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On union ultrafilters

Peter Krautzberger∗

February 16, 2011

We present some new results on union ultrafilters. We charac-
terize stability for union ultrafilters and, as the main result, we
construct a new kind of unordered union ultrafilter.

Introduction

The equivalent notions of union and strongly summable ultrafilters have
been important examples of idempotent ultrafilters ever since they were
first conceived in [Hin72], [Bla87]. Their unique properties have been a
useful tool in set theory, algebra in the Stone-Čech compactification and set
theoretic topology. For example, strongly summable ultrafilters were, in
a manner of speaking, the first idempotent ultrafilters known, cf. [Hin72]
and [HS98, notes to Chapter 5]; they were the first strongly right maximal
idempotents known and, even stronger, they are the only known idempo-
tent with a maximal group isomorphic to Z; their existence is independent
of ZFC, since it implies the existence of (rapid) P-points, cf. [BH87]; since
a strongly summable is strongly right maximal, its orbit is a van Douwen
space, cf. [HS02].

This article will focus on union ultrafilters, studying the various kinds
of union ultrafilters and as the main result constructing of a new kind of
union ultrafilter answering a question of Andreas Blass.

The presentation of the proofs is inspired by [Ler83] and [Lam95] split-
ting the proofs into different levels, at times adding [[in the elevator]] com-
ments in between. The typesetting incorporates ideas from [Tuf05] high-
lighting details in the proofs and structural remarks in the margin. Online
discussion is possible through the author’s website at http://peter.krautzberger.info/paper
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1 Preliminaries

Let us begin by giving a non-exhaustive selection of standard terminol-
ogy in which we follow N. Hindman and D. Strauss [HS98]; for standard
set theoretic notation we refer to T. Jech [Jec03], e.g., natural numbers are
considered as ordinals, i.e., n = {0, . . . , n − 1}. We work in ZFC through-
out. The main objects of this paper are (ultra)filters on an infinite set S,
i.e., (maximal) proper subsets of the power set P(S) closed under taking
finite intersections and supersets. S carries the discrete topology in which
case the set of ultrafilters is βS, its Stone-Čech compactification. The Stone
topology on βS is generated by basic clopen sets induced by subsets A ⊆ S
in the form A := {p ∈ βS | A ∈ p}. Filters are usually denoted by upper
case Roman letters, mostly F, G, H, ultrafilters by lower case Roman letters,
mostly p, q, r, u.

The set S is always assumed to be the domain of a (Partial) Semigroup(partial) semigroup (S, ·),
i.e., the (partial) operation · fulfills the associativity law s · (t · v) = (s · t) · v
(in the sense that if one side is defined, then so is the other and they are
equal). For a partial semigroup S and s ∈ S the set of elements compatible
with s is denoted by σ(s) := {t ∈ S | s · t is defined}. A partial semigroup
is also assumed to be adequate, i.e., {σ(s) | s ∈ S} has the finite intersection
property. We denote the generated filter by σ(S) and the corresponding
closed subset of βS by δS. For partial semigroups S, T a map ϕ : S → T is
a partial semigroup homomorphism if ϕ[σ(s)] ⊆ σ(ϕ(s)) (for s ∈ S) and

(∀s ∈ S)(∀s′ ∈ σ(s)) ϕ(s · s′) = ϕ(s) · ϕ(s′).

To simplify notation in a partial semigroup, s · t is always meant to imply
t ∈ σ(s). For s ∈ S, the restricted multiplication to s from the left (right) is
denoted by λs (ρs).

It is easy to see that the operation of a partial semigroup can always be
extended to a full semigroup operation by adjoining a (multiplicative) zero
which takes the value of all undefined products. One key advantage of
partial semigroups is that partial subsemigroups are usually much more
diverse than subsemigroups. Nevertheless, it is convenient to think about
most theoretical aspects (such as extension to βS) with a full operation in
mind.

The semigroups considered in this paper are (N,+) (with N := ω \ {0})
and the most important adequate partial semigroup F.

Definition 1.1 The partial
semigroup F

On F := {s ⊆ ω | ∅ 6= s finite} we define a partial semi-
group structure by

s · t := s ∪ t if and only if s ∩ t = ∅.

The theory of the Stone-Čech compactification allows for the (somewhat
unique) extension of any operation on S to its compactification, in particu-
lar a semigroup operation.
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Definition 1.2 The semigroup βSFor a semigroup (S, ·), s ∈ S and A ⊆ S, p, q ∈ βS we
define the following.

• s−1A := {t ∈ S | st ∈ A}.

• A−q := {s ∈ S | s−1A ∈ q}.

• p · q := {A ⊆ S | A−q ∈ p}.
Equivalently, p · q is generated by sets

⋃
v∈V v · Wv for V ∈ p and each

Wv ∈ q.

• A⋆ := A−q ∩ A.
This notation will only be used when there is no confusion regarding the
chosen ultrafilter.

As is well known, this multiplication on βS is well defined and extends
the operation on S. It is associative and right topological, i.e., the opera-
tion with fixed right hand side, ρq, is continuous. For these and all other
theoretical background we refer to [HS98].

In the case of a partial semigroup, ultrafilters in δS in a way multiply as
if the partial operation was total. With the arguments from the following
proposition it is a simple but useful exercise to check that if (S, ·) is partial
the above definitions still work just as well in the sense that s−1A := {t ∈
σ(s) | st ∈ A} and p · q is only defined if it is an ultrafilter.

Proposition 1.3
The semigroup δSLet S be a partial subsemigroup of a semigroup T. Then δS is a subsemigroup of

βT.

Proof. (1.) Simply observe that, by strong associativity, for all a ∈ S

⋃

b∈σ(a)

b · (σ(ab) ∩ σ(b)) ⊆ σ(a).

(2.) Therefore σ(S) ⊆ p · q whenever p, q ∈ δS. �

It is easy to similarly check that partial semigroup homomorphisms extend
to full semigroup homomorphisms on δS.

Since A−q is not an established notation, the following useful observa-
tions present a good opportunity to test it.

Proposition 1.4
Tricks with A−qLet p, q ∈ βS, A ⊆ S and s, t ∈ S.

• t−1s−1A = (st)−1 A.

• s−1A−q = (s−1A)−q.

• (A ∩ B)−q = A−q ∩ B−q.

• (s−1A)⋆ = s−1A⋆ (with respect to the same ultrafilter).
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• (A−q)−p = A−(p·q).

Proof. This is straightforward to check. �

The proverbial big bang for the theory of ultrafilters on semigroups is
the following theorem.

Theorem 1.5 (Ellis-Numakura Lemma)
If (S, ·) is a compact, right topological semigroup then there exists an idempotent
element in S, i.e., an element p ∈ S such that p · p = p.

Proof. See, e.g., [HS98, notes to Chapter 2]. �

Therefore the following classical fact is meaningful.

Lemma 1.6 (Galvin Fixpoint Lemma)
For idempotent p ∈ βS, A ∈ p implies A⋆ ∈ p and (A⋆)⋆ = A⋆.

Proof. (A⋆)⋆ = A⋆ ∩ (A⋆)−p = A⋆ ∩ (A ∩ A−p)−p = A⋆ ∩ A−p ∩ A−p·p =
A⋆ ∩ A−p = A⋆. �

The following definitions are central in what follows. Even though we
mostly work in N and F we formulate them for a general setting.

Definition 1.7 FP-sets, x-support
and condensations

Let x = (xn)n<N (with N ≤ ω) be a sequence in a partial
semigroup (S, ·) and let K ≤ ω.

