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Abstract. The Feichtinger conjecture for exponentials asserts that the following property holds for every fat Cantor
subset B of the circle group: the set of restrictions to B of exponential functions can be covered by Riesz sets. In their
seminal paper on the Kadison-Singer problem, Bourgain and Tzafriri proved that this property holds if the characteristic
function of B has Sobolev regularity. Their probability based proof does not explicitly construct a Riesz cover. They
also showed how to construct fat Cantor sets whose characteristic functions have Sobolev regularity. However, these fat
Cantor sets are not convenient for numerical calculations. This paper addresses these concerns. It constructs a family of
fat Cantor sets, parameterized by their Haar measure, whose characteristic functions have Sobolev regularity and their
Fourier transforms are Riesz products. It uses these products to perform computational experiments that suggest that if
the measure of one of these fat Cantor sets B is sufficiently close to one, then it may be possible to explicitly construct
a Riesz cover for B using the Thue-Morse minimal sequence that arises in symbolic topological dynamics.
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1. Introduction

We let N = {1, 2, 3, . . . },Z,R,C, and T = R/Z denote the natural numbers, integers, reals, complex numbers and the
circle group with Haar measure µ. Throuought this paper B denotes a Borel subset of T with µ(B) > 0, F denotes a
nonempty subset of Z, and χB and χF denote their characteristic functions. F is an arithmetic set if F = j + nZ for
j ∈ Z, n ∈ N. We define exponential functions ek(t) = e2πikt, k ∈ Z, t ∈ T; E(F ) = { ek : k ∈ F };

P (F ) = trigonometric polynomials spanned by E(F ) whose norm ||f ||2 = 1;

α(B, F ) = inf {

∫

t∈B
|f(t)|2 dt : f ∈ P (F ) }. (1.1)

(B, F ) is a Riesz pair if α(B, F ) > 0, or equivalently if E(F )χB is a Riesz basic sequence [4]. {Fj : j = 1, ..., n} is a
Riesz cover for B if each (B, Fj) is a Riesz pair and ∪n

j=1Fj = Z. This paper studies the

Feichtinger Conjecture for Exponentials (FCE) Every B has a Riesz cover.

The FCE is a special case of the Feichtinger Conjecture (FC): Every unit norm Bessel sequence is a finite union of
Riesz basic sequences, which was formulated in ([2], Conjecture 1.1). Casazza and Crandel [3] proved that the FC is
equivalent to a yes answer to the following problem which has remained open since it was formulated in 1959 [9]:

Kadison-Singer Problem (KSP) Does every pure state on the C∗-algebra ℓ∞(Z) admit a unique extension to the
C∗-algebra of bounded operators B(ℓ2(Z))?

A fat Cantor is a set that is homeomorphic to Cantor’s ternary set and has positive Haar measure. Lemma 2.2
shows that the FCE is equivalent to the assertion: every fat Cantor set has a Riesz cover. In their seminal paper on the
KSP, Bourgain and Tzafriri proved a result ([1], Theorem 4.1) that implies B has a Riesz cover whenever χB is in the
Sobolev space Hs(T) for some s > 0. However, their existence proof does not explicitly construct Riesz covers. They

also proved a result ([1], Corollary 4.2) that implies χB ∈ Hs(T) for all s < 1
2

whenever T\B = ∪∞
j=1Oj where Oj are

pairwise disjoint open intervals that satisfy µ(Oj) < 2−j , thus showing the existence of fat Cantor sets that have Riesz
covers. This is surprising since Lemma 2.3 shows that if B is a fat Cantor set then (B, F ) is not a Riesz pair for a class
of sets F that includes the class of arithmetic sets.
This paper has four main results:

(i) Construction of ternary fat Cantor sets such that the Fourier transforms of their characteristic functions are
Riesz products described by Equation 3.1.

(ii) Proof of Theorem 3.1 which shows that ternary fat Cantor sets satisfy χB ∈ Hs(T) for every s < 1 − log 2
log 3

≈ 0.3691

∗Corresponding author: Wayne Lawton .
Email address: matwml@nus.edu.sg .

1

http://arxiv.org/abs/1012.4549v1


2

so they have Riesz covers. Ternary fat Cantor sets differ from those constructed by Bourgain and Tzafriri because the
lengths of the open intervals Oj removed have algebraic decay j− log 3/ log 2 rather than exponential decay 2−j . The proof
uses Lemma 2.5 which provides a refinement of the standard Paley-Littlewood decomposition that Bourgain and Tzafriri
used to prove ([1], Corollary 4.2).

