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Abstract

Deniable encryption, introduced in 1997 by Canetti, Dwork, Naor, and Ostrovsky, guarantees that the
sender or the receiver of a secret message is able to “fake” the message encrypted in a specific ciphertext
in the presence of a coercing adversary, without the adversary detecting that he was not given the real
message. To date, constructions are only known either for weakened variants with separate “honest”
and “dishonest” encryption algorithms, or for single-algorithm schemes with non-negligible detection
probability.

We propose the first sender-deniable public key encryption system with a single encryption algorithm
and negligible detection probability. We describe a generic interactive construction based on a public
key bit encryption scheme that has certain properties, and we give two examples of encryption schemes
with these properties, one based on the quadratic residuosity assumption and the other on trapdoor
permutations.

Keywords. Deniable encryption, electronic voting, multi-party computation.

1 Introduction

One of the central goals of cryptography is protecting the secrecy of a transmitted message. The secrecy
property of an encryption scheme is usually formalized as semantic security [12], which guarantees that an
adversary cannot gain even partial information about an encrypted message.

The notion of semantic security has proven to be very useful in a large number of applications. However,
there are some scenarios where semantic security is not sufficient. For example, semantic security does not
ensure message secrecy if the adversary can coerce the sender or the receiver of a message to reveal the
secret keys and/or the randomness that was used to form an encryption. Specifically, semantic security does
not prevent an encryption scheme from being committing, in the sense that if an adversary sees a ciphertext
and then tries to coerce the sender to reveal all of the input to the encryption (message and randomness),
any inputs that the sender can reveal that are consistent with the ciphertext must reveal the true message
encrypted. In fact, many encryption schemes have only one set of possible inputs per ciphertext.
∗Research conducted at Stanford University
†Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.
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This committing property of encryption can be problematic in applications such as electronic voting [17]
or keeping information secret when facing a coercer using physical force, or in the case of secure multi-party
computation in the presence of an adaptive adversary [5].

Deniable encryption, introduced by Canetti, Dwork, Naor, and Ostrovsky in 1997 [4], possesses a stronger
security property than semantic security that avoids these shortcomings. Informally, a (possibly interactive)
public key encryption scheme is sender-deniable if, given an encryption c = Encpk(m1; r1) of a message
m1 with randomness r1, for every message m2 the sender can compute alternative randomness r2 such that
(Encpk(m1; r1), r1) and (Encpk(m2; r2), r2) are computationally indistinguishable. Thus when coerced, the
sender can reveal either the “real” randomness r1 or the “fake” randomness r2, and the adversary cannot tell
whether m1 or m2 was really encrypted in the ciphertext c. A similar property defines receiver-deniability,
and a system with both properties is sender-and-receiver-deniable or bi-deniable.

Canetti et al. also considered a weaker form of deniability, called flexible deniability. In a flexibly deniable
system, the sender has two different encryption algorithms, honest and dishonest encryption. At the time of
encryption the sender chooses either honest or dishonest encryption. When choosing honest encryption he is
unable to fake later when coerced, but when choosing dishonest encryption he can create randomness such
that the distribution matches randomness for honest encryption. What makes this notion weak for practical
purposes is that if the adversary believes that the sender used the dishonest encryption, then the adversary
can coerce the sender to reveal randomness for the dishonest encryption, and the sender looses his ability to
fake. The system’s security relies on the fact that the adversary really believes that the sender used the honest
encryption.

Canetti et al. constructed a non-interactive sender-deniable encryption scheme that transmits bits, based
on a primitive called translucent sets that can be realized under trapdoor permutations and other standard
assumptions. The system is semantically secure, but it has only 1/O(n)-deniability. That is, an adversary
can detect whether the user is “faking” messages and randomness with probability 1/O(n), where n is the
system’s security parameter. Canetti et al. left open the problem of constructing an encryption scheme with
negligible deniability. This problem has remained open for more than 13 years.

Our contribution. We give the first public key encryption scheme that satisfies the definition of sender-
deniability in [4] with a single encryption algorithm and negligible probability of detection. We describe a
generic interactive construction based on a public key bit encryption scheme that has certain properties, and
we give two examples of encryption schemes with these properties, one based on the quadratic residuosity
assumption and the other on trapdoor permutations.

1.1 Overview of our Construction

The basic idea of our construction is the following. We take a public key bit encryption scheme with dense
ciphertexts, in which a uniformly random ciphertext decrypts to a uniformly random message. To encrypt a
bit b ∈ {0, 1}, we first obtain 4n+ 1 public keys for the underlying encryption scheme. We construct n+ 1
encryptions of b, construct n encryptions of 1− b, and sample 2n random ciphertexts, each under a different
public key, and then permute the output randomly. Decrypting all ciphertexts individually and taking the
majority recovers the original message with noticeable probability. Repeating the protocol multiple times in
parallel reduces the decryption error.

To fake the sender’s input, we claim that a constructed ciphertext encrypting b was sampled randomly.
This trick has been used before, but it usually gives an adversary a non-negligible probability of detecting the
faking (e.g., inverse linear in the ciphertext length as in [4]). What is unique in our construction is that we
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additionally construct “real-looking” randomness for a sampled ciphertext encrypting 1− b, so we obtain a
distribution which is computationally indistinguishable with negligible advantage for any efficient adversary.

