execution and not used as long-term authentication key and.

In general, the execution states are required to be updated according to protocol specified
update timing, e.g., after the AKE protocol instances have been successfully established or ter-
minated. Therefore the protocol instances always need extra confirmation steps to ensure update
conditions satisfied. It is trivially to see that if the recent execution states between two parties
are inconsistent then identity impersonation might have been occurred on either party. However,
we cannot come to such conclusion arbitrarily, since there are numerous factors resulting in state
non-synchronized. We believe the major reasons that result in execution state inconsistent include
the following:

1. Identity impersonation attack. At some point, the adversary who obtains the long-term authen-
tication key impersonates as the victim Â to another honest party B̂.

2. Interference of adversary. The passive adversary without the long-term secret is also able to
disorder the execution state by intervening the communication between honest party Â and B̂,
namely drop or delay the messages, etc.

3. Other situations. For instance, due to the network failure or system corruption, etc.

In particular, due to the interference of adversary, the inconsistent execution state seems
inevitable. Provided that adversary intercept and drop (or substitute) the last protocol confirmation
message assuming sent from party Â to B̂, then only Â might update her state after she received the
valid confirmation from B̂, whereas B̂ keeps the old states. For most of the AKE protocols e.g. [3][9]
[15][10] [12], those protocols are prone to adapt two pass confirmation to provide mutual assurance
on completing the matching sessions with peer and session key k. However, while we specify the
update timing to be the point that the AKE process terminate in accepting, i.e., the session has been
successfully established, then the two confirmation steps are not enough (particularly involving some
execution states are required to be synchronized). Since the main purpose of recording execution
state is for detecting the identity impersonation, and whether or not the long-term authentication
key is exposed, it is necessary to distinguish between illegal state inconstant (e.g., caused by identity
impersonation) and inevitable synchronizing fault (e.g., network failure or missing confirmation
message etc.). The open question is how many steps are enough for synchronization.

We review a two pass update strategy between party Â and B̂ which could be: the Â and
B̂ update their execution states upon receiving the valid confirmation messages from its peer. In
this case, the adversary can adaptively drop the confirmation messages to determine which party
could update. An alternative improvement could increase confirmation steps for both parties, but
this won’t change the result since the adversary can drop the confirmation messages either. Thus,
besides the impersonation detection, another important issue is how to restore the normal sates.
Once a party suspect if he has been impersonated, then he could check the communication records
or transactions etc. to ensure no damage happened and re-synchronizing his execution state using

2

out-of-band mechanisms. However, this is not the most convenient way to solve the issue on restoring
states or even any disputing.

In this paper we focus on general execution states synchronization problem for AKE protocol,
which can be used as a universal identity impersonation detection solution, i.e. it is neither AKE
protocol specific, nor restricted to applications. We strive to formalize the execution states model
for AKE protocol which focuses on the aspects of states’ representation, transition, and synchro-
nization. In this framework, we particularly concern the requirements of identity impersonation
detection and resilience of adversary interference. Besides those capabilities while the imperson-
ation has already happened, we are also required to provide evidence to figure out which party has
been impersonated, i.e., which party leaked the long-term authentication key.

Related work. In the academic literature, most focus on prevention of credential information
exposure. The one-time password schemes, e.g., [11][7] are introduced to overcome a number of
shortcomings of tradition static password, which typically make use of randomness can also be
deemed as a kind of authentication key related execution state. Concerning perspective of protecting
user’s password, Shin et al. [15], dedicate to the immunity to the respective leakage of stored
secrets from a client side and a server side. In their subsequent work [16], they also consider about
dynamically update the authentication secret after establishing the session to provide its security
against the leakage of stored secrets.

In order to limit the damage effect of key exposure in the public key infrastructure, the pro-
posed schemes include threshold cryptosystems [2], proactive cryptosystems [8], proactive forward-
secure schemes [1], key-insulated cryptosystems [6]. All of them are designed to decrease the odds
that unauthorized public-key signatures be issued. Although, the schemes [8][1] involve the issue of
secret synchronization, it is unable to detect the previous unauthorized using of the signature key.

As for the issue related to identity impersonation detection, Van Oorschot and Stubblebine
[17] propose an identity theft detection scheme, whereby users’ identity claims are corroborated
with trusted claims of these users’ location. This scheme has limitations including restriction to on-
site (vs. online) transactions and loss of user location privacy (users are geographically tracked). In
2008, D. Nali and P.C. van Oorschot [13] propose a universal infrastructure and protocol so-called
CROO (Capture Resilient Online One-time password scheme), to either prevent identity fraud
(IDF) or identify cases of previous IDF in the environment of online transaction (i.e., between
some client and server). This scheme highly depend on the j-th symmetric authentication key (as
kind of execution state) which is derived from j+1th key. The initial key is generated by some
trusted third party (TTP), and the TTP is also in charge of verifying the corresponding j-th on-
time password and detecting the IDF. However, besides the defect of secret related execution state,
the most important problem the CROO scheme never addresses is how to synchronize the state
(i.e., the authentication key) between the client device and the TTP.

