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BRAUER GROUP OF MODULI OF PRINCIPAL BUNDLES OVER A

CURVE

INDRANIL BISWAS AND YOGISH I. HOLLA

Abstract. Let G be a semisimple linear algebraic group over the field C, and let C be
an irreducible smooth complex projective curve of genus at least three. We compute the
Brauer group of the smooth locus of the moduli space of semistable principal G–bundles
over C. We also compute the Brauer group of the moduli stack of principal G–bundles
over C.

1. Introduction

The base field will always be C. Let Y be a smooth quasiprojective variety or more

generally a smooth algebraic stack. Using the isomorphism Cr⊗Cr′ = Crr′ , we have a ho-

momorphism PGL(r,C)×PGL(r′,C) −→ PGL(rr′,C). So a principal PGL(r,C)–bundle

P and a principal PGL(r′,C)–bundle P′ on Y together produce a principal PGL(rr′,C)–

bundle on Y , which we will denote by P ⊗ P′. The two principal bundles P and P′ are

called equivalent if there are vector bundles V and V ′ on Y such that the principal bundle

P ⊗ P(V ) is isomorphic to P′ ⊗ P(V ′). The equivalence classes form a group which is

called the Brauer group of Y . The addition operation is defined by the tensor product,

and the inverse is defined to be the dual projective bundle. The Brauer group of Y will

be denoted by Br(Y ).

Let C be an irreducible smooth complex projective curve such that genus(C) ≥ 3. Fix

a line bundle L over C of degree d. Let M(r, L) be the moduli space of stable vector

bundles E over C of rank r with
∧r E = L. The Brauer group Br(M(r, L)) is cyclic of

order g.c.d.(r , degree(L)) [BBGN]. A generator for Br(M(r, L)) is obtained by restricting

the universal projective bundle over C × M(r, L) by fixing a point of C. The Brauer

group of the smooth locus of stable principal PGL(r,C)–bundles over C was computed in

[BHg].

Let G be a semisimple linear algebraic group. Let MC(G) be the moduli stack of

principal G–bundles on C. The coarse moduli space of semistable principal G–bundles

on C will be denoted by M ss
C (G). Let

MC(G)
rs ⊂ M ss

C (G)

be the smooth locus. It is known thatMC(G)
rs coincides with the locus of regularly stable

principal G–bundles on C (a stable principal G–bundle EG is called regularly stable if
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2 I. BISWAS AND Y. I. HOLLA

the natural homomorphism from the center of G to the group of automorphisms of EG is

surjective). Our aim here is to compute the Brauer groups of MC(G)
rs and MC(G).

We prove the following theorem (see Theorem 4.1 and Corollary 6.5):

Theorem 1.1. Assume that G is semisimple and simply connected. Then the Brauer

group of MC(G) is trivial, and the Brauer group of Br(MC(G)
rs) is the group of characters

Z∨
G of the center ZG ⊂ G.

If G is not simply connected, then the Brauer group of the moduli stack MC(G) is

computed in Theorem 7.4 (in conjunction with Proposition 7.3). The Brauer group of

MC(G)
rs is computed in Theorem 6.3.

We will describe a corollary of these computations.

Let ZG̃ be the center of the universal cover G̃ of G. Define

Ψ(G) ⊂ Hom(ZG̃ ⊗Z ZG̃ ,Q/Z)

as in (6.6). Given an element δ ∈ π1(G) ⊂ ZG̃, define

evδG : Ψ(G) −→ Hom(ZG̃/π1(G) ,Q/Z)

as in (6.7). The connected components of MC(G) parametrized by π1(G). For any

δ ∈ π1(G), let MC(G)
δ ⊂ MC(G) be the connected component corresponding to δ. Let

MC(G)
δ,rs be the smooth locus of the connected component, corresponding to δ, of the

moduli space M ss
C (G).

We prove the following (see Corollary 7.6):

Theorem 1.2. There is a short exact sequence

0 −→ Coker(evδG) −→ Br(MC(G)
δ,rs) −→ Br(MC(G)

δ) −→ 0 .