(iii) Computation of estimates of α(B, F ), where B is a ternary fat Cantor set and χF = · · · 10010110.0110100110010110 · · ·
is the Thue-Morse minimal sequence [17], [13]. These estimates suggest that {F, 1 + F, 2 + F} is a Riesz cover for B if
µ(B) is sufficiently close to 1.

(iv) Proof of Theorem 3.2 that shows S(F ) is convex whenever χB is a minimal sequence.

Results (iii) and (iv) relate the FCE to the field of symbolic dynamics. We give a brief review of the concepts from
this field that we use in this paper.

Let A be any finite set with the discrete topology, equip AZ with the product topology (it is homeomorphic to Cantor’s
ternary set). The symbolic dynamical system (over A) is the pair (AZ, σ), where σ is the shift homeomorphism defined
by

(σ b)(n) = b(n− 1), b ∈ AZ, n ∈ Z.

A sequence b ∈ AZ is minimal if its orbit closure {σn(b) : n ∈ Z } is a minimal closed shift-invariant set. Zorn’s lemma
ensures the existence of minimal sequences in any nonempty closed shift invariant subset. F ⊂ Z is syndetic if there
exists n ∈ N such that ∪n−1

j=0 (j +F ) = Z, thick if for every n ∈ N there exists k ∈ Z such that k + {0, 2, 3, ..., n− 1} ⊂ F,

and piecewise syndetic if F = Fs ∩ Ft where Fs is syndetic and Ft is thick. Minimal sequences are characterized
by a result of Gottschalk [6], [7] that says a sequence b is minimal if and only if for every finite G ⊂ Z, the set
{n ∈ Z : σn(b)|G = b|G } is syndetic. Gottschalk’s theorem shows that the Thue-Morse sequence is a minimal sequence
and it can be also used to construct other minimal sequences. Choosing G = {0} implies that if F is nonempty and χF

is a minimal sequence in {0, 1}Z then F is syndetic so for some integer n, ∪n−1
j=0 (j +F ) = 0. Therefore, if (B, F ) is a Riesz

pair and χF is a minimal sequence then B has a Riesz cover. Furstenberg in ([5],Theorem 1.23) used Gottschalk’s result
for symbolic dynamics over the set {1, ..., n} to prove that if ∪n

j=1Fj = Z then one of the sets Fj is piecewise syndetic. In

([12], Theorem 1.1) we used Furstenberg’s result to prove that B has a Riesz cover if and only if there exists nonempty
set F such that (B, F ) is a Riesz pair and χF is a minimal sequence. This result reduces the construction of a Riesz
cover for B to the construction of a single set F such that (B, F ) is a Riesz pair and χF is a minimal sequence. Paulsen
[15] investigated the relationship between the Kadison-Singer Problem and syndetic sets and in [16] he used methods
from operator algebras (completely positive maps and multiplicative domains) to independently derive the key results in
our paper [12] that relate the FCE to syndetic sets.

2. Preliminaries

L2(T) and ℓ2(Z) are Hilbert spaces with scalar products (f, g) =
∫
x∈T

f(x)g(x)dµ(x) and (a, b) =
∑

n∈Z
a(n)b(n)

and associated norms || ||2 and the Fourier transform L2(T) ∋ f → f̂ ∈ ℓ2(Z), defined by

f̂(k) = (f, ek) =

∫

T

f(x) ek(−x) dx, k ∈ Z,

is a unitary surjection. Sobolev spaces for s ≥ 0 are defined by

Hs(T) = { f ∈ L2(T) :
∑

k∈Z

|f̂(k)|2 |k|2s < ∞}.

A function f ∈ L2(T) is called Sobolev regular if f ∈ Hs(T) for some s > 0. We observe that  L1(T) ⊂ L2(T) is a Banach
algebra under convolution and each exponential function ek defines a multiplicative linear functional or character

ℓ1(T) ∋ f → f̂(k) ∈ C. C(T) denotes the Banach space of continuous complex valued functions on T with the infinity
norm || ||∞ and M(T) denotes the Banach algebra of complex valued measures on T with the total variation norm and
the convolution product. The Riesz Representation Theorem asserts that M(T) is the linear dual of C(T). For t ∈ Z, δt
denotes the Dirac measure at t defined by δt(f) = f(t), f ∈ C(T). A measure ν is positive if ν(f) ≥ 0 whenever f ≥ 0, a
probability measure if it is positive and ν(1) = 1, and discrete if it is a countable linear combination of Dirac measures.