Contribution. We present a general framework on execution states synchronization for authen-
ticated key exchange protocols. In which we introduce a generic execution state representation
mechanism. Based on it, we formally model various circumstances while synchronizing protocol ex-
ecution states between parties, particularly including the case of state non-synchronization caused
by identity impersonation attack and situations of incomplete state synchronization process. In
order to handle synchronization process of execution state, we propose a universal three pass con-
firmation protocol and rules concerning how those states update and impersonation be detected.
More specifically, the AKE protocol realized our framework not only enjoys the capability of imper-
sonation detection, but also is resilience of interference by adversary. Another interesting aspect of

3

such framework is that it provides means to revive execution states from adversary interference by
protocol instances themselves. Furthermore, we introduce a generic scheme to realize the execution
state synchronization framework based on the session key, and some concrete applications.

Notations and Terminology. We let κ denote the security parameter and 1κ the string that con-
sists of κ ones. The cryptographic primitives used in this paper include: one-way collision-resistant
hash function,symmetric ciphers, message authentication code and pseudorandom functions. The
details of their security definitions refer to the Appendix A.

Organization. The paper is structured as follows. In section 2, we first formalize the execution
state of authenticated key exchange protocol, and present corresponding synchronization frame-
work. We give example protocol realized the framework in section ?? to show its validity. At last,
we conclude the paper in section 4.

2 Generic Execution State Synchronization Framework for AKE Protocol

2.1 Formalism of execution state synchronization

We call each instance of an AKE protocol run at a party a session. Technically, a session is an
interactive subroutine executed inside a party. Each session is identified by the party that runs it,
the parties with whom the session communicates and by a session identifier (sid). Different protocol
instances might be either run concurrently between parties many times or never initialized. The
protocol execution state denotes the execution context of protocol instances, which contains two
aspects: (i) the status of protocol instances that have been executed between parties (incl., the
established date-time, parties’ identifier executed the session, and sid etc.), and (ii) the initial
conditions for proceeding subsequent protocol instance.

We first classify the protocol execution state according to executing stage into three category
ES := (init, established, reset) , where the init stage indicates some protocol instance has not
been initiated before, established means the protocol instance has already been successfully per-
formed between some parties at some time, and the reset stage denotes that execution stage for
corresponding instances will be reset to previous states for next run. In which the state values of
established stage are required to be uniformly random and not used as long-term authentication
key. In the model description, we use macros (INIT,RES) to denote the corresponding stage init
and reset respectively (e.g., INIT = ⊥, RES = 1), and esti to denote the ith established stage
which is required to be realized by specific protocol.

Definition 1 (Protocol instance execution state). The execution state for each protocol in-
stances is formed as tuple PIS := (lES, ID, Initiator, lETID, TETID, ID

∗, Responder, lETID∗ , TETID∗),
where the implication of each elements described as below:

1. The ID and ID∗ denote the identifier of the parties who own the PIS.
2. The {Initiator,Responder} are the roles of corresponding parties when they execute some

matching sessions. In the following, we denote the ’roles’ by abbreviation {I,R} respectively.
3. lES is the execution stage ES after the latest session executed between party ID and ID∗.
4. lETID, lETID∗ denote the current established time of the protocol instance, i.e., established time

of lES for party ID and ID∗, respectively.
5. TETID is the transformation of last successful established lETID and its corresponding execution

stage ES, as well as TETID∗.

4

We stress that the protocol instance execution state always describes the protocol execution
state between parties (e.g., the protocol execution state between parties Â and B̂), whereas within
a party the protocol execution state comprise the execution state of all recent protocol instances.
Moreover, introducing the established time of protocol instance would be important criteria for
setting up the synchronization rules. Especially, when there is some disputing, we need to figure
out which party leak the authentication secrets according the established time. In addition, once
successfully turning into established stage between parties, we further require the adversary who
learns the authentication key is still unable to impersonate as the victim, unless he obtains current
PIS at the same time. Since the ES would be disordered (e.g., one party is in established and
the another is in reset) and the established time easy to be monitored, we utilize the TETID as
a witness which is computed by last successful established lETID and its corresponding execution
stage ES.2

We further assume that every party keep a state list SL to record corresponding PIS and
the SL stored in some tamper-proof device (e.g., smart card). Then we are able to determine
the execution state for a protocol instance sAB (assuming Â is initiator, and B̂ is responder)
executed between party Â and B̂ as: (i) If the protocol has been successfully executed before, then
the tuple PISAB := (lES, Â, I, IETA, TETA, B̂, R, ITEB, TETB) must be recorded in SL, and if
lES = RES, then the lES of sAB is reset (ii) else if lES = esti (i.e., lES /∈ {INIT,RES}), then
the lES stands for ith successful session execution for sAB; and (iii) if lES = INIT or PISAB
didn’t record in SL then its ES is init.