In order to compute fake randomness for a sampled ciphertext, we need two ingredients. First, the
encryption scheme needs to have the property that given a ciphertext, the secret key holder can compute
randomness that is indistinguishable from the randomness used to compute the ciphertext. Second, the sender
must know which sampled ciphertext she should use in her faking and she must obtain a secret key for that
ciphertext. (After all, she doesn’t know which sampled ciphertexts encrypt b and which encrypt 1− b.) On
the other hand, the receiver doesn’t know which ciphertexts were sampled and which were constructed. Our
basic idea for giving the sender the necessary information is to have the receiver send back pairs of indices
for ciphertexts that decrypt to opposite plaintexts, so that with high probability one of the pairs corresponds
to a constructed encryption of b and a sampled encryption of 1− b. The sender then indicates one such pair
and obtains from the receiver the secret keys for both elements of that pair. Since the two ciphertexts encrypt
opposite messages, these revealed values do not compromise the secrecy of the system.

Once in possession of the correct secret key, the sender can fake randomness. Deniability ultimately rests
on the semantic security of the underlying encryption scheme, as our manipulation changes the distribution
on the set of sampled ciphertexts whose indices were not sent back to the sender in the above process.

To instantiate our system, we observe that two well known encryption schemes have the properties
necessary for our construction: the Goldwasser-Micali bit encryption scheme based on the quadratic residuos-
ity assumption [12], and a simple bit encryption scheme constructed from a trapdoor permutation using a
hard-core predicate.

1.2 Related work

In addition to their sender-deniable scheme with 1/O(n)-deniability, Canetti et al. [4] also constructed a
flexible (i.e., two-algorithm) sender-deniable encryption scheme with negligible deniability. More recently,
O’Neill, Peikert, and Waters [14] announced a flexible bi-deniable encryption scheme with negligible
deniability based on lattice assumptions. We view this latter work as orthogonal to our own: it is non-
interactive and achieves deniability for both sender and receiver simultaneously, but the construction uses in
an essential way the fact that there are different honest and dishonest encryption algorithms.

A related concept originating from adaptive security of multi-party computation is non-committing
encryption [5, 7, 9, 2]. Informally, a public key bit encryption scheme is non-committing if a simulator can
efficiently sample a distribution of ciphertexts c and two sets of randomness r0, r1 such that the ciphertext
c along with rb is indistinguishable from a legitimate encryption of b along with the true randomness. The
main difference between non-committing encryption and deniable encryption is while the simulator can
generate ciphertexts and randomness corresponding to either message, a user cannot, in general, compute
randomness that reveals a different message than was actually encrypted. While deniable encryption implies
non-committing encryption, the converse does not hold; in particular, the non-committing encryption scheme
in [5] is not deniable.

Another concept originating from the same line of research is security against selective opening attacks [10,
3]. Informally, an encryption scheme has SOA security if an adversary can force t out of n senders to reveal
their plaintexts and their random coins and still learn nothing about the remaining n − t plaintexts. A
sender-deniable encryption scheme automatically provides SOA security.

A different concept is plausible deniability. This term usually describes engineering techniques that allow
one to deny the existence of encrypted data or knowledge of the secret key. A well known example is the
TrueCrypt file system encryption [19], where one can add secret containers inside an encrypted volume such
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that one can deny their existence. Another example [6] uses steganographic measures to hide encrypted data
in cover text. These techniques come without formal proof or even definition, and attacks exist that can reveal
the presence and content of encrypted data [8]. In addition, this form of deniability usually is not suitable for
online applications such as electronic voting.

1.3 Outline

In Section 2 we give the formal definition of a deniable encryption scheme. In Section 3 we describe the
building block for our deniable protocol, which we call a samplable public key bit encryption scheme. In
Section 4 we construct an interactive encryption scheme from a samplable public key bit encryption scheme.
We prove our scheme is secure and deniable under the assumption that the underlying scheme is samplable
and semantically secure. In Section 5 we describe two samplable public key bit encryption schemes, one
based on the quadratic residuosity assumption and one based on trapdoor permutations. Finally, in Section 6
we discuss some open questions related to our work.

2 Deniable Encryption

We begin by fixing some notation. If X is a set and ∆ is a distribution on X , we use x← ∆ to denote an
element of X sampled according to the distribution ∆, and we use x← y to denote assignment of the value
y to x. If X is finite we use x R← X to denote an element sampled uniformly at random from X . For a
two-party protocol π between S and R we write

(oS , oR, tr)← π((iS ; rS), (iR; rR))

for the execution of π with input iS , iR and randomness rS , rR from S and R, respectively, producing output
oS , oR for the respective parties, and a public transcript tr.

A function µ : N→ R is said to be negligible iff for all c ∈ N we have that |µ(n)| ≤ 1
nc for sufficiently

large n. If this is the case, we write µ(n) = negl(n). A probability p is said to be overwhelming if
p = 1− negl(n).

Two sequences of random variables (Xn)n∈N, (Yn)n∈N are µ(n)-computationally indistinguishable,
and denoted by (Xn) ≈µ(n) (Yn), if for all polynomial-time adversaries A we have |Pr[A(x) = 1;x ←
Xn] − Pr[A(x) = 1;x ← Yn]| ≤ µ(n) for sufficiently large n. We say (Xn) and (Yn) are statistically
indistinguishable, denoted (Xn) ≈ (Yn), if the same holds for all adversaries A, regardless of running time.

Our definition of deniable encryption is a slight rephrasing of the definition of Canetti et al. [4].

Definition 2.1. Let n ∈ N be a security parameter. An efficiently computable protocol1 π between two
parties S and R (sender and receiver, respectively) is called a µ(n)-sender-deniable public key bit encryption
scheme if the following three conditions are satisfied:

Correctness: We say π is correct if for all messages b ∈ {0, 1} we have

Pr
[
b′ 6= b; rS , rR

R← {0, 1}∗, (·, b′, ·)← π((b; rS), (n; rR))
]
≤ ν(n)

for some negligible function ν : N→ R.
1I.e., all computations run in (expected) time polynomial in n and the number of rounds is polynomial in n.
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Passive secrecy: The two random variables tr0, tr1 defined by

rS , rR
R← {0, 1}∗, (·, ·, tr0)← π((0; rS), (n; rR)), (2.1)

(·, ·, tr1)← π((1; rS), (n; rR)),

are ν(n)-computationally indistinguishable for some negligible ν(n).

