
Fully Simulatable Quantum-Secure Coin-Flipping
and Applications

Carolin Lunemann and Jesper Buus Nielsen

Department of Computer Science, Aarhus University, Denmark
{carolin|jbn}@cs.au.dk

Abstract We propose a coin-flip protocol which yields a string of strong, random coins and is
fully simulatable against poly-sized quantum adversaries on both sides. It can be implemented
with quantum-computational security without any set-up assumptions, since our construction
only assumes mixed commitment schemes which we show how to construct in the given set-
ting. We then show that the interactive generation of random coins at the beginning or during
outer protocols allows for quantum-secure realizations of classical schemes, again without any
set-up assumptions. As example applications we discuss quantum zero-knowledge proofs of
knowledge and quantum-secure two-party function evaluation. Both applications assume only
fully simulatable coin-flipping and mixed commitment schemes. Since our framework allows
to construct fully simulatable coin-flipping from mixed commitment schemes, this in particular
shows that mixed commitment schemes are complete for quantum-secure two-party function
evaluation.

1 Introduction

True randomness is a crucial ingredient in many cryptographic applications. Therefore, se-
cure coin-flipping is an essential primitive, which allows two parties to agree on a uniformly
random bit in a fair way, such that neither party can influence the value of the coin to his
advantage.

We investigate coin-flip protocols with classical messages exchange but where the ad-
versary is assumed to be capable of quantum computing. Security of cryptographic proto-
cols in the quantum world means, of course, that quantum computation does not jeopardize
the assumption, underlying the protocol construction. However, we encounter additional
setbacks in the security proofs, which are mostly due to the fact that some well-known
classical proof techniques cannot be applied in a quantum environment.

We aim at establishing coin-flipping as a stand-alone tool in a model without any setup
assumptions. As such, our protocol can be used in several contexts and different generic
constructions. One notable application of is as subroutine for realizing the theoretical as-
sumption of the common-reference-string-model (CRS-model).1 Since the generation of a
CRS often significantly simplifies the design of (quantum-secure) protocols, this then im-
plies that various interesting applications can be implemented quantum-securely in a simple
manner from scratch.

1 In the CRS-model the parties are provided with a public common reference string CRS before communica-
tion, taken from some fixed distribution, only depending on the security parameter.

In more detail, we first investigate different degrees of security that a coin-flip protocol
can acquire. Then, we propose and prove constructions that allow us to amplify the respec-
tive degrees of security such that weaker coins are converted into very strong ones.2 The
amplification only requires mixed commitment schemes, which we know how to construct
with quantum security under reasonable assumptions. Combining our amplification proto-
cols allows to take a very weak notion of coin-flipping and amplify it to a coin-flip protocol
which is fully simulatable against poly-sized quantum adversaries. By fully simulatable we
mean that both sides can be simulated in quantum polynomial time.

Our amplification framework should also be understood as a step towards fully simu-
latable constant-round coin-flipping. To our best knowledge, to date there does not exist
any fully simulatable protocol which is constant-round and which allows to generate a
long random bit-string. In particular, no fully simulatable constant-round coin-flip proto-
col is known to securely compose in parallel. Since all our amplification protocols work
in constant-round, we show that if there exists a constant-round coin-flip protocol of long
strings with weak security, then there also exists a constant-round coin-flip protocol of long
strings which is fully simulatable. Even though our work leaves fully simulatable constant-
round coin-flipping of long strings as a fascinating open problem, we consider it a contri-
bution in itself to define a reasonably weak but sufficient security notion to realize fully
simulatable constant-round coin-flipping of long strings.
RELATED WORK. The standard coin-flip protocol of [Blu81] was proven secure in a quan-
tum environment in [DL09]. In its basic form this protocol yields one coin as output. Of
greater importance, however, is flipping a string of coins instead of a bit, in particular, when
generating a CRS. The basic construction composes in sequence with security classified as
medium in our framework here. Parallel composition is possible using an extended con-
struction providing efficient simulations on both sides. This extension, however, requires a
CRS as initial assumption, i.e. the CRS-model, and hence, violates our strong requirement
of applications, implementable quantum-securely without any set-up assumptions.

As an example application for our framework, we propose a quantum-secure zero-
knowledge proof of knowledge. We want to mention here an alternative approach for this
context, which was independently investigated [Smi09]. There, coin-flipping is implemented
by a string commitment with special openings and validated in subsequent zero-knowledge
proofs in sequence, and which therefore has round complexity depending on the security
parameter, i.e. how many proofs must be completed to achieve a negligible soundness error.
The coin-string is used as key to encode the witness and more zero-knowledge proofs are
given to prove that. As encryption scheme, they suggest a scheme with similar properties
as in the standard construction for mixed commitments [DN02, DFS04, DFL+09]. To the
best of our knowledge, the question of its actual secure implementation was left open, and
a formal description and analysis was never published.
SECURITY IN THE QUANTUM WORLD. It is well known that bit commitments imply a
single coin-flip—in the classical as in the quantum world [Blu81, DL09]—in a straightfor-

2 For clarity, we note that we use the intuitive interpretation of “weak” and “strong” coins related to their
security degrees, which differs from the definitions in the quantum literature.

2

ward way: Alice chooses a random bit a and commits to it, Bob then sends his bit b in
plain, then the commitment is opened, and the resulting coin is a⊕ b. However, even when
basing the embedded commitment scheme on a computational assumption that withstands
quantum attacks (for the hiding property), the security proof of the outer coin-flipping (and
its integration into other applications) cannot easily be translated from the classical to the
quantum world. Typically, security against a classical adversary is argued in this context
by rewinding the adversary in a simulation. In brief, it is shown that a run of a protocol
between a dishonest Bob and honest Alice can be efficiently simulated without interacting
with Alice but with a simulator instead. A simulator basically prepares a valid conversation
and tries it on dishonest Bob. Now, in case Bob does not send the expected reply, we need
the possibility to rewind him. Then to conclude the proof, we have to show that the expected
running time of the simulation is polynomial.

Unfortunately, rewinding as a proof technique can generally not be directly applied in
the quantum world, i.e., if the dishonest machine is a quantum computer. First, we cannot
trivially copy and store an intermediate state of a quantum system, and second, quantum
measurements are in general irreversible. In order to produce a classical transcript, the sim-
ulator would have to partially measure the quantum system without copying it beforehand,
but then it would become impossible to reconstruct all information necessary for correct
rewinding [Gra97]. It is worth mentioning though that rewinding in the quantum world is
possible in a very limited setting [Wat09]. This technique was also used for proving the
quantum security of single coin-flipping based on bit commitments [DL09]. However, the
generation of a string of coin must be based on string commitments. In this setting, the
simulator cannot rewind in poly-time. A possible solutions for simulating against a classi-
cal Bob is then to let him commit to his message in a way which allows to extracted the
message in the simulation. Therewith, the message is known to the simulator in any fol-
lowing iteration of rewinding. This technique seems to be doomed to fail in the quantum
realm, since it is neither known how to rewind quantumly for string commitments nor can
any intermediate status (such as Bob’s commitment) be preserved. Moreover, commitment
constructions providing flavors of extractability without rewinding require some stronger
set-up assumptions. Thus, other techniques such as our method, are needed for solutions in
this context.

APPLICATIONS. Even though we establish coin-flipping as a stand-alone tool, we show that
the generation of a CRS leads to a simple and quantum-secure implementation of various
interesting applications without any set-up assumptions. We show two different applica-
tions. First, we propose a quantum-secure zero-knowledge proof of knowledge based on a
witness encoding scheme, which we define such that it provides a certain degree of ex-
tractability and simulatability in the quantum world. Our zero-knowledge construction only
requires mixed commitments, which can be implemented with quantum security. This is of
particular interest, as the problems of rewinding in the quantum realm complicate imple-
menting proofs of knowledge from scratch. And second, we show that mixed commitment
schemes are sufficient for quantum-secure function evaluation of any classical poly-time
function f with security against active quantum adversaries. In more detail, we first show

3

that mixed commitments imply an oblivious transfer protocol with passive security. From
that it is straightforward to construct a protocol for any classical poly-time function with
security against passive quantum adversaries [Kil88]. As our main result, we then propose
a quantum-secure implementation for evaluating any such function with security against
active quantum adversaries.

2 Preliminaries

We use negl (n) to denote the set of negligible functions (in n). For a bit-string x ∈ {0, 1}n
and a subset S ⊆ {1, . . . , n} of size s, we define x|S ∈ {0, 1}s to be the restriction (xi)i∈S .
For a random variable X we use PX to denote the distribution of X and for an additional
random variable Y we use PX|Y to denote the conditional distribution of X given Y .

Statistical indistinguishability of families of classical random variables is denoted by
s
≈, and

q
≈ indicates quantum poly-time indistinguishability of families of random variables,

i.e., the families cannot be distinguished by poly-sized families of quantum circuits.