The Brauer groups for the moduli spaces of principal bundles with a classical group as

the structure group are computed in Section 8.

We note that among the exceptional groups, G2, F4 and E8 have the property that the

center is trivial. Therefore, from Theorem 1.1 it follows that for these three groups

Br(MC(G)) = 0 = Br(MC(G)
rs) .

2. Preliminaries

As mentioned before, the base field is C. For an algebraic stack Y , the torsion

group H2
ét(Y, Gm)torsion is called the cohomological Brauer group of Y . A theorem of

Grothendieck says that if Y is a smooth variety, then H2
ét(Y, Gm) is torsion [Mi]. If Y is

a quasiprojective variety, then a theorem of Gabber says that H2
ét(Y, Gm)torsion coincides

with the Brauer group defined by the Morita equivalence classes of Azumaya algebras

over Y .

As mentioned in the introduction, we are interested in computing the Brauer groups

of the moduli stack of principal G–bundles and the smooth locus of the moduli space of
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semistable principal G–bundles over a smooth projective curve. Since the smooth locus

of the moduli space is a smooth quasiprojective variety, the above comments imply that

all the three groups associated to it coincide. Similarly, since the moduli stack is smooth

all the three groups associated to it also coincide.

Proposition 2.1. Let Y be an algebraic stack satisfying the following two properties:

• any class in H2(Y, Z) is represented by a holomorphic line bundle on Y , and

• each holomorphic line bundle on Y admits an algebraic structure.

Then there are isomorphisms

H2
ét
(Y,Gm)torsion ∼= H2(Y, O∗

X,an)torsion
∼= H3

B(Y, Z)torsion .

Proof. For finite coefficients, we have a comparison isomorphism between the étale coho-

mology and the Betti cohomology. Let µn ⊂ C∗ be the group of n–th roots of 1. By the

Kummer sequence, any element in H2
ét(Y, Gm)torsion (respectively, H2

an(Y, O∗
Y,an)torsion) is

represented by a class in H2
ét(Y, µn) (respectively, H

2(Y, Z/nZ)) for some n. This implies

the surjectivity of the homomorphism

H2
ét(Y, Gm)torsion −→ H2(Y, O∗

Y,an)torsion ,

while its injectivity follows from the assumptions by a straight forward diagram chase.

The second isomorphism in the proposition is derived using the exact sequence

0 −→ Z −→ OY,an −→ O∗
Y,an −→ 0

associated to the homomorphism f 7−→ exp(2π
√
−1f). �

3. The ind–Grassmannian and LC(G)

Let G be a connected semisimple linear algebraic group over C. Let

G̃ −→ G

be the universal cover. The fundamental group of G will be denoted by π1(G); being

abelian π1(G) is independent of the choice of base point in G. Let

L(G) := G((t)) and L+(G) := G[[t]]

be the loop group and its naturally defined subgroup scheme respectively. Let

QG := L(G)/L+(G)

be the ind–Grassmannian; it is a direct limit of projective integral varieties.

Let C be an irreducible smooth complex projective curve with genus(C) ≥ 3. Fix a

base point p0 ∈ C. Let

LC(G) := G(O(C − p0)) ⊂ L(G)

be the sub–ind–group scheme.
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Let MC(G) be the moduli stack of principal G–bundles on C. The “Uniformization

theorem” produces a canonical isomorphism

LC(G)\QG
∼−→ MC(G)

[Fa], [Te], [BLS].

Proposition 3.1. The cohomological Brauer group H2
ét
(QG, O∗

QG
)torsion of QG is trivial.

Proof. We begin by recalling a lemma from [BLS] (see [BLS, p. 185, Lemma 1.2]).

Lemma 3.2 ([BLS]). The quotient map L(G) −→ QG induces a bijection

π1(G) = π0(L(G)) −→ π0(QG) .

Each connected component of QG is isomorphic to QG̃, where G̃ is the universal cover of

G.

In view of Lemma 3.2, it is enough to prove the proposition for simply connected groups.

First assume that the group G is almost simple and simply connected.