After each protocol instance complete, the protocol execution state need to be update the
previous states to recent one or shift to new execution stage. The protocol execution stage transition
is informally depicted in figure 1. As illustrating in figure 1, the regular transition route is denoted

Fig. 1: Execution stage transition diagram

by the real line, whereas the dash line routes mean that transition caused by objective factors, e.g.,
PIS expired or agreed by both parties at some point etc. In normal situation, the states in PIS
should be only transferred within the execution stage established, namely the lES of some PIS is
shifted from ith established stage esti to esti+1 after it has been initiated. However, if a protocol
instance s terminates with missing confirmation messages then the execution stage of corresponding
PIS might turn into reset stage, but his peer might keep in established stage. In order to deal

2 The computation of TETID and TETID∗ is given in the execution state synchronization rules.

5

with problem of state inconsistent, we formally give the definition of state synchronization to
distinguishing different circumstances.

Definition 2 (Execution State synchronization).
Let PISs := (lESs, Â, I, lETA, TETA, B̂, R, lETB, TETB) be the current protocol instance execu-
tion state stored at party Â and PISs∗ := (lESs∗ , Â, I, lET

∗
A, TET

∗
A, B̂, R, lET

∗
B, TET

∗
B) be the

corresponding matching protocol instance execution state stored at B̂. Then the synchronization
status of PISs and PISs∗ should be the following:

1. Full state synchronization (FSS). The PISs is said to be full synchronized with PISs∗ if only
if they share the same protocol execution state, namely every elements in PISs and PISs∗ are
equivalent.

2. Partial state synchronization (PSS). We call PISs and PISs∗ are partially synchronized, if
lESs∗ = RES and one of the following conditions hold:

(a) both lETA = lET ∗A and TETA = TET ∗A.
(b) both lETB = lET ∗B and TETB = TET ∗B

3. Non-synchronization (NS). If the PISs and PISs∗ don’t satisfy either FSS or PSS, then they
are non-synchronized.

In the definition, we differentiate the legal state inconsistent (i.e., Partial state synchroniza-
tion), from illegal cases (i.e., Non-synchronization). In which, the partial state synchronization
model the situation of incomplete confirmation while session running which include the cause of
adversary interference, and the non-synchronization case model the identity impersonation.

2.2 Framework for synchronizing protocol execution states

With respect to issue of normal execution state synchronization, we note that the status of matching
PIS should be either full state synchronization or partial state synchronization. Before reaching
the conclusion that one party has been impersonated, we need to proceed with further confirmation
to exclude interference of adversary or other exceptions.

We assume there are two honest parties Â and B̂ which are not corrupted. Let s be a AKE
session held by an honest party Â with some honest party B̂, which possess the relevant protocol
instance state PISs := (lESs, Â, I, lETA, TETA, B̂, R, lETB, TETB). And Let s∗ be the match-
ing session of s, which is related to PISs∗ := (lESs∗ , Â, I, lET

∗
A, TET

∗
A, B̂, R, lET

∗
B, TET

∗
B). Let

ESs, ESs∗ denote the current execution stage of s, s∗ respectively, and ETA, ETB denote the cur-
rent established time of s, s∗ respectively. Let H be a collision-resistant hash function with output
length lh, and the ES is chosen from {0, 1}le where le is the length of its value domain.

There is a deterministic algorithm in the framework: Identify. The algorithm Identify :
{0, 1}l×{0, 1}l → {FSS, PSS,NS} is the synchronization status identification algorithm (in which
l is the length of the PIS), i.e., given two matching PISs and PISs∗ , Identify(PISs, P ISs∗)
outputs their status in the set: full state synchronization, partial state synchronization or non-
synchronization, as Definition 2.

Pre-synchronization. At the beginning of the key exchange procedure, the parties are required
to negotiate the execution stage to process the protocol instances and determine the execution
states about to confirm. In particular, while being in different stages, we specify the parties force
to use reset stage to process the matching sessions.

One can specify that the reset execution stage only used to re-establish the protocol execution
state, and the normal communications only work under established stage.

6

In addition, without of loss of generality, we only allow a PIS to be processed by one instance
within a party at some point, namely the PIS need to be locked while corresponding instance
being activated (e.g., with ’read-write’ lock) and any other requests on current locked PIS have to
wait until the previous operation committed or expired.3. That’s ensure the PIS is exactly the one
the parties intend to synchronize. Thus, we require the protocols which realize this synchronization
framework are capable of handling the concurrent executions. The concurrent control is out of the
scope of this paper and we focus on state synchronization confirmation and update.