2.1 Definition of Security

We are interested in classical two-party protocols secure in a quantum world. We work
in the security framework, introduced in [FS09] and extended in [DFL+09]. The defini-
tions are proposed for quantum protocols that implement classical non-reactive two-party
functionalities, meaning that in- and output must be classical. The framework allows func-
tionalities which behave differently in case of a dishonest player, and it is further shown
that any protocol in the framework composes sequentially in a classical environment, i.e.
within an outer classical protocol. For the sake of simplicity, the framework does not assume
additional entities such as e.g. an environment. The original security definitions for uncon-
ditional security [FS09] are phrased in simple information-theoretic conditions, depending
on the functionality, which implies strong simulation-based security. In [DFL+09], it is then
shown that computational security (in the CRS-model) can be defined similarly. In the fol-
lowing, we state the formalism essential for this work.3 For more details on the framework
and notation, we refer to [FS09, DFL+09, DFSS07], and to [Lun10] for an overview.

Our protocols run between players Alice (A) and Bob (B) and all definitions are given
in the two-world paradigm of simulation-based proofs. The real world captures the actual
protocol Π , consisting of message exchange between the parties and local computations.
Real-world players are denoted by honest A,B and are restricted to poly-time classical
strategies. Dishonest players A′,B′ are allowed any quantum poly-time strategy. Formally,
let P denote the set of poly-size quantum circuits, so we assume that A′,B′ ∈ P. The ideal
functionality F models the intended behavior of the protocol in the ideal world, where the
players interact using F . Honest and dishonest players in the ideal world (a.k.a. simulators)
are denoted by Â, B̂ and Â′, B̂′, respectively. An honest player simply forwards messages
to and from F , dishonest players are allowed to change their messages. Again Â′, B̂′ ∈ P.

3 Note that we use a simplified joint output representation in comparison to [FS09].

4

Now, the input-output behavior of F defines the required input-output behavior of Π . Intu-
itively, if the executions are indistinguishable, security of the protocol in real life follows. In
other words, a dishonest real-world player that attacks protocol Π cannot achieve (signifi-
cantly) more than an ideal-world adversary, attacking the corresponding ideal functionality
F .

The common input state ρUV must be classical, i.e. ρUV =
∑

u,v PUV (u, v)|u〉〈u| ⊗
|v〉〈v| for some probability distribution PUV , where we understand U, V as random input
variables (for Alice and Bob, respectively). The same holds for the classical output state
ρXY with outputX,Y for Alice respectively Bob. The input-output behavior of the protocol
is uniquely determined by PXY |UV , and we write Π(U, V) = (X,Y). Then, a general
classical ideal functionality F is given by a conditional probability distribution PF(U,V)|UV
with F(U, V) denoting the ideal-world execution, where the players forward their inputs
U, V to F and output whatever they obtain from F .

Definition 2.1 (Correctness). A protocol Π(U, V) = (X,Y) correctly implements an
ideal classical functionality F , if for every distribution of the input values U and V , the
resulting common output (X,Y) satisfies (U, V,X, Y)

s
≈ (U, V,F(U, V)).

We now define computational security against dishonest Alice, the definitions for dis-
honest Bob are analogue. Recall that V denotes honest Bob’s classical input, and let Z
and U ′ denote dishonest Alice’s classical and quantum information. We consider a poly-
size quantum circuit, called input sampler, which takes as input the security parameter and
which produces the input state ρU ′ZV . We require from the input sampler that any ρU ′ZV is
restricted to be of form ρU ′↔Z↔V =

∑
u,v PUV (u, v)|u〉〈u| ⊗ |v〉〈v| ⊗ ρuU ′ (see [DFSS07]),

where it holds that4 ρuU ′ = ρu,vU ′ . This expresses conditional independence, namely that
Bob’s classical V is independent of Alice’s quantum part U ′ when given Z, or in other
words, Alice’s quantum part U ′ is correlated with Bob’s part only via her classical Z.

Definition 2.2 (Computational security against dishonest Alice). A protocol Π imple-
ments an ideal classical functionality F computationally securely against dishonest Alice,
if for any real-world adversary A′ ∈ P, there exists an ideal-world adversary Â′ ∈ P such
that, for any efficient input sampler with ρU ′ZV = ρU ′↔Z↔V , it holds that the outputs are
quantum-computationally indistinguishable, i.e.,

outΠA′,B
q
≈ outF

Â′,B̂
.

We state these output states explicitly as outΠA′,B = ρUX′ZY and outF
Â′,B̂

= ρUX′↔Z↔Y
which shows that Alice’s possibilities in the ideal world are limited: She can produce some
classical input U for F from her quantum input state U ′, and then she can obtain a quantum
state X ′ by locally processing U and possibly F’s classical reply X .

4 ρxE denotes a state in register E, depending on value x ∈ X of random variable X over X with distribution
PX . Then, from the view of an observer, who holds register E but does not know X , the system is in state
ρE =

∑
x∈X PX(x)ρxE , where ρE depends on X in the sense that E is in state ρxE exactly if X = x.

5

3 Security Notions for Coin-Flipping

We denote a generic protocol with a λ-bit coin-string as output by Π λ−COIN
A,B , corresponding

to an ideal functionality Fλ−COIN. The outcome of such a protocol is c ∈ {0, 1}λ∪{⊥}, i.e.,
either an λ-bit-string or an error message. We use several security parameters, indicating
the length of coin-strings for different purposes; the length of a coin-flip yielding a key or a
challenge are denoted by κ or σ, respectively.

The ideal functionality for coin-flipping is defined symmetric such that always the re-
spective dishonest party has an option to abort. For clarity, we state the ideal functionalities
in the case of both players being honest (Fig. 1) and in the case of dishonest Alice and hon-
est Bob (Fig. 2). The latter then also applies to honest Alice and dishonest Bob by simply
switching sides and names.

FUNCTIONALITY Fλ−COIN WITH HONEST PLAYERS:
Upon receiving requests start from both Alice and Bob, Fλ−COIN outputs uniformly random h ∈R
{0, 1}λ to Alice and Bob.

Figure 1. The Ideal Functionality for λ-bit Coin-Flipping (without Corruption).

FUNCTIONALITY Fλ−COIN WITH DISHONEST ALICE:
1. Upon receiving requests start from both Alice and Bob, Fλ−COIN outputs uniformly random h ∈R
{0, 1}λ to Alice.

2. It then waits to receive her second input > or ⊥ and outputs h or ⊥ to Bob, respectively.

Figure 2. The Ideal Functionality for λ-bit Coin-Flipping (with Corruption).

Recall that the joint output representation of a protocol execution is denoted by outΠA,B
(with Π = Π λ−COIN

A,B) and given here for the case of honest players. The same notation with

F = Fλ−COIN and Â, B̂ applies in the ideal world as outF
Â,B̂

, where the players invoke the
ideal functionality Fλ−COIN and output whatever they obtain from it. We need an additional
notation here, describing the outcome of a protocol run between e.g. honest A and B, namely
c← Π λ−COIN

A,B .
We will define three flavors of security for coin-flip protocols, namely uncontrollable

(uncont), random and enforceable (force). The two sides can have different flavors. Then,
if a protocol Π λ−COIN

A,B is, for instance, enforceable against Alice and random against Bob,
we write π(force,random), and similarly for the eight other combinations of security. Note
that for simplicity of notation, we will then omit the indexed name as well as the length of
the coin, as they are clear from the context. Again, we define all three flavors for Alice’s
side only, as the definitions for Bob are analogue. Recall from Section 2.1 that U ′, Z,
and V denote dishonest Alice’s quantum and classical input, and honest Bob’s classical
input, respectively. As before, we assume a poly-size input sampler, which takes as input
the security parameter, and produces a valid input state ρU ′ZV = ρU ′↔Z↔V . Note that an
honest player’s input is empty but models the invocation start. We stress that we require

6

for all three security flavors and for all c ∈ {0, 1}λ that

Pr [c← Π λ−COIN
A,B] = 2−λ ,

which implies that when both parties are honest, then the coin is unbiased. Below we only
define the extra properties required for each of the three flavors.

We call a coin-flip uncontrollable against Alice, if she cannot force the coin to hit some
negligible subset, except with negligible probability.

Definition 3.1 (Uncontrollability against dishonest Alice). We say that the protocol
Π λ−COIN

A,B implements an uncontrollable coin-flip against dishonest Alice, if it holds for
any poly-sized adversary A′ ∈ P with inputs as specified above and all negligible subsets
Q ⊂ {0, 1}λ that the probability

Pr [c← Π λ−COIN
A′,B : c ∈ Q] ∈ negl (κ) .

Note that we denote by Q ⊂ {0, 1}λ a family of subsets {Q(κ) ⊂ {0, 1}λ(κ)}κ∈N for
security parameter κ. Then we call Q negligible, if |Q(κ)|2−λ(κ) is negligible in κ. In other
words, we call a subset negligible, if it contains a negligible fraction of the elements in the
set in which it lives.

We call a coin-flip random against Alice, if she cannot enforce a non-uniformly ran-
dom output string in {0, 1}λ, except by making the protocol fail on some chosen runs.
That means she can at most lower the probability of certain output strings compared to the
uniform case.