We identify L1(T) with the set of absolutely continuous measures in M(T). The maximal ideal space M̂(T) is the
set of generalized characters which define multiplicative linear functionals on M(T) via the Gelfand correspondence.
For ν ∈ M(T) and t ∈ T we define translation τtν(f) = ν(f(· − t)) and for n ∈ N we define the dilation dnν by

dnν(f) =
∑n−1

k=0

∫ 1
0 f(x+k

n
)dν(x). Clearly dnν has period 1

n
since τ 1

n
dnν = dnν.

Definition 2.1. The spectral envelope of F is the set of probability measures on T given by

S(F ) = weak∗ − closure { |f |2 : f ∈ P (F )}. (2.1)

If j ∈ Z, n ∈ N then S(j + F ) = S(F ) and S(nF ) = { dnν : ν ∈ S(F ) }. If ν ∈ S(F ) and t ∈ T then τt ν ∈ S(F ). The

functions fn = 1√
n

(e1 + · · · + en) ∈ P (Z) and the sequence of Fejer kernels Kn = |fn|2 converges weakly to δ0 ∈ S(Z).

If ν ∈ M(T) is a probability measure then Kn ∗ ν are nonnegative trigonometric polynomials so the Riesz-Fejer spectral

factorization theorem implies there exists Qn ∈ P (T) such that Kn ∗ ν = |Qn|2. Since Kn ∗ ν converges weakly to ν, it
follows that ν ∈ S(Z). Therefore S(Z) consists of all probability measures and S(j + nZ) contains the discrete measure

d 1

n
δ0 =

∑n−1
k=0 δ k

n
.
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If B0 ⊂ B are Borel sets and B does not have a Riesz cover then B0 does not have a Riesz cover. Assume that a Borel
set B ⊆ T contains an interval [a, b] with b > a. Choose n ∈ N with n(b− a) ≥ 1 and set Fj = j + nZ : j = 0, ..., n− 1. If

f ∈ P (Fj) then |f |2 has period 1
n

and hence α(B, Fj) ≥ 1/n, j = 0, ..., n − 1. Therefore B has a Riesz cover consisting

of arithmetic sets. If a Borel set B1 with µ(B1) > 0 does not have a Riesz cover then, since µ is inner regular, there
exists a closed B0 ⊂ B1 with µ(B0) > 0. Clearly B0 is nowhere dense. A theorem of Brouwer ([10], Theorem 7.4) shows

if µ(B) > 0 and B is closed, nowhere dense, and perfect (has no isolated points) then B is a fat Cantor set.

Lemma 2.2. If a Borel set B1 with µ(B1) > 0 does not have a Riesz cover then there exists a fat Cantor set B ⊆ B1

such that B does not have a Riesz cover. Therefore, the FCE is equivalent to the assertion that every fat Cantor set

has a Riesz cover.

Proof By the preceding argument B1 contains a nowhere dense closed set B0 ⊂ B1 with µ(B0) > 0. We use transfinite
to define a collection of nonincreasing subsets Bγ ⊆ B0 indexed by ordinals as follows: Bγ+ = set of limit points of Bγ

and for limit ordinals Bβ = ∩γ<βBγ . The Cantor-Baire Stationary Principle implies that there exists a countable ordinal
γ such that Bγ+ = Bγ . Let B = Bγ . Then B is perfect. A set of isolated points is countable so has Haar measure zero.
Since we remove a countable number of such sets from B0 to obtain B, µ(B) > 0. Since B is also closed and nowhere
dense Brouwer’s theorem implies that B is a fat Cantor set. �

Lemma 2.3. If B is closed, ν ∈ S(F ). and ν(B) = 0 then (B, F ) is not a Riesz pair. If B is a fat Cantor set and S(F )
contains a discrete measure then (B, F ) is not a Riesz pair. A fat Cantor set can not have a Riesz cover consisting of

arithmetic sets.