• The set of finite products (the FP-set) is defined as

FP(x) := {∏
i∈v

xi | v ∈ F},

where products are in increasing order of the indices. In this case, all
products are assumed to be defined.1

• x has unique representations if for v, w ∈ F the fact ∏i∈v xi = ∏j∈w xj

implies v = w.

• If x has unique representations and z ∈ FP(x) we can define the x-support
of z, short x-supp(z), by the equation z = ∏j∈x-supp(z) xj. We can then also
define x-min := min ◦x-supp, x-max := max ◦x-supp.

• A sequence y = (yj)j<K is called a condensation of x, in short y ⊑ x, if

FP(y) ⊆ FP(x).

In particular, {yi | i < K} ⊆ FP(x). For convenience, x-supp(y) :=
x-supp[{yi | i ∈ ω}].

• Define FPk(x) := FP(x′) where x′n = xn+k for all n.

1Note that we will mostly deal with commutative semigroups so the order of indices is
not too important in what follows.
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• FP-sets have a natural partial subsemigroup structure induced by F,
i.e., (∏i∈s xi) · (∏i∈t xi) is defined as in S but only if max(s) < min(t).
With respect to this restricted operation define FP∞(x) := δFP(x) =
⋂

k∈ω FPk(x).

• If the semigroup is written additively, we write FS(x) etc. accordingly
(for finite sums); for F we write FU(x) etc. (for finite unions).

Instead of saying that a sequence has certain properties it is often conve-
nient to say that the generated FP-set does.

The following classical result is the starting point for most applications
of algebra in the Stone-Čech compactification. We formulate it for partial
semigroups.

Theorem 1.8 (Galvin-Glazer Theorem)
Let (S, ·) be a partial semigroup, p ∈ δS idempotent and A ∈ p. Then there exists
x = (xi)i∈ω in A such that

FP(x) ⊆ A.

Proof. This can be proved essentially just like the the original theorem,
cf. [HS98, Theorem 5.8], using the fact that σ(S) ⊆ p to guarantee all prod-
ucts are defined. �

An immediate corollary is, of course, the following classical theorem,
originally proved combinatorially for N in [Hin74].

Theorem 1.9 (Hindman’s Theorem)
Let S = A0 ∪ A1. Then there exists i ∈ {0, 1} and a sequence x such that
FP(x) ⊆ Ai.

2 Union Ultrafilters

This paper deals primarily with ultrafilters on the partial semigroup F.
The following definitions enable us to speak about the relevant properties
of condensations in F smoothly.

Definition 2.1 (Condensation, ordered, meshed) Condensation,
ordered, meshed

Let s, t ∈ F and s = (si)i<N

be a disjoint sequence in F with N ≤ ω.

• We say that the pair (s, t) is ordered, in short s < t, if max(s) < min(t).

• s is called ordered if si < sj for all i < j < N.

• v, w ∈ F are said to mesh, in short v ⊓ w, if neither v < w nor w < v.

The following three kinds of ultrafilters were first described in [Bla87].

Definition 2.2 (union ultrafilters) Union ultrafiltersAn ultrafilter u on F is called

• union if it has a base of FU-sets.
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• ordered union if it has a base of FU-sets from ordered sequences.

• stable union if it is union and for any sequence (FU(sα))α<ω in u there
exists FU(t) ∈ u such that

(∀α < ω) t ⊑∗ sα,

i.e., t almost condenses all the sequences sα at once.

It is obvious yet important to note that FU-sets always have unique prod-
ucts and all products are defined. At this point it is also good to check
the following. Union ultrafilters are elements of δF and it is not difficult to
check that they are idempotent, cf. [Bla87, Proposition 3.3], [HS98, Theorem
12.19]. Even though the partial operation on F was defined only for disjoint
elements it could just as well have been restricted to ordered elements. Of
course, this would significantly change the operation on F (for example it
would not be commutative anymore), but σ(F) would still be the same and
therefore δF. Additionally, the operation on δF is not changed – it is after
all still the extension of ∪ (or ∆) to βF.

The following notion was introduced in [BH87] to help differentiate union
ultrafilters.

Definition 2.3 (Additive isomorphism) Additive
isomorphism

Given partial semigroups S, T, call
two ultrafilters p ∈ βS, q ∈ βT additively isomorphic if there exist FP(x) ∈
p, FP(y) ∈ q both with unique products such that the following map maps
p to q

ϕ : FP(x) → FP(y), ∏
i∈s

xi 7→ ∏
i∈s

yi.

We call this map the natural (partial semigroup) isomorphism for FP-sets. As
mentioned, it extends to a homomorphism (in fact, isomorphism) between
FP∞(s) and FP∞(t).

This notion is a special case of equivalence in the Rudin-Keisler order, but
arguably the natural notion for union ultrafilters since every idempotent
ultrafilter is isomorphic to an ultrafilter that is not idempotent. For an
example, consider the map F → F, s 7→ {max(s)}; its extension to δF does
have a product of ultrafilters in its range since the set of singletons does
not contain any non-trivial products, i.e., union of two disjoint elements.

Figure 1 recapitulates the known implications between the types of union
ultrafilters with references; the Ramsey properties will be described later.
The dotted arrow represents the following: under CH, given two non-
isomorphic Ramsey ultrafilters, there exists a stable ordered union ultra-
filter that maps to them via min and max.

The one interesting non-implication missing is that a fortiori there con-
sistently exist union ultrafilters that are not ordered union. However, the
construction in [BH87] does not give any direct information on what it
means to be an unordered union ultrafilter. In a manner of speaking it is a
sledge hammer smashing orderedness so badly that is difficult to identify

6



Figure 1: Union ultrafilters

stable ordered union stable unionRamsey properties

ordered union union

min, max is Ramsey min, max is Q-point min, max is (rapid) P-point

[Bla87]

[Bla87]

[Bla87]

[Bla87]

[BH87]

[BH87]×

how orderedness actually fails. Because of this the main result is dedicated
to understanding unordered union ultrafilters. In particular, our construc-
tion answers a question by Andreas Blass if there can be unordered union
ultrafilters that map to Ramsey ultrafilters via max and min. The following
result due to Andreas Blass will be needed later.

Theorem 2.4 (Homogeneity (Blass))
Let p0, p1 be non-isomorphic, selective ultrafilters and let f ∈ 2ω.

If P(ω) is partitioned into an analytic and coanalytic part, there are Xi ∈ pi

(i = 0, 1) such that the set of (ranges of) increasing sequences

(xn)n∈ω with xn ∈ X f (n)

is homogeneous. We call such sequences f -alternating.

Proof. This is [Bla88, Theorem 7] �

Regarding this theorem, the following folklore observation is very useful
later; cf. [Bla87, Lemma 1.2].