Definition 3.2 (Randomness against dishonest Alice). We say that protocol Π λ−COIN
A,B

implements a random coin-flip against dishonest Alice, if it holds for any poly-sized ad-
versary A′ ∈ P with inputs as specified above that there exists an event E such that
Pr [E] ∈ negl (κ) and for all x ∈ {0, 1}λ it holds that

Pr [c← Π λ−COIN
A′,B : c = x | Ē] ≤ 2−λ .

It is obvious that if a coin-flip is random against Alice, then it is also an uncontrollable coin-
flip against her. We will later discuss a generic transformation going in the other direction
from uncontrollable to random coin-flipping.

We call a coin-flip enforceable against Alice, if it is possible, given a uniformly random
c, to simulate a run of the protocol hitting exactly the outcome c, though we still allow that
the corrupted party forces abort on some outcomes.

Definition 3.3 (Enforceability against dishonest Alice). We call a protocol Π λ−COIN
A,B en-

forceable against dishonest Alice, if it implements the ideal functionality Fλ−COIN against
her.

In more detail, that means that for any poly-sized adversary A′ ∈ P, there exists an ideal-
world adversary Â′ ∈ P that simulates the protocol with A′ as follows. Â′ requests output
h ∈ {0, 1}λ fromFλ−COIN. Then it simulates a run of the coin-flip protocol with A′ and tries

7

to enforce output h. If Â′ succeeds, it inputs> as A′’s second input to Fλ−COIN. In that case,
Fλ−COIN outputs h. Otherwise, Â′ inputs⊥ to Fλ−COIN as second input and Fλ−COIN outputs
⊥. In addition, the simulation is such that the ideal output is quantum-computationally
indistinguishable from the output of an actual run of the protocol, i.e., outΠA′,B

q
≈ outF

Â′,B̂
,

where Π = Π λ−COIN
A′,B and F = Fλ−COIN.

Note that an enforceable coin-flip is not necessarily a random coin-flip, as it is allowed
that the outcome of an enforceable coin-flip is only quantum-computationally indistinguish-
able from uniformly random, whereas a random coin-flip is required to produce truly ran-
dom outcomes on the non-aborting runs.

We defined an enforceable coin-flip against dishonest Alice to be a coin-flip implement-
ing the corresponding ideal functionality against her, and similarly for Bob. Corollary 3.4
hence follows by definition.

Corollary 3.4. If Π λ−COIN
A,B ∈ π(force,force), i.e., it is enforceable against both dishonest

Alice and dishonest Bob, then Π λ−COIN
A,B is a secure implementation of Fλ−COIN, according

to Definition 2.2.

4 Mixed Commitments

We use mixed commitment schemes throughout our constructions—they will indeed be
our only computation assumption. Mixed commitment are unconditionally hiding for some
public keys and unconditionally binding for others. In the following, we introduce mixed
commitments, denoted by commitpk, more formally. We also describe a construction of an
interactive commitment protocol COMMITpk with mixed-commitment-scheme-like proper-
ties. The reason for presenting the protocol here is to simplify the description of the later
protocol in which it is used as a subprotocol.

4.1 Mixed Commitment Schemes

Mixed commitment schemes consists of four poly-time algorithms (GH,GB, commit, xtr).
The unconditionally hiding key generator GH outputs public keys pk ∈ {0, 1}κ.5 The un-
conditionally binding key generator GB outputs key pairs (pk, sk), where pk ∈ {0, 1}κ
and where sk is the secret key. The commitment algorithm takes as input a message m, a
randomizer r and a public key pk and outputs a commitment C = commit pk (m, r) . The
extraction algorithm xtr takes as input a commitment C and a secret key sk and outputs a
messagem′, meant to be the message committed byC. We require the following properties:

Unconditionally hiding: For public keys pk generated by GH it holds that commitpk is
statistically hiding, i.e., (pk, commit pk (m1, r1))

s
≈ (pk, commit pk (m2, r2)) for all

m1,m2 when r1 and r2 are uniformly random and independent.
Extractability: It holds for all pairs (pk, sk) generated by GB and for all values m, r that

xtrsk(commit pk (m, r)) = m.

5 For notational simplicity, the length of public keys is assumed to equal security parameter κ.

8

Key indistinguishability: A random public key pk1 generated by GB and a random pub-
lic key pk2 generated by GH are indistinguishable by poly-sized quantum circuits, i.e.,
pk1

q
≈ pk2.

We additionally require that random public keys generated by GH are statistically close
to uniform in {0, 1}κ, i.e., almost all keys are unconditionally hiding. The above definition
is a weakening of the original notion of mixed commitments from [DN02], in that we do not
require that unconditionally hiding keys are equipped with an equivocation trapdoor. It is
also a strengthening in that we require quantum indistinguishability of the two key flavors.

As a candidate for instantiating our definition we can, for instance, take the lattice-based
public-key encryption scheme of Regev [Reg05] in its multi-bit variant as given in the full
version of [PVW08]. Regev’s cryptosystem is based on the hardness of the learning with
error problem, which can be reduced from worst-case (quantum) hardness of the shortest
vector problem (in its decision version). Thus, breaking the scheme implies an efficient
algorithm for approximating the lattice problem in the worst-case, which is assumed to
be hard even with quantum computing power. A regular public key for Regev’s scheme is
proven to be quantum-computationally indistinguishable from the case where a public key
is chosen from the uniform distribution. In this case, the ciphertext carries essentially no
information about the message [Reg05, Lemma 5.4]. This proof of semantic security for
Regev’s cryptosystem is in fact the property we require for our commitment.

4.2 The protocol COMMITpk

In one of our security amplifications of coin-flip protocols we will need a mixed commit-
ment scheme which also provides equivocability, i.e., a simulator can open unconditionally
hiding commitments to different values. We add equivocability using an interactive protocol
COMMITpk. Instead of equipping unconditionally hiding keys with equivocation trapdoors,
we will do it by letting the equivocation trapdoor be the ability of the simulator to force the
outcome of a coin-flip protocol in the simulation. The reason for this change, as compared
to [DN02], is that the notion of a mixed commitment scheme in [DN02] was developed
for the CRS-model, where the simulator is free to pick the CRS and hence could pick it
to be a unconditionally hiding public key with known equivocation trapdoor. Here we are
interested in the bare (CRS devoid) model and hence have to add equivocation in a dif-
ferent manner. This is one of the essential steps in bootstrapping fully simulatable strong
coin-flipping from weak coin-flipping.

The protocol COMMITpk uses a secret sharing scheme sss, described now. Let σ be a
secondary security parameter. Given message m = (m1, . . . ,mσ) ∈ Fσ and randomizer
s = (s1, . . . , sσ) ∈ Fσ, let fm,s(X) denote the unique polynomial of degree 2σ − 1, for
which fm,s(−i+1) = mi for i = 1, . . . , σ and fm,s(i) = si for i = 1, . . . , σ. Furthermore,
we “fill up” positions i = σ+ 1, . . . , Σ, where Σ = 4σ, by letting si = fm,s(i). The shares
are now s = (s1, . . . , sΣ).

We stress two simple facts about sss. First, for any message m ∈ Fσ and any sub-
set S ⊂ {1, . . . , Σ} of size |S| = σ, the shares s|S are uniformly random in Fσ, when

9

S is chosen uniformly at random in Fσ and independent of m. This aspect is trivial for
S = {1, . . . , σ}, as we defined it that way, and it extends to the other subsets using
Lagrange interpolation. And second, if m1,m2 ∈ Fσ are two distinct messages, then
sss(m1; s1) and sss(m2; s2) have Hamming distance at least Σ − 2σ. Again, this fol-
lows by Lagrange interpolation, since the polynomial fm1,s1(X) has degree at most 2σ − 1,
and hence, can be computed from any 2σ shares si using Lagrange interpolation. The
same holds for fm2,s2(X). Thus, if 2σ shares are the same, then fm1,s1(X) and fm2,s2(X)
are the same, which implies that the messages m1 = fm1,s1(−σ + 1), . . . , fm1,s1(0) and
m2 = fm2,s2(−σ + 1), . . . , fm2,s2(0) are the same.

In addition to sss, the protocol COMMITpk uses a mixed commitment scheme commitpk.
The key generators for COMMITpk are the same as for commitpk. Finally, COMMITpk uses a
coin-flip protocol π(random,force) which is random for the committer and which is enforce-
able against the receiver of the commitment. The details of COMMITpk are given in Fig.
3.

COMMITMENT SCHEME COMMITpk:
COMMITMENT PHASE:

1. Let message m ∈ Fσ be the message. The committer samples uniformly random s ∈ Fσ and
computes the shares sss(m; s) = (s1, . . . , sΣ), where si ∈ F.

2. He computes COMMIT pk
(
m, (s, r)

)
=
(
M1, . . . ,MΣ

)
, where Mi = commit pk (si, ri) for

randomness r = (r1, . . . , rΣ).
3. The committer sends (M1, . . . ,MΣ).

OPENING PHASE:
1. The committer sends the shares s = (s1, . . . , sΣ) to the receiver.
2. If the shares are not consistent with a polynomial of degree at most 2σ − 1, the receiver aborts.
3. The parties run π(random,force) to generate a uniformly random subset S ⊂ {1, . . . , Σ} of size
|S| = σ.