Deniability: There is an efficient faking algorithm Fake that takes input a message b ∈ {0, 1}, sender
randomness rS ∈ {0, 1}∗, and a transcript of the protocol π, such that for any b ∈ {0, 1} and

rS , rR
R← {0, 1}∗, (·, ·, t̃r)← π((1− b; rS), (n; rR)), (2.2)

r̃S ← Fake(b, rS , t̃r), (·, ·, tr)← π((b; rS), (n; rR)),

the following two distributions are µ(n)-computationally indistinguishable:

(b, rS , tr) ≈µ(n) (b, r̃S , t̃r). (2.3)

The distribution on the left is produced by a real encryption of b with randomness rS . The distribution
on the right is produced when we actually encrypt 1− b with randomness rS , but tell the adversary
that we encrypted b with randomness r̃S .

We call π a sender-deniable public key bit-encryption scheme if it is µ(n)-sender-deniable for a negligible
µ(n). We can define a receiver-deniable encryption scheme analogously by having Fake produce fake
receiver randomness r̃R. A sender-and-receiver-deniable or bi-deniable scheme has both properties, with a
faking algorithm for each party.

A straightforward reduction shows that deniability (with negligible µ(n)) implies passive secrecy.

Lemma 2.2. A two-party protocol π that has the deniability property of Definition 2.1 for a negligible µ(n)
also has the passive secrecy property.

Proof. Assume there exists an efficient adversary A that can distinguish transcripts of π corresponding to
messages 0 and 1 with non-negligible probability. Now if we are given a challenge (m, rS , tr) for deniability,
we can use A to decide if tr is an encryption of b or 1 − b, and thus can win the deniability game with
the same probability and the same running time. This contradicts the hypothesis that π has the deniability
property for negligible µ(n).

3 Samplable Public Key Encryption

As a building block for our deniable encryption scheme, we use a public key bit encryption scheme with two
special properties: first, anyone can generate a ciphertext that encrypts a random bit; and second, a secret key
holder can recover randomness used in the encryption. We do not require this recovered randomness to be
exactly that used to encrypt, as this may be impossible to compute, but rather that it be indistinguishable from
the real randomness. In this section we formalize this idea.
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Let E = (KeyGen,Enc,Dec) be a public key encryption system encrypting messages in {0, 1}. We write
the encryption algorithm as

Enc : PK × {0, 1} ×R → C

and the decryption algorithm as
Dec : SK × C → {0, 1},

where PK, SK, R, and C are the spaces of public keys, secret keys, sender randomness, and ciphertexts,
respectively. The key spaces PK and SK depend on the security parameter n, and the spacesR and C also
depend on the public key pk used in the encryption; for the sake of readability we omit these dependencies
from the notation.

We denote the encryption of a bit b under public key pk with randomness r by Encpk(b; r), and the
system’s security parameter (input to KeyGen) by n. We let ∆R denote the distribution on R that the
encryption algorithm samples. We require the usual correctness condition: for all pk ∈ PK, all sk ∈ SK,
and b ∈ {0, 1}, we have Decsk(Encpk(b; r)) = b with overwhelming probability over r ← ∆R.

We now define samplable public key encryption. Our definition combines the “oblivious ciphertext
generation” property of Damgård and Nielsen’s simulatable public key encryption [9] with the “efficient
opening” property of Bellare, Hofheinz, and Yilek’s lossy encryption [3].

Definition 3.1. We say that a public key bit encryption scheme E is samplable if the following two conditions
hold:

1. The set C is finite, and the distribution on C given by

(Encpk(b; r) : b
R← {0, 1}, r ← ∆R) (3.1)

is statistically indistinguishable from the uniform distribution on C.

2. There is an efficient algorithm SampleRand that takes as input a secret key and a ciphertext and outputs
a value inR, such that if we choose

b
R← {0, 1}, r ← ∆R,

c← Encpk(b; r), r̃ ← SampleRand(sk, c),

then the following two distributions are statistically indistinguishable:

(sk, c, r) ≈ (sk, c, r̃). (3.2)

Note that the second condition implies that for all but a negligible fraction of c ∈ C, we have

Encpk(Decsk(c);SampleRandsk(c)) = c.

We present two examples of samplable encryption schemes in Section 5.

4 A Deniable Encryption Protocol

We are now ready to construct a sender-deniable encryption scheme from any samplable public key bit-
encryption scheme. Let n ∈ N be a security parameter. At a high level, our protocol consists of the following
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exchange, iterated n times to ensure correctness of decryption. Since the “sender” and “receiver” are both
sending and receiving messages, for clarity we describe our protocol in terms of two players Sarah and
Ronald. Sarah has a bit b that she wishes to transmit to Ronald in a deniable manner.

To encrypt the bit b, first Ronald sends 4n+ 1 freshly generated public keys pki to Sarah. Sarah partitions
the indices {0, . . . , 4n} into three random disjoint subsets and computes 4n+ 1 ciphertexts as follows:
• Choose a set A containing n+ 1 indices and encrypt b under the key pki for i ∈ A.
• Choose a set B disjoint from A containing n indices and encrypt 1− b under the key pki for i ∈ B.
• Let C denote the remaining 2n indices, and sample a uniformly random ciphertext ci from C for i ∈ C.