Proof If B is closed then the map S(F ) ∋ ν → ν(B) is upper semi-continuous since lim supνj→ν νj(B) ≤ ν(B), hence

α(B, F ) = inf {ν(B) : ν ∈ S(F ) } (2.2)

and this implies the first assertion. If ν ∈ S(F ) is discrete then there exists sequences cj ≥ 0, tj ∈ T, j ∈ N such that
ν =

∑
j∈N

cjδtj . The Baire Category Theorem implies there exists t /∈ ∪j∈N(B − tj). Then τt ν ∈ S(F ) and

τt ν(B) =
∑

j∈N,tj+t∈B

cj =
∑

j∈N,t∈(B−tj)

cj = 0

and this implies the second assertion. The fact that spectral envelopes of arithmetic sets contain discrete measures
implies the third assertion. �

Remark 2.4. In [12] we describe Bohr sets and show ([12], Theorem 2.1) that if F is a Bohr set then S(F ) contains
discrete measures. Therefore, by Lemma 2.3, if B is a fat Cantor set and F is a Bohr set then (B, F ) is not a Riesz pair.

Lemma 2.5. Let σj , j ∈ N be a sequence of positive real numbers that satisfies the following two conditions:

(i) lim sup
j→∞

σj+1

σj
< 1

and

(ii) lim inf
j→∞

σj+1

σj
> 0.

If c > 0, p > 0 and f ∈ L2(T) satisfies

||f(· − σj) − f(·)||22 ≤ c σp
j , j ∈ N (2.3)

then f ∈ Hs(T) for all s ∈ (0, p
2

).

Proof Equation 2.3 implies that f̂ satisfies

∑

k∈Z

|f̂(k)|2
4 sin2 πkσj

σp
j

≤ c, j ∈ N. (2.4)

Condition (ii) ensures that there exists θ ∈ (0, π) such that

θ

π
σj ≤ (1 −

θ

π
)σj+1, j ∈ N.

We set c1 = c(1 − θ/π)2s/(4 sin2 θ) and observe that

∑

|k|≥ θ
π
σ−1

1

|f̂(k)|2|k|2s ≤
∑

j∈N

∑

θ
π
≤|k|σj≤(1− θ

π
)

|f̂(k)|2 |k|2s ≤ c1
∑

j∈N

σp−2s
j . (2.5)

Condition (i) ensures that this sum converges whenever s ∈ (0, p
2

). �
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3. Main Results

Construction of Ternary Fat Cantor Sets

For every γ ∈ (0, 1) the following construction gives a fat Cantor set B ⊂ T such that µ(B) = γ. Start with the

interval S0 = [− 1
2
, 1
2

] and remove the middle open interval having length 1
3

(1 − γ) to obtain a set S1 equal to the union
of two disjoint equal length closed intervals. From each of these two intervals remove the middle open interval having
length 1

9
(1 − γ) to obtain a set S4 equal to the union of four disjoint equal length closed intervals. Continue in this

manner to construct a decreasing sequence of closed sets Sj each the union of 2j closed intervals having length

Lj = γ 2−j + (1 − γ) 3−j .

Construct S = ∩j∈NSj and B = S+Z ⊂ T. Clearly µ(B) = γ and B = −B. Let xj be the distance between the center of

the rightmost interval in Sj−1 and the rightmost interval in Sj , let Ij = [− 1
2
Lj ,

1
2
Lj ], and define the sequence of discrete

measures

νj =

(
1

2
δ−x1

+
1

2
δx1

)
∗

(
1

2
δ−x2

+
1

2
δx2

)
∗ · · · ∗

(
1

2
δ−xj

+
1

2
δxj

)
.

Then

xj =
1

2
(Lj−1 − Lj), j ∈ N

and

χSj
= 2j χIj ∗ νj .

Since we have weakly convergent sequences χSj
→ χB and 2j χIj → µ(B) δ0 it follows that

µ(B) νj → χB .

Therefore the Fourier transform of χB equals the Riesz product ([18], Section 7, Chapter 5)

χ̂Bβ
(k) = µ(B)

∏

j∈N

cos(2πxjk), k ∈ Z. (3.1)

Equation 3.1 provides an efficient method to compute χ̂B.

Theorem 3.1. If B is a ternary fat Cantor set then χB ∈ Hs(T) for s < 1 − log 2
log 3

so B has a Riesz cover.