4. The committer sends r|S .
5. The receiver verifies that Mi = commit pk (si, ri) for all i ∈ S. If the test fails, he aborts.

Otherwise, he computes the message m ∈ Fσ consistent with s.

Figure 3. The Commitment Scheme COMMITpk.

We first show that when (pk, sk) is generated using GB, then COMMITpk is extractable.
Given any commitment M =

(
M1, . . . ,MΣ

)
, we extract

xtrsk(M) =
(
xtrsk(M1), . . . , xtrsk(MΣ)

)
= (s1, . . . , sΣ) = s .

Assume s′ = (s′1, . . . , s
′
Σ) is the consistent sharing closest to s. That means that s′ is the

vector which is consistent with a polynomial fm′,s′(X) of degree at most 2σ − 1 and which
at the same time differs from s in the fewest positions. Note that we can find s′ in poly-
time when using a Reed Solomon code, which has efficient minimal distance decoding. We
then interpolate the polynomial fm′,s′(X), let m′ = fm′,s′(−σ + 1), . . . , fm′,s′(0), and let
xtrsk(M) = m′. Any other sharing s′′ = (s′′1, . . . , s

′′
Σ) must have Hamming distance at

least 2σ to s′. Now, since s is closer to s′ than to any other consistent sharing, it must, in
particular, be closer to s′ then to s′′. This implies that s is at distance at least σ to s′′.

10

We will use this observation for proving soundness of the opening phase. To determine
the soundness error, assume that COMMITpk does not open to the shares s′ consistent with
s. As observed, this implies that

(
xtrsk(M1), . . . , xtrsk(MΣ)

)
has Hamming distance at

least σ to s′. However, when commitpk is unconditionally binding, all Mi can only be
opened to xtrsk(Mi). From the above two facts, we have that there are at least σ values
i ∈ {1, . . . , Σ} such that the receiver cannot open Mi to si for i ∈ S. Since Σ = 4σ,
these σ bad indices (bad for a dishonest sender) account for a fraction of 1

4 of all points in
{1, . . . , Σ}. Thus, the probability that none of the σ points in S is a bad index is at most
(34)σ, which is negligible. Setting σ = log 4

3
2 gives a negligible error of (12)κ, where κ is

the security parameter.
We then analyze the equivocability of COMMITpk. We will use the ability of the simulator

for the committer to force the challenge S as the simulator’s trapdoor. It will simply pick
S uniformly at random before the simulation and prepare for this particular challenge. The
details are given in Fig. 4. We omit an analysis here but refer to Section 5.2 and Appendix B,
where the construction will be explicitly proved within its outer construction.

SIMULATING COMMITpk WITH TRAPDOOR S:
1. Ŝ gets as input a uniformly random subset S ⊂ {1, . . . , Σ} of size σ and an initial messagem ∈ Fσ .
2. Ŝ commits honestly to m ∈ Fσ by M = COMMIT sk

(
m, (s, r)

)
, as specified in the commitment

phase.
3. Ŝ is given an alternative message m̃ ∈ Fσ , i.e., the aim is opening M to m̃.
4. Ŝ lets s|S be the σ messages committed to by M |S . Then it interpolates the unique polynomial fm̃,s

of degree at most 2σ − 1 for which fm̃,s(i) = si for i ∈ S and for which fm̃,s(−i + 1) = m̃i for
i = 1, . . . , σ. Note that this is possible, as we have exactly 2σ points which restrict our choice of
fm̃,s. Ŝ sends s =

(
fm̃,s(1), . . . , fm̃,s(Σ)

)
to the receiver.

5. The parties run π(random,force) and Ŝ forces the outcome S.
6. For all i ∈ S, the sender opens Mi to fm̃,s(i). This is possible, since fm̃,s(i) = si is exactly the

message committed to by Mi when i ∈ S.

Figure 4. The Ideal-World Simulation of COMMITpk.

5 Amplification Theorems for Strong Coin-Flipping

We now propose and prove theorems, which allow us to amplify the security strength of
coins. Ultimately, we aim at constructing a strong coin-flip protocol π(force,force) with
outcomes of any polynomial length ` in λ from a weaker coin-flip protocol π(force,uncont)

of κ-bit-strings, where κ is the key length of the mixed commitment scheme. We do this
in two steps. We first show how to implement π(force,random) for `-bit-strings (for any
polynomial `) given π(force,uncont) for κ-bit-strings, and we then show how to implement
π(force,force) for poly-long bit-strings given π(force,random) for poly-long bit-strings.

The ability to amplify π(force,uncont) for κ-bit-strings to π(force,force) for poly-bit-
string is of course only interesting, if there exists such a candidate. We do not know of any
protocol with flavor (force,uncont) but not (force,random). However, we consider
it as a contribution in itself to find the weakest security notion for coin-flipping that allows
to amplify to the final strong (force,force) notion using a constant-round reduction.

11

A candidate for π(force,random) with one-bit outcomes is the protocol in [DL09], which
is—in terms of this context—enforceable against one side in poly-time and random on the
other side, with empty event E according to Definition 3.2, and the randomness guaran-
tee even withstanding an unbounded adversary.6 The protocol was shown to be sequen-
tially composable [DL09, Lun10]. Repeating the protocol κ times in sequence gives a
protocol π(force,random) for κ-bit-strings. Note that this, in particular, gives a protocol
π(force,uncont) for κ-bit-strings.

5.1 From (force, uncont) to (force, random)

Assume that we are given a protocol π(force,uncont), that only guarantees that Bob cannot
force the coin to hit a negligible subset (except with negligible probability). We now amplify
the security on Bob’s side from uncontrollable to random and therewith obtain a protocol
π(force,random), in which Bob cannot enforce a non-uniformly random output string, ex-
cept by letting the protocol fail on some occasions. The stronger protocol π(force,random)

is given in Fig. 5, where commitpk is the basic mixed commitment scheme as described
in Section 4.1. Correctness of π(force,random) is obvious by inspection of the protocol.
Theorem 5.1 is proven in Appendix A.

PROTOCOL π(force,random):
1. A and B run π(force,uncont) to produce a public key pk ∈ {0, 1}κ.
2. A samples a ∈R {0, 1}`, commits to it with A = commit pk (a, r) and randomizer r ∈R {0, 1}`,

and sends A to B.
3. B samples b ∈R {0, 1}` and sends b to A.
4. A opens A towards B.
5. The outcome is c = a⊕ b.

Figure 5. Amplification from (force,uncont) to (force,random).

Theorem 5.1. If π(force,uncont) is enforceable against Alice and uncontrollable against
Bob, then protocol π(force,random) is enforceable against Alice and random for Bob.

We sketch the basic ideas behind the proof. Enforceability against A follows by forcing pk
to be a pk generated as (pk, sk)← GB. The simulator then uses sk to extract a from A and
then sends the b which makes a⊕ b hit the desired outcome. Randomness against B follows
from the fact that only a negligible fraction of the keys pk ∈ {0, 1}κ are not unconditionally
hiding keys and the outcome of π(force,uncont) is uncontrollable for B.

5.2 From (force, random) to (force, force)

We now show how to obtain a coin-flip protocol, which is enforceable against both parties.
Then, we can also claim by Corollary 3.4 that this protocol is a strong coin-flip protocol,

6 The protocol was described and proven as π(random,force), but due to the symmetric coin-flip definitions
here, we can easily switch sides between A and B.

12

poly-time simulatable on both sides for the natural ideal functionality F`−COIN. The proto-
col π(force,force) is described in Fig. 6 and uses the extended commitment construction
COMMITpk from Section 4.2. The protocol makes two calls to a subprotocol with random fla-
vor on one side and enforceability on the other side, but where the sides are interchanged,
i.e. π(force,random) and π(random,force), so we simply switch the players’ roles. Again,
correctness of the protocol can be trivially checked. Theorem 5.2 is proven in Appendix B.

PROTOCOL π(force,force):
1. A and B run π(force,random) to produce a random public key pk ∈ {0, 1}κ.
2. A computes and sends commitments COMMIT pk

(
a, (s, r)

)
= (A1, . . . , AΣ) to B. In more detail,

A samples uniformly random a, s ∈ Fσ . She then computes sss(a; s) = (a1, . . . , aΣ) and Ai =
commit pk (ai, ri) for i = 1, . . . , Σ.

3. B samples uniformly random b ∈ {0, 1}` and sends b to A.
4. A sends secret shares (a1, . . . , aΣ) to B. If (a1, . . . , aΣ) is not consistent with a polynomial of degree

at most (2σ − 1), B aborts.
5. A and B run π(random,force) to produce a challenge S ⊂ {1, . . . , Σ} of length |S| = σ.
6. A sends r|S to B.
7. B checks if Ai = commit pk (ai, ri) for all i ∈ S. If that is the case, B computes message a ∈ Fσ

consistent with (a1, . . . , aΣ) and the outcome of the protocol is c = a⊕ b. Otherwise, B aborts and
the outcome is c = ⊥ .