Definition 3.1 guarantees that approximately half of these ciphertexts decrypt to b.
Ronald computes a bit b′ by decrypting all of the received ciphertexts and taking the majority of the plaintexts.
We will show that the probability that b′ = b is at least 1/2+1/5

√
n; thus repeating the protocol independently

n times ensures that Ronald can compute b correctly with overwhelming probability.2

When coerced to reveal her randomness, Sarah will reveal sets Ã, B̃, C̃ in which a real encryption of
b from the set A is exchanged with a sampled encryption of 1 − b from the set C. She must also reveal
appropriately distributed randomness for the sampled encryption. However, to do this she needs Ronald’s
help; in particular, she needs a secret key for an index i ∈ C such that ci encrypts 1− b. Since Ronald cannot
tell which encryptions were sampled randomly, he sends back n/2 random pairs of indices (ui, vi) such that
cui and cvi decrypt to different messages. Almost certainly, he will choose at least one pair (uj , vj) such
that uj ∈ A corresponds to an encryption of b and vj ∈ C corresponds to an encryption of 1 − b, or vice
versa. Sarah indicates such a pair, and Ronald sends the corresponding secret keys skuj , skvj . Knowing the
secret key for a randomly generated ciphertext enables Sarah to use the SampleRand algorithm to produce
randomness which is indistinguishable from “real” randomness that would produce the given ciphertext.

We now formally describe our scheme.

4.1 The Protocol

Let E = (KeyGen,Enc,Dec,SampleRand) be a samplable public key bit encryption scheme. Define a
protocol πE between a sender Sarah and a receiver Ronald as follows:

1. Ronald’s input is a security parameter n ∈ N; we assume for simplicity that n is even.

(a) Choose key pairs (pki, ski)← KeyGen(1n) for i = 0, . . . , 4n.

(b) Send (pk0, . . . , pk4n) to Sarah.

2. Sarah’s input is a bit b ∈ {0, 1}. Sarah computes n+ 1 encryptions of b and n encryptions of 1− b
under different keys, and chooses 2n additional random ciphertexts:

(a) Choose a random partition of {0, . . . , 4n} into disjoint subsets A,B,C of cardinality n+ 1, n,
and 2n, respectively.

(b) For i ∈ A, choose encryption randomness αi ← ∆R, set βi = b, and compute ci ←
Encpki(βi;αi).

(c) For i ∈ B, choose encryption randomness αi ← ∆R, set βi = 1 − b, and compute ci ←
Encpki(βi;αi).

2More precisely, we can obtain correctness with overwhelming probability by repeating the protocol f(n) times for any
ω(

√
n logn) function f ; we use f(n) = n for simplicity.
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(d) For i ∈ C, choose random ciphertexts ci
R← C.

(e) Send (c0, . . . , c4n) to Ronald.

3. Ronald decrypts all ciphertexts: he sets β′i ← Decski(ci) for i = 0, . . . , 4n, and outputs the majority b′.

4. Ronald sends pairs of indices corresponding to ciphertexts with opposite messages back to Sarah.

(a) Set I = ∅. Do the following for i = 1, . . . , n/2.

i. Choose a random pair of indices (ui, vi) ∈ {0, . . . , 4n} such that ui, vi 6∈ I and β′ui 6= β′vi .
ii. Set I ← I ∪ {ui, vi}.

(b) Ronald sends (u1, v1), . . . , (un/2, vn/2) to Sarah.

5. Sarah chooses a pair of indices such that one index is in the set A and one is in the set C:

(a) Choose a random j ∈ {1, . . . , n/2} such that either uj ∈ A and vj ∈ C or uj ∈ C and vj ∈ A.
If no such index exists, then abort the protocol.

(b) Send j to Ronald.

6. Ronald sends the secret keys skuj , skvj to Sarah.

This completes the description of the protocol.

The transcript. The protocol’s transcript consists of:
1. The public keys (pk0, . . . , pk4n) sent by Ronald in Step 1,
2. The ciphertexts (c0, . . . , c4n) sent by Sarah in Step 2e,
3. The tuples (ui, vi) sent by Ronald in Step 4,
4. The index j Sarah has chosen in Step 5 (or the decision to abort), and
5. The secret keys skuj , skvj sent by Ronald in step 6.

The faking algorithm. The algorithm Fake is defined as follows: suppose we are given a message b,
randomness

rS =
(
A,B,C, (αi)i∈A∪B, (ci)i∈C

)
(4.1)

and a transcript tr. If tr indicates that the protocol has aborted in Step 5a, then Fake outputs r̃S = ⊥.
Otherwise, do the following:

1. Let y = {uj , vj} ∩A and z = {uj , vj} ∩ C.
(In particular, we have β′y = b and β′z = 1− b.)

2. Compute

• Ã← B ∪ {z}, B̃ ← A \ {y}, C̃ ← (C \ {z}) ∪ {y}.
• α̃i ← αi for i ∈ (A \ {y}) ∪B.
• α̃z ← SampleRandskz(cz).
• c̃i ← ci for i ∈ C̃.
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3. Output
r̃S =

(
Ã, B̃, C̃, (α̃i)i∈Ã∪B̃, (c̃i)i∈C̃

)
. (4.2)

We denote the n-fold independent execution of the encryption protocol by πnE , where the final output is
determined as the majority of the output bits of the individual instances.

It is clear that the protocol runs in time polynomial in n. We now show that the protocol almost never
aborts in Step 5a.

Proposition 4.1. The probability that Sarah aborts the protocol πE in Step 5a is negligible in n.