Remark 2.5 Given any f ∈ 2ω and non-isomorphic, selective ultrafilters
p0, p1 and Ai ∈ pi (i ∈ 2), there exists an f -alternating sequence in A0 ∪ A1

such that its alternating parts are sets in p0 and p1 respectively.partition ω
in intervals as follows:

Summary. We modify the argument from [Bla87, Lemma 1.2] for alternating sequences
using a standard argument for not nearly coherent filters. ⊠

Proof. (1.) Pick A0 ∈ p0, A1 ∈ p1.
(2.) Let us say f switches at i if f (i − 1) = j and f (i) = 1 − j (for j ∈ 2).
(3.) It is easy to inductively partition ω into intervals In large enough so

that both |In ∩ A0| and |In ∩ A1| are at least as large as the longest
constant sequence in the range of f up to the (2n)th switch; in other
words, we make the intervals long enough so that when we can build
an f -alternating sequence with each alternating “block” contained in
one of the In.
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[[ We will now thin out the ultrafilter sets so that they alternate (though
not yet f -alternate) but with a twist: the thinned out sets will never meet
the same interval In. After we accomplish this we can fill elements back
in from the original Ai to get an f -alternating sequence. Since this only
enlarges our sets, we stay in our filters. ]]

(4.) Consider the interval collapsing map, mapping elements in In to n.
(5.) Since this collapsing map cannot map our non-isomorphic selectives to

the same ultrafilter, we can find B0 ∈ p0, B1 ∈ p1 with Bi ⊆ Ai (i ∈ 2)
such that B0, B1 never meet the same interval In.

(6.) Next, consider the map on B0 defined by taking x ∈ B0 to the largest
y ∈ B1 with y < x; if this fails map x to 0.

(7.) Since p0 is selective, this map becomes injective on a set C0 ∈ p0, C0 ⊆
B0. As a result, there must be at least one element from B1 between
every two elements in C0.

(8.) The same argument for B1 (comparing it to C0) yields C1 ∈ p1, C1 ⊆
B1 such that there is at least one element from C0 between every two
elements in C1.

(9.) This might, of course, have ruined said property of C0, but we can
safely fill in extra elements from B1 to C1 to reestablish it; we still call
that possibly larger set C1. In other words, C0 and C1 alternate.

(10.) Of course, this also means the intervals In that are met by C0 and C1

alternate.
(11.) Finally, by choice of the In, we can now form an f -alternating sequence

that incluces C0 ∪ C1.
(a) Simply add elements from the original Ai to the Ci (i ∈ 2) in such

a way that they still meet the same intervals but in a block large
enough to become f -alternating.

(b) Since C0 ∈ p0, C1 ∈ p1, this f -alternating sequence is as desired. �

3 Stability

Andreas Blass laid the foundation for all further research regarding union
and hence strongly summable ultrafilters in [Bla87]. The final theorem from
that paper gives a list of potent characterizations of the strongest notion,
stable ordered union ultrafilters. (Un)fortunately, not all union ultrafilters
are ordered. The first example was constructed in [BH87] and we will
construct an example in the second part. However, all known constructions
of union ultrafilter yield stable ones.

In this section we will discuss which of the characterizations for stable
ordered union ultrafilters also hold for stable union ultrafilters. Because
this requires a few definitions that are not relevant for the second half of
this paper, we will proceed as follows. We will introduce the one notion
that is also of interest for the second part and continue to prove the main
result of this section. Following the proof we will discuss the other notions
less formally since this does not require as much proof.
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3.1 Stability and the Ramsey property for pairs

Definition 3.1 (Ramsey property for pairs) Ramsey property for
pairs

Consider u ∈ δF.

• We denote the ordered ordered pairs by F
2
<

, i.e.,

F
2
<

:= {(s, t) ∈ F
2 | s < t}.

Often (s < t) is a convenient notation for elements in F
2
<

.

• u has the Ramsey property for pairs if for any finite partition of F
2
<

there
exists A ∈ u such that A2

<
is homogeneous.

In [Bla87, Theorem 4.2] Andreas Blass showed that for ordered union
ultrafilters the Ramsey property for pairs (and other properties we discuss
later) is equivalent to stability. The following result shows that orderedness
is not necessary for this equivalence.

However, it must be stressed that even though the formulation of the
Ramsey property is the same, the result is quite different for the unordered
case. For an ordered union ultrafilter we get homogeneity for all pairs from
the generating sequence. In the unordered case, we do not get such a full
property as we cannot check pairs of generators that mesh. We might try
to blame this on our formulation of the Ramsey property. Why not ask for
partitions of disjoint ordered pairs instead? Unfortunately, this is not pos-
sible as the partition of the disjoint pairs into ordered and unordered pairs
yields a counterexample for all union ultrafilters, in fact, all idempotent
ultrafilter in δF. Every FU-set yields both ordered and unordered pairs no
matter how nicely the generating sequence behaves.

Theorem 3.2
A union ultrafilters is stable if and only if it has the Ramsey property for pairs.

Summary. The argument (necessarily) follows the same strategy as the proof of [Bla87,
Theorem 4.2]. The forward direction is similar to the proof of Ramsey’s Theorem using a
non-principal ultrafilter. To get a homogeneous set actually in the ultrafilter stability and
a new kind of parity argument is applied.

The reverse conclusion is just as in the original proof by Andreas Blass. ⊠

Proof. (1.) The Ramsey property for pairs implies stability.
(a) Given any sequence (FU(sα))α<ω in u consider the following set of

ordered pairs

{(v, w) ∈ F
2
<
| w ∈

⋂

α<max(v)

FU(sα)}.

(b) Any FU(t) ∈ u will yield ordered pairs that are in the above set.
(i.) Pick any v ∈ FU(t).

(ii.) Take w > v from FU(t) ∩
⋂

α<max(v) FU(sα) ∈ u.
(c) Therefore, by the Ramsey property for pairs, there must be a set

FU(s) ∈ u such that all ordered pairs are included in the above set.
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(d) Then s ⊑∗ sα for all α < ω.
(i.) Given α < ω, pick si with max(si) > α.

(ii.) Then all but finitely many sj have sj > si.

(iii.) For such sj of course (si, sj) ∈ FU(s)2
<

, hence

sj ∈
⋂

β<max(si)

FU(sβ),

(iv.) In particular sj ∈ FU(sα) – as desired.
(2.) Stability implies the Ramsey property for pairs.

(a) Assume that A0∪̇A1 = F
2
<

.
(b) Always pick one

colour beyond x
Since u is an ultrafilter (in δF)

(∀x ∈ F)(∃i){y ∈ F | (x < y) ∈ Ai} ∈ u.

(c) A, Cx – almost always
pick the same colour.

Since u is an ultrafilter it concentrates on one colour; without loss
it is 0, i.e., there is A ∈ u such that

(∀x ∈ A) Cx := {y ∈ F | (x < y) ∈ A0} ∈ u.

(d) Since u is union there are FU(sα) ∈ u (for α < ω) such that

FU(sα) ⊆
⋂

max(x)≤α

Cx.

[[ This small simplification ensures that for x ∈ A we get FU(smax(x)) ⊆
Cx by choice of sα. ]]

(e) Stability – almost
always pick from the
same set

Since u is stable by assumption, there is FU(s) ∈ u such that

s ⊑∗ sα for all α < ω.

[[ Next we introduce a function j that essentially just checks how many
members of s are not included in FU(sα). ]]

(f) j – Counting where s

fails
Consider the following function

j : ω → ω, α 7→ max{max(si) | si /∈ FU(sα)}.

Without loss, j is strictly increasing.

[[ We can make j strictly increasing by replacing FU(sα) with
⋂

β≤α FU(sβ)

in the definition of j. Alternatively, intersecting FU(sα+1) with FU(sα)
when we defined them also guarantees sα+1 ⊑ sα for all α < ω. In
either case, the “losses” will at most increase with increasing α. ]]

(g) Observe that for all x ∈ FU(s)

min(x) > j(α) ⇒ x ∈ FU(sα).