Figure 6. Amplification from (force,random) to (force,force).

Theorem 5.2. If π(force,random) is enforceable against Alice and random against Bob,
then protocol π(force,force) is enforceable against both Alice and Bob.

We sketch the main ideas behind the proof. Enforceability against A follows by forcing pk
to be a key pk generated as (pk, sk) ← GB. The simulator then uses sk to extract a from
(A1, . . . , AΣ). Then it sends the b that makes a ⊕ b hit the desired outcome. Enforceabil-
ity against B follows by letting the simulator sample a uniformly random S and running
COMMIT pk

(
a, (s, r)

)
= (A1, . . . , AΣ) in the equivocal model with trapdoor S. Then the

simulator waits for b and forces the outcome of π(random,force) to be S, which allows it to
open (A1, . . . , AΣ) to the a that makes a⊕ b hit the desired outcome.

6 Application: Zero-Knowledge Proof of Knowledge

The purpose of a zero-knowledge proof of knowledge [GMR85, BG92] is to verify in clas-
sical poly-time in the length of the instance, whether the prover’s private input w is a valid
witness for the common instance x in relation R, i.e. (x,w) ∈ R. Here, we propose a
quantum-secure construction of a zero-knowledge proof of knowledge based on witness
encoding, which we define in the context of a simulation in the quantum world. The proto-
col is constant-round if the coin-flip protocol is constant-round.

6.1 Simulatable Witness Encodings of NP
We first specify a simulatable encoding scheme for binary relation R ⊂ {0, 1}∗ × {0, 1}∗,
which consists of five classical poly-time algorithms (E,D, S, J, Ê). Then, we define com-

13

pleteness, extractability and simulatability for such a scheme in terms of the requirements
of our zero-knowledge proof of knowledge.

Let E : R× {0, 1}m → {0, 1}n denote an encoder, such that for each (x,w) ∈ R, the
n-bit output e ← E(x,w, r′) is a random encoding of w, with randomness r′ ∈ {0, 1}m
and polynomials m(|x|) and n(|x|). The corresponding decoder D : {0, 1}∗ × {0, 1}n →
{0, 1}∗ takes as input an instance x ∈ {0, 1}∗ and an encoding e ∈ {0, 1}n and outputs
w ← D(x, e) with w ∈ {0, 1}∗. Next, let S denote a selector with input s ∈ {0, 1}σ (with
polynomial σ(|x|)) specifying a challenge, and output S(s) defining a poly-sized subset
of {1, . . . , n} corresponding to challenge s. We will use S(s) to select which bits of an
encoding e to reveal to the verifier. For simplicity, we use es to denote the collection of bits
e|S(s). We denote with J the judgment that checks a potential encoding e by inspecting only
bits es. In more detail, J takes as input instance x ∈ {0, 1}∗, challenge s ∈ {0, 1}σ and
the |S(s)| bits es, and outputs a judgment j ← J(x, s, es) with j ∈ {abort,success}.
Finally, the simulator is called Ê. It takes as input instance x ∈ {0, 1}∗ and challenge
s ∈ {0, 1}σ and outputs a random collection of bits t|S(s) ← Ê(x, s). Again for simplicity,
we let ts = t|S(s). Then, if this set has the same distribution as bits of an encoding e in
positions S(s), the bits needed for the judgment to check an encoding e can be simulated
given just instance x (see Definition 6.3).

Definition 6.1 (Completeness). If an encoding e ← E(x,w, r) is generated correctly,
then success← J(x, s, es) for all s ∈ {0, 1}σ.

We will call an encoding e admissible for x, if there exist two distinct challenges s, s′ ∈
{0, 1}σ for which success← J(x, s, es) and success← J(x, s′, es′).

Definition 6.2 (Extractability). If an encoding e is admissible for x, then
(
x,D(x, e)

)
∈

R.

We stress that extractability is similarly defined to the special soundness property of a clas-
sical Σ-protocol, which allows to extract w from two accepting conversations with distinct
challenges. Such a requirement would generally be inapplicable in the quantum setting, as
the usual rewinding technique is problematic and in particular in the context here, we cannot
measure two accepting conversations during rewinding in the quantum world. Therefore,
we define the stronger requirement that if there exist two distinct answerable challenges for
one encoding e, then w can be extracted given only e. This condition works nicely in the
quantum world, since we can obtain e without rewinding, as we demonstrate below.

Definition 6.3 (Simulatability). For all (x,w) ∈ R and all s ∈R {0, 1}σ, the distribution
of e ← E(x,w, r′) restricted to positions S(s) is identical to the distribution of ts ←
Ê(x, s).

To construct a simulatable witness encoding one can, for instance, start from the commit-
and-open protocol for circuit satisfiability in [BCC88], where the bits of the randomized
circuit committed to by the sender is easy to see as a simulatable encoding of a witness be-
ing a consistent evaluation of the circuit to output 1. The challenge in the protocol is one bit
e and the prover replies by showing either the bits corresponding to some positions S′(0) or

14

positions S′(1). The details can be found in [BCC88]. This gives us a simulatable witness
encoding for any NP-relation R with σ = 1, using a Karp reduction from NP to circuit
simulatability. By repeating it σ times in parallel we get a simulatable witness encoding for
any σ. For i = 1, . . . , σ, compute an encoding ei of w and let e = (e1, . . . , eσ). Then for
s ∈ {0, 1}σ, let S(s) specify that the bits S′(si) should be shown in ei and check these
bits. Note, in particular, that if two distinct s and s′ passes this judgment, then there exists
i such that si 6= s′i, so ei passes the judgment for both si = 0 and si = 1, which by the
properties of the protocol for circuit satisfiability allows to compute a witness w for x from
ei. One can find w from e simply by trying to decode each ej for j = 1, . . . , σ and check if
(x,wj) ∈ R.

6.2 The Protocol

We now construct a quantum-secure zero-knowledge proof of knowledge from prover A to
verifier B. We are interested in the NP-language
L(R) = {x ∈ {0, 1}∗ | ∃w s.t. (x,w) ∈ R}, where A has input x and w, and both A and
B receive positive or negative judgment of the validity of the proof as output. We assume
in the following that on input (x,w) /∈ R, honest A aborts. Unlike zero-knowledge proofs,
proofs of knowledge can be modeled by an ideal functionality, given as FZKPK(R) in Fig. 7.
FZKPK(R) can be thought of as a channel which only allows to send messages in the language
L(R). It models zero-knowledge, as it only leaks instance x and judgment j but not witness
w. Furthermore, it models a proof of knowledge, since Alice has to know and input a valid
witness w to obtain output j = success.

Protocol ZKPK(R) is describe in Fig. 8. It is based on our fully simulatable coin-flip
protocol π(force,force), which we analyze here in the hybrid model by invoking the ideal
functionality of sequential coin-flipping twice (but with different output lengths).7 One call
to the ideal functionality Fκ−COIN with output length κ is required to instantiate a mixed bit
commitment scheme COMMITpk. The second call to the functionality Fσ−COIN produces σ-
bit challenges for a simulatable witness encoding scheme with (E,D, S, J, Ê) as specified
in the previous Section 6.1. The formal proof of Theorem 6.4 can be found in Appendix C.
Corollary 6.5 follows immediately.

Theorem 6.4. For any simulatable witness encoding scheme (E,D, S, J, Ê), satisfying
completeness, extractability, and simulatability according to Definitions 6.1 - 6.3, and for
negligible knowledge error 2−σ, protocol ZKPK(R) securely implements FZKPK(R).

Corollary 6.5. If there exist mixed commitment schemes, then we can construct a classical
zero-knowledge proof of knowledge against any quantum adversary P′ ∈ P without any
set-up assumptions.

7 Note that in the hybrid model, a simulator can enforce a particular outcome to hit also when invoking
the ideal coin-flip functionality. We then use Definition 3.3 to replace the ideal functionality by the actual
protocol π(force,force).

15

FUNCTIONALITY FZKPK(R):
1. On input (x,w) from Alice, FZKPK(R) sets j = success if (x,w) ∈ R. Otherwise, it sets j =

abort.
2. FZKPK(R) outputs (x, j) to Bob.

Figure 7. The Ideal Functionality for a Zero-Knowledge Proof of Knowledge.

PROTOCOL ZKPK(R) :
1. A and B invoke Fκ−COIN to get a commitment key pk ∈ {0, 1}κ.
2. A samples e ← E(x,w, r′) with randomness r′ ∈ {0, 1}m and commits position-wise to all ei for

i = 1, . . . , n, by computing Ei = commit pk (ei, ri) with randomness r ∈ {0, 1}n. She sends x
and all Ei to B.

3. A and B invoke Fσ−COIN to flip a challenge s ∈R {0, 1}σ .
4. A opens her commitments to all es.
5. If any opening is incorrect, B outputs abort. Otherwise, he outputs j ← J(x, s, es).

Figure 8. Zero-Knowledge Proof of Knowledge.

