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Abstract

It is well known that the Cartan matrix of a block of a finite group cannot be arranged as a direct sum
of smaller matrices. In this paper we address the question if this remains true for equivalent matrices. The
motivation for this question comes from the work by Külshammer and Wada [20], which contains certain
bounds for the number of ordinary characters in terms of Cartan invariants. As an application we prove
such a bound in the special case, where the determinant of the Cartan matrix coincides with the order of
the defect group.

In the second part of the paper we show that Brauer’s k(B)-conjecture holds for 2-blocks under some
restrictions on the defect group. For example, the k(B)-conjecture holds for 2-blocks if the corresponding
defect group is a central extension of a metacyclic group by a cyclic group. The same is true if the defect
group contains a central cyclic subgroup of index at most 9. In particular the k(B)-conjecture holds for
2-blocks of defect at most 4 and 3-blocks of defect at most 3. Using the classification of finite simple groups
we improve this result to central cyclic subgroups of index 16 with one possible exception. In particular the
k(B)-conjecture holds for 2-blocks of defect 5, except possible the extraspecial defect group D8 ∗ D8. As
a byproduct, we obtain the block invariants for 2-blocks with minimal nonmetacyclic defect groups. Some
proofs rely on computer computations with GAP [13]. The paper is a part of the author’s PhD thesis.
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1 Introduction

Let G be a finite group and let B be a p-block of G for a prime number p. We denote the inertial index of B by
e(B), the number of ordinary irreducible characters by k(B), and the number of irreducible Brauer characters
by l(B). Moreover, let d be the defect of B.

It is well known that the Cartan matrix C of B is indecomposable as integer matrix, i. e. there is no arrangement
of the indecomposable projective modules such that C splits into a direct sum of smaller matrices (recall that
C is symmetric).

We call two matrices A,B ∈ Zl×l equivalent if there exists a matrix S ∈ GL(l,Z) with A = STBS, where ST

denotes the transpose of S. Every symmetric matrix gives rise to a quadratic form. In this sense equivalent
matrices describe equivalent quadratic forms. Richard Brauer describes equivalence of Cartan matrices via so
called “basic sets”. He also studied Cartan matrices by applying the theory of quadratic forms (see [5]). In
general the property “being indecomposable” is not shared among equivalent matrices. For example A =

(
1 1
1 2

)

is indecomposable, but
(
1 −1
0 1

)T
A
(
1 −1
0 1

)
=
(
1 0
0 1

)
is not. However, we were not able to find a Cartan matrix of

a block which provides an equivalent decomposable matrix. So we raise the question:

Question A. Do there exist a Cartan matrix C of a block B and a matrix S ∈ GL(l(B),Z) such that STCS
is decomposable?

The motivation for this question comes from the fact that k(B) can be bounded in terms of Cartan invariants:

Proposition 1 (see Theorem A in [20]). Let B be a block with Cartan matrix C = (cij) up to equivalence.
Then for every positive definite, integral quadratic form q :=

∑
1≤i≤j≤l(B) qijXiXj we have

k(B) ≤
∑

1≤i≤j≤l(B)

qijcij .

In particular

k(B) ≤
l(B)∑

i=1

cii −
l(B)−1∑

i=1

ci,i+1. (1)

The point is that the inequalities are significantly sharper for indecomposable matrices. We illustrate this fact
with an example. Let l(B) = p = 2 and assume that the elementary divisors of C are 2 and 16 (this happens
for the principal block of GL(2, 3)). Then C has the form

(
2 0
0 16

)
or
(
6 2
2 6

)

up to equivalence. Inequality (1) gives k(B) ≤ 18 in the first case and k(B) ≤ 10 in the second.

2 Upper bounds for k(B)

We give an affirmative answer to question A in two special cases.

Lemma 1. Let G be p-solvable and l := l(B) ≥ 2. Then there is no matrix S ∈ GL(l,Z) such that STCS =(
pd 0
0 C1

)
with C1 ∈ Z(l−1)×(l−1). In particular C is not equivalent to a diagonal matrix.

Proof. Assume the contrary, i. e. there is a matrix S = (sij) ∈ GL(l,Z) such that

C = (cij) = ST

(
pd 0
0 C1

)
S

with C1 ∈ Z(l−1)×(l−1). Let si := (s2i, s3i, . . . , sli) for i = 1, . . . , l. By Theorem (3H) in [11] we have

pds2i1 + siC1s
T

i = cii ≤ pd

2



for i = 1, . . . , l. Since S is invertible, there exists i such that s1i 6= 0. We may assume s11 6= 0. Then s11 = ±1
and s1 = (0, . . . , 0), because C1 is positive definite. Now all other columns of S are linearly independent of the
first column. This gives s1i = 0 for i = 2, . . . , l. Hence, S has the form S =

(
±1 0
0 S1

)
with S1 ∈ GL(l− 1,Z). But

then C also has the form
(
pd 0
0 C2

)
with C2 ∈ Z(l−1)×(l−1), a contradiction. The second claim follows at once,

since pd is always an elementary divisor of C.

Unfortunately the bound for the Cartan invariants used in the proof does not hold for arbitrary groups (see
[21]).

Lemma 2. If detC = pd, then for every S ∈ GL(l(B),Z) the matrix STCS is indecomposable.

Proof. Again assume the contrary, i. e. there is a matrix S ∈ GL(l(B),Z) such that

C = ST

(
C1 0
0 C2

)
S

with C1 ∈ Zm×m and C2 ∈ Z(l−m)×(l−m), where l := l(B) and 1 ≤ m < l. In particular l < k(B) =: k, because
l ≥ 2. Since detC = pd, the elementary divisors of C are 1 and pd, where pd occurs with multiplicity one.
W. l. o. g. we may assume detC1 = 1. Let Q = (qij) be the corresponding part of the decomposition matrix, i. e.
QTQ = C1. By the Binet-Cauchy formula we have

1 = detC1 =
∑

V⊆{1,...,k},
|V |=m

detQT

VQV ,

where QV is the m×m submatrix consisting of the entries {qij : i ∈ V, j ∈ {1, . . . ,m}}. Since detQT

VQV ≥ 0,
one summand is 1 while the others are all 0. Thus we may assume, that the first m rows q1, . . . , qm of Q are
linearly independent. Now consider a row qi for i ∈ {m+ 1, . . . , k}. Then qi is a rational linear combination of
q2, . . . , qm, because q2, . . . , qm, qi are linearly dependent. By the same argument, qi is also a linear combination
of q1, . . . , qj−1, qj+1, . . . , qm for j = 2, . . . ,m. This forces qi = (0, . . . , 0). Hence, all the rows qm+1, . . . , qk vanish.
Now consider a column d(u) of generalized decomposition numbers, where u is a nontrivial element of a defect
group of B. By the orthogonality relations the scalar product of d(u) and an arbitrary column of Q vanishes.
This means the first m entries of d(u) must be zero. Since this holds for all columns d(u) with u 6= 1, there
exists an irreducible character of B which vanishes on the p-singular elements of G. It is well known that this
is equivalent to d = 0. But this contradicts l ≥ 2.

As an application, we prove an upper bound for k(B) in the case detC = pd. In the proof we will use the
reduction theory of quadratic forms.

Theorem 1. If l(B) ≤ 4 and detC = pd, then

k(B) ≤ pd − 1

l(B)
+ l(B).

Moreover, this bound is sharp.

Proof. For l := l(B) = 1 the assertion is clear (see e. g. Corollary 5 in [27]). So let l ≥ 2. Let A = (aij) be
a reduced matrix in the sense of Minkowski which is equivalent to C (see e. g. [38]). In particular we have
1 ≤ a11 ≤ a22 ≤ . . . ≤ all and 2|aij | ≤ min{aii, ajj} for i 6= j. For convenience we write α := a11, β := a22 and
so on.

We are going to apply inequality (1). In order to do so, we will bound the trace of A from above and the sum
a12 + a23 + . . .+ al−1,l from below.

Let l(B) = 2. By Lemma 2 we have a12 6= 0 and a12 > 0 after a suitable change of signs (i e. replacing A by an
equivalent matrix). By [1] we have 4αβ − α2 ≤ 4pd, so that

α+ β ≤ 5

4
α+

pd

α
=: f(α). (2)
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Since 2|aij| ≤ min{aii, ajj}, we have 2 ≤ α, and α ≤ β yields α ≤ 2
√
pd/3. The convex function f(α)

takes its maximal value in the interval [2, 2
√
pd/3] on one of the two borders. An easy calculation shows

(pd+5)/2 = f(2) > f(2
√
pd/3) for pd ≥ 9. In case pd ≤ 6 only α = 2 is possible. In the remaining cases we have

α+β ≤ f(2) for all feasible pairs (α, β) (we call a pair (α, β) feasible if it satisfies inequality (2)). Inequality (1)
yields

k(B) ≤ α+ β − a12 ≤ f(2)− 1 =
pd − 1

l(B)
+ l(B).