Generic execution state confirmation protocol. In order to confirm the execution states, we
rely on the assumptions that the matching sessions s, s∗ share a session key k and a confirmation
key km. Meanwhile, we stress that the confirmation messages are protected by the session key
to be secure against passive adversary. Let ′‖′ be the operation of messages concatenation. The
execution state confirmation protocol (ESCP) is depicted in figure 2 which can also be used to
thwart unknown key-share attacks [4][5].

Â B̂
M1 :=

MACkm(′1′||sid||H(k, lESs)||Â||I||ETA||
lETA||H(k, TETA)||B̂||R||lETB ||H(k, TETB))

mesg1 := sid||M1||H(k, lESs)||ETA

||lETA||H(k, TETA)||lETB ||H(k, TETB)

−
mesg1

−−−−−−−−−−−−−−−−→
M2 :=

MACkm(′2′||sid||H(M1, lESs∗)||Â||I||ETA||lETA

||H(M1, TET ∗A)||B̂||R||lETB ||H(M1, TET ∗B))

mesg2 := sid||M2||H(lESs∗)||ETA||
lETA||H(TET ∗A)||lETB ||H(TET ∗B)

←−
mesg2

−−−−−−−−−−−−−−−−
M3 :=

MACkm(′3′||sid||M1||ETA||ETB ||M2)
mesg3 := sid||M3

−
mesg3

−−−−−−−−−−−−−−−−→

Fig. 2: Execution state confirmation protocol
.

We first note that using ’hash’ version of original PIS in first confirmation, and the hashed
value implies the pre-image in original PIS without negligible probability. Thus in the subsequent
sections, we don’t discriminate the two types of the PIS, i.e. the hashed version of PIS and its pre-
image. The whole confirmation procedure are protected by the session key k to secure against the
interception of passive adversary. A protocol instance s completed successfully, if only if it received
the last intended message and all verifications are valid including the synchronization check (i.e.,

3 Note that, the SL itself could work as a table in a database, hence the PIS as a item in SL should be protected
by some concurrency control mechanism

7

whether the status of current PISs and PISs∗ is either FSS or PSS in terms of Definition 2),
then the protocol execution state could be full updated (i.e., all attributes in PIS will be renewed).
Otherwise, the s is called incomplete execution and only partial of states might be updated. And
we stress that only the responder will process the partial update because she might only receive
the first valid confirmation message M1 from the initiator without the last valid M3, and then
she doesn’t know whether or not her confirmation message M2 reached the initiator. Nevertheless,
in this situation, the responder at least learns that the initiator has successfully established the
session. On the other side, the initiator could either proceed with full PIS update if she has already
received the valid M2, or do nothing if the confirmation messages from responder are lost or invalid.
In the following, we formally present the definition of the rules for sate synchronization.

Definition 3 (Execution state synchronization rules). The transition rules of PIS for two-
party protocol are described as following:

1. Initialize the PISs by retrieving from SL. This operation is done by both initiator and responder
before the confirmation process start.

2. For the initiator Â:

(a) If Â receives the valid M2, then Â updates the PISs as following:

i. If Identify(PISs, P ISs∗) = NS, Â abort with non- synchronization failure.
ii. If Identify(PISs, P ISs∗) = FSS, then Â does the following:

A. Set lESs = ESs.
B. Set lETA = ETA and lETB = ETB.
C. Set TETA = H(ETA||ESs) and TETB = H(ETB||ESs).

iii. If Identify(PISs, P ISs∗) = PSS, then Â does the following:

A. Either set lESs = H(TETA, ESs) if TET ∗A = TETA, or set lESs = H(TETB, ESs)
if TET ∗B = TETB.

B. Set lETA = ETA and lETB = ETB.
C. Set TETA = H(ETA||lESs) and TETB = H(ETB||lESs).

iv. Accept the session and store the updated PISs into SL.

(b) Otherwise, Â does nothing.

3. For the responder B̂:

(a) If B̂ receives valid M1,M3, then B̂ updates PISs∗ as following:

i. If Identify(PISs, P ISs∗) = NS, B̂ abort with non-synchronization failure.
ii. If Identify(PISs, P ISs∗) = FSS, then B̂ does the following:

A. Set lESs∗ = ESs∗.
B. Set lETB = ETB and lETA = ETA.
C. Set TET ∗A = H(ETA||ESs∗) and TET ∗B = H(ETB||ESs∗).

iii. If Identify(PISs, P ISs∗) = PSS, then B̂ does the following:

A. Either set lESs∗ = H(TETA, ESs∗) if TET ∗A = TETA, or set lESs∗ = H(TETB, ESs∗)
if TET ∗B = TETB.

B. Set lETA = ETA and lETB = ETB.
C. Set TET ∗A = H(ETA||lESs∗) and TET ∗B = H(ETB||lESs∗).

(b) Else If B̂ only receives the valid M1, then B̂ updates the PISs∗ as following:

i. If Identify(PISs, P ISs∗) = NS, B̂ abort with non-synchronization failure.
ii. If Identify(PISs, P ISs∗) = FSS, then B̂ does the following:

A. Set lESs∗ = RES.
B. Set lETA = ETA and TET ∗A = H(ETA||ESs∗).

iii. If Identify(PISs, P ISs∗) = PSS, then B̂ does the following:

8

A. Set lESs∗ = RES.
B. Set lETA = ETA
C. Either set TET ∗A = H(ETA||H(TET ∗A, ESs∗)) if TET ∗A = TETA, or set TET ∗A =

H(ETA||H(TET ∗B, ESs∗)) if TET ∗B = TETB.

iv. Accept the session and store the updated PISs∗ into SL.

(c) In other case B̂ does nothing.

4. Meanwhile, we require the whole PIS update procedure described above is atomic. In addition,
the update steps need to ensure the established time of initiator is latest one. Moreover, If PIS
is expired, then it will be set as PIS := (INIT,⊥, Â, I,⊥,⊥, B̂, R,⊥,⊥) or deleted from SL.
And the parties can also negotiate together to roll back their PIS from established stage to
either init or reset stage, based on successfully performing the protocol instance.

Resistance of interference of adversary. Please note if the adversary is able to interfere with
the communication between parties, and then there is unable to achieve full state synchronization.
As describing in Definition 3, if the party B̂ doesn’t receive the last valid confirmation message,
namely just receiving the valid M1 and the Identify(PISs, P ISs∗) satisfy either FSS or PSS,
then only part of the PIS (i.e., the established time and its transformation of initiator) could
be updated, in which case the protocol execution state of responder is set to be reset, namely
the soundness property satisfied. To sum up, if the MACscheme is secure as definition 6 then our
proposed scheme is resist with the inference of adversary.

Impersonation detection. The PIS synchronization is the key criteria for detecting imperson-
ation attack. So far we are able to online identify the identity impersonation attack undetected
previously for honest party Â and B̂ when they proceed with some matching sessions.

Proposition 1. When two honest parties Â and B̂ are executing two matching sessions with ex-
isting only benign passive adversary, and if the mutual authentication is valid but corresponding
protocol execution states are non-synchronization after confirmation, then we could conclude that
at least one of the parties has been impersonated to another.

Proof. We require there exist only benign passive adversary who just act like wire between the two
parties, due to the reasons: (i) if the passive adversary interfere with the communication then the
confirmation protocol might not be able terminate with success, and(ii) if the active adversary who
learned the long-term key and PIS of the responder then the impersonation detection would fail
because the adversary could always impersonate as the responder (victim) to the session initiator.

Whereas, the validity of authentication procedure implies that the party who is processing
the protocol instance possess corresponding long-term authentication key related to her identity.
According to the execution synchronization rules if the instance aborted with non-synchronization
error at step 2(a)i, 3(a)i, and 3(b)i, and then there must be some identity impersonation events has
happened to either the honest parties, or even the ongoing instance is carried out by adversary.

Once the identity impersonation attack happened, we are require to figure out whose authen-
tication credential is exposed, by comparing the established times recorded in PIS.4

4 Perhaps the recorded information should include the ’location’ of user while executing the protocol etc. which
might help with figuring out the responsibility for the impersonation consequences, but that relies on specific
application, AKE protocols and privacy concerns.

9

2.3 Security analysis of proposed framework

In order to define the security, we should treat three execution stages transition differently. In
particular, there is no execution state at all for the init stage, thus we assume each PIS is initialized
in secure way (namely, the stage shifted from init to established is secure and whole initialization
procedure is isolated to the adversary). While within the established stage, we assume the protocol
instance of Π generate its established stage value to be uniformly random. And the reset execution
stage only used to re-establish the protocol execution state according to the definition 3, and the
normal communications only work under established stage. Thus in the following we only discuss
the security of proposed ESSF for established stage.

We assume there have n parties modeled as probabilistic polynomial time (in some security
parameter) Turing machines (PPTs) and one special PPT called adversary. Each party has a long-
term authentication key (asymmetric or symmetric) which is used to prove the identity of the party
and can run a (polynomially-bounded) number of instances (sessions) implementing the considered
AKE protocol Π. Basically, the adversary have full control over the network and make at most
qse, qh queries on Send and hash function H respectively, under security parameter λ. We allow the
adversary interact with following types of queries:

– EstablishSession(Â, I, B̂, R, ID). The adversary may query this oracle to initiate a new session
masquerading as party ID where ID provided by adversary which could be either Â and B̂.
This query will respond with a session identifier sid and corresponding session key pair k, km.
This query model the situation that the adversary learned the long-term authentication key of
the party Â at some point and try to impersonate as the victim to other party without knowing
corresponding PIS. Note that the role of adversary is exactly as the same as the party ID’s role
in the session sid, e.g. if the ID = Â then the role of adversary in the session is initiator either.