(i.) For si this follows by contraposition from the definition of j.
(ii.) Therefore if min(x) > j(α) this argument implies that all si ⊆ x

are in FU(sα).
(iii.) In particular, so is their union, i.e., x.

10



[[ After this observation the next goal is to construct A′ ∈ u for which

v < w in A′ implies min(w) > j(max(v)). For then w ∈ FU(smax(v)) ⊆
Cv. For this a new partition argument is needed. ]]

(h) Thinning out 1 –
bounding j

{x ∈ FU(s) | j(min(x)) < max(x)} ∈ u.
(i.) In any condensation of s there are x, x′ and x′ ∪ x such that

x < x′ and j(min(x)) < max(x′).
(ii.) But then calculate

j(min(x ∪ x′)) = j(min(x)) < max(x′) = max(x ∪ x′).

(iii.) Hence any set in u will intersect the above set; so it lies in u.
(i) In particular, there exists FU(t) ∈ u included in the above set.
(j) Thinning out 2 –

splitting points
For x ∈ FU(t) say that x splits at n ∈ x, whenever

x ∩ (n + 1), x \ (n + 1) ∈ FU(t) and

(∃tk) x ∩ (n + 1) < tk < x \ (n + 1).

. . . ω
x

ti
tk tj

tl

Figure 2: Splitting point – an example

Let π(x) be the number of splitting points of x, i.e.,

π(x) := |{n ∈ x | x splits at n}|

[[ The splitting points tell how often x splits into two ordered parts (the
one up to n and the one beyond n) – but more importantly with a gap
in between. ]]

(k) {x ∈ FU(t) | π(x) = 1 mod 2} ∈ u.
(i.) Any condensation of t will contain some x < y < z and x ∪ z.

(ii.) In that case, the number of splitting points of x ∪ z is

π(x ∪ z) = π(x) + π(z) + 1.

(iii.) In particular, the number of splitting points for at least one of
x, z, x ∪ z must be odd.

(l) In particular, there exists FU(v) ∈ u contained in the above set.
(m) For any w0 < w1 in FU(v), there exists tj with

w0 < tj < w1

(i.) Or else π(w0 ∪w1) = π(w0)+π(w1) would be an even number
of splitting points.

(n) FU(v) is homogeneous, i.e., FU(v)2
<
⊆ A0. The conclusion

(i.) For this pick any w, w′ ∈ FU(v) with w < w′.

11



(ii.) By the last step, there exists some tj with w < tj < w′. There-
fore

min(w′) > max(tj) > j(min(tj)) > j(max(w))

where the third inequality holds because of step 2h, the last
because j is strictly increasing.

(iii.) But as we noted just before step 2h, this implies w′ ∈ Cw, i.e.,
(w, w′) ∈ A0 – as desired.

This concludes the proof. �

3.2 Stability and other partition properties

Let us now discuss the other properties from [Bla87, Theorem 4.2].

The Ramsey property for k-tuples It is straightforward to generalise
the Ramsey property for pairs to k-tuples (with k < ω) as follows. An
ultrafilter u has the Ramsey property for k-tuples if for every partition of
F

k
<

:= {(s0, . . . , sk−1) | (∀i < k − 1)si < si+1} we can find A ∈ u such that
Ak
<

is homogeneous. It is not difficult to show by an induction much like
the induction used for Ramsey’s Theorem for ω that the Ramsey property
for pairs implies the Ramsey property for k-tuples for all k < ω. An alterna-
tive argument follows from the property described in the next paragraph.

The infinitary Ramsey property In [Bla87, Theorem 4.2] Andreas Blass
also discusses the infinitary analogue of the Ramsey properties. For this
consider the set of ordered ω-sequences F

ω
<

:= {s ∈ F
ω | (∀i < ω)si <

si+1}. Then u has the infinitary Ramsey property if for every partition of F
ω
<

into an analytic and co-analytic part there exists A ∈ u such that all ordered
subsets of A are in the same part. It is not difficult to check that the proof
in [Bla87] does not require the union ultrafilter to be ordered. It might be
worthwhile to check that the strength of this infinitary partition property
suffers even more than the finitary ones from dropping the ordered union
requirement. For a stable ordered union ultrafilter not only do we get the
infinitary Ramsey property, but the homogeneous set itself is generated by
an ordered sequence, hence that ordered sequence is in that part of the
partition. In the unordered case this statement simply does not make sense
as the partition only covers ordered sequences.

Characterization via min The last two properties from [Bla87, Theorem
4.2] are formulated in terms of ultrapowers of ω. To keep our discussion
short, we assume some basic knowledge of ultrapowers of ω; for a concise
introduction cf. [Bla87, Section 1] (which is available at [Bla]). Given an
ultrafilter V on a countable set I, we say that f , g ∈ Iω are in the same sky
if there exists h, h′ ∈ ωω such that on a set in V we have g ≤ h ◦ f and
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f ≤ h′ ◦ g. It is known that equivalently f , g are in the same sky if there
exist finite-to-one h, h′ such that h ◦ f = h′ ◦ g. Skies are obviously order
convex.

For lack of a better term, we say that u is stable via min if whenever
f ∈ F

ω, g ∈ ωω and A ∈ u such that f (s) < g ◦ min(s) for all s ∈ A, then
there exists h ∈ ωω such that f (s) = h ◦ min(s) on some set in u; in other
words, then the values of f (s) only depend on min(s).2

In [Bla87, Theorem 4.2] it is essentially3 shown that this notion is equiv-
alent to stability for ordered union ultrafilters. For union ultrafilters we
can show two things. On the one hand, the following observation shows
that stability via min implies stability. On the other, the next section will
include an example showing that (consistently) stability via min does not
imply that a union ultrafilter is ordered.

Theorem 3.3
If a union ultrafilter is stable via min then it has the Ramsey property for pairs.
In particular, it is stable.

Summary. We only sketch the argument since it is just a recombination of the argument
for ordered union ultrafilters with a recent result by Andreas Blass. ⊠

Proof. (1.) Let u be a union ultrafilter that is stable via min.
(2.) The Ramsey property for pairs is easily seen to be equivalent to the

statement that F
2
<

and (A× A)A∈u generate an ultrafilter on F
2, namely

the tensor product u ⊗ u.
(3.) So take any ultrafilter V on F

2 containing all these sets. We show that
V = u ⊗ u.

(4.) By a characterization of tensor products due to Puritz [Pur72], cf. also
[Bla87, Section 1], it suffices to show that whenever g1, g2 ∈ ωω, then
g1 ◦ π1 lies in a lower sky than g2 ◦ π2 (unless the latter is constant on
a set in V).4

(5.) It suffices to compare max ◦π1 with min ◦π2.
(a) π2(V) = u and by [BH87, Theorem 2] min(u) is a P-point, i.e., the

sky of min contains exactly two skies, one of them the sky of con-
stant functions.

(b) Combining this with stability via min, we get that min ◦π2 is in the
lowest non-standard sky for elements of the form g2 ◦ π2.

(c) Also, max is finite-to-one, so max ◦π1 is in the highest sky for ele-
ments of the form g1 ◦ π1.

(6.) max ◦π1 is at most in the same sky as min ◦π2.
(a) By assumption on V we have max ◦π1 < min ◦π2 on F

2
<
∈ V.

(7.) max ◦π1 is not in the same sky as min ◦π2.

2In terms of the ultrapower this means that min generates an initial segment of the
ultrapower.

3”Essentially” in the sense that the relevant part of [Bla87, Theorem 4.2] includes the
condition that the image of the union ultrafilter under min is a P-point. This fact was
established later for all union ultrafilters in [BH87, Theorem 2].