Proof. For β ∈ {0, 1}, let Cβ := C ∩ {i : Decski(ci) = β}. By Property 1 of Definition 3.1 and Chernoff
bounds [16, Ch. 8, Prop. 5.3] we have, with overwhelming probability, 7n

8 ≤ |Cβ| ≤
9n
8 for β ∈ {0, 1}. Now

in each iteration of Step 4(a)i, the probability of choosing a pair (ui, vi) with either ui ∈ A and vi ∈ C or
vi ∈ A and ui ∈ C is at least

|A| − n/2
|A|+ |Cb|

· |C1−b| − n/2
|C1−b|+ |B|

≥ n/2

18n/8
· 3n/8

17n/8
=

2

51

whenever n ≥ 8. Since n/2 pairs are chosen in total, by another application of Chernoff bounds we obtain
that the probability that no suitable pair is chosen is negligible in n.

4.2 Correctness

Lemma 4.2. Let E be a samplable public key bit encryption scheme, and let b′ be Ronald’s output computed
by πE((b, rS), (n, rR)). Then the probability (over rS and rR) that b′ = b is at least 1/2 + 1/(5

√
n).

Proof. A single instance of πE outputs the majority of messages obtained from decrypting all 4n + 1
ciphertexts ci. Out of these, ci encrypts b for i ∈ A and ci encrypts 1− b for i ∈ B. This means that b′ = b if
and only if least half of the remaining 2n ciphertexts {ci : i ∈ C} decrypt to b.

Property 1 of Definition 3.1 implies that a single ci decrypts to b with probability p(n) satisfying
|1/2−p(n)| = ν(n) for some negligible ν(n). The probability that at least half of the ciphertexts {ci : i ∈ C}
decrypt to b is thus

2n∑
i=n

(
2n

i

)
p(n)i · (1− p(n))2n−i ≥

2n∑
i=n

(
2n

i

)(
1

2
− ν(n)

)2n

=

(
1

2
− ν(n)

)2n

· 1

2

((
2n

n

)
+

2n∑
i=0

(
2n

i

))
(∗)
≥ (1− 2ν(n))2n ·

(
1

4
√
n

+
1

2

)
≥ 1/2 +

1

5
√
n
,

where (∗) follows from the inequality
(
2n
n

)
≥ 22n−1/

√
n, which in turn follows from Stirling’s approximation

n! ∼
√

2πn · e−n · nn [18, p. 13].
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4.3 Deniability

Our main result is the following:

Theorem 4.3. Let E = (KeyGen,Enc,Dec) be a public key encryption scheme. If E is semantically secure
and samplable, then πnE is a sender-deniable encryption scheme.

Proof. We must show that the n-fold repetition of πE satisfies the three conditions of Definition 2.1 for
negligible µ(n). Lemma 4.2 shows that the probability that Ronald’s message b′ is equal to Sarah’s message
b is at least 1/2 + 1/(5

√
n). Thus repeating the protocol n times and taking the majority of the b′ gives the

correct answer b with overwhelming probability by using Chernoff bounds [16, Ch. 8, Prop. 5.3].
Next, Lemma 2.2 shows that passive secrecy follows from deniability. It thus only remains to prove

deniability. We show that if E is semantically secure and samplable, then for a single execution of πE , the
two distributions of (2.3) are µ(n)-computationally indistinguishable for some negligible µ(n). Assuming
this is the case, a standard hybrid argument shows that the corresponding distributions for the n-fold parallel
repetition of πE are µ′(n)-computationally indistinguishable for some negligible µ′(n).

We now consider a single execution of πE and define a series of games. Game0 will output the distribution
of the left hand side of (2.3), while Game8 will output the distribution of the right hand side of (2.3). We
will then show that for all i, the outputs of Gamei and Gamei+1 are µi(n)-computationally indistinguishable
for some negligible µi(n). By the triangle inequality, this implies that the two distributions in (2.3) are
µ(n)-computationally indistinguishable for some negligible µ(n).

We now define our series of games. In each game Ronald’s randomness rR and the security parameter n
are taken to be the same. Unless otherwise stated, the output of Gamei is the same as that of Gamei−1.

Game0: The two parties run the protocol πE as defined in Section 4.1, with Sarah’s input message b
and randomness rS given by (4.1). The game outputs the message b, the randomness rS , and the
transcript tr.

Game1: The two parties run the protocol as in Game0, but change Step 2d as follows:

(2d)’ For i ∈ C, choose random βi
R← {0, 1} and αi ← ∆R and compute ci ← Encpki(βi;αi).

The ciphertexts in tr are still the ciphertexts c0, . . . , c4n.

Game2: The two parties run the protocol as in Game1, but change Steps 2e and 3 as follows:

(2e)’ Send (β0, . . . , β4n) to Ronald.
(3)’ Ronald sets β′i ← βi for all i and outputs the majority b′ of the β′i.

The ciphertexts ci ← Encpk(βi;αi) are now computed at the time the transcript is output. The output
is the same as in Game1.

Game3: The two parties run the protocol as in Game2, with an additional step that flips the bit of one
ciphertext:

7. (a) Choose a random x ∈ C, not equal to any of the indices sent in Step 4, with βx = b.
(b) Compute c̃x ← Encpkx(1− βx;αx).

The output is the same as in Game2, except the ciphertext c̃x is output instead of cx.

10



Game4: The two parties run the protocol as in Game3, but now Sarah flips all of the bits that she sends to
Ronald (including the bit in ciphertext cx), while still computing the ciphertexts in the transcript from
the original bits (with only βx flipped). For easier readability we restate most of the protocol.

1. Ronald sends 4n+ 1 key pairs (pki, ski) to Sarah.

2. Sarah does the following:
(a) Choose a random partition of {0, . . . , 4n} into disjoint subsets A,B,C of cardinality n+ 1,

n, and 2n, respectively.
(2b)’ For i ∈ A, choose encryption randomness αi ← ∆R, set βi ← b and β̃i ← 1− b.
(2c)’ For i ∈ B, choose encryption randomness αi ← ∆R, set βi ← 1− b and β̃i = b.
(2d)” For i ∈ C choose random βi

R← {0, 1} and αi ← ∆R, set β̃i ← 1− βi.
(2e)” Send (β̃0, . . . , β̃4n) to Ronald.