Let l(B) = 3. The same discussion leads to a12 + a23 ≥ 2 after a suitable (simultaneous) permutation of rows
and columns (i. e. replacing A by PTAP with a permutation matrix P ). It is not always possible to achieve
α ≤ β ≤ γ additionally. But since the trace of A is symmetric in α, β and γ, we may assume 2 ≤ α ≤ β ≤ γ
nevertheless. The inequality in [1] reads

4αβγ − αβ2 − α2γ = 2αβγ + αβ(γ − β) + αγ(β − α) ≤ 4pd,

so that

α+ β + γ ≤ α+ β +
4pd + αβ2

4αβ − α2
=: f(α, β).

We describe a set which contains all feasible points. Since 2α3 ≤ 2αβγ + αβ(γ − β) + αγ(β − α) ≤ 4pd we get
2 ≤ α ≤ 3

√
2pd. Similarly 4β2 ≤ 4pd and α ≤ β ≤

√
pd. Thus all feasible points are contained in the convex

polygon
F :=

{
(α, β) : 2 ≤ α ≤ 3

√
2pd, α ≤ β ≤

√
pd
}
.

It can be shown (maybe with the help of a computer) that f is convex on F . Hence, the maximal value of f on
F will be attained on one of the 3 vertices:

V1 = (2, 2),

V2 = (2,
√
pd),

V3 = ( 3

√
2pd, 3

√
2pd).

One can check that (pd + 14)/3 = f(V1) ≥ f(V2) for pd ≥ 10 and f(V1) ≥ f(V3) for pd ≥ 12. If pd ≤ 10, then
V1 is the only feasible point. In the remaining case pd = 11 there is only one more feasible pair (α, β) = (2, 3).
Then γ = 3 and α+ β + γ ≤ f(V1). Now inequality (1) takes the form

k(B) ≤ α+ β + γ − a12 − a23 ≤ f(V1)− 2 =
pd − 1

l(B)
+ l(B).

Finally let l(B) = 4. By permuting rows and columns and changing signs, we can reach (using Lemma 2) at
least one of the two arrangements

(i) a12 + a23 + a34 ≥ 3,

(ii) a12 + a13 + a14 ≥ 3.

In case (i) we can use inequality (1) as before. In case (ii) we can use Proposition 1 with the quadratic form q
corresponding to the positive definite matrix

1

2




2 −1 −1 −1
−1 2 0 0
−1 0 2 0
−1 0 0 2


 .

Thus, for the rest of the proof we will assume that case (i) occurs. As before, we will also assume 2 ≤ α ≤ β ≤
γ ≤ δ and

4αβγδ − α2γδ − αβ2δ − αβγ2 +
1

4
α2(γ − β)2

= αβγδ + αγδ(β − α) + αβδ(γ − β) + αβγ(δ − γ) +
1

4
α2(γ − β)2 ≤ 4pd

(3)
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by [1]. We search for the maximum of the function

f(α, β, γ) := α+ β + γ +
4pd + αβγ2 − 1

4α
2(γ − β)2

4αβγ − α2γ − αβ2

on a suitable convex polyhedron. Since α4 ≤ 4pd we have 2 ≤ α ≤ 4

√
4pd. In a similar way, we obtain the set

F := {(α, β, γ) : 2 ≤ α ≤ 4

√
4pd, α ≤ β ≤ 3

√
2pd, β ≤ γ ≤

√
pd},

which contains all feasible points. It can be shown that f is in fact convex on F . The vertices of F are

V1 := (2, 2, 2),

V2 := (2, 2,
√
pd),

V3 := (2, 3

√
2pd, 3

√
2pd),

V4 := ( 4

√
4pd, 4

√
4pd, 4

√
4pd).

We fix the value m := (pd + 27)/4. A calculation shows f(V2) ≤ m for pd ≥ 22, f(V3) ≤ m for pd ≥ 20, and
f(V4) ≤ m for pd ≥ 23. If pd ≤ 12, then V1 is the only feasible point. If pd ≤ 17, there is only one other feasible
point (α, β, γ) = (2, 2, 3) beside V1. In this case f(2, 2, 3) ≤ m for pd ≥ 14. For pd = 13 we have

α+ β + γ + δ − a13 − a14 − a34 ≤ 7 =
13− 1

4
+ 4.

For pd ≤ 20 there is one additional point (α, β, γ) = (2, 3, 3), which satisfies f(2, 3, 3) ≤ m. In the remaining
cases there is another additional point (α, β, γ) = (3, 3, 3). For this we get f(3, 3, 3) ≤ m if pd ≥ 22. Since 21 is
no prime power, we can consider f(V1) = pd/4 + 7 now. If p > 2, then pd/4 is no integer. In this case

α+ β + γ + δ − a13 − a14 − a34 ≤ [f(V1)]− 3 =
pd − 1

4
+ 4,

where [f(V1)] is the largest integer below f(V1). Thus, let us assume δ = pd/4 + 1 (and p = 2). With the help
of a computer one can show that up to equivalence only the possibility

A =




2 1 0 −1
1 2 1 0
0 1 2 1
−1 0 1 δ


 (4)

has the right determinant (see also the remark following the proof). By considering the corresponding decom-
position matrix, one can easily deduce:

k(B) ≤ δ + 2 ≤ pd − 1

l(B)
+ l(B).

Now it remains to check, that f does not exceed m on other points of F (this is necessary, since f(V1) > m). For
that, we exclude V1 from F and form a smaller polyhedron. Since only integral values for α, β, γ are allowed,
we get three new vertices:

V5 := (2, 2, 3),

V6 := (2, 3, 3),

V7 := (3, 3, 3)

But these points were already considered. This finishes the first part of the proof. The second part follows easily,
since for blocks with cyclic defect groups equality holds.

Olsson showed the k(B)-conjecture in the case l(B) ≤ 2 in general (see Corollary 5 in [28]). For p = 2 he also
proved this in the case l(B) = 3 (see Corollary 7 in [28]). In the case l(B) = 5 there is no inequality like (3).
However, one can use the so called “fundamental inequality” of quadratic forms

αβγδǫ ≤ 8pd
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(see [1]). Of course, the complexity increases rapidly with l(B). For example, the matrix

A =




2 1 0 1 −1
1 2 1 1 1
0 1 2 1 −1
1 1 1 2 1
−1 1 −1 1 ǫ




with ǫ = pd/4 + 9 (p = 2) has to be considered. We will demonstrate that such matrices cannot occur. For
this let l := l(B) arbitrary, aii = 2, and ai,i+1 = 1 for i = 1, . . . , l − 1. In the following we will speak of
Cartan matrices and decomposition matrices always with respect to an arbitrary basic set. This means we can
multiply the generalized decomposition matrix from the left with an orthogonal matrix and from the right with
an invertible matrix.

The first two columns of the decomposition matrix Q can be arranged in the form



1 .
1 1
. 1
. .
...

...
. .




.

By the orthogonality relations, the first three columns cannot have the form



1 . ±1
1 1 .
. 1 1
. . .
...

...
...

. . .




or




1 . −1
1 1 1
. 1 .
. . .
...

...
...

. . .




.

That means they have the form 


1 . .
1 1 .
. 1 1
. . 1
. . .
...

...
...

. . .




or




1 . .
1 1 1
. 1 .
. . 1
. . .
...

...
...

. . .




.

However, both forms give rise to equivalent matrices A. Similarly, we may assume that the first l − 1 columns
of Q have the form 



1 . · · · .

1 1
. . .

...

. 1
. . . .

. .
. . . 1

. . . 1

. . . .

...
...

...
...

. . . .




.

(Now one can see that the 5 × 5 matrix above cannot occur.) If we add suitable multiples of the first l − 1
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columns to the last column, Q becomes



1 . · · · · · · .

1 1
. . .

...

. 1
. . .

. . .
...

. .
. . . 1 .

. . . 1 ∗

. . . . ∗

...
...

...
...

...
. . . . ∗




.

Thus, up to equivalence A has the form



2 1 . . . . .

1
. . .

. . .
. . .

...

.
. . .

. . . 1 .
...

. . . 1 2 a
. · · · . a ǫ




with a ≥ 1 (notice that this matrix does not have to be reduced). This yields

ǫ =
pd + a2(l − 1)

l
and k(B) ≤ l + ǫ− a2 =

pd − a2

l
+ l ≤ pd − 1

l
+ l.

It seems likely that this configuration allows the largest value for k(B) in general.

Fujii gives some sufficient conditions for detC = pd in [12]. We remark that detC can be determined locally
with the notion of lower defect groups.

3 Brauer’s k(B)-conjecture for defect groups which are central

extensions

The knowledge of the Cartan matrix implies that l(B) is already known. Since k(B)− l(B) is determined locally,
it might seems absurd to bound k(B) in terms of Cartan invariants. Instead, it would be more useful if one can
apply these bounds to blocks of subsections. In this sense the next lemma is an extension of Proposition 1.