– Send(Â, sid,m). A sends any message m to session sid held by Â.
– Corrupt(Â). The attacker learns the whole current internal session-specific states including

the current PIS; reveal corresponding long-term secrets (such as private keys or master shared
keys used across different sessions). Since then the corrupted party is considered completely
controlled by the attacker from the time of corruption and the attacker can impersonate the
party in all its actions departing arbitrarily from the protocol specifications. If a party is not
corrupted it is said to be honest.

We define the security of ESSF from the perspective of secrecy and forgery resistance properties
tied with the use of PIS in ESSF. The ESSF is said to satisfy secrecy property if there is no
polynomial bounded adversary has non-negligible probability in winning the Secrecy experiment
between a Challenger and the adversary under chosen-message attacks. In which experiment the
following steps are performed:

1. The adversary A may issue polynomial number of queries as aforementioned in the security
parameter, namely A makes queries: EstablishSession, Send, and Corrupt.

2. Meanwhile, the Challenger C take charge of generating the value of established stage (i.e. ES)
for each session uniformly random, and then the corresponding parties update and store current
PIS respectively in terms of the ESCP as Section 2.2 and synchronization rules as Definition
3.

3. At the end of the experiment, the A outputs a PISt := (lESt, Â, I, lET
t
A, TET

t
A, B̂, R, lET

t
B,

TET tB). We assume the current PIS identified by tuple (Â, I, B̂, R) stored at party Â is PISa,

and at party B̂ is PISb. We say A wins the experiment if all the following conditions are hold:

(a) The party Â and B̂ are not corrupted.

10

(b) Either identify(PISt, P ISa) ∈ {FSS, PSS}, or identify(PISt, P ISb) ∈ {FSS, PSS}.

We also define the Forgery experiment between a Challenger and the adversary in the similar
way. The ESSF is said to satisfy forgery resistance property under adaptively chosen-message
attacks, if there is no polynomial bounded adversary has non-negligible probability in winning the
Fecrecy experiment. In which experiment the following steps are performed:

1. The adversary A may issue polynomial number of queries as aforementioned in the security
parameter, namely A makes queries: EstablishSession, Send, and Corrupt.

2. Meanwhile, the Challenger C take charge of generating the value of established stage (i.e. ES)
for each session uniformly random, and then the corresponding parties update and store current
PIS respectively in terms of the ESCP as Section 2.2 and synchronization rules as Definition
3.

3. At the end of the experiment, the A initializes a session via (sid, k, km) =
EstablishSession(Â, I, B̂, R, ID), where the party ID could be either Â or B̂ which are chosen
by the adversary. And output a confirmation message m on her choice with a hashed test PISt

included in m. We assume the current PIS identified by tuple (Â, I, B̂, R) stored at party Â is
PISa, and at party B̂ is PISb. We say A wins the experiment if all the following conditions are
hold:
(a) The party Â and B̂ are not corrupted.
(b) The partner of ID accepts the message m after performing the Identify operation on

the PISt carried in m, namely either identify(PISt, P ISb) ∈ FSS, PSS if ID = Â, or
identify(PISt, P ISa) ∈ {FSS, PSS} if ID = B̂.

In the subsequent, we formally analyze the secrecy and forgery resistance security properties
respectively.

Theorem 1. If the value of established execution stage for each session is chosen uniformly ran-
dom, the hash function is one-way collision-resistant with respect to the definitions in Appendix A,
then the ESSF provides secrecy.

Poof: (sketch) We fix two honest party Â and B̂. In the Secrecy experiment, the goal of adversary
is to learn at least one value of (lES, TETA, TETB) in current PISa or PISb. The adversary A
might collect PIS related information by intercepting the confirmation messages between the two
parties, or in particular performing EstablishSession query as responder to obtain the confirmation
message M1. In order to win the Secrecy experiment, the adversary has two options: (i) randomly
guess right the value of (lES, TETA, TETB); (ii) break the one-wayness security property of the
hash function, namely A successfully reverse the hashed PISa or PISb carried in the first two
messages of ESCP to corresponding pre-images. In which cases the probability of A in winning the
experiment is bounded by a negligible fraction in the security parameter.

Theorem 2. If the value of established execution stage for each session is chosen uniformly ran-
dom, the hash function is one-way collision-resistant with respect to the definitions in Appendix A,
then the ESSF is secure against forgery.

Poof: (sketch) We examine the forgery resistance property in the extreme case that the adversary
learns the long-term authentication key of a party and try to impersonate as the victim to another
party without knowing corresponding PIS. Thus we prove the Theorem 2 by the following lemma.