3.” Ronald sets β′i = β̃i and outputs the majority b′.

4. Ronald sends pairs of indices corresponding to ciphertexts with opposite messages back to Sarah.
(This step is identical to the corresponding step in the real protocol.)

5. Sarah chooses a pair of indices such that one index is in the set A and one is in the set C. (This
step is identical to the corresponding step in the real protocol.)

6. Ronald sends the secret keys skuj , skvj to Sarah.

7. (a) Choose a random x ∈ C, not equal to any of the indices sent in Step 4, with βx = b.
(b) Let ci ← Encpki(βi;αi) for all i 6= x, and let c̃x ← Encpkx(1− βx;αx).

The output is the same as in Game3.

Game5: The two parties run the protocol as in Game4, but now Sarah uses the flipped bits β̃i to compute all
ciphertexts (including the ciphertext cx).

7.’ Set ci ← Encpki(β̃i;αi) for all i.

8. The game outputs the protocol’s transcript and computes fake randomness:

• Ã← B ∪ {z}, B̃ ← A \ {y}, C̃ ← (C \ {z}) ∪ {y}.
• α̃i ← αi for i ∈ Ã ∪ B̃.
• c̃i = ci for i ∈ C̃.

We define r̃S as in (4.2), and the game outputs r̃S instead of rS .

Game6: The two parties run the protocol as in Game5, but Sarah fakes the randomness for the ciphertext
with index z by choosing α̃z ← SampleRandskz(cz). (Recall z = {uj , vj} ∩ C.) This α̃z is output in
the appropriate position of r̃S . Other than this change, the output is the same as in Game5.

Game7: We reverse the change made between Game1 and Game2, by setting

(2b–2d) Set ci ← Encpk(β̃i;αi) for all i.
(2e) Send (c0, . . . , c4n) to Ronald.
(3) Set β′i ← Decski(ci) for i = 0, . . . , 4n, and output the majority b′.

Game8: We reverse the change made between Game0 and Game1, by setting

11



(2d) For i ∈ C, choose random ciphertexts ci
R← C.

Therefore the output of Game8 is the message b, the transcript t̃r of a real encryption of 1− b using
Sarah’s randomness rS , and the fake randomness r̃S = Fake(b, rS , t̃r).

Since the output of Game0 is distributed as the left hand side of (2.3) and the output of Game8 is
distributed as the right hand side of (2.3), it suffices to show that for each i in 1, . . . , 8, if there is an efficient
adversary that can distinguish the output of Gamei from that of Gamei−1, then this adversary can be used
to solve some problem that we have assumed to be (computationally or statistically) infeasible. We now
consider each pair of games in turn.

Game0 → Game1: The fact that E is samplable implies that the outputs of these two games are statistically
indistinguishable. To show this, we put an ordering on C and define hybrid games for j = 0, . . . , 2n in
which the first j ciphertexts ci for i ∈ C are chosen at random from C, and the last 2n− j are chosen as real
encryptions of random bits. The 0th hybrid is Game0 and the 2nth hybrid is Game1.

Suppose we are given a ciphertext X chosen as either a real encryption of a random bit or as a uniformly
random ciphertext. Let x be the index of the ciphertext that changes between the jth and (j+ 1)th hybrid. We
can simulate the protocol by choosing secret keys ski for all i 6= x and using X as cx. When X is a random
ciphertext for pkx we are in the jth hybrid, and when X is a real encryption of a random bit under pkx we
are in the (j + 1)th. Thus any adversary that can distinguish these two hybrids can distinguish a random
ciphertext from a real encryption of a random bit, which contradicts the assumption that E is samplable.

Game1 → Game2: Note that the output of Ronald in Step 4, as well as the remainder of the protocol, depends
only on the plaintexts of the messages he receives in Step 2e. Since Sarah now knows all of the plaintexts,
she can send these plaintexts instead in Step 2e and compute the ci for the transcript later. Thus the output
distributions of Game1 and Game2 are identical.

Game2 → Game3: The fact that E is semantically secure implies that the outputs of these two games are
ν(n)-computationally indistinguishable for some negligible ν(n). To show this, first note that the indices
Ronald sends in Step 4 are now all determined before Sarah computes any ciphertexts. Thus we can choose
a random x ∈ C not equal to any of these indices (assuming such an x exists) without using any public or
secret keys.

Now let X be a semantic security challenge for pkx. We can simulate the protocol by choosing secret
keys ski for all i 6= x and setting cx = X . When X is an encryption of b we are in Game2, and when X is
an encryption of 1− b we are in Game3. Thus any adversary that can distinguish the outputs of Game2 and
Game3 can be used to break the semantic security of E .

Finally, we show that an index x as above exists with overwhelming probability. Let Cβ be defined as in
the proof of Proposition 4.1, and recall that, with overwhelming probability, we have 7n

8 ≤ |Cβ| ≤
9n
8 . Since

Ronald chooses n/2 indices in Step 4 that correspond to encryptions of b, with overwhelming probability
there remain at least 3n/8 indices in Cb from which to choose x.

Game3 → Game4: First, the distribution of the βi’s does not change, and consequently the distribution of
the ci’s does not change. Second, note that choosing the process of choosing the pairs (ui, vi) in Step 4 is
identical in Game3 and Game4: since Ronald chooses pairs of indices with opposite plaintexts, flipping all of
Ronald’s bits does not affect these choices. Furthermore, since Sarah’s computation of j in Step 5 depends
only on the location of the indices ui, vi in the sets A,B,C, Sarah’s computation of j using flipped bits is
exactly the same as her computation of j in Game3. Thus the output distributions of Game3 and Game4 are
identical.
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Game4 → Game5: Let σ be a permutation of order 2 acting on the set {0, . . . , 4n}, such that

σ(y) = z, σ(x) = x, σ(A \ {y}) = B.