Lemma 3. Let (u, b) be a major subsection associated with the block B. Let Cb = (cij) be the Cartan matrix of b
up to equivalence. Then for every positive definite, integral quadratic form q(x1, . . . , xl(b)) =

∑
1≤i≤j≤l(b) qijxixj

we have
k(B) ≤

∑

1≤i≤j≤l(b)

qijcij .

Proof. Let us consider the generalized decomposition numbers duij associated with the subsection (u, b). We

write di := (dui1, d
u
i2, . . . , d

u
i,l(b)) for i = 1, . . . , k(B). Let Q = (q̃ij)

l(b)
i,j=1 with

q̃ij :=

{
qij if i = j,

qij/2 if i 6= j
.

Then we have
∑

1≤i≤j≤l(b)

qijcij =
∑

1≤i≤j≤l(b)

k(B)∑

r=1

qijd
u
rid

u
rj =

k(B)∑

r=1

drQdr
T

,

7



and it suffices to show
k(B)∑

r=1

drQdr
T ≥ k(B).

For this, let pn be the order of u. Then duij is an integer of the pn-th cyclotomic field Q(ζ) for ζ := e2πi/p
n

. It
is known that 1, ζ, ζ2, . . . , ζf with f = pn−1(p − 1) − 1 form a basis for the ring of integers of Q(ζ). We fix a
row index i ∈ {1, . . . , k(B)} of the generalized decomposition matrix. Then there are integers a0j , . . . , a

f
j ∈ Z

such that duij := a0j + a1jζ + . . . + afj ζ
f for j = 1, . . . , l(b). We define d := di and am := (am1 , am2 , . . . , aml(b))

for m = 0, . . . , f . Since (u, b) is major, at least one of the numbers amj does not vanish. Let G be the Galois
group of Q(ζ) over Q. Then it is known that for every γ ∈ G there is an index i′ ∈ {1, . . . , k(B)} such that
γ(d) := (γ(dui1), . . . , γ(d

u
i,l(b))) = (dui′1, . . . , d

u
i′,l(b)). Thus, it suffices to show

∑

γ∈G

γ(d)Qγ(d)
T

=
∑

γ∈G

γ(dQd
T

) ≥ |G| = f + 1.

We have

∑

γ∈G

γ(dQd
T

) =
∑

γ∈G

γ

(
f∑

i=0

aiQaT

i +

f∑

j=1

f−j∑

m=0

amQaT

m+j(ζ
j + ζ

j
)

)

= (f + 1)

f∑

i=0

aiQaT

i + 2

f∑

j=1

f−j∑

m=0

amQaT

m+j

∑

γ∈G

γ(ζj).

The pm-th cyclotomic polynomial Φpm has the form

Φpm = Xpm−1(p−1) +Xpm−1(p−2) + . . .+Xpm−1

+ 1.

This gives
∑

γ∈G

γ(ζj) =

{
−pn−1 if pn−1 | j
0 else

for j ∈ {1, . . . , f}. It follows that

∑

γ∈G

γ(dQd
T

) = (f + 1)

f∑

i=0

aiQaT

i − 2pn−1

p−2∑

j=1

f−jpn−1∑

m=0

amQaT

m+pn−1j

= pn−1

(
(p− 1)

f∑

i=0

aiQaT

i − 2

p−2∑

j=1

f−jpn−1∑

m=0

amQaT

m+pn−1j

)
. (5)

For p = 2 the claim follows immediately, since then f + 1 = 2n−1. Thus, suppose p > 2. Then we have
{
0, 1, . . . , f − jpn−1

}
∪̇
{
(p− 1− j)pn−1, (p− 1− j)pn−1 + 1, . . . , f

}
= {0, 1, . . . , f}

for all j ∈ {1, . . . , p − 2}. This shows that every row am occurs exactly p − 2 times in the second sum of (5).
Hence,

∑

γ∈G

γ(dQd
T

) = pn−1

(
f∑

i=0

aiQaT

i +

p−2∑

j=1

f−jpn−1∑

m=0

(am − am+jpn−1)Q(am − am+jpn−1)T

)
.

Now assume that am does not vanish for some m ∈ {0, . . . , f}. Then we have amQaT

m ≥ 1, since Q is positive
definite. Again, am occurs exactly p − 2 times in the second sum. Let am − am′ (resp. am′ − am) be such an
occurrence. Then we have

am′QaT

m′ + (am − am′)Q(am − am′)T ≥ 1.

Now the claim follows easily.
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The rest of this paper consists of applications of the last lemma mainly in the case p = 2. Landrock has shown
that Brauer’s k(B)-conjecture holds for 2-blocks with defect 3 (see [22]). The next theorem generalizes this.

Theorem 2. Brauer’s k(B)-conjecture holds for defect groups which are central extensions of metacyclic 2-
groups by cyclic groups. In particular the k(B)-conjecture holds for abelian defect 2-groups of rank at most
3.

Proof. Let B be a block with defect group D as in the statement of the theorem. Choose 〈u〉 ≤ Z(D) such that
D/〈u〉 is metacyclic. For a B-subsection (u, b) the block b dominates a block b of CG(u)/〈u〉 with defect group
D/〈u〉. If C is the Cartan matrix of b, then |〈u〉|C is the Cartan matrix of b.

Hence, by Lemma 3 it suffices to show

l(B)∑

i=1

cii −
l(B)−1∑

i=1

ci,i+1 ≤ |D|

for every 2-block B with metacyclic defect group D and Cartan matrix C = (cij). If D is dihedral, then
detC = |D| and l(B) ≤ 3 (see [7]). Thus, in this case the claim follows from the proof of Theorem 1. If D is
a semidihedral or quaternion group, one can use the tables in [10] to show the claim (these cases can also be
done by the method of the proof of Theorem 1 and the fact that the elementary divisors of C are contained
in {1, 2, |D|}). Now assume D ∼= C2r × C2r =: C2

2r for some r ∈ N. Then the inertial index e(B) is 1 or 3. In
case e(B) = 1, we also have l(B) = 1, and the claim follows. Thus, we may assume e(B) = 3. Then by the
method of Usami and Puig (see [36, 37, 31]) there is a perfect isometry between B and the principal block of
D⋊C3. Usami and Puig did not provide an explicit proof for p = 2, but the author has shown as another part
of his PhD thesis that the perfect isometry indeed exists at least in this special case. Using this, we see that
detC = |D| and l(B) ∈ {1, 3}. Hence, the claim follows as before. By the result of [35], we are done.

We note that Brauer has proved the k(B)-conjecture for abelian defect groups of rank 2 and arbitrary primes
p (see (7D) in [6]). The smallest 2-group which does not satisfy the hypothesis of Theorem 2 is the elementary
abelian group of order 16. However, this group can be handled as well.

Theorem 3. Brauer’s k(B)-conjecture holds for defect groups which contain a central cyclic subgroup of index
at most 8.

Proof. Since every group of order 8 is metacyclic or elementary abelian, it suffices to consider a block B with
defect group D ∼= C3

2 and Cartan matrix C = (cij). As in Theorem 2 we show

l(B)∑

i=1

cii −
l(B)−1∑

i=1

ci,i+1 ≤ 8. (6)

If e(B) is 1, then also l(B) = 1, and the claim follows.

Now let e(B) = 3. (This case can be handled easily with the method of Usami and Puig. Due to the lack of an
explicit proof in the case p = 2 as said before, we do not use their method here.) It is easy to show that there
are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) associated with B. Moreover, we may assume l(b1) = 3
and l(b2) = l(b3) = 1. As usual, b1 dominates a block of CG(u1)/〈u1〉 with Klein four defect group. It follows
that the Cartan matrix of b1 is equivalent to



4 2 2
2 4 2
2 2 4


 .
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Using this, is it easy to see that there is a basic set such that the generalized decomposition numbers associated
with ui (i = 1, 2, 3) have form 



1 . . 1 1
1 . . 1 −1
1 1 . −1 1
1 1 . −1 −1
. 1 1 1 1
. 1 1 1 −1
. . 1 −1 1
. . 1 −1 −1




.

By the orthogonality relations of generalized decomposition numbers there exists a matrix S ∈ GL(3,Q) such
that the ordinary decomposition matrix Q satisfies

Q =




1 . .
−1 . .
. 1 .
. −1 .
. . 1
. . −1
−1 −1 −1
1 1 1




S

Moreover, it is easy to see that all entries of S are integral. It is well known that there exists a matrix Q̃ ∈ Z3×8

such that Q̃Q = 13. This shows S ∈ GL(3,Z). Hence C has the form S−TQTQS−1 up to equivalence. Thus, the
claim follows in this case.

Let e(B) = 7. Then there are two subsections (1, B) and (u, b) with k(B)− l(B) = l(b) = 1. Since 8 is the sum
of k(B) integer squares, we must have k(B) ∈ {5, 8}. By Corollary 1 in [12], we have detC = 8. Thus in the
case l(B) = 4, the claim follows from the proof of Theorem 1 (notice that this case contradicts Brauer’s height
zero conjecture). So we may assume l(B) = 7. Then the generalized decomposition numbers corresponding to
u can be arranged in the form (1, . . . , 1)T. Hence the ordinary decomposition matrix has the form




1 . . . . . .
−1 −1 . . . . .
. 1 1 . . . .
. . −1 −1 . . .
. . . 1 1 . .
. . . . −1 −1 .
. . . . . 1 1
. . . . . . −1




,

and the claim follows.