4Where πi is the projection to the i-th coordinate (i ∈ 2).
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(a) By [Bla09, Theorem 38], min(u), max(u) are not near coherent filters,
i.e., no two finite-to-one maps will map min(u) and max(u) to the
same ultrafilter.

(b) But by [BH87, Theorem 2] min(u), max(u) are both P-points.
(c) So no two maps will map min(u) and max(u) to the same non-

principal ultrafilter.
(d) In other words, on any set in V, we have h ◦max ◦π1 6= h′ ◦min ◦π2

for any h, h′ ∈ ωω (unless both sides are constant).
(e) So max ◦π1 and min ◦π2 are not in the same sky.

(8.) Therefore V = u ⊗ u, i.e., u is stable. �

The canonical partition property We say that that an ultrafilter u ∈ δF

has the canonical partition property if for each f : F → ω there exists A ∈ u
such that f ↾A has one of the following properties:

• f ↾A is constant,

• f ↾ A = g ◦ min ↾ A for some injective g ∈ ωω, in particular, the values
only depend on min(s),

• f ↾ A = g ◦ (min, max) ↾ A for some injective g : ω2 → ω, in particular,
the values of f ↾A depend only on (min(s), max(s)),

• f ↾A = g ◦ max↾A for some injective g ∈ ωω, in particular, the values of
f ↾A depend only on max(s).

• f ↾A is injective.

Again, the proof of [Bla87, Theorem 4.2] not only shows that the canonical
partition property implies stability via min, hence stability, for ordered
union ultrafilters, but also for union ultrafilters in general. It remains open
whether this property is equivalent to stability. Also, we do not know if it
implies orderedness.

3.3 Stability and additive isomorphisms

We end this section with the following application of stability which will be
useful later. The result is remininiscent of the role of P-points and Ramsey
ultrafilters in the Rudin-Keisler order.

Lemma 3.4 (Stability and Additive Isomorphisms)
Every additively isomorphic image of a stable union ultrafilter is a stable union ul-
trafilter and every additively isomorphic image of a stable ordered union ultrafilter
is a stable ordered union ultrafilter.

Summary. Stability is straightforward; for orderedness we use the Ramsey property of
stable ordered union ultrafilters. ⊠
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Proof. (1.) Let u′ and u be additively isomorphic ultrafilters, i.e., there exist
FU(s) ∈ u, FU(x) ∈ u′ such that

π : FU(s) → FU(x), ∏
i∈F

si 7→ ∏
i∈F

xi

additionally has π(u) = u′.
(2.) If u is stable, so is u′.

(a) Given a sequence of condensations with FU-sets in u′ we may as-
sume without loss that all of them condense x.

(b) But then the preimages under π form a sequence of condensations
in u.

(c) Applying the stability of u yields a common almost condensation of
the images.

(d) Then its image under π is exactly the desired common almost con-
densation in u′.

(3.) If u is stable ordered, so is u′.
(a) By step 2, we only need to show that u′ is ordered. Pick any A ∈ u′;

we may assume without loss A ⊆ FU(x) and also that s (from the
definition of π) is ordered.

(b) Working in u: a
partition for
orderedness.

Consider

X := {(v, w) ∈ [π−1[A]]2
<
| max(π(v)) < min(π(w))}.

(c) By the Ramsey property from Theorem 3.2, there exists an ordered
sequence t such that FU(t) ∈ u and FU(t) is either included in or
disjoint from X.

(d) But it cannot be disjoint from X.
(i.) Since π is injective, there exist ti < tj such that π(ti) < π(tj).

(ii.) In fact, given any ti all but finitely many tj have this property.

(iii.) Then (ti, tj) ∈ X ∩ FU(t)2
<

.
(e) But this implies that π[FU(t)] = FU(π[t]) is ordered – and of course

in u′ and refining A.
(f) In other words, u′ is ordered union.
This concludes the proof. �

4 Unordered union ultrafilters

We now turn to our main result that selectivity of the image under min
and max cannot indicate orderedness of a union ultrafilter. At first this is
a negative result since the alternative would probably have involved a new
partition theorem involving Ramsey ultrafilters. However, the construction
of the counterexample offers an answer to the simple question: What does
an unordered union ultrafilter look like? As mentioned earlier the construc-
tion in [BH87] does not really answer this question. Nevertheless, its proof
represents a blueprint for constructions of (stable) union ultrafilters.
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By definition, to be unordered means that there must be a “special” FU-
set in the ultrafilter that will not be refined to an ordered FU-set in the
ultrafilter.5 In particular, the sequence generating the FU-set itself cannot
be ordered. But if a sequence is not ordered, it is meshed in the sense
that some of its members must mesh. Of course, such a sequence will
be condensed again and again – and yet no ordered condensation can be
allowed. So the question becomes: what might this meshing look like?

Let us do some handwaving arguments on some simple attempts that
are doomed to fail. Since any union ultrafilter is in δF and our sequence is
disjoint, there must be “arbitrarily late” meshing, i.e., if only finitely many
elements of s mesh we have already lost. It is also easy to see that union
ultrafilters concentrate on condensations that contain unions of many mem-
bers of the sequence, e.g., because the sequence itself will not be in the
union ultrafilter; therefore there cannot be a bound on the number of si

which mesh. Finally, by parity arguments the meshing cannot be only of,
e.g., the form s2i ⊓ s2i+1, since a union ultrafilter will concentrate on those
with an even number of adjacent indices – so any union ultrafilter will con-
dense such a sequence to an ordered sequence. Finally, the critical concern
will have to be, whether there can be enough meshing while keeping the
images under min and max Ramsey ultrafilters.

The main result of this section is as follows.

Theorem 4.1 (Stable Unordered Union Ultrafilters)
Assume CH. There exists a stable union ultrafilter u with min(u) and max(u)
selective, but there exists FU(s) ∈ u such that for every ordered sequence t

t ⊑ s ⇒ FU(t) /∈ u.

In fact, any two non-isomorphic selective ultrafilters can be prescribed for min and
max.

Note that the assumption of CH can be weakened to essentially iterated
Cohen forcing; this will be discussed at the end of the section.

Fortunately, with the help of the lemma in the previous section this
implies a stronger version guaranteeing rigidity under additive isomor-
phisms.

Corollary 4.2 (Unordered Union Ultrafilters)
Assume CH. There exists a stable union ultrafilter u with min(u) and max(u)
selective, but u is not additively isomorphic to an ordered union ultrafilter.

In fact, any two non-isomorphic selective ultrafilters can be prescribed for min
and max.

Proof. This follows from the above theorem and Lemma 3.4

5We will always have some ordered FU-sets in any (union) ultrafilter, e.g., F =
FU(({i})i∈ω).
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4.1 The construction

Recall The critical issue – a
special set FU(s)

the goal: however the union ultrafilters u is constructed, it must
include a set FU(s), such that any ordered condensation t ⊑ s is excluded,
i.e., FU(t) /∈ u.

It is not difficult to put together a union ultrafilter with a base of un-
ordered FU-sets. But this does not suffice, since there might be a different
base of ordered FU-sets by accident.

To prevent this, no unordered condensation that is added in the inductive
construction can accidentally be, at the same time, a condensation of some
other, ordered condensation of the fixed FU(s) (thus including that ordered
condensation of FU(s) in the ultrafilter u as well).