Proof Assume that B is a ternary fat Cantor set and set γ = µ(B). Set σj = 3−j(1−γ), j ∈ N and p = 1− log 2
log 3

. Lemma

2.5 implies that it suffices to show that there exists c > 0 such that

||χB(· − σj) − χB||22 ≤ c σp
j , j ∈ N. (3.2)

The Borel subsets of T form an abelian group under the Boolean operation

B1∆B2 = (B1 ∪B2)\(B1 ∩ B2)

with identity φ, B1∆B1 = φ, µ(B1∆B2) ≤ µ(B1) + µ(B2), and ||χB1
− χB2

||22 = µ(B1∆B2). Observe that since Sj

consists of the union of 2j closed intervals separated by distance ≥ σj ,

µ((Sj + σj)∆Sj) ≤ 2(1 − γ)

(
2

3

)j

, j ∈ N.

Furthermore

µ(Sj∆B) = µ(Sj\B) =
∞∑

k=j

2kσk+1 = (1 − γ)

(
2

3

)j

.

Inequality 3.2 holds with c = 4(1−γ)1−p since (B+σj) ∆B = [(B+σj) ∆ (Sj + σj)] ∆[B ∆Sj ] ∆ [(Sj +σj) ∆Sj ] implies
that

||χB(· − σj) − χB ||22 ≤ 4(1 − γ)

(
2

3

)j

.

Theorem 3.2. If χF is a minimal sequence then S(E) is convex. Furthermore,

α(B, F ) = inf{ ν(B) : ν ∈ Se(F ) } (3.3)

where Se(F ) is the set of extreme points in S(E).

Proof Set Q(F ) = { |f |2 : f ∈ P (F ) }. Since S(E) is the weak∗ closure of Q(F ), to prove that S(F ) is convex it suffices
to show that the convex combination of any two elements in Q(F ) is in S(E). Let f, h ∈ P (F ) and let a, b ∈ [0, 1] satisfy
a2 + b2 = 1. Gottshalk’s theorem implies there exists a sequence nj ∈ N converging to ∞ with enj

h ∈ P (F ), j ∈ N.

Define the sequence

gj =
|f + enj

h|2

||f + enj
h||2

, j ∈ N.

Then gj ∈ Q(F ), j ∈ N and the Riemann-Lebesgue lemma implies that

lim
j→∞

gj = a2|f |2 + b2|h|2

thus proving that S(F ) is convex. Se(F ) is nonempty since the the Krein-Milman theorem implies that S(F ) is the
weak*-closure of the set of convex combinations of points in S(F ). Since S(F ) is separable, Choquet’s theorem implies
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that every element ν ∈ S(F ) is represented by a probability measure on Se(F ) ⊂ S(F ), from which Equation 3.3 follows.

Optimization Algorithm to Estimate α(B, F ). We now describe a computational approach to estimate α(B, F )
under the assumption that χB is a minimal sequence. Let B(ℓ2(Z)) denote the C∗-algebra of bounded operators on the
Hilbert space ℓ2(Z). Define the Laurent operator LB ∈ B(ℓ2(Z)) by the Toeplitz matrix [LB ](j, k) = χ̂B(k − j), j, k ∈ Z

and define the restriction operator RF : ℓ2(Z) → ℓ2(F ) by RF (a)(k) = a(k), a ∈ ℓ2(Z), k ∈ F, so the adjoint
R∗

F : ℓ2(F ) → ℓ2(Z) is given by

R∗
F (b)(k) = b(k) if k ∈ F, else = 0.

The matrix [RF LB R∗
F ] for the operator RF LB R∗

F : ℓ2(F ) → ℓ2(F ) is a principle submatrix of the matrix [LB] for the
Laurent operator LB . Then

α(B, F ) = inf specRF LB R∗
F (3.4)

where spec denotes the spectrum of the restricted operator. For finite G ⊂ Z, α(B,G) = min eig[RG LB R∗
G] since the

later matrix is finite. For infinite F such that χF is a minimal sequence, define Fn = [0, n] ∩ F, n ∈ N. Gottschalk’s
theorem implies that for every finite G ⊂ F there exists m ∈ N such that G ⊂ Fn whenever n ≥ m. Since Fn is an
increasing sequence of sets the sequence α(B, Fn) is a nonincreasing sequence of nonnegative numbers. This implies the
following result which provides an algorithm to approximate α(B, F ).