Let e(B) = 21. Then there are two subsections (1, B) and (u, b) with k(B) − l(B) = l(b) = 3. In particular
l(B) ≤ 5 (using Theorem 2). The theory of lower defect groups reveals that 2 occurs at least twice as elementary
divisor of C. This gives l(B) ≥ 3. The case l(B) = 3 contradicts Corollary 1.3 in [22]. Now let l(B) = 4 (again
this case contradicts the height zero conjecture). Then the generalized decomposition numbers corresponding
to u have the form 



1 . 1
1 . .
1 1 1
1 1 .
. 1 1
. 1 .
. . 1




.
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That means the ordinary decomposition matrix becomes



1 . . .
−1 −1 . .
. . −1 .
. 1 1 .
. . . −1
. −1 . 1

−1 . 1 1




,

and the Cartan matrix has the form

C =




3 1 −1 −1
1 3 1 −1
−1 1 3 1
−1 −1 1 3


 .

Unfortunately, this matrix does not satisfy inequality (6). However, we can use Lemma 3 with the quadratic
form q corresponding to the positive definite matrix

1

2




2 −1 1 .
−1 2 −1 .
1 −1 2 −1
. . −1 2


 .

Finally let l(B) = 5. Then the generalized decomposition numbers corresponding to u have the form



1 . .
1 . .
1 1 .
1 1 .
. 1 1
. 1 1
. . 1
. . 1




and the ordinary decomposition matrix becomes



1 . . . .
−1 . . . −1
. 1 . . 1
. −1 . . .
. . −1 . −1
. . 1 . .
. . . 1 1
. . . −1 .




.

Thus, the Cartan matrix is 


2 . . . 1
. 2 . . 1
. . 2 . 1
. . . 2 1
1 1 1 1 4




.

In this case we can use Lemma 3 with the quadratic form q corresponding to the positive definite matrix

1

2




2 1 . . −1
1 2 . . −1
. . 2 . −1
. . . 2 −1

−1 −1 −1 −1 2




.
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Recently, Kessar, Koshitani and Linckelmann have proven that the cases k(B) = 5 and k(B) = 7 in the proof
above cannot occur (see [16]). However, their proof uses the classification of finite simple groups.

We deduce a corollary.

Corollary 1. Brauer’s k(B)-conjecture holds for 2-blocks of defect at most 4.

We note that Robinson showed k(B) ≤ 25 for every 2-block of defect 4 (see [32]). For odd primes it is only
known that the k(B)-conjecture holds for blocks of defect at most 2. We improve this in the case p = 3.

Theorem 4. Brauer’s k(B)-conjecture holds for defect groups which contain a central cyclic subgroup of index
at most 9.

Proof. It suffices to consider blocks B with elementary abelian defect groups D of order 9. For this, we use the
work [17] by Kiyota. We have e(B) ∈ {1, 2, 4, 8, 16}. As usual, we may assume e(B) > 1. We denote the Cartan
matrix of B by C.

Case 1: e(B) = 2.
By [36] we may assume that G = D ⋊ C2 (observe that there are two essentially different actions of C2 on D).
It is easy to show that D is given by (

5 4
4 5

)
or
(
6 3
3 6

)
.

Case 2: e(B) = 4.
If the inertial group I(B) is cyclic, we obtain C up to equivalence as follows




3 2 2 2
2 3 2 2
2 2 3 2
2 2 2 3




from [31]. If I(B) is noncyclic, we have to deal with twisted group algebras of D ⋊ C2
2 as in [30]. Let γ be

the corresponding 2-cocycle. Then there are just two possibilities for γ. In particular there are at most two
equivalence classes for C. If γ is trivial, the C is equivalent to




4 1 2 2
1 4 2 2
2 2 4 2
2 2 1 4


 .

In the other case Kiyota gives the following example: Let Q8 act on D with kernel Z(Q8). Then we can take the
nonprincipal block of D ⋊Q8 for B. In this case l(B) = 1, so the claim follows.

Case 3: I(B) ∼= C8.
Then I(B) acts regularly on D\{1}. Thus, there are just two B-subsections (1, B) and (u, b) with l(b) = 1. Kiyota
did not obtain the block invariants in this case. Hence, we have to consider some possibilities. By Lemma (1D)
in [17] we have k(B) ∈ {3, 6, 9}. Since u is conjugate to u−1 in I(B), the generalized decomposition numbers
duij are integers. Suppose k(B) = 3. Then the column corresponding to (u, b) in the generalized decomposition
matrix has the form (±2,±2,±1)T. Hence, C is equivalent to

(
5 1
1 2

)
.

In the case k(B) = 6 the column corresponding to (u, b) is given by (±2,±1,±1,±1,±1,±1)T, and C is
equivalent to 



2 1 1 1 0
1 2 1 1 1
1 1 2 1 1
1 1 1 2 1
0 1 1 1 3




.
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Finally in the case k(B) = 9 we get the following Cartan matrix:



2 1 1 1 1 1 1 1
1 2 1 1 1 1 1 1
1 1 2 1 1 1 1 1
1 1 1 2 1 1 1 1
1 1 1 1 2 1 1 1
1 1 1 1 1 2 1 1
1 1 1 1 1 1 2 1
1 1 1 1 1 1 1 2




.

Case 4: I(B) ∼= D8.
By Proposition (2F) in [17] there are two possibilities: (k(B), l(B)) ∈ {(9, 5), (6, 2)}. In both cases there are
three subsections (1, B), (u1, b1) and (u2, b2) with l(b1) = l(b2) = 2. The Cartan matrix of b1 and b2 is given by(
6 3
3 6

)
. In the case k(B) = 9 and l(B) = 5 the numbers du1

ij and du2

ij are integers (see Subcase (a) on page 39 in
[17]). Thus, we may assume that the numbers du1

ij form the two columns

(
1 1 1 1 1 1 . . .
. . . 1 1 1 1 1 1

)T

.

Now we use a GAP program to enumerate the possibilities for the columns (du2

1j , d
u2

2j , . . . , d
u2

9j ) (j = 1, 2). It turns
out that C is equivalent to 



3 . 1 . 1
. 3 1 . 1
1 1 3 1 .
. . 1 3 1
1 1 . 1 3




in all cases. Here we can take the quadratic form q corresponding to the matrix

1

2




2 . −1 . −1
. 2 −1 1 −1
−1 −1 2 −1 1
. 1 −1 2 −1
−1 −1 1 −1 2




in Lemma 3.

In the case k(B) = 6 and l(B) = 2 the columns d1 := (du1

11 , d
u1

21 , . . . , d
u1

61 ) and d2 := (du1

12 , d
u1

22 , . . . , d
u1

62 ) do not
consist of integers only. We write d1 = a+bζ with a, b ∈ Z6 and ζ := e2πi/3. Then d2 = a+bζ. The orthogonality
relations show that

6 = (d1 | d1) = (a | a) + (b | b)− (a | b),
3 = (d1 | d2) = (a | a) + 2(a | b)ζ + (b | b)ζ = (a | a)− (b | b) + (2(a | b)− (b | b))ζ.

This shows (a | a) = 5, (b | b) = 2 and (a | b) = 1. Hence, we can arrange d1 in the following way:

(1, 1, 1, 1, 1 + ζ, 1 + ζ = −ζ)T.

It is easy to see that there are essentially two possibilities for the column (du2

11 , d
u2

21 , . . . , d
u2

61 )
T:

(1 + ζ,−ζ,−1,−1, 1, 1)T or (1 + ζ,−ζ,−1, 1,−1,−1)T.

The second possibility is impossible, since then C would have determinant 81. Thus, the first possibility occurs,
and C is (

5 1
1 2

)

up to equivalence.
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Case 5: I(B) ∼= Q8.
Then I(B) acts regularly on D \ {1}. Hence, the result follows as in the case I(B) ∼= C8.

Case 6: e(B) = 16.
Then there are two B-subsections (1, B) and (u, b) up to conjugation. This time we have l(b) = 2. By Propo-
sition (2G) in [17] and Watanabe we have k(B) = 9 and l(B) = 7. The Cartan matrix of b is given by

(
6 3
3 6

)
.

By way of contradiction, we assume that the columns d1 := (du11, d
u
21, . . . , d

u
91) and d2 := (du12, d

u
22, . . . , d

u
92) are

3-conjugate. Then an argument as in Case 4 shows the contradiction k(B) ≤ 6. Hence, the columns d1 and d2
have the form (

1 1 1 1 1 1 . . .
. . . 1 1 1 1 1 1

)T

.

Thus, we obtain C as follows: 


2 1 . . . . 1
1 2 . . . . 1
. . 2 1 . . 1
. . 1 2 . . 1
. . . . 2 1 1
. . . . 1 2 1
1 1 1 1 1 1 3




.