This means that every chosen sequence must eventually have a high de-
gree of meshing not just in itself but due to the si that appear in its support.
The following definition prepares for the right notion of meshing.

Definition 4.3 (The meshing graph) The meshing graphGiven s = (si)i<N (for some N ≤ ω)
and some condensation t = (tj)j<K of s (for some K ≤ N) we define the
meshing graph Gt to be the graph on the vertices {tj | j < K} with edges

E(Gt) = {{ti, tj} | (∃sn ⊆ ti, sm ⊆ tj) sn ⊓ sm},

i.e., there is an edge whenever two tj are meshed and this meshing is caused
by two elements from s.

This notion allows to discuss the degree of meshing in terms of the con-
nectedness of the graph. On the one hand, it is an advantage to connect to
graph theory and graph colourings. On the other hand, it is unclear how
well connected the graph should be – and it is not trivial to get Ramsey-
type theorems for graphs that allow a flexible degree of connectedness.
Fortunately, it will be enough to work with complete graphs.

To begin the construction, a thoroughly meshed sequence is required.
After all, in an inductive construction under CH, the critical FU-set must
appear after countably many steps so it might as well appear right away.
The general case without a preselected FU-set will be discussed later.

Remark 4.4 (Fix the meshed sequence s) The fixed sequence sFrom now on fix a sequence s =
(si)i∈ω such that for any n there exist i0 < . . . < in such that

G(si0
,...,sin)

is a complete graph with n + 1 vertices.6

This simply means that the sequence includes arbitrarily large segments
that have the best meshing. As mentioned, for now it is enough to pick any
such sequence (which is easy to construct inductively). It will be proved
how to find such a sequence with respect to two prescribed selective ul-
trafilters at the end of the construction. It is useful to note that such a

6Here the meshing graph is computed with respect to s itself.
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sequence might (and later will) be chosen "nearly ordered" in the sense
that the increasingly large complete graphs appear in an ordered fashion.

The following definition tries to capture the right kind of meshing that is
needed for condensations and more generally for sets that are suitable for
the ultrafilter.

Definition 4.5 (s-meshed) s-meshedA set A ⊆ F is called s-meshed if for any n ∈ ω
there exist (disjoint) t = (ti)i<n such that

• FU(t) ⊆ (FU(s) ∩ A)

• The meshing graph Gt is a complete graph.

We call such a finite sequence an n-witness of A.7

A set A is s-meshed if there are members of A that have a high degree
of meshing and additionally the witnesses for the meshing are given by
arbitrarily large, finite FU-sets where the members of the s-support mesh
very much.

The following observation should support the claim that this is the right
notion for this setting, i.e., such sets do not force us to add ordered conden-
sations to an ultrafilter.

Proposition 4.6
If A is s-meshed, then it is not included in FU(t) for any ordered t ⊑ s.

Proof. (1.) To be an ordered condensation t ⊑ s means that Gt has no edges.
(2.) There are no disjoint elements in FU(t) with a non-empty meshing

graph.
(a) Assume v, w ∈ FU(t) have an edge, i.e., there exist si ⊆ tj ⊆ v, sk ⊆

tl ⊆ w with si ⊓ sj.
(b) Therefore tj ⊓ tl .
(c) Since t is ordered, this implies tj = tl , i.e., tj ⊆ v ∩ w 6= ∅

(3.) Hence FU(t) cannot include an s-meshed set. �

To be able to link the new notion with ultrafilters it needs to be partition
regular. This requires the following classical result which is sometimes
called ”finite Hindman’s Theorem“ even though it historically preceded
and motivated Hindman’s Theorem.

Theorem 4.7 (Folkman-Rado-Sanders)
For any n ∈ ω there exists h(n) ∈ ω such that for any disjoint sequence x =
(xi)i<h(n) in F the following holds:

Whenever Folkman-Rado-Sanders
Theorem

FU(x) is finitely partitioned, there exists a condensation of length n
with a homogeneous FU-set.

7Note that an s-meshed set is compatible with δF since for any v ∈ F any disjoint
sequence of length max(v) + 2 must have an element in σ(v).
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Proof. The original discovery is attributed to Folkman and Sanders indepen-
dently; it follows from Rado’s Theorem and from the Graham-Rothschild
Parameter Sets Theorem, [GR71, cf. Corollary 3]. For a proof from Hind-
man’s Theorem by a compactness argument see [HS98, Theorem 5.15]; for
a more recent overview on its combinatorial aspects cf. [PV90]. �

This allows for the proof of the first piece of the puzzle.

Lemma 4.8 (s-meshed partition regular)
The notion of being s-meshed is partition regular.

In particular, any s-meshed set is included in an ultrafilter consisting only of
sets that are s-meshed.

Summary. Given a finite partition of an s-meshed set, the Folkman-Rado-Sanders The-
orem implies large homogeneous condensations. To get n-witnesses it turns out that a
homogeneous condensation inherits a complete meshing graph. ⊠

Proof. (1.) Clearly, F itself is s-meshed since it contains FU(s).
(2.) So fix an arbitrary s-meshed set A and any partition A = A0∪̇A1.
(3.) Since A contains arbitrarily large witnesses, the Folkman-Rado-Sanders

Theorem (plus the pigeon hole principle) implies that in either A0 or
A1 there are arbitrarily large condensations of these witnesses.

(4.) Any condensation v of a witness t has a complete meshing graph.
(a) Given vi, vj in the condensation, there are tk ⊆ vi, tl ⊆ vj.
(b) Since t has a complete meshing graph, there exists sm ⊆ tk ⊆ vi,

sn ⊆ tl ⊆ vj with sm ⊓ sn.
(c) Therefore vi, vj are connected in the meshing graph Gv.

(5.) Therefore, either A0 or A1 is s-meshed. �

The next step is to show that the ultrafilters containing s-meshed sets are
algebraically rich.

Lemma 4.9 (The meshing semigroup)
The set

H := {p ∈ FU∞(s) ∩ δF | (∀A ∈ p) A is s-meshed}

is a closed subsemigroup of δF.

Proof. (1.) H is a closed subset of δF since it is defined by a constraint on
all members of its elements.

(2.) Lemma 4.8 implies that it is not empty.
(3.) H is a subsemigroup.

(a) Pick arbitrary p, q ∈ H and V ∈ p, (Wv)v∈V in q; in particular all
these sets are s-meshed.

(b) Then
⋃

v∈V(v · Wv) is s-meshed.
(i.) Pick any n ∈ ω.

(ii.) By assumption on p there exists an n-witness t = (ti)i<n such
that

FU(t) ⊆ V.
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(iii.) Similarly, by assumption on q, there exists an n-witness t′ =
(t′i)i<n such that

FU(t′) ⊆
⋂

x∈FU(t0,...,tn)

Wv ∩ σ(
⋃

i≤n

ti) (∈ q).

(iv.) But then for v = (vi)i<n with vi := ti ∪ t′i in fact

FU(v) ⊆
⋃

v∈V

v · Wv.

(v.) Additionally, Gv is a complete graph since Gt was (or since Gt′

was) – making the sets “fatter” only increases the chance of
being meshed.

(vi.) In particular, the set is s-meshed – as desired.
(c) Therefore, p · q ∈ H.
This competes the proof. �

The next step is to show that the preimage filters under min and max are
compatible with H, i.e., contain s-meshed sets.

Lemma 4.10

If A ∩ min[FU(s)], B ∩ max[FU(s)] are both infinite, then

min−1[A] ∩ max−1[B]

is s-meshed.