Note that in particular, this means σ(A) = Ã, σ(B) = B̃, and σ(C) = C̃.
For all i ∈ A, we have βi = b and βσ(i) = 1 − b, and for all i ∈ B ∪ {z} we have βi = 1 − b and

βσ(i) = b. The index x only appears in the output as the ciphertext c̃x, so the output of Game4 is distributed
as if βx = 1− b; furthermore, we have β̃x = 1− b in Game5.

Next, observe that the random bits βi for i ∈ C are distributed such that inverting all of them does not
change their distribution. Because βx = b and βz = 1 − b, the distribution on the βi for i ∈ C \ {x, z} is
also symmetric, so permuting just these indices does not change the distribution of the corresponding βi; the
same is true for flipping just these bits. We thus conclude that the following two distributions are identical:

• Run Game4 to encrypt bit b with randomness rS , producing transcript tr, and output σ(tr) and σ(rs).
(That is, we apply the permutation σ to all of the indices of the computed elements.)

• Run Game5 to encrypt bit 1− b with randomness rS , producing transcript t̃r, and output t̃r and r̃S .

Since the sets A,B,C are uniformly random disjoint subsets of {0, . . . , 4n} of cardinality n+ 1, n, and
2n, respectively, applying a permutation to the indices cannot change the output distribution of Game4. It
follows that the output distributions of Game4 and Game5 are identical.

Game5 → Game6: The fact that E is samplable implies that these two distributions are statistically indistin-
guishable.

Suppose we are given a secret key sk∗, a ciphertextX , and randomnessR from one of the two distributions
of (3.2). We can simulate the protocol by using sk∗ as skz , X as cz , and R as α̃z . When R is chosen from
∆R we are in Game5, and when R is computed using SampleRand we are in Game6. Thus any adversary
that can distinguish these two games can distinguish the two distributions of (3.2), which contradicts the
assumption that E is samplable.

Game6 → Game7: By the same argument as above for Game1 → Game2, the outputs of these two games
are identical.

Game7 → Game8: By the same argument as above for Game0 → Game1, the fact that E is samplable implies
that the outputs of these two games are statistically indistinguishable.

Remark 4.4. We can eliminate the need to repeat πE multiple times to achieve correctness by increasing the
size of A relative to B. In particular, if we let |A| = n+ γ(n) for some ω(

√
n log n) function γ and leave B

and C as before, then we can achieve correctness with overwhelming probability in a single iteration of the
protocol. The denying step still works as long as Ronald sends at least γ pairs in Step 4 with one index in
A and one in C; our analysis in the proof of Proposition 4.1 shows that we can expect this to happen with
overwhelming probability as long as γ = o(n). Sarah then indicates γ such pairs in Step 5 and obtains the
corresponding secret keys in Step 6. The faking algorithm computes fake randomness for the γ indices in
these pairs that are in C.

The proof of Theorem 4.3 carries over to this modified construction essentially unchanged; the only
difference is that we flip γ bits in Game3 and sample randomness for γ ciphertexts in Game6. The proof now
requires hybrid constructions for the Game2 → Game3 and Game5 → Game6 arguments.

While this modified construction is asymptotically more efficient than repeating πE n times, the value
of n necessary to achieve both high correctness probability and small abort probability might be quite large.
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For example, if γ =
√
n log n, then the analysis of Proposition 4.1 suggests that we need n > 106 to obtain

at least γ “good” pairs in Step 4. This analysis can certainly be improved; computer simulations suggest that
for this value of γ, choosing n = 1000 is sufficient to achieve 0.1% abort probability.

5 Instantiations

5.1 Quadratic Residuosity

Our first example of a samplable encryption system is the Goldwasser-Micali bit encryption system [12],
which is secure under the quadratic residuosity assumption.

For a positive integerN that is a product of two distinct odd primes, we define the set J (N) = {x ∈ Z∗N :(
x
N

)
= 1} and let Q(N) be the subgroup of squares in Z∗N , which has index 2. The quadratic residuosity

assumption states that when N is the product of two randomly chosen n-bit primes, the two distributions
obtained by sampling uniformly at random from Q(N) and from J (N) \ Q(N) are µ(n)-computationally
indistinguishable for negligible µ(n).

Construction 5.1.

• KeyGen(n): Compute N = pq, where p, q are n-bit primes. Choose a quadratic non-residue g ∈
J (N) \ Q(N). The public key is pk = (N, g) and the secret key is sk = p.

• Encpk(b; r): Choose r R← Z∗N and output c = gbr2 (mod N).

• Decsk(c): Let sk = p. If
(
c
p

)
= 1, output 0; otherwise output 1.

• SampleRandsk(c): If Decsk(c) = 0, output a random solution to X2 = c (mod N); otherwise output
a random solution to X2 = c/g (mod N).

It is a standard result [12] that the encryption scheme is semantically secure under the quadratic residuosity
assumption. We now show the samplable properties.

Proposition 5.2. The public key encryption scheme of Construction 5.1 is samplable.

Proof. In the notation of Definition 3.1, the setR is Z∗N , and the set C is J (N). The distribution ∆R is the
uniform distribution on Z∗N . Since J (N) = (Z∗N )2 ∪ g · (Z∗N )2, it follows that the distribution (3.1) is the
uniform distribution on J (N).