Lemma 1. If the value of established execution stage for each session is chosen uniformly random,
the hash function is one-way collision-resistant, then the ESSF is resist with leakage of long-term
secret.

11

Proof. (sketch) Since the adversaryA obtain the long-term key of Â and B̂, henceA is able to estab-
lish sessions to both parties respectively, to collect corresponding hashed PISa or PISb. However in
order to make the party to accept the session, A is required to successfully perform the ESCP proto-
col, i.e. forge the confirmation message. To collect the useful information, the A could also just inter-
cept the mesg2 which contains the PISb. However in this case, A has to drop the mesg2(that would
lead PISb to be reset stage), otherwise Â will update the PISa to new one. We particularly consider
the situation that the A masquerade as B̂, i.e. issue (sid, k, km) = EstablishSession(Â, I, B̂, R, B̂),
and obtain the mesg1 := sid||M1||H(k, lESs)||ETA||lETA||H(k, TETA)||lETB||H(k, TETB). Al-
though A knows the session key k, she still need the information of lESs, TETA, TETB to compute
valid hashed PISb mainly including H(M1, lESs∗), H(M1, TETA), H(M1, TETB) and then the
valid M2. To achieve so, the adversary has the following options: (i) randomly guess right at least
one value of (lESs, TETA, TETB) or theirs corresponding hash value in session sid; (ii) break the
one-wayness security property of the hash function, namely A successfully reverse the hashed PISa,
i.e. H(M1, lESs∗), H(M1, TETA), H(M1, TETB). In which cases the probability of A in winning
the experiment is bounded by a negligible fraction in the security parameter.

3 Implementation of ESSF

While realizing the ESSF proposed in section 2, the most important issue is how to represent the
j-th established stage value in particular AKE protocol. Furthermore, we require the protocol is
able to deal with the circumstance of PSS, namely rollback to previous normal states. Those issues
are left to specific AKE protocol.

Definition 4. We say that an AKE protocol π securely realize ESSF, if each protocol instance
of π generate the value of established execution stage to be uniform random, and shared only by
unique-pairwise matching sessions.

3.1 Abstracted ES generation scheme and applications

In practical, we are required to integrate the ESSF with an existent AKE protocol π (such as like
SSL/TLS or IPSec/IKE) without any modification on π. Nevertheless, we only need the protocol
π to provide an interface to access the transformation of its session key, e.g., k′ = H(k). Now we
can give a generic ES generation scheme for AKE protocols based on the k′. The scheme for two
parties’ protocol proceeds as following:

1. Â and B̂ run the key exchange protocol with freshly generated parameters. Throughout this
protocol run, assuming both parties compute transformation k′ = H(k), where k is the session
key and H is a one-way hash function.

2. Compute a new encryption key ke = H3(k
′, sid, ”ENC”), the MAC key km = H3(k

′, sid, ”MAC”),
and the corresponding execution stage ESj+1 = H3(k

′, sid, ES′j , ”ES”). Here we stress the ES′j
could be either the last successfully established stage value ESj , or recorded transformation of
ESj (namely the TETA or TETB).

Concrete applications. The ESSF can be applied to wide application fields to design security
solutions, for instance:

1. Build up two-factor authentication scheme. Where two-factor authentication is a scheme wherein
two different factors are used in conjunction to authenticate. We can exploit the execution states
as second authentication factor stored on some tamper-proof device (e.g., smart card). Then

12

the party can use its long-term private key to execute the AKE protocol as usual, and used the
ESCP to do further authentication.

2. Enhance the password based authentication scheme. We can generate a high-entropy secret by
modifying the password pw combining with the last established execution states, and the new
password pw′ = H(pw, lES,ES). And then the client could send pw′ instead of H(pw) over
TLS which is secure against ’off-line’ guessing attack.

4 Closing Remark

We introduce a mechanism to characterize the execution states and propose a general framework
for AKE protocols to mitigate the threat of leakage of long-term identity authentication key by
providing identity impersonation detection capability with resistance of adversary interference. The
impersonation detection feature can be very useful to help the user to reduce the damage caused
by stolen long-term key. Additional, it requires no change to the AKE protocol when realizing
the ESSF, since it is designed to simultaneously be used with multiple classes of AKE protocols.
We have also discussed the proof that our scheme is secure under commonly used cryptographic
assumptions. And We believe this is a viable solution to the problem of long-term credential theft.

References

1. Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In CRYPTO, pages 431–448, 1999.
2. Ran Canetti and Shafi Goldwasser. An efficient threshold public key cryptosystem secure against adaptive

chosen ciphertext attack. In EUROCRYPT’99: Proceedings of the 17th international conference on Theory and
application of cryptographic techniques, pages 90–106, Berlin, Heidelberg, 1999. Springer-Verlag.