In this case we can take the quadratic form q corresponding to the matrix

1

2




2 −1 . . . . −1
−1 2 . . . . .
. . 2 −1 . . −1
. . −1 2 . 1 .
. . . . 2 −1 −1
. . . 1 −1 2 .
−1 . −1 . −1 . 2




in Lemma 3.

Corollary 2. Brauer’s k(B)-conjecture holds for 3-blocks of defect at most 3.

Hendren obtained some informtation about blocks with nonabelian defect groups of order p3 (see [15, 14]). In
particular he showed that Brauer’s k(B)-conjecture is satisfied in the exponent p2 case. However, he was not
able to prove this in the exponent p case, even for p = 3 (see section 6.1 in [15]).

We add two other results in the same spirit.

Proposition 2. Brauer’s k(B)-conjecture holds for defect groups which are central extensions of C4 ≀ C2 by a
cyclic group.

Proof. This follows from section IV in [18].

Theorem 5. Let Q be a minimal nonabelian 2-group, but not of type 〈x, y | x2r = y2
r

= [x, y]2 = [x, x, y] =
[y, x, y] = 1〉 with r ≥ 3, [x, y] := xyx−1y−1 and [x, x, y] := [x, [x, y]] (these groups have order 22r+1 ≥ 128).
Then Brauer’s k(B)-conjecture holds for defect groups which are central extensions of Q by a cyclic group.
Moreover, the k(B)-conjecture holds for all 2-blocks with minimal nonabelian defect groups.

Proof. This follows from another part of the author’s PhD thesis (see [34]).
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4 A counterexample

Külshammer and Wada have shown that there is not always a quadratic form q such that we have equality in
Proposition 1. However, it is not clear if there is always a quadratic form q such that

∑

1≤i≤j≤l(B)

qijcij ≤ pd, (7)

where d is the defect of the block B. (Of course, this would imply the k(B)-conjecture in general.)

We consider an example. Let D ∼= C4
2 , A ∈ Syl3(Aut(D)), G = D ⋊ A and B = B0(G). Then k(B) = 16,

l(B) = 9, and the decomposition matrix Q and the Cartan matrix C of B are

Q =




1 . . . . . . . .
. 1 . . . . . . .
. . 1 . . . . . .
. . . 1 . . . . .
. . . . 1 . . . .
. . . . . 1 . . .
. . . . . . 1 . .
. . . . . . . 1 .
. . . . . . . . 1
1 1 1 . . . . . .
1 . . . . 1 1 . .
. . . 1 . 1 . 1 .
. . . . 1 . 1 . 1
. 1 . . 1 . . 1 .
. . 1 1 . . . . 1
1 1 1 1 1 1 1 1 1




, C =




4 2 2 1 1 2 2 1 1
2 4 2 1 2 1 1 2 1
2 2 4 2 1 1 1 1 2
1 1 2 4 1 2 1 2 2
1 2 1 1 4 1 2 2 2
2 1 1 2 1 4 2 2 1
2 1 1 1 2 2 4 1 2
1 2 1 2 2 2 1 4 1
1 1 2 2 2 1 2 1 4




.

We will see that in this case there is no quadratic form q such that inequality (7) is satisfied. In order to do so,
we assume that q is given by the matrix 1

2A with A = (aij) ∈ Z9×9. Since A is symmetric, we only consider
the upper triangular half of A. Then the rows of Q are 1-roots of q, i. e. rArT = 2 for every row r of Q (see
Corollary B in [20]). If we take the first nine rows of Q, it follows that aii = 2 for i = 1, . . . , 9. Now assume
|a12| ≥ 2. Then

(1,− sgna12, 0, . . . , 0)A(1,− sgna12, 0, . . . , 0)
T ≤ 0,

and q is not positive definite. The same argument shows aij ∈ {−1, 0, 1} for i 6= j. In particular there are only
finitely many possibilities for q. Now the next row of Q shows

(a12, a13, a23) ∈ {(−1,−1, 0), (−1, 0,−1), (0,−1,−1)}.

The same holds for the following triples

(a16, a17, a67), (a46, a48, a68), (a57, a59, a79), (a25, a28, a58), (a34, a39, a49).

Finally the last row of Q shows that the remaining entries add up to 4:

a14 + a15 + a18 + a19 + a24 + a26 + a27 + a29 + a35 + a36 + a37 + a38 + a45 + a47 + a56 + a69 + a78 + a89 = 4.

These are too many possibilities to check by hand. So we try to find a positive definite form q with GAP. To
decrease the computational effort, we enumerate all positive definite 7×7 left upper submatrices of A first. There
are 140428 of them, but none can be completed to a positive definite 9× 9 matrix with the given constraints.

Nevertheless, we show that there is no corresponding decomposition matrix for C with more than 16 rows. For
this let B be a block with Cartan matrix equivalent to C. (By Corollary 1 the k(B)-conjecture already holds
for B. We give an independent argument for this.) We enumerate the possible decomposition matrices Q and
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count their rows. Since Q ∈ Zk(B)×9, every column of Q has the form (±1,±1,±1,±1, 0, . . . , 0)T for a suitable
arrangement. Let us assume that the first two columns of Q have the form

(
1 1 1 1 0 · · · 0
1 1 1 −1 0 · · · 0

)T

.

Then the entries of C show that there is no possibility for the fifth column of Q. Thus, we may assume that the
first two columns of Q are (

1 1 1 1 0 0 0 · · · 0
0 0 1 1 1 1 0 · · · 0

)T

.

Now we use a backtracking algorithm with GAP to show that Q has at most 16 rows.

Unfortunately, this method does not carry over to major subsections. For if we multiply C by a 2-power (namely
the order of a 2-element), the corresponding (generalized) decomposition matrices can be entirely different.

5 2-blocks with defect 5

In order to proof Brauer’s k(B)-conjecture for 2-blocks of defect 5, we discuss the central extensions of groups
of order 16 by cyclic groups. We start with the abelian (and nonmetacyclic) groups of order 16. In the next
proposition we have to exclude one case, as the last section has shown. Moreover, we use the work of Kessar,
Koshitani and Linckelmann (and thus the classification) in the proof. We have not checked if it is possible to
avoid the classification by considering more (virtually impossible) cases. For this reason, we will also freely use
the method of Usami and Puig.

Proposition 3. Let B be a block with a defect group which is a central extension of an elementary abelian
group of order 16 by a cyclic group. If 9 ∤ e(B), then Brauer’s k(B)-conjecture holds for B.

Proof. Let D be the defect group of B. We choose u ∈ Z(D) such that D/〈u〉 is elementary abelian of order
16. Let (u, b) be a B-subsection. Then it is easy to see that e(b) is a divisor of e(B). By hypothesis e(b) ∈
{1, 3, 5, 7, 15, 21}. As in the proof of Theorem 3, we replace b by B for simplicity. In order to proof the Proposition,
we determine the Cartan matrix C of B up to equivalence. If this is done, it will be immediately clear that a
suitable inequality as in Lemma 3 is satisfied.

The case e(B) = 1 is clear. We consider the remaining cases separately.

Case 1: e(B) = 3.
In this case we may use the method of Usami and Puig (see [36, 37, 31]). Thus, we can replace G by D⋊C3 via
a perfect isometry (observe that there are two essentially different actions of C3 on D). Then C has the form




8 4 4
4 8 4
4 4 8



 or




6 5 5
5 6 5
5 5 6





up to equivalence.

Case 2: e(B) = 5.
Then there are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3) with l(b1) = l(b2) = l(b3) = 1. According
to the fact that |D| = 16 is a sum of k(B) squares, we have six possibilities:

(i) k(B) = k0(B) = 16 and l(B) = 13,

(ii) k(B) = k0(B) = 8 and l(B) = 5,

(iii) k(B) = 13, k0(B) = 12, k1(B) = 1 and l(B) = 10,

(iv) k(B) = 10, k0(B) = 8, k1(B) = 2 and l(B) = 7,

(v) k(B) = 7, k0(B) = 4, k1(B) = 3 and l(B) = 4,

(vi) k(B) = 5, k0(B) = 4, k1(B) = 1 and l(B) = 2.
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(Brauer’s height zero conjecture would contradict the last four possibilities.) In case (i) we have

C =




4 3 3 3 1 1 1 1 1 1 −1 −1 −1
3 4 3 3 1 1 1 1 1 1 −1 −1 −1
3 3 4 3 1 1 1 1 1 1 −1 −1 −1
3 3 3 4 1 1 1 1 1 1 −1 −1 −1
1 1 1 1 2 1 1 . . . . . .
1 1 1 1 1 2 1 . . . . . .
1 1 1 1 1 1 2 . . . . . .
1 1 1 1 . . . 2 1 1 . . .
1 1 1 1 . . . 1 2 1 . . .
1 1 1 1 . . . 1 1 2 . . .
−1 −1 −1 −1 . . . . . . 2 1 1
−1 −1 −1 −1 . . . . . . 1 2 1
−1 −1 −1 −1 . . . . . . 1 1 2




up to equivalence. In particular detC = 256. However, this contradicts Corollary 1 in [12]. Now we assume that
case (ii) occurs. Then there are several ways to arrange the generalized decomposition numbers corresponding
to bi for i = 1, 2, 3: 



1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 3
1 3 −1
3 1 1




,




1 −1 1
1 −1 1
1 −1 −1
1 −1 −1
1 −1 −1
1 −1 3
1 3 1
3 1 −1




,




1 1 1
1 1 1
1 1 1
1 −1 −1
1 −1 −1
1 −1 3
1 3 −1
3 −1 −1




.