For the second condition, we observe that for a given c ∈ J (N) the value x = SampleRandsk(c) is
distributed uniformly amongst the four possible values of r such that c = Encpk(Decsk(c), r). Since real
randomness comes from the uniform distribution on Z∗N , it follows that the two distributions (3.2) are
identical.

5.2 Trapdoor permutations

Our second samplable encryption system is the bit encryption scheme built from a generic trapdoor permuta-
tion (cf. [13, Construction 10.27]):

Construction 5.3.
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• KeyGen(n): Let f : R → R be sampled from a family F of trapdoor permutations (using n as the
security parameter) and let g = f−1. Let H : R → {0, 1} be a hard-core predicate for f . The public
key is pk = (f,H) and the secret key is sk = g.

• Encpk(b; r): Choose r R← R and output c = (f(r), H(r)⊕ b) ∈ R× {0, 1}.

• Decsk(c): Write c = (y, z) ∈ R× {0, 1}. Output H(g(y))⊕ z.

• SampleRandsk(c): Write c = (y, z) and output g(y).

It is a standard result (see e.g. [13, Theorem 10.28]) that if F is a family of trapdoor permutations, then
the encryption scheme is semantically secure. In particular, under the RSA assumption we can let f be the
function x 7→ xe (mod N) with the hard-core predicate H(x) = lsb(x) [1].

Proposition 5.4. The public key encryption scheme of Construction 5.3 is samplable.

Proof. Since r is sampled uniformly fromR and f is a permutation, the first component of the ciphertext
is uniformly distributed in R. Furthermore, if b is a uniformly random bit, the second component of the
ciphertext is random and independent of the first component. Thus the distribution (3.1) is the uniform
distribution onR× {0, 1}.

For the second condition, since f is a permutation the map fromR× {0, 1} to itself given by (r, b) 7→
Encpk(b; r) is a bijection. Thus there is a unique value of the randomness r for any ciphertext (which is
exactly what is recovered by SampleRand), and the two distributions (3.2) are identical.

6 Conclusion and Open Problems

We have presented a sender-deniable public key encryption scheme that has a single (interactive) protocol
for encryption and has negligible detection probability. It is the first construction that satisfies these strict
requirements. The security of our construction is based on well established assumptions; we give one
construction based on the hardness of deciding quadratic residuosity and one based on the existence of
trapdoor permutations.

Receiver-deniable encryption can be obtained from sender-deniable encryption by a straightforward
construction [4]; basically, the roles of sender and receiver are reversed, and the receiver encrypts a bit that is
used by the sender as a one-time pad. It is an open problem to construct a bi-deniable encryption scheme with
a single encryption algorithm and no trusted third party. (The recent work of O’Neill, Peikert, and Waters [14]
achieves this goal for a weaker notion of deniability that allows two encryption algorithms.) Another open
problem arising from our work is to remove the interaction from our encryption protocol.

Both instantiations of our scheme rely on the hardness of factoring. It is an open problem to construct
deniable encryption schemes from other assumptions. A promising direction for this problem is cryptosystems
based on the hardness of Learning With Errors (LWE), a lattice-related problem. In particular, the variant of
Regev’s LWE cryptosystem [15] presented by Gentry, Peikert, and Vaikuntanathan [11, §8] has the property
that a trapdoor can be embedded in the secret key that allows the key holder to efficiently sample from the
distribution of randomness used in the encryption. However, the scheme does not have a dense ciphertext
space, so the scheme is not samplable according to our definition. So far, all methods we have looked at
to modify the cryptosystem to overcome this difficulty either induce a non-uniform distribution on real
ciphertexts, introduce non-negligible decryption error, or destroy the system’s security.
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Finally, the overhead of our construction is significant: for a security parameter n, one execution of our
protocol requires transmission of O(n) secret keys and ciphertexts, each of length n (not to mention the
computational cost of generating O(n) keys and ciphertexts); furthermore, to ensure correctness we must
repeat the protocol n times. Since we optimized our presentation for clarity rather than efficiency, several
straightforward improvements are possible, such as that discussed in Remark 4.4. However, a significantly
more efficient construction seems to require substantial new ideas.

Acknowledgments

The authors thank Dan Boneh, Chris Peikert, Brent Waters, and the anonymous referees for helpful discussions
and/or feedback on earlier versions of this work.

References

[1] W. Alexi, B. Chor, O. Goldreich, and C.-P. Schnorr. “RSA and Rabin functions: Certain parts are as
hard as the whole.” SIAM J. Comput. 17 (1988), 194–209.

[2] D. Beaver. “Plug and play encryption.” In Advances in Cryptology — CRYPTO ’97, Springer LNCS
658 (1997), 75–89.

[3] M. Bellare, D. Hofheinz, and S. Yilek. “Possibility and impossibility results for encryption and
commitment secure under selective opening.” (2009).

[4] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky. “Deniable encryption.” In Advances in Cryptology —
CRYPTO ’97, Springer LNCS 1294 (1997), 90–104.

[5] R. Canetti, U. Feige, O. Goldreich, and M. Naor. “Adaptively secure multi-party computation.” In
STOC (1996), 639–648.

[6] M. Chapman and G. Davida. “Plausible deniability using automated linguistic stegonagraphy.” In
Infrastructure Security, Springer LNCS 2437 (2002), 276–287.

[7] S. Choi, D. Dachman-Soled, T. Malkin, and H. Wee. “Improved non-committing encryption with
applications to adaptively secure protocols.” In Advances in Cryptology — ASIACRYPT ’09, Springer
LNCS 5912 (2009), 287–302.

[8] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble, T. Kohno, and B. Schneier. “Defeating encrypted
and deniable file systems: TrueCrypt v5.1a and the case of the tattling OS and applications.” In 3rd
Usenix Workshop on Hot Topics in Security (2008).
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