Summary. Pick three sets of members of s: one set to get the prescribed minimum, an-
other set to get the meshing, and finally a set to get the prescribed maximum. ⊠

Proof. (1.) Given n ∈ N we pick three times n-many elements of the se-
quence s = (si)i∈ω.

(2.) Since A is infinite, it is possible to pick (sik
)k<n with min(sik

) ∈ A.
(3.) By the meshing of s, it is possible to pick (sjk)k<n with a complete

meshing graph but lying beyond everything chosen so far.8

(4.) Since B is infinite, it is possible to pick (slk
)k<n with max(slk

) ∈ B, again
beyond everything chosen so far.

(5.) Then (tk)k<n defined by tk := sik
∪ sjk ∪ slk

is an n-witness for min−1[A]∩

max−1[B]. �

An easy corollary is the following.

Corollary 4.11

Let p1 and p2 be ultrafilters including min[FU(s)], max[FU(s)] respectively.
Then

min −1(p1) ∩ max −1(p2) ∩ H 6= ∅.

8In other words, with minima greater than the greatest maximum so far.
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Proof. By Lemma 4.10 all elements of the preimage filter are s-meshed. A
standard application of Zorn’s Lemma (or equivalenty compactness) allows
us to extend any such filter to an ultrafilter in H. �

Note also that min−1(p) is a right ideal, max−1(p) a left ideal in δF for
any p ∈ βN; in particular their intersection is a closed subsemigroup. This
is easily checked, cf. also [Kra09, Section 2.3] and [HS98, Theorem 6.9].

4.2 Main lemma and theorem

After the preparations are complete it is possible to tackle the main lemma
for the inductive construction. Let 〈min−1(p1) ∪ max−1(p2)〉 denote the
filter generated by the union of the coherent filters min−1(p1), max−1(p2).

Lemma 4.12 (Main Lemma)
Assume we are given non-isomorphic, selective ultrafilters p1, p2 with max[FU(s)] ∈
p1 and min[FU(s)] ∈ p2 as well as some X ⊆ F.

For every α < ω let tα = (tα
i )i∈ω be a sequence such that

tα+1 ⊑∗ tα

FU(tα) is s-meshed

FU(tα) ∈ 〈min−1(p1) ∪ max−1(p2)〉.

Then there exists z = (zi)i∈ω such that

z ⊑∗ tα for every α < ω,

FU(z) ⊆ X or FU(z) ∩ X = ∅,

FU(z) is s-meshed

FU(z) ∈ 〈min−1(p1) ∪ max−1(p2)〉.

Summary. By a standard Galvin-Glazer argument there exists a common almost conden-
sation of the given FU-sets and X (or its complement). Since all sets are s-meshed, the
condensation can be s-meshed. The Homogeneity Theorem 2.4 ensures such a condensa-
tion can be found in min−1(p1) ∪ max−1(p2). ⊠

Proof. (1.) By the assumptions,

H ∩ min−1(p1) ∩ max−1(p2) ∩
⋂

α<ω

FU∞(tα) 6= ∅.

(2.) As e – the helpful
idempotent

an intersection of closed semigroups it is a closed semigroup which
therefore contains an idempotent e ∈ δF. Without loss X ∈ e; in partic-
ular X is s-meshed.

[[ The aim is to apply the Homogeneity Theorem 2.4. ]]
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(3.) Consider the following analytic set in P(ω). An analytic set

{Y ⊆ ω | (∃z = (zi)i∈ω) Y = min[FU(z)] ∪ max[FU(z)],

(∀α < ω) z ⊑∗ tα,

FU(z) ⊆ X,

FU(z) is FU-meshed}.

This set encodes all the candidates for the claim.
(4.) Define 010011000111 . . .f ∈ 2ω inductively to have n-many 0’s followed by n-many 1’s

for each n in increasing order of n’s.

[[ We will apply Theorem 2.4 to get an f -alternating sequence whose al-
ternating blocks form sets in our selective ultrafilters. An f -alternating
sequence alternates by picking n-many elements from both sets at the
n-th step. It is useful to check that if we asked for alternating instead of
f -alternating then we would always miss the analytic set, since any z with
alternating minima and maxima must be ordered, so it isn’t FU-meshed.
On the other hand, a “nearly ordered” sequence such as s comes in or-
dered blocks of completely meshed finite sequences. The minima and
maxima of such a sequence are precisely f -alternating which is why we
choose f -alternating here. ]]

(5.) Using homogeneityBy Theorem 2.4 there exist Y1 ∈ p1, Y2 ∈ p2 such that

{A ⊆ Y1 ∪ Y2 | A f -alternating}

is either contained in or disjoint from the analytic set.

[[ If the above set is included in the analytic set then Remark 2.5 guaran-
tees the existence of the set desired to complete the proof. Fortunately,
given any Y1, Y2 a Galvin-Glazer argument shows that the set can never
be disjoint. ]]

(6.) But for every Applying
Galvin-Glazer to find t

Y1 ∈ p1, Y2 ∈ p2 there exists t = (ti)i∈ω, a common almost
condensation of (tα)α<ω such that

FU(t) ⊆ Z := X ∩ min−1[Y1] ∩ max−1[Y2] ∩ FU(s);

additionally, t is s-meshed and the minima and maxima are f -alternating.
(a) First note Z ∈ e; without loss Z⋆ = Z ∈ e (with respect to e).

We construct the desired sequence by induction.
(b) At the inductive step n, having constructed t0, . . . , tk (where k =

∑
n−1
i=0 i) we assume by induction hypothesis that the following inter-

section is in e

Z⋆ ∩
⋂

x∈FU(t0,...,tk)

x−1Z⋆ ∩ σ(
⋃

i<k

ti) ∩
⋂

α<n

FU(tα).

(c) Pick an s-meshing n-witness tk, . . . , tn+k from it.9

9For later reference, note the following. We have a lot of freedom at this point to impose
other properties on these n+ 1-many elements of t. In particular, we can first choose an
ordered sequence of length n + 1, then a sequence of meshing witnesses beyond those
such that the union of the ith from the ordered part with the ith from the meshed part
is just as good to continue our induction, i.e., all finite unions are still in Z. This kind
of ”late meshing” will be needed for an observation regarding stability via min at the
end of this section.
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(d) As usual in the Galvin-Glazer argument, the analogous intersection
for FU(t0 , . . . .tk+n) is again in e.

(e) The resulting sequence is s-meshed by construction.
(f) Note that for a sequence of length n with a complete meshing graph,

all minima must come before all maxima. Since the witnesses are
chosen in an ordered fashion, this implies that the entire sequence
has f -alternating minima and maxima.

(7.) By Remark 2.5 there exists a sequence z for Y1 and Y2 themselves —
and with all the desired properties to conclude the proof. �

Note that as promised, the constructed condensation is ”nearly ordered”.
It is now easy to describe the CH-construction.

Theorem 4.13

Putting it all togetherAssume CH and let p1, p2 be non-isomorphic, selective ultrafilters containing
min[FU(s)] and max[FU(s)] respectively.

Then there exists a stable union ultrafilter u with FU(s) ∈ u, min(u) = p1,
max(u) = p2 and such that every ordered t ⊑ s has FU(t) /∈ u.

Proof. (1.) Assuming CH, fix (Xα)α<ω1
, an enumeration of P(F).