In the last two cases the determinant of C would be 64. Thus, only the first case can occur. Then we have

C =




4 3 3 3 3
3 4 3 3 3
3 3 4 3 3
3 3 3 4 3
3 3 3 3 4




up to equivalence. Hence, we can consider the case (iii). Then the generalized decomposition numbers corre-
sponding to bi for i = 1, 2, 3 can be arranged in the form




1 1 1 1 1 1 1 1 1 1 1 1 2
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 2
−1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1 2




T

.

However, in this case C would have determinat 256. In the same manner we see that also the case (iv) is not
possible. Thus, assume case (v). Then the generalized decomposition numbers corresponding to bi for i = 1, 2, 3
have the form 


1 1 1 1 2 2 2
−1 −1 −1 −1 2 2 −2
1 1 1 1 2 −2 −2




T

.

This gives

C =




5 4 4 5
4 5 4 5
4 4 5 5
5 5 5 7


 ,

and the claim follows. Finally let case (vi) occur. Then the generalized decomposition numbers corresponding
to bi for i = 1, 2, 3 have the form 


1 1 1 3 2
1 1 −3 −1 2
1 −3 1 −1 2




T

.
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It follows that

C =

(
4 6
6 13

)
.

Case 3: e(B) = 7.
There are again four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3). But in this case l(b1) = l(b2) = 1 and
l(b3) = 7 by the Kessar-Koshitani-Linckelmann paper. Moreover, 2 appears six times as elementary divisor of
the Cartan matrix of b3. Using the theory of lower defect groups it follows that 2 occurs at least six times as
elementary divisor of C. By Corollary 1 we have k(B) ≤ 16. This gives k(B) = k0(B) = 16, l(B) = 7. The
generalized decomposition matrix (without the ordinary part) can be arranged in the form




1 1 1 1 . . . . . . . . . . . .
. . 1 1 1 1 . . . . . . . . . .
. . . . 1 1 1 1 . . . . . . . .
. . . . . . 1 1 1 1 . . . . . .
. . . . . . . . 1 1 1 1 . . . .
. . . . . . . . . . 1 1 1 1 . .
. . . . . . . . . . . . 1 1 1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1




T

.

Hence, C has the form 


4 2 2 2 2 2 2
2 4 2 2 2 2 2
2 2 4 2 2 2 2
2 2 2 4 2 2 2
2 2 2 2 4 2 2
2 2 2 2 2 4 2
2 2 2 2 2 2 4




up to equivalence (notice that this is also the Cartan matrix of b3).

Case 4: e(B) = 15.
There are just two subsections (1, B) and (u, b) with l(b) = 1. It is easy to prove the claim using a similar case
decision as in Case 2. We skip the details.

Case 5: e(B) = 21.
There are four subsections (1, B), (u1, b1), (u2, b2) and (u3, b3). We have l(b1) = l(b2) = 3 and l(b3) = 5 by the
Kessar-Koshitani-Linckelmann paper. With the notations of [19] B is a centrally controlled block. In particular
l(B) ≥ l(b3) = 5 (see Theorem 1.1 in [19]). Since the k(B)-conjecture holds for B, we have k(B) = 16 and
l(B) = 5. The Cartan matrix of b3 is given in the proof of Theorem 3. Using this it is easy to deduce that the
generalized decomposition numbers corresponding to (u3, b3) can be arranged in the form




1 1 1 1 . . . . . . . . . . . .
. . . . 1 1 1 1 . . . . . . . .
. . . . . . . . 1 1 1 1 . . . .
. . . . . . . . . . . . 1 1 1 1
. . 1 1 . . 1 1 . . 1 1 . . 1 1




T

.

It is also easy to see that the columns of generalized decomposition numbers corresponding to b1 and b2 consist
of eight entries ±1 and eight entries 0. The theory of lower defect groups shows that 2 occurs as elementary
divisor of C. Now we use GAP to enumerate all possible arrangements of these columns. It turns out that C is
equivalent to the Cartan matrix of b3.

Proposition 4. Brauer’s k(B)-conjecture holds for defect groups which are central extensions of C4 ×C2
2 by a

cyclic group.
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Proof. Let B be a block with defect group D ∼= C4×C2
2 . We may assume e(B) = 3. Then we can use the method

of Usami and Puig (see [36, 37, 31]). This means it suffices to consider the case G = D ⋊ C3 and B = B0(G).
An easy calculation shows that the Cartan matrix of B is equivalent to



8 4 4
4 8 4
4 4 8


 .

Hence, the result follows from inequality (1) as before.

Now we turn to the nonabelian (and nonmetacyclic) groups of order 16.

Proposition 5. Let B be a nonnilpotent block with defect group D8 × C2. Then k(B) = 10, k0(B) = 8 and
k1(B) = 2. The ordinary irreducible characters are 2-rational. Moreover, l(B) ∈ {2, 3} and the Cartan matrix
of B is equivalent to

(
6 2
2 6

)
or



6 2 2
2 4 0
2 0 4


 .

In particular the k(B)-conjecture holds for defect groups which are central extensions of D8 × C2 by a cyclic
group.

Proof. First we remark that the proof and the result is very similar to the case where the defect group is D8

(see [7]). Let D := 〈x, y, z | x4 = y2 = z2 = [x, z] = [y, z] = 1, yxy = x−1〉 ∼= D8 × C2 and let (D, bD) a Sylow
subpair. It is easy to see that Aut(D) is a 2-group. Thus, e(B) = 1. We use the theory developed in [29]. One
can show, that all selfcentralizing proper subgroups of D are maximal and there are precisely three of them:

M1 := 〈x2, y, z〉 ∼= C3
2 ,

M2 := 〈x2, xy, z〉 ∼= C3
2 ,

M3 := 〈x, z〉 ∼= C4 × C2.

Now Lemma 1.7 in [25] yields A0(D, bD) = {M1,M2,M3, D}. Assume that M1 and M2 are conjugate in G.
Then also the B-subpairs (M1, bM1

) and (M2, bM2
) are conjugate. By Alperin’s fusion theorem they are already

conjugate in NG(D, bD). Since e(B) = 1, this is not possible.

Now we determine a system of representatives for the conjugacy classes of B-subsections using (6C) in [8]. As
usual, one gets four major subsections (1, B), (x2, bx2), (z, bz), (x2z, bx2z). Then bx2 dominates a block with
defect group D/〈x2〉 ∼= C3

2 . Since e(B) = 1, we get l(bx2) = 1. On the other hand, bz and bx2z dominate blocks
with defect group D8.

Since Aut(M3) is a 2-group, we have NG(M3, bM3
) = DCG(M3). This gives two subsections (x, bx) and (xz, bxy).

Again we have l(bx) = l(bxz) = 1.

If NG(M1, bM1
) = DCG(M1) and NG(M2, bM2

) = DCG(M2), then B would be nilpotent. Thus, we may assume
NG(M1, bM1

)/CG(M1) ∼= S3. Then the elements {y, x2y, yz, x2yz} are conjugate to elements of Z(D) under
NG(M1, bM1

). Hence, there are no subsections corresponding to the subpair (M1, bM1
) (cf. Lemma 2.10 in [26]).

We distinguish two cases.

Case 1: NG(M2, bM2
) = DCG(M2).

Then the action of NG(M2, bM2
) gives the subsections (xy, bxy) and (xyz, bxyz). Moreover, l(bxy) = l(bxyz) = 1

holds. Since NG(M1, bM1
) fixes exactly one element of {z, x2z}, we get l(bz)+ l(bx2z) = 3 (see Theorem 2 in [7])

Collecting all the subsections, we deduce k(B) = l(B) + 8. We may assume that l(bz) = 2 (otherwise replace bz
with bx2z). Then the Cartan matrix of bz is equivalent to

(
6 2
2 6

)
(see page 294/5 in [10]). This gives k(B) ≤ 10.

Since 16 is not the sum of 9 positive squares, we must have k(B) = 10. Then k0(B) = 8, k1(B) = 2 and l(B) = 2.
In order to determine the Cartan matrix, we investigate the generalized decomposition numbers duχϕ first. For
u ∈ D with l(bu) = 1 we write IBr(bu) = {ϕu}. Then the numbers {dx2

χϕ
x2

: χ ∈ Irr(B)} can be arranged in the
form

(1, 1, 1, 1, 1, 1, 1, 1, 2, 2)T,
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where the last two characters have height 1. It is easy to see that the subsections (x, bx) and (x−1, bx) are
conjugate by y. This shows that the numbers dxχϕx

are integral. The same holds for dxzχϕxz
. Hence, all irreducible

characters are 2-rational. For every character χ of height 0 we have dxχϕx
6= 0 6= dxzχϕxz

. Hence, we get three
columns of the generalized decomposition matrix:



1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .




T

.

Adding the columns {dxyχϕxy
: χ ∈ Irr(B)} and {dxyzχϕxyz

: χ ∈ Irr(B)} gives:




1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .
1 −1 1 −1 1 −1 1 −1 . .
1 −1 1 −1 −1 1 −1 1 . .




T

(To achieve this form, one may has to interchange the third row with fifth and the fourth with the sixth as well
as the second column with the third.) Since (x2z, bx2z) is a major subsection, the column {dx2z

χϕ
x2z

: χ ∈ Irr(B)}
consists of eight entries ±1 and two entries ±2. However, there are three essentially different ways to add this
column to the previous ones:




1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .
1 −1 1 −1 1 −1 1 −1 . .
1 −1 1 −1 −1 1 −1 1 . .
1 1 1 1 1 1 1 1 −2 −2




T

or 


1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .
1 −1 1 −1 1 −1 1 −1 . .
1 −1 1 −1 −1 1 −1 1 . .
1 −1 −1 1 1 −1 −1 1 2 −2




T

or 


1 1 1 1 1 1 1 1 2 2
1 1 1 1 −1 −1 −1 −1 . .
1 1 −1 −1 1 1 −1 −1 . .
1 −1 1 −1 1 −1 1 −1 . .
1 −1 1 −1 −1 1 −1 1 . .
1 −1 −1 1 −1 1 1 −1 2 −2




T

We use a GAP to enumerate the remaining columns corresponding to the subsection (z, bz). In all cases the
Cartan matrix of B is equivalent to (

6 2
2 6

)
.

Case 2: NG(M2, bM2
)/CG(M2) ∼= S3.

Then one can see by the same argument as for (M1, bM1
) that there are no subsections corresponding to the

subpair (M2, bM2
). Since NG(M1, bM1

) and NG(M2, bM2
) fix exactly one element of {z, x2z} (not necessarily the

same), we have l(bz)+ l(bx2z) = 4 (the cases l(bz) = l(bx2z) = 2, l(bz) = 3, l(bx2z) = 1 and l(bz) = 1, l(bx2z) = 3
are possible). We deduce k(B) = l(B) + 7. If l(bz) = 2, then we get k(B) ≤ 10 as in Case 1. Assume l(bz) = 3.
Then the Cartan matrix of bz is equivalent to

2



2 1 0
1 3 1
0 1 2


 .
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Thus, also in this case we have k(B) ≤ 10. A consideration of the lower defect groups shows that 2 occurs as
elementary divisor of the Cartan matrix C of B. In particular l(B) ≥ 2 and k(B) ≥ 9. Since 16 is not the sum
of 9 positive squares, it follows that k(B) = 10, k0(B) = 8, k1(B) = 2 and l(B) = 3. An investigation of the
generalized decomposition numbers similar as in the first case reveals that C is equivalent to




4 2 0
2 6 2
0 2 4



 .

This proves the proposition.

It is easy to see that both cases (l(B) ∈ {2, 3}) in Proposition 5 occur for the principal blocks of S4 × C2 and
GL(3, 2)× C2 respectively.

Proposition 6. Let B be a nonnilpotent block with defect group Q8×C2. Then k(B) = 14, k0(B) = 8, k1(B) = 6
and l(B) = 3. The ordinary irreducible characters are 2-rational. The Cartan matrix of B is equivalent to



8 4 4
4 8 4
4 4 8


 .

In particular the k(B)-conjecture holds for defect groups which are central extensions of Q8 × C2 by a cyclic
group.

Proof. Let D := 〈x, y, z | x2 = y2, xyx−1 = y−1, z2 = [x, z] = [y, z] = 1〉 ∼= Q8 × C2 and let (D, bD) a Sylow
subpair. Since |Z(D) : Φ(D)| = 2, we have e(B) ∈ {1, 3}. As in the proof of Proposition 5 there are precisely
three selfcentralizing proper subgroups of D:

M1 := 〈x, z〉 ∼= C4 × C2,

M2 := 〈y, z〉 ∼= C4 × C2,

M3 := 〈xy, z〉 ∼= C4 × C2.

It follows from Lemma 1.7 in [25] that A0(D, bD) = {M1,M2,M3, D}. Since Aut(Mi) is a 2-group for i = 1, 2, 3,
B would be nilpotent if e(B) = 1. Thus, we may assume that e(B) = 3. Then M1, M2 and M3 are conjugate in
G. We describe a system of representatives for the conjugacy classes of B-subsections. As usual, there are four
major subsections (1, B), (x2, bx2), (z, bz) and (x2z, bx2z). Moreover, the subpair (M, bM ) gives the subsections
(x, bx) and (xz, bxz). The blocks bz and bx2z dominate blocks with defect group D/〈z〉 ∼= D/〈x2z〉 ∼= Q8. Since
NG(D, bD) centralizes Z(D), these blocks with defect group Q8 have inertial index 3. Now Theorem 3.17 in [25]
gives l(bz) = l(bx2z) = 3. The block bx2 covers a block with defect group D/〈x2〉 ∼= C3

2 and inertial index 3.
Thus, we also have l(bx2) = 3. Finally the blocks bx and bxz have defect group M1. Hence, they are nilpotent,
and we have l(bx) = l(bxz) = 1. This yields k(B) = 11 + l(B). Since B is a centrally controlled block, we get
l(B) ≥ l(bz) = 3 and k(B) ≥ 14. The Cartan matrix of bx2 , bx2z and bz is equivalent to




8 4 4
4 8 4
4 4 8





(see page 305 in [10]). Let Q ∈ Zk(B)×3 be the part of the generalized decomposition matrix corresponding to
bz. Then the columns of Q have one of the following forms: (±2,±2, 0, . . . , 0), (±2,±1,±1,±1,±1, 0, . . . , 0) or
(±1, . . . ,±1, 0, . . . , 0). Since k(B) ≥ 14, at least one column has the last form. A similar argument shows that
no column has the first form. It follows that at least two columns have the form (±1, . . . ,±1, 0, . . . , 0). Hence,
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there are four possibilities for Q:




1 . .
1 . .
1 . .
1 . .
1 1 2
1 1 1
1 1 1
1 1 .
. 1 .
. 1 .
. 1 .
. 1 .
. . 1
. . 1







1 . .
1 . .
1 . .
1 . .
1 1 1
1 1 1
1 1 1
1 1 1
. 1 1
. 1 −1
. 1 .
. 1 .
. . 1
. . 1







1 . .
1 . .
1 . 1
1 . 1
1 1 1
1 1 1
1 1 .
1 1 .
. 1 1
. 1 1
. 1 .
. 1 .
. . 1
. . 1







1 . .
1 . .
1 . .
1 . .
1 1 1
1 1 1
1 1 1
1 1 1
. 1 .
. 1 .
. 1 .
. 1 .
. . 1
. . 1
. . 1
. . 1




(a) (b) (c) (d)

In particular k(B) ∈ {14, 16} and l(B) ∈ {3, 5}.

By way of contradiction, we assume k(B) = 16. Then Q is given as in case (d). Let Mz = (m
(z,bz)
χψ ) be the matrix

of contributions corresponding to (z, bz). We denote the three irreducible Brauer characters of bz by ϕ1, ϕ2 and
ϕ3. Then for χ ∈ Irr(B) we have

16m(z,bz)
χχ = 3

(
(dzχϕ1

)2 + (dzχϕ2
)2 + (dzχϕ3

)2
)
− 2dzχϕ1

dzχϕ2
− 2dzχϕ1

dzχϕ3
− 2dzχϕ2

dzχϕ3

≡ dzχϕ1
+ dzχϕ2

+ dzχϕ3
(mod 2).

In particular the numbers 16m
(z,bz)
χχ are odd for all χ ∈ Irr(B). Now (5G) in [6] implies k(B) = k0(B). By

Proposition 1 in [9] we get dxχϕx
6= 0 for all χ ∈ Irr(B). However,

∑
χ∈Irr(B) |dxχϕx

|2 = |M1| = 8.

This contradiction yields k(B) = 14 and l(B) = 3. The last argument gives also k0(B) ≤ 8. Now a similar
analysis of the contributions reveals that Q has the form (c) (see above) and k0(B) = 8. Again (5G) in [6]
implies k1(B) = 6 (this follows also from Corollary 1.4 in [22]). Since the subsections (x, bx) and (x−1, bx) are
conjugate in G, the generalized decomposition numbers dxχϕx

and dxzχϕxz
are integral. Thus, they must consist

of eight entries ±1 (for the characters of height 0) and six entries 0. In particular all characters are 2-rational.
Now we enumerate all possible decomposition matrices with GAP. In all cases the Cartan matrix of B has the
stated form.