3. Ran Canetti and Hugo Krawczyk. Security analysis of ike’s signature-based key-exchange protocol. Cryptology
ePrint Archive, Report 2002/120, 2002. http://eprint.iacr.org/.

4. Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Errors in computational complexity proofs for
protocols. In Roy [14], pages 624–643.

5. Kim-Kwang Raymond Choo, Colin Boyd, and Yvonne Hitchcock. Examining indistinguishability-based proof
models for key establishment protocols. In Roy [14], pages 585–604.

6. Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated public key cryptosystems. In
Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages 65–82.
Springer, 2002.

7. Neil Haller. The s/key one-time password system. In In Proceedings of the Internet Society Symposium on
Network and Distributed Systems, pages 151–157, 1994.

8. Amir Herzberg, Markus Jakobsson, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proactive public key
and signature systems. In ACM Conference on Computer and Communications Security, pages 100–110, 1997.

9. Hugo Krawczyk. Sigma: The ’sign-and-mac’ approach to authenticated diffie-hellman and its use in the ike-
protocols. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages 400–425.
Springer, 2003.

10. Hugo Krawczyk. Hmqv: A high-performance secure diffie-hellman protocol. In Victor Shoup, editor, CRYPTO,
volume 3621 of Lecture Notes in Computer Science, pages 546–566. Springer, 2005.

11. Leslie Lamport. Password authentication with insecure communication. Commun. ACM, 24(11):770–772, 1981.
12. Alfred Menezes and Berkant Ustaoglu. Comparing the pre- and post-specified peer models for key agreement.

IJACT, 1(3):236–250, 2009.
13. D. Nali and Paul C. van Oorschot. Croo: A universal infrastructure and protocol to detect identity fraud. In

ESORICS, pages 130–145, 2008.
14. Bimal K. Roy, editor. Advances in Cryptology - ASIACRYPT 2005, 11th International Conference on the The-

ory and Application of Cryptology and Information Security, Chennai, India, December 4-8, 2005, Proceedings,
volume 3788 of Lecture Notes in Computer Science. Springer, 2005.

15. SeongHan Shin, Kazukuni Kobara, and Hideki Imai. Leakage-resilient authenticated key establishment protocols.
In ASIACRYPT, pages 155–172, 2003.

16. SeongHan Shin, Kazukuni Kobara, and Hideki Imai. Efficient and leakage-resilient authenticated key transport
protocol based on rsa. In ACNS, pages 269–284, 2005.

17. Paul C. van Oorschot and Stuart G. Stubblebine. Countering identity theft through digital uniqueness, location
cross-checking, and funneling. In Financial Cryptography, pages 31–43, 2005.

13

http://eprint.iacr.org/

A Preliminaries and Definitions

In this section, we recall the syntax and security definitions of the building blocks used in this
paper.

A.1 One-way Collision-resistant Hash function

Let H : {hk}k∈K be a family of keyed hash functions, where each hk maps {0, 1}d → {0, 1}κ in
which d is the length of domain D of pre-image. Let H−1(y) = {x ∈ {0, 1}d : hk(x) = y} denote
the pre-image set of y. A family H is one-way if it is computationally infeasible, given hk and a
range point y = hk(x), where x was chosen at random, to find a pre-image of y (whether x or some
other).

Definition 5. We say that H is collision resistant if the maximum success probability is ε over
all PPT adversaries (i.e., probabilistic Turing machine running in time polynomial with secu-
rity parameter κ) on finding a collision pair such that H(m) = H(m′), where ε is negligible and
(m,m′) ∈ {0, 1}∗ with m 6= m′. We have

Pr
[
k

$← K : hk(m) = hk(m
′)
]
≤ ε

A.2 Message Authentication Codes

A message authentication code is an algorithm MAC. This algorithm implements a deterministic
function w = MAC(Km,m), taking as input a key km ∈ {0, 1}κ and a message m, and returning a
string w. Consider the following security experiment played between a challenger C and an adversary
A.

1. The challenger samples km
$← {0, 1}κ uniformly random.

2. The adversary may query arbitrary messages mi to the challenger. The challenger replies each
query with wi = MAC(km,mi). Here i is an index, ranging between 1 ≤ i ≤ q for some polynomial
q = q(·). Queries can be made adaptively.

3. Eventually, the adversary outputs a pair (m,w).

Definition 6. We say that MAC is a secure message authentication code, if

Pr
[
(m,w)

$← AC(1κ) : w = MAC(km,m) and m 6∈ {m1, . . . ,mq}
]
≤ ε

for all probabilistic polynomial-time (in κ) adversaries A, where ε is some negligible function in the
security parameter.

14

	Generic Execution State Synchronization Framework for Authenticated Key Exchange Protocol
	Zheng Yang Ruhr University Bochum,Germany Zheng.Yang@rub.de