α(B, F ) = lim
n→∞

α(B, Fn). (3.5)

Description of Numerical Experiments We used Equation 3.1 to compute χ̂B for ternary Cantor sets. Figure
1, Figure 2 shows the values χ̂B(k), k = 1 : 4095 for µ(B) = 0.25, 0.75, respectively. We used Equation 3.5 to estimate
α(B, F ), where χF is the Thue-Morse minimal sequence, by α(B, F4095), where F4095 = [0, 4095] ∩ F. For µ(B) = 0.25,
the computed value of α(B, F4095) is the negative number −1.2261× 10−14 due to the fact that the true value is smaller
than machine precision. For µ(B) = 0.75 the computed value of α(B, F4095) is 0.085512 which is 385 trillion times
machine precision! What explains this difference? We proved in ([12],Corollary 1.1) that if B(B, F ) is a Riesz pair then
D+(F ) ≤ µ(B) where the upper Beurling density

D+(F ) = lim
k→∞

max
a∈R

|F ∩ (a, a + k)|

k
. (3.6)

Here |F ∩ (a, a+k)| is the cardinality of F ∩ (a, a+k). This result was based on a deep result of Landau ([11], Theorem 3)

in a form discussed by Olevskii and Ulanovskii [14]. Clearly, if χF is the Thue-Morse minimal sequence then D+(F ) = 1
2
,

so for µ(B) < 1
2
, α(B, F ) = 0. This means that trigonometric polynomials having frequencies in F can have their squared

moduli localized on the set T\B. The coefficients of the most localized polynomial having frequencies in the finite set Fn

are the entries of the eigenvectors corresponding to the eigenvalue α(B, Fn) of the restricted matrix. It is an open question

if this happens for µ(B) ≥ 1
2
. The function in Figure 1 displays more intermittency than the function in Figure 2 because

the gaps are larger. Perhaps this difference in intermittency can be used to explain the immense difference in the α values.

We used Equation 3.5 to compute α(B, Fn) as a function of L = log2 n for ten ternary Cantor sets B with µ(B) ∈
{ 0.5, 1.5, 2.5, ...,9.5 }. Figure 3 shows the values of α(B, Fn) and Figure 4 shows the values of log α(B, Fn) for each of

the ten sets. Both plots show that for µ(B) < 1
2
,

α(B, F ) = lim
L→∞

α(B, Fn) = 0.

However, Figure 1 shows that for µ(B) > 1
2
, α(B, Fn) decreases as a function of L much slower and Figure 2 suggests

that for µ(B) > 1
2
, the sequence may not converge to 0 because logα(B, Fn) appears to be a convex function of L. If

this is the case then for µ(B) > 1
2
, α(B, F ) > 0 and {F, 1 + F, 2 + F} is a Riesz cover for B.

Suggestions for Further Research Theorem 3.2 shows that characterization of the set of extreme points Se(F )

in the spectral envelopes of integer subsets F such that χF is a minimal sequence is crucial to understanding the FCE.
For such a set F consider the dynamical system (X(F ), σ) where X(F ) is the orbit closure of χB. Then X(F ) has at
least one shift invariant ergodic probability measure ζ.

Remark 3.3. If χF is the Thue-Morse minimal sequence then ζ is unique [8].

Define X1(F ) = { b ∈ X(F ) : b(0) = 1 }. For g ∈ L2(X, ζ, σ) define σg(x) = g(σ x). Then the sequence (σj g, g) is
positive definite so by the Herglotz theorem there exists a positive measure νg ∈ M(T) such that νg(ej) = (σj g, g), j ∈ Z.
Define the set

Σ(F, ζ) = { νg : g ∈ L2(X, ζ), support(g) ⊆ X1(F ) }.

The Birkhoff ergodic theorem can be used to show that Σ(F, ζ) ⊂ S(F ). This fact, together with the fact that Q(F )
contains no extreme points, suggests research to answer the

Question 3.4. Is Se(F ) ⊆ Σ(F, ζ)?

The fact that generalized characters play a crucial role in characterizing the structure of the Banach algebra M(T)
suggests research to investigate their utility for characterizing spectral envelopes.

Acknowledgements The author would like to thank his colleagues Denny Leung and Tang Wai Shing for helpful
discussions about descriptive set theory and functional analysis.
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Figure 2. alpha(B,F), mu(B) = 0.05 : 0.1 : 0.95, as a function of (1 + log2 size F)
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