The principal block of SL(2, 3)× C2 gives an example for the last proposition.

Proposition 7. Let B be a nonnilpotent block with defect group D8 ∗ C4 (central product). Then k(B) = 14,
k0(B) = 8, k1(B) = 6 and l(B) = 3. Moreover, the irreducible characters of height 0 are 2-rational and the
characters of height 1 consist of three pairs of 2-conjugate characters. The Cartan matrix of B is equivalent to



8 4 4
4 8 4
4 4 8


 .

In particular the k(B)-conjecture holds for defect groups which are central extensions of D8 ∗ C4 by a cyclic
group.

Proof. The proof (and the result) is very similar to Proposition 6. Let D := 〈x, y, z | x4 = y2 = [x, z] = [y, z] =
1, yxy = x−1, x2 = z2〉 ∼= D8 ∗ C4. We have e(B) ∈ {1, 3} and A0(D, bD) = {M1,M2,M3, D} with

M1 := 〈x, z〉 ∼= C4 × C2,

M2 := 〈y, z〉 ∼= C4 × C2,

M3 := 〈xy, z〉 ∼= C4 × C2.
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Hence, we may assume e(B) = 3. Then M1, M2 and M3 are conjugate in G. There are four major subsections
(1, B), (z, bz), (z−1, bz−1) and (x2, bx2). The subpair (M1, bM1

) gives two nonmajor subsections (x, bx) and
(xz, bxz) up to conjugation. As usual, we have l(bx) = l(bxz) = 1. The blocks bz and bz−1 dominate blocks with
defect groups D/〈z〉 ∼= C2

2 and inertial index 3. Hence, we have l(bz) = l(bz−1) = 3. The block bx2 dominates a
block with defect group C3

2 and inertial index 3. Thus, again we have l(bx2) = 3. Collecting these numbers gives
k(B) = 11 + l(B). The Cartan matrix of the blocks bz, bz−1 and bx2 is




8 4 4
4 8 4
4 4 8





up to equivalence. Now an analysis of the generalized decomposition numbers dx
2

χϕ as in the proof of Proposition 6
reveals k(B) = 14, k0(B) = 8, k1(B) = 6 and l(B) = 3. Next we study the other generalized decomposition
numbers. Again as in the proof of Proposition 6 the numbers dxχϕ and dxzχϕ are integral. Thus, they consist of
eight entries ±1 and six entries 0. However, in contrast to Proposition 6 the numbers dzχϕ and dz

−1

χϕ are not
always real (see (6B) in [6]). Let Q be the part of the generalized decomposition matrix corresponding to (z, bz).
By Brauer’s Permutation Lemma, eight of the ordinary irreducible characters are 2-rational. The remaining ones
split in three pairs of 2-conjugate characters (see Theorem 11 in [4]). This shows that Q has exactly eight real
valued rows. Let qj be the j-th column of Q for j = 1, 2, 3. Then we can write qj = aj + bji with i :=

√
−1 and

aj , bj ∈ Z14. The orthogonality relations show that aj has four entries ±1 and ten entries 0 (for j = 1, 2, 3). The
same holds for bj. Moreover, we have 4 = (q1 | q2) = (a1 | a2) + (b1 | b2) and 0 = (q1 | q2) = (a1 | a2)− (b1 | b2),
where (. | .) denotes the standard scalar product of C14. This shows (a1 | a2) = (b1 | b2) = 2 and similarly
(a1 | a3) = (a2 | a3) = (b1 | b3) = (b2 | b3) = 2. Using this, we see that Q has the form

Q =




1 1 1 1 . . . . i −i i −i . .
1 1 . . 1 1 . . i −i . . i −i
1 1 . . . . 1 1 . . i −i i −i




T

.

The theory of contributions reveals that the eight characters of height 0 are 2-rational. As in the proof of the
previous propositions we enumerate the possible generalized decomposition matrices with GAP, and obtain the
Cartan matrix of B.

We collect the previous propositions in the next theorem.

Theorem 6. Let B be a block with a defect group which is a central extension of a group Q of order 16 by a
cyclic group. If Q 6∼= C4

2 or 9 ∤ e(B), then Brauer’s k(B)-conjecture holds for B.

Proof. For convenience of the reader, we list the 14 groups of order 16:

• the metacyclic groups: C16, C8 × C2, C2
4 , C4 ⋊ C4, D16, Q16, SD16 (semidihedral), M16 (modular)

• the minimal nonabelian group: 〈x, y | x4 = y2 = [x, y]2 = [x, x, y] = [y, x, y] = 1〉
• the nonmetacyclic abelian groups: C4 × C2

2 , C4
2

• D8 × C2

• Q8 × C2

• D8 ∗ C4

Corollary 3. Let B be a block with defect group D of order 32. If D is not extraspecial of type D8 ∗D8 (central
product) or if 9 ∤ e(B), then Brauer’s k(B)-conjecture holds for B.

Proof. By Theorem 6 we may assume that 9 | e(B). In particular 9 | Aut(D). Now one can show (for example
with GAP) that there are just three possibilities for D, namely C5

2 , Q8×C2
2 and the extraspecial group D8 ∗D8.

In the case D ∼= Q8 × C2
2 we can choose a major subsection (u, b) such that D/〈u〉 ∼= Q8 × C2.
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Hence, by hypothesis we may assume that D is elementary abelian. By Corollary 1.2(ii) in [33] we may also
assume that the inertial group I(B) of B is nonabelian. In particular 9 is a proper divisor of e(B). In general
e(B) is a divisor of 32 · 5 · 7 · 31 (this is the odd part of |Aut(D)| = |GL(3, 2)|).
Assume that e(B) is also divisible by 31. Since the normalizer of a Sylow 31-subgroup of Aut(D) ∼= GL(5, 2)
has order 5 · 31, I(B) does not contain a normal Sylow 31-subgroup. Thus, by Sylow’s theorem we also have
7 | e(B). However, all groups of order 32 · 7 · 31 and 32 · 5 · 7 · 31 have a normal Sylow 31-subgroup. This shows
31 ∤ e(B).

Now suppose that 5 · 7 | e(B). Since the normalizer of a Sylow 7-subgroup of GL(5, 2) has order 2 · 32 · 7,
I(B) does not contain a normal Sylow 7-subgroup. However, all groups of order 32 · 5 · 7 have a normal Sylow
7-subgroup. Hence, 5 · 7 ∤ e(B).

Next we consider the case e(B) = 32 · 7. Then the action of I(B) on D induces an orbit of length 21. If we
choose the major subsection (u, b) such that u lies in this orbit, then the inertial index of b is 3. Thus, the claim
follows in this case.

Finally in the case e(B) = 32 · 5, the inertial group I(B) would be abelian. Hence, the proof is complete.

6 2-blocks with minimal nonmetacyclic defect groups

We remark that the groups C3
2 , Q8 × C2 and D8 ∗ C4 are minimal nonmetacyclic. Apart from these there is

only one more minimal nonmetacyclic 2-group (see Theorem 66.1 in [3]). Thus, it seems natural to obtain the
block invariants also for this defect group. The next proposition shows that these blocks are nilpotent. We use
the notion of fusion systems (see [23] for definitions and results).

Proposition 8. Every fusion system on P := 〈x, y, z | x4 = y4 = [x, y] = 1, z2 = x2, zxz−1 = xy2, zyz−1 =
x2y〉 is nilpotent.

Proof. Let F be a fusion system on P , and let Q < P be an F -essential subgroup. Since Q is metacyclic
and Aut(Q) is not a 2-group, we have Q ∼= Q8 or Q ∼= C2

2r for some r ∈ N (see Lemma 1 in [24]). By
Proposition 10.17 and Proposition 1.8 in [2] it follows that Q ∼= C2

4 . Now Theorem 66.1 in [3] implies Q = 〈x, y〉.
As usual, AutF(Q) ∼= S3 acts nontrivially on Ω1(Q). However, D acts trivially on Ω1(Q) = Z(D). This is not
possible, since D/Q is a Sylow 2-subgroup of AutF (Q). Thus, we have shown that D does not contain F -essential
subgroups. By Alperin’s fusion theorem, D controls F . Finally one can show (maybe with GAP) that Aut(D)
is a 2-group.

The group in the last proposition has order 32.

Corollary 4. Let B be a 2-block with minimal nonmetacyclic defect group D. Then one of the following holds:

(i) B is nilpotent. Then ki(B) is the number of ordinary characters of D of degree 2i. In particular k(B) is
the number of conjugacy classes of D and k0(B) = |D : D′|. Moreover, l(B) = 1.

(ii) D ∼= C3
2 . Then k(B) = k0(B) = 8 and l(B) ∈ {3, 5, 7} (all cases occur).

(iii) D ∼= Q8 × C2 or D ∼= D8 ∗ C4. Then k(B) = 14, k0(B) = 8, k1(B) = 6 and l(B) = 3.
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