7 Application: Two-Party Function Evaluation

Here, we first show that mixed commitments imply a passively secure oblivious transfer
protocol. From such a protocol it is straightforward to construct a protocol for any classical
poly-time function with security against passive quantum adversaries [Kil88]. As our main
result, we then propose a quantum-secure implementation for evaluating any such function
with security against active quantum adversaries.

7.1 Oblivious Transfer

In an oblivious transfer protocol (OT), the sender A sends two messages m0 and m1 to
the selector B. B can choose which message to receive, i.e. mc according to his choice bit
c, but does not learn anything about the other message m1−c. On the other side, A does
not learn B’s choice bit c. An OT-protocol based on mixed commitments is given in Fig.
9. It is correct, as B knows skc, so xtrskc(Cc) = xtrskc(commit pkc (mc, rc)) = mc.
Furthermore, it hides the other message m1−c as commitpk1−c is unconditionally hiding for
random pk1−c, except with negligible probability. Last, the choice bit is hidden in the sense
of quantum-computational indistinguishability between keys for the outer commitments,
namely a key produced by GB and a random key by GH.

PROTOCOL OT :
1. B samples two keys pk0 and pk1 according to his choice bit c, i.e. he samples pkc as (pkc, skc)← GB

and pk1−c as p1−c ← GH. He sends (pk0, pk1) to A.
2. A commits to her messages (m0,m1) by computing C0 = commit pk0 (m0, r0) and C1 =

commit pk1 (m1, r1) . She sends (C0, C1) to B.
3. B computes xtrskc(Cc).

Figure 9. Oblivious Transfer based on Mixed Commitments.

16

7.2 The Protocol

Based on protocol OT, we can construct a passively secure protocol for any classical poly-
time function f . Let Πf

A,B(x1, r1, x2, r2) denote such a protocol between parties A and B
with inputs x1 and x2 and random strings r1 and r2, respectively.

FUNCTIONALITY FfSFE WITH HONEST PLAYERS:
On input x1 from Alice and x2 from Bob, FfSFE outputs y = f(x1, x2) to Alice and Bob.

Figure 10. The Ideal Functionality for Secure Function Evaluation (without Corruption).

FUNCTIONALITY FfSFE WITH DISHONEST ALICE:
1. On input x1 from Alice and x2 from Bob, FfSFE outputs y = f(x1, x2) to Alice.
2. It then waits to receive her second input > or ⊥ and outputs y or ⊥ to Bob, respectively.

Figure 11. The Ideal Functionality for Secure Function Evaluation (with Corruption).

PROTOCOL Π
SFE(f)
A,B :

1. A and B invoke Fκ−COIN to get a commitment key pk ∈ {0, 1}κ.
2. A sends a random commitment X1 = commit pk (x1, r̃1) and B sends a random commitment X2 =

commit pk (x2, r̃2) . Both parties useFZKPK(R) to give a zero-knowledge proof of knowledge that they
know the plaintext xi inside commitments Xi for i = 1, 2.

3. A sends random commitment S1 = commit pk (s1, r̂1) for uniformly random s1 of length |s1| =
|r1|, where r1 is the randomness she intends to use in Πf

A,B. Similarly, B sends random commitment
S2 = commit pk (s2, r̂2) for uniformly random s2 of length |s2| = |r2|. Again, they use FZKPK(R) to
give a zero-knowledge proof of knowledge of si in Si for i = 1, 2.

4. A and B invoke Fσ−COIN twice to get uniformly random s′1 and s′2 with |s′i| = |si| for i = 1, 2.
5. A lets r1 = s1 ⊕ s′1 and B lets r2 = s2 ⊕ s′2.
6. A and B run Πf

A,B(x1, r1, x2, r2), i.e. they run the passively secure protocol on inputs and random-
ness as defined in the previous steps.

7. Whenever A sends a messagem in the execution ofΠf
A,B(x1, r1, x2, r2), she gives a zero-knowledge

proof of knowledge of s1 in S1 and x1 in X1, such that if Πf
A,B(x1, r1, x2, r2) is run on x1, r1 =

s1 ⊕ s′1, and B’s messages sent to A so far, then A would indeed send m. This is an NP-statement,
so we can use FZKPK(R) for this proof.

8. If Πf
A,B(x1, r1, x2, r2) terminates with output y, both parties output y.

Figure 12. Procedure for Secure Function Evaluation

We now show an implementation of the ideal functionality FfSFE evaluating—with secu-
rity against active quantum adversaries—any classical poly-time function f for which there
exists a classical passively secure protocol as described above. Functionality FfSFE in the
case of honest parties is shown in Fig. 10. The functionality with an option to abort for the
dishonest party Alice is given in Fig. 11, a corrupted Bob can be modeled analogously. Out-
putting the result y models that y does not need to be kept secure against external observers
and also allows the adversary to abort depending on the value of y. We want to stress that

17

it is no restriction that we consider common outputs nor that we leak y to observers.8 The
implementation ΠSFE(f)

A,B of FfSFE is shown in Fig. 12. Again, we analyze the procedure in
the hybrid model by invoking ideal functionalities. Corollary 7.1 is proven in Appendix D.

Corollary 7.1. If there exist mixed commitment schemes, then there exists a classical imple-
mentation of FfSFE for all classical poly-time functions f secure according to Definitions 2.1
and 2.2.

8 If we want to compute a function g(x1, x2) = (y1, y2) where only A learns y1 and only B learns y2, we can
evaluate the common output function y = f((x1, p1), (x2, p2)) as follows. The public y contains y1 ⊕ p1
and y2 ⊕ p2, where p1 and p2 are A’s and B’s uniformly random additional input of the same length as y1
and y2, respectively. Thus, the common outputs are one-time pad encrypted using pads known only to the
party who is to learn the result.

18

References

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of knowledge.
Journal of Compututer and System Sciences, 37(2):156–189, 1988.

[BG92] Mihir Bellare and Oded Goldreich. On defining proofs of knowledge. In Advances in Cryptology—
CRYPTO ’92, volume 740 of Lecture Notes in Computer Science, pages 390–420. Springer, 1992.

[Blu81] Manuel Blum. Coin flipping by telephone. In Advances in Cryptology: A Report on CRYPTO ’81,
pages 11–15. U.C. Santa Barbara, Dept. of Elec. and Computer Eng., ECE Report No 82-04, 1981.

[DFL+09] Ivan B. Damgård, Serge Fehr, Carolin Lunemann, Louis Salvail, and Christian Schaffner. Im-
proving the security of quantum protocols via commit-and-open. In Advances in Cryptology—
CRYPTO ’09, volume 5677 of Lecture Notes in Computer Science, pages 408–427. Springer, 2009.
Full version available at arXiv:0902.3918v4[quant-ph].

[DFS04] Ivan B. Damgård, Serge Fehr, and Louis Salvail. Zero-knowledge proofs and string commitments
withstanding quantum attacks. In Advances in Cryptology—CRYPTO ’04, volume 3152 of Lecture
Notes in Computer Science, pages 254–272. Springer, 2004.

[DFSS07] Ivan B. Damgård, Serge Fehr, Louis Salvail, and Christian Schaffner. Secure identification and
QKD in the bounded-quantum-storage model. In Advances in Cryptology—CRYPTO ’07, volume
4622 of Lecture Notes in Computer Science, pages 342–359. Springer, 2007.

[DL09] Ivan B. Damgård and Carolin Lunemann. Quantum-secure coin-flipping and applications. In Ad-
vances in Cryptology—ASIACRYPT ’09, volume 5912 of Lecture Notes in Computer Science, pages
52–69. Springer, 2009.

[DN02] Ivan B. Damgård and Jesper B. Nielsen. Perfect hiding and perfect binding universally composable
commitment schemes with constant expansion factor. In Advances in Cryptology—CRYPTO ’02,
volume 2442 of Lecture Notes in Computer Science, pages 581–596. Springer, 2002.

[FS09] Serge Fehr and Christian Schaffner. Composing quantum protocols in a classical environment. In
Theory of Cryptography Conference (TCC), volume 5444 of Lecture Notes in Computer Science,
pages 350–367. Springer, 2009.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In 17th Annual ACM Symposium on Theory of Computing
(STOC), pages 291–304, 1985.

[Gra97] Jeroen van de Graaf. Towards a formal definition of security for quantum protocols. PhD thesis,
Université de Montréal (Canada), 1997.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. 20th Annual ACM Symposium on Theory
of Computing (STOC), pages 20–31, 1988.

[Lun10] Carolin Lunemann. Cryptographic Protocols under Quantum Attacks. PhD thesis, Aarhus Univer-
sity (Denmark), November 2010. arXiv:1102.0885[quant-ph].

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In Advances in Cryptology—CRYPTO ’08, volume 5157 of Lecture Notes in
Computer Science, pages 554–571. Springer, 2008. Full version available at eprint.iacr.org/
2007/348.pdf.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In 37th
Annual ACM Symposium on Theory of Computing (STOC), pages 84–93, 2005.

[Smi09] Adam Smith. Personal communication, 2009.
[Wat09] John Watrous. Zero-knowledge against quantum attacks. In SIAM Journal on Computing, vol-

ume 39.1, pages 25–58, 2009. Preliminary version in 38th Annual ACM Symposium on Theory of
Computing (STOC), pages 296–305, 2006.