We argue by transfinite induction on β < ω1.
(2.) Assume for β < ω1 there are (FU(tα))α<β such that for all γ < α < β

tα ⊑ s

tα ⊑∗ tγ

FU(tα) ⊆ Xα ∨ FU(tα) ∩ Xα = ∅

min[FU(tα)] ∈ p1 ∧ max[FU(tα)] ∈ p2

FU(tα) s-meshed

(3.) Pick a cofinal sequence (α(n))n∈ω in β.

(4.) Applying Lemma 4.12 to X := Xβ and (FU(tα(n)))n∈ω there exists tβ

sufficient to continue the induction.
(5.) It should not be difficult to check that the resulting sets will generate a

union ultrafilter as desired. �

Finally is useful to realize that the choice of the sequence s is not all that
special.

Corollary 4.14 (The main theorem)
The main theoremAssume CH. For any two non-isomorphic, selective ultrafilters p1, p2 there exists

a stable union ultrafilter u which is not ordered, such that min(u) = p1 and
max(u) = p2.

Summary. The preceding theorem can be applied after using Theorem 2.4 to make sure
that there is an apropriate sequence. ⊠

Proof. (1.) To invoke the preceding theorem it is sufficient to generate a
suitably meshed sequence s with min[FU(s)] ∈ p1, max[FU(s)] ∈ p2.
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(2.) For this consider the analytic set

{X ⊆ ω | (∃s) X = max[FU(s)] ∪ min[FU(s)]

and FU(s) is s-meshed}.

(3.) By Theorem 2.4 there exist f -alternating Yi ∈ pi (i ∈ 2) such that set of
f -alternating subsets of Y1 ∪ Y2 is either included or disjoint from the
analytic set.

(4.) There exist f -alternating Yi ∈ pi (i ∈ 2) such that Y0 ∪ Y1 lies in the
analytic set.

[[ The argument is just as in the proof of the main lemma, i.e, it suffices
to check that for any Yi ∈ pi (i ∈ 2) min−1[Y1] ∩ max−1[Y2] must include
FU(s) for some suitably meshed sequence. ]]

(a) Let Yi ∈ pi be as in the previous step.

(b) Recall that min−1(p1)∩ max−1(p2) is a closed subsemigroup; so we
can find an idempotent ultrafilter therein.

(c) Therefore there exists FU(v) ⊆ min−1[Y1]∩max−1[Y2] by the Galvin-
Glazer Theorem 1.8.

(d) Then there exists a condensation of v to an f -alternating, meshed
sequence s, i.e., with FU(s) being s-meshed (with respect to x).

(i.) For the inductive step n ∈ ω assume that for k = ∑i<n i there
are (si)i<k with increasingly meshed graphs of sizes 1 through
n − 1.
Pick 2n-many elements from FU(v) as follows:

(ii.) First pick (vij
)j<n past everything so far and then pick (vij

)n−1<j<2n

past additionally the ones just chosen and define

sk+j := vij
∪ vij+n.

(iii.) Then sk, . . . , sk+n is an n-witness.
(iv.) By construction, min[s] ∪ max[s] is f -alternating.

(e) Therefore, the f -alternating subsets are never disjoint from the anaytic
set.

(f) By Remark 2.5, we find Y0, Y1 as desired.
(5.) This completes the proof. �

Andreas Blass suggested an alternative proof for this last corollary sketched
below.

Proof. (1.) Given selectives p1, p2 there exists a permutation of ω simultane-
ously mapping pi to p′i (i ∈ 2) with min[FU(s)] ∈ p′1 and max[FU(s)] ∈
p′2; p′1, p′2 are again selective. (Here, s is the previously fixed sequence).

(2.) The main theorem now gives a suitable u′ for p′1, p′2.
(3.) But the natural extension of the permutation to F yields an additive

isomorphism on FU(s) ∈ u′ mapping u′ to a union ultrafilter u with
min(u) = p1 and max(u) = p2.

(4.) Since additive isomorphisms preserve all the desired properties, this
completes the proof. �
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We can modify our construction to yield the following.

Theorem 4.15

There exists an unordered union ultrafilter that is stable via min. In particular,
stability via min does not imply orderedness of a union ultrafilter.

Proof. (1.) We can modify the proof of the main lemma in the spirit of the
(first) proof of the last corollary; compare the footnote in the proof of
the main lemma.

(2.) That is, in the inductive step of the Galvin-Glazer argument first choose
an ordered sequence (of length n + 1) followed by an s-meshed witness
(of length n) past this sequence. Finally add the elements from the
ordered sequence to the s-meshed witness just as in the proof of the
corollary.

(3.) The ultrafilter u resulting from this modified construction is of course
still stable; in particular, it has the Ramsey property for pairs.

(4.) To show that it is stable via min, let f ∈ F
ω, g ∈ ωω with f (s) <

g ◦ min(s) on a set in u; for simplicity, we may assume that this set is
all of F.

(5.) Consider {(s < t) | f (s ∪ t) = f (s)}
(6.) Then there exists A ∈ u with A2

<
included in this set.

(a) By the Ramsey property for pairs, we get a homogeneous set A.
(b) Fix s ∈ A
(c) All t ∈ σ(s) have f (s ∪ t) < g ◦ min(s ∪ t) = g ◦ min(s).
(d) So on some B ∈ u, f (s ∪ t) is constant.
(e) But now for any t < t′ in B, we get

f ((s ∪ t) ∪ t′) = f (s ∪ (t ∪ t′)) = f (s ∪ t).

(f) In other words, (s ∪ t, t′) is in the above set.
(7.) So for ordered pairs, the value of f on A only depends on min.
(8.) By construction of u, we find α < ω1 such that FU(sα) ⊆ A.
(9.) Then f (s) depends only on min(s) on FU(sα+1).

(a) Check that due to the modified construction every element of sα+1

is a union of elements in sα where the first part is ordered with
respect to the other parts.

(b) Hence the value of f depends only on that first part, i.e., only on
min. �

As promised the assumption of the continuum hypothesis can be weak-
ened.

Remark 4.16 Dropping the prescribed selective ultrafilters in Lemma 4.12,
the modified consequent can be derived using Cohen forcing in the form
of finite condensations of s; using Lemma 4.10 it is not difficult to do some
additional bookkeeping to ensure that the min-image and the max-image
of the constructed union ultrafilter will be selective.

Therefore, the above kinds of union ultrafilters already exist assuming
cov(M ) = c alone, in particular under weak versions of Martin’s Axiom.
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For a detailed argument very much like the sketch we just proposed see
[BH87, Theorem 5].

To conclude this final section, we state some questions that remain open.

Question 4.17 (1.) It is known that min and max of a union ultrafilter are
not-near coherent P-points, the max-image is rapid, cf. [Bla09, Theorem
38]. Given such P-points on ω, does there (say under CH) exist a union
ultrafilter mapping to them via min and max?

(2.) More vaguely, do stronger assumptions hold for min and max?
(3.) Most importantly, do there exist union ultrafilters that are not stable?
(4.) Is stability via min equivalent to stability?
(5.) Does the canonical partition property imply orderedness?

The first and second question are obviously related. A partition theorem
for P-points similar to Theorem 2.4 can be found in [Bla87] and strength-
ened, cf. [Kra09, Theorem 4.10]. This might be helpful in attacking the
first question, especially if something can be improved regarding the sec-
ond question. The third question seems to be an entirely different beast.
It is much more difficult since the Galvin-Glazer Theorem so easily helps
to construct almost condensation just as was done in the main result. It
would seem to require a somewhat new proof of Hindman’s Theorem to
tackle stability.
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