19

A Proof of Theorem 5.1 (Enforceability and Randomness)

Proof (Enforceability against Alice). In case of corrupted A′, Â′ samples (pk, sk)← GB
as input. It then requests a uniformly random value h from F`−COIN. It runs π(force,uncont)

with A′, in which Â′ enforces the outcome pk in the first step. When A′ sends commitment
A, Â′ uses sk to decryptA to learn the unique string a thatA can be opened to. Â′ computes
b = h ⊕ a and sends b to A′. If A′ opens commitment A correctly, then the result is c =
a ⊕ b = a ⊕ (h ⊕ a) = h as desired. In case she does not open correctly, Â′ aborts with
result ⊥. Otherwise, Â′ outputs whatever A′ outputs.

Since h is uniformly random and independent of A and a, it follows that b = h ⊕ a is
uniformly random and independent ofA, exactly as in the protocol. Therefore, the transcript
of the simulation has the same distribution as the real protocol, except that pk is uniform
in X and not in {0, 1}κ. This is, however, quantum-computationally indistinguishable, as
otherwise, A′ could distinguish random access to samples from X from random access to
samples from {0, 1}κ. The formal proof proceeds through a series of hybrids as described
in full detail in the proof for Theorem 5.2 in Appendix B.

The above two facts, that first we hit h when we do not abort, and second that the tran-
script of the simulation is quantum-computationally indistinguishable from the real proto-
col, show that the resulting protocol is enforceable against Alice and simulatable on Alice’s
side for functionality F`−COIN, according to Definition 3.3 combined with Theorem 3.3. �

Proof (Randomness against Bob). For any B′, pk is uncontrollable, i.e. pk ∈ {0, 1}κ\X ,
except with negligible probability, as X is negligible in {0, 1}κ. This, in particular, means
that the commitment A is perfectly hiding the value a. Therefore, a is uniformly random
and independent of b, and thus, h = a⊕b is uniformly random. This proves that the resulting
coin-flip is random against Bob, according to Definition 3.2. �

B Proof of Theorem 5.2 (Enforceability)

Proof (Enforceability against Alice). If A′ is corrupted, Â′ samples (pk, sk) ← GB as
input and enforces π(force,random) in the first step to hit the outcome pk. It then requests
value h from F`−COIN. When A′ sends commitments (A1, . . . , AΣ), Â′ uses sk to extract a′

with
(
a′1, . . . , a

′
Σ

)
=
(
xtrsk(A1), . . . , xtrsk(AΣ)

)
. Â′ then sets b = h⊕a′, and sends b to

A′. Then Â′ finishes the protocol honestly. In the following, we will prove that the transcript
is quantum-computationally indistinguishable from the real protocol and that if c 6= ⊥, then
c = h, except with negligible probability.

First, we show indistinguishability. The proof proceeds via a hybrid argument.9 Let D 0

denote the distribution of the output of the simulation as described. We now change the
9 Briefly, a hybrid argument is a proof technique to show that two (extreme) distributions are computationally

indistinguishable via proceeding through several (adjacent) hybrid distributions. If all adjacent distributions
are pairwise computationally indistinguishability, it follows by transitivity that the two end points are so as
well. We want to point out that we are not subject to any restrictions in how to obtain the hybrid distributions
as long as we maintain indistinguishability.

20

simulation such that, instead of sending b = h⊕ a′, we simply choose a uniformly random
b ∈ {0, 1}` and then output the corresponding h = a′⊕ b. LetD 1 denote the distribution of
the output of the simulation after this change. Since h is uniformly random and independent
of a′ in the first case, it follows that then b = h ⊕ a′ is uniformly random. Therefore, the
change to choose a uniformly random b in the second case actually does not change the
distribution at all, and it follows that D 0 = D 1.

By sending a uniformly random b, we are in a situation where we do not need the de-
cryption key sk to produce D 1, as we no longer need to know a′. So we can now make
the further change that, instead of forcing π(force,random) to produce a random public key
pk ∈ X , we force it to hit a random public key pk ∈ {0, 1}κ. This produces a distri-
bution D 2 of the output of the simulation. Since D 1 and D 2 only differ in the key we
enforce π(force,random) to hit and the simulation is quantum poly-time, there exists a poly-
sized circuit Q, such that Q(U(X)) = D 1 and Q(U({0, 1}κ)) = D 2, where U(X) and
U({0, 1}κ) denote the uniform distribution on X and the uniform distribution on {0, 1}κ,
respectively. As U(X) and U({0, 1}κ) are quantum-computationally indistinguishable, and
Q is poly-sized, it follows that Q(U(X)) and Q(U({0, 1}κ)) are quantum-computationally
indistinguishable, and therewith, D 1 q

≈ D 2.

A last change to the simulation is applied by running π(force,random) honestly instead
of enforcing a uniformly random pk ∈ {0, 1}κ. Let D 3 denote the distribution obtained
after this change. As given in Definition 3.3, real runs of π(force,random) and runs enforcing
a uniformly random value are quantum-computationally indistinguishable. Using a similar
argument as above, whereQ is the part of the protocol following the run of π(force,random),
we get that D 2 q

≈ D 3. Finally by transitivity, it follows that D 0 q
≈ D 3. The observation

that D 0 is the distribution of the simulation and D 3 is the actual distribution of the real
protocol concludes the first part of the proof.

We now argue the second part, i.e., if c 6= ⊥, then c = h, except with negligible
probability. This follows from extractability of the commitment scheme COMMITpk. Recall
that, if pk ∈ X , then the probability that A′ can open any A to a plaintext different from
xtrsk(A) is at most (34)σ when S is picked uniformly at random and independent of A.
The requirement on S is however guaranteed (except with negligible probability) by the
random flavor of the underlying protocol π(random,force) producing S. This concludes
the proof of enforceability against Alice, as given in Definition 3.3. �

Proof (Enforceability against Bob). To prove enforceability against corrupted B′, we
construct a simulator B̂′ as shown in Fig. 13. It is straightforward to verify that the simula-
tion always ensures that c = h, if B′ does not abort. However, we must explicitly argue that
the simulation is quantum-computationally indistinguishable from the real protocol.

Indistinguishability follows by first arguing that the probability for pk /∈ {0, 1}κ \ X
is negligible. This follows from X being negligible in {0, 1}κ and pk produced with flavor
random against B′ by π(force,random) being uniformly random in {0, 1}κ, except with
negligible probability.

21

SIMULATION B̂′ for π(force,force):
1. B̂′ requests h from F`−COIN and runs π(force,random) honestly with B′ to produce a uniformly random

public key pk ∈ {0, 1}κ.
2. B̂′ computes COMMIT pk

(
a′, (s, r)

)
= (A1, . . . ,AΣ) for uniformly random a′, s ∈ Fσ and sends

(A1, . . . , AΣ) to B′.
3. B̂′ receives b from B′.
4. B̂′ computes a = b ⊕ h. It then picks a uniformly random subset S ⊂ {1, . . . , Σ} with |S| = σ,

and lets a′|S be the σ messages committed to by A|S . Then, it interpolates the unique polynomial
f of degree at most (2σ − 1) for which f(i) = a′i for i ∈ S and for which f(−i + 1) = ai for
i ∈ {1, . . . , Σ} \ S. Finally, it sends (f(1), . . . , f(Σ)) to B′.

5. During the run of π(random,force), B̂′ enforces the challenge S.
6. B̂′ sends r|S to B′.
7. B̂′ outputs whatever B′ outputs.

Figure 13. Simulation for Bob’s force in π(force,force).

Second, we have to show that if pk ∈ {0, 1}κ \ X , then the simulation is quantum-
computationally close to the real protocol. This can be shown via the following hybrid
argument. Let D 0 be the distribution of the output of the simulation and let D 1 be the dis-
tribution of the output of the simulation where we send all a′i for all i = {1, . . . , Σ} at
the end of Step (4.). Since commitments by commitpk are unconditionally hiding in case
of pk ∈ {0, 1}κ \ X , commitments by COMMITpk are unconditionally hiding as well. Fur-
thermore, both a′ and a are uniformly random, so we obtain statistical closeness between
(a′, COMMIT pk

(
a′, (s, r)

)
) and (a, COMMIT pk

(
a′, (s, r)

)
). Note further that distributions

D 0 andD 1 can be produced by a poly-sized circuit applied to either (a′, COMMIT pk
(
a′, (s, r)

)
)

or (a, COMMIT pk
(
a′, (s, r)

)
, it holds that D 0 q

≈ D 1.

Now, letD 2 be the distribution obtained by not simulating the opening via the trapdoor,
but instead doing it honestly to the value committed to, i.e. (a′, r). We still use the chal-
lenge S from the forced run of π(random,force) though. However, for uniformly random
challenges, real runs are quantum-computationally indistinguishable from simulated runs,
and we get D 1 q

≈ D 2.

Next, letD 3 be the distribution of the output of the simulation where we run π(random,force)

honestly instead of enforcing outcome S. We then use the honestly produced S′ in the proof
in Step (6.) instead of the enforced S. We can do this, as we modified the process leading
to D 2 towards an honest opening without any trapdoor, so we no longer need to enforce
a particular challenge. Under the assumption that π(random,force) is enforceable against
B′, and observing that real runs are quantum-computationally indistinguishable from runs
enforcing uniformly random outcomes, we obtain D 2 q

≈ D 3.

It follows by transitivity D 0 q
≈ D 3, and we conclude the proof by observing that after

our changes, the process producing D 3 is the real protocol. This concludes the proof of
enforceability against Bob, according to Definition 3.3 with switched sides. �

22

C Proof of Theorem 6.4 (Zero-Knowledge Proof of Knowledge)

Completeness is obvious. A honest party A, following the protocol with (x,w) ∈ R and
any valid encoding e, will be able to open all commitments in the positions specified by any
challenge s. Honest Bob then outputs J(x, s, es) = success.

Proof (Security against dishonest Alice). To prove security in case of corrupted A′, we
construct a simulator Â′ that simulates a run of the actual protocol with A′ and FZKPK(R).
The proof is then twofold. First, we show indistinguishability between the distributions
of simulation and protocol. And second, we verify that the extractability property of the
underlying witness encoding scheme (see Definition 6.2) implies a negligible knowledge
error. Note that if A′ sends abort at any point during the protocol, Â′ sends some input
(x′, w′) /∈ R to FZKPK(R) to obtain output (x, j) with j = abort, and the simulation halts.
Otherwise, the simulation proceeds as shown in Fig. 14.

SIMULATION Â′ FOR ZKPK(R) :
1. Â′ samples a random key pk along with the extraction key sk. Then it enforces pk as output from
Fκ−COIN

2. When Â′ receives x and (E1, . . . , En) from A′, it extracts e = (xtrsk(E1), . . . , xtrsk(En)).
3. Â′ completes the simulation by following the protocol honestly. If any opening of A′ is incorrect, Â′

aborts. Otherwise, Â′ inputs
(
x,D(x, e)

)
to FZKPK(R) and receives (x, j) back. Â′ outputs the final

state of A′ as output in the simulation.

Figure 14. Simulation against dishonest Alice.

Note that the only difference between the real protocol and the simulation is that Â′ uses
a random public key pk sampled along with an extraction key sk, instead of a uniformly
random pk ∈ {0, 1}κ. It then enforces Fκ−COIN to hit pk. However, by assumption on the
commitment keys and by the properties of the ideal coin-flip functionality, the transcripts
of simulation and protocol remain quantum-computationally indistinguishable under these
changes.

Next, we analyze the output in more detail. It is clear that whenever honest B would
output abort in the actual protocol, also Â′ aborts, namely, if A′ does deviate in the
last steps of protocol and simulation, respectively. Furthermore, Â′ accepts if and only if
(x,D(x, e)) ∈ R or in other words, the judgment of the functionality is positive, denoted
by jF = success.

It is therefore only left to prove that the case of jF = abort but jJ = success is
negligible, where the later denotes the judgment of algorithm J(x, s, es) as in the protocol.
In that case, we have (x,D(x, e)) /∈ R. This means that w is not extractable from D(x, e),
which in turn implies that (xtrsk(E1), . . . , xtrsk(En)) = e is not admissible. Thus, there
are no two distinct challenges s and s′, in which A′ could correctly open her commitment
to e. It follows by contradiction that there exists at most one challenge s which A′ can
answer. We produce s ∈ {0, 1}σ uniformly at random, from which we obtain an acceptance
probability of at most 2−σ. Thus, we conclude the proof with negligible knowledge error,
as desired. �

23

Proof (Security against dishonest Bob). To prove security in case of corrupted B′, we
construct simulator B̂′ as shown in Fig. 15. Our aim is to verify that this simulation is
quantum-computationally indistinguishable from the real protocol. The key aspect will be
the simulatability guarantee of the underlying witness encoding scheme, according to Def-
inition 6.3.

SIMULATION B̂′ FOR ZKPK(R) :
1. B̂′ invokes Fκ−COIN to receive a uniformly random pk.
2. B̂′ samples a uniformly random challenge s ∈ {0, 1}σ and computes ts ← Ê(x, s). B̂′ then com-

putes commitments Ei as follows: For all i ∈ S(s), it commits to the previously sampled ts via
Ei = COMMIT pk

(
ti, ri

)
. For all other positions i ∈ S̄ (where S̄ = {1, . . . , n} \ S(s)), it commits

to randomly chosen values t′i ∈R {0, 1}, i.e. Ei = COMMIT pk
(
t′i, ri

)
. It sends x and all Ei to B′.

3. B̂′ forces Fσ−COIN to hit s.
4. B̂′ opens Ei to ti for all i ∈ S(s), i.e. to all ts.
5. B̂′ outputs whatever B′ outputs.

Figure 15. Simulation against dishonest Bob.

The proof proceeds via a hybrid argument. Let D 0 be the distribution of the simulation
as described in Fig. 15. Let D 1 be the distribution obtained from the simulation but with
the following change: We inspect FZKPK(R) to get a valid witness w for instance x, and let
e ← E(x,w, r′) be the corresponding encoding. Note that this is possible as a thought
experiment for any adjacent distribution in a hybrid argument. From e we then use bits es
for the same S(s) as previously, instead of bits ts sampled by Ê(x, s). All other steps are
simulated as before. By the simulatability of the encoding scheme (Definition 6.3), it holds
that the bits ts in D 0 and the bits es in D 1 have the same distribution. Thus, we obtain
D 0 = D 1.

We further change the simulation in that we compute the bits in all positions i ∈ S̄ by ei
of the encoding e defined in the previous step. Again, all other steps of the simulation remain
unchanged. Let D 2 denote the new distribution. The only difference now is that for i ∈ S̄,
the commitments Ei are to the bits ei of a valid e and not to uniformly random bits t′i. This,
however, is quantum-computationally indistinguishable to B′ for pk ∈R {0, 1}κ, as COMMIT
is quantum-computationally hiding towards B′. Note that pk is guaranteed to be random by
an honest call to Fκ−COIN and recall that we do not have to open the commitments in these
positions. Hence, we get that D 1 q

≈ D 2.
Note that after the two changes, leading to distributions D 1 and D 2, the commitment

step and its opening now proceed as in the actual protocol, namely, we commit to the bits
of e ← E(x, e, r′) and open the subset corresponding to S(s). The remaining difference
to the real protocol is the enforcement of challenge s, whereas s is chosen randomly in the
protocol. Now, let D 3 be the distribution of the modified simulation, in which we imple-
ment this additional change of invoking Fσ−COIN honestly and then open honestly to the
resulting s. Note that both processes, i.e., first choosing a random s and then enforcing it
fromFσ−COIN, or invokingFσ−COIN honestly and receiving a random s, result in a uniformly
random distribution on the output of Fσ−COIN. Thus, we obtain D 2 = D 3.

24

By transitivity, we conclude that D 0 q
≈ D 3, and therewith, that the simulation is

quantum-computationally indistinguishable from the actual protocol. �

D Proof of Corollary 7.1 (Secure Function Evaluation)

Proof (Security against dishonest Alice). If A′ is corrupted, Â′ uses the proof of knowl-
edge to learn her x1 inside commitment X1. Then Â′ inputs x1 to FfSFE as A′’s input and
receives y = f(x1, x2). Now, Â′ invokes Sf

Â′,B̂
with input x1 and y. This, in particular,

yields randomness r1 and is quantum-computationally indistinguishable from a real run of
protocolΠf

A′,B. Furthermore, the simulated transcript contains all messages sent by B̂. Next,

Â′ uses the proof of knowledge to learn A′’s s1 inside commitment S1. Then Â′ enforces
challenge s′1 such that s′1 = s1 ⊕ r1, and thereby forces A′ to use r1 in the following.

Â′ now runs Πf
A′,B with A′. Whenever it is the turn of B̂ to send a message, Â′ sends the

next message obtained already by Sf
Â′,B̂

. Whenever it is the turn of A′ to send a message m,

Â′ checks whether it coincides with the message obtained already by Sf
Â′,B̂

. Note that by
construction her only consistent message really is the message obtained previously. In case
of inconsistency, A′ will fail in her following proof of knowledge, where she must prove
that m is consistent with x1 in X1, s1 in S1, and where r1 = s1⊕ s′1 with r1 obtained from
Sf
Â′,B̂

. Hence, if A′ does not send an inconsistentm and thereby make the protocol fail, then

the transcript of this simulation is consistent with the previous invocation of Sf
Â′,B̂

. In that

case, Â′ inputs > as second input to FfSFE, which outputs y as final result. Otherwise, the
input is ⊥, yielding output ⊥ from FfSFE and modeling the case where a wrong m makes A′

fail in the proof of knowledge.
Therefore, the only difference between the simulation with FfSFE and the real procedure

Π
SFE(f)
A′,B is A′’s views, simulated by Sf

Â′,B̂
and actually produced by Πf

A′,B, respectively.
These views, however, are by assumption quantum-computationally indistinguishable. �

25