Fix a Borel subgroup B ⊂ G together with a maximal torus T ⊂ B of G. The

homomorphism of rings C[[t]] −→ C defined by t 7−→ 0 induces a homomorphism

L+(G) −→ G. Let

B ⊂ L+(G)

be the inverse image of B under this homomorphism. We recall that B is called the

standard Borel subgroup of L(G) associated to B. Let N(T ) be the normalizer of T in

G. Let

W̃ := Mor(C∗, N(T ))/T

be the affine Weyl group containing the Weyl group W = N(T )/T as a subgroup (the

constant morphisms from C∗ to N(T ) make N(T ) a subgroup of Mor(C∗, N(T ))).

The ind–Grassmannian QG has the Bruhat decomposition

QG =
⋃

w∈W̃/W

Bw′L+(G)/L+(G) ,

where w′ ∈ W̃ is any chosen representative of w. The quotient space W̃/W has a partial

ordering inherited from the Bruhat partial ordering of the affine Weyl group W̃ . This

makes QG a direct limit of projective varieties {Qw}w∈W̃/W , where

(3.1) Qw :=
⋃

v≤w

BvL+(G)/L+(G) .

For any w ∈ W̃/W , consider the length of every element in the coset w. The smallest

length among them will be denoted by ℓ(w).

The generalized Schubert variety Qw in (3.1) has a Zariski open subset defined by

BwL+(G)/L+(G) which is biregularly isomorphic with the affine space Aℓ(w), where ℓ(w)

is defined above. As a result, Qw equipped with the analytic topology has the structure
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of a CW complex with only even dimensional cells. Hence H3(Qw, Z) = 0. This implies

that

H3(QG, Z) = 0

because QG is a direct limit of these varieties Qw. In particular,

(3.2) H3(Qw, Z)torsion = 0 = H3(QG, Z)torsion .

Similarly, we have

(3.3) H1(QG, Z) = 0 .

Both Qw and QG satisfy the two assumptions in Proposition 2.1 [KN, p. 157, Lemma

2.2]. Therefore, the proposition follows from Proposition 2.1 and (3.2) under the assump-

tion that G is almost simple and simply connected.

In the general case where G is semisimple and simply connected, write G as a product

G =

s∏

k=1

Gi ,

where each Gi is almost simple and simply connected. This enables us to write the

ind–Grassmannian QG as a product

QG =

s∏

k=1

QGi
,

where QGi
is the ind–Grassmannian for Gi. In view of (3.2) and (3.3) for Gi, from

the Künneth decomposition of H3(
∏s

k=1QGi
, Z) we conclude that H3(QG, Z)torsion = 0.

Now the proof of the proposition is completed using Proposition 2.1. �

3.1. Some properties of LC(G). Let G be semisimple and simply connected. The

topological properties of the ind–group scheme LC(G) that we need can be derived from

the following theorem of Teleman ([Te, p. 8, Theorem 1]):

Theorem 3.3 ([Te]). The natural map LC(G) −→ C∞(C \ {p0}, G) defines a homotopy

equivalence. Hence the homotopy type of LC(G) with the analytic topology is that of

G× ΩG2g.

The connectedness and simply connectedness of LC(G) follow immediately from Theo-

rem 3.3.

Proposition 3.4. Let G be semisimple and simply connected. Let BLC(G) be the classi-

fying space for LC(G). Then

(1) H1(BLC(G), Z) = 0,

(2) H2(BLC(G), Z/nZ) = 0, and

(3) H2(BLC(G), C
∗) = 0.



6 I. BISWAS AND Y. I. HOLLA

Proof. The group H1(BLC(G), Z) parametrizes the space of all continuous homomor-

phisms from LC(G) to Z. So H1(BLC(G), Z) is trivial by the connectedness of LC(G).

The connectedness of LC(G) implies that π1(BLC(G)) = π0(LC(G)) = 0, and the

simply connectedness of LC(G) implies that π2(BLC(G)) = π1(LC(G)) = 0. Hence (2)

and (3) of the proposition follow from the Hurewicz’s theorem. �

4. Brauer group of moduli: G is simply connected

Theorem 4.1. Let G be simply connected and semisimple. Then Br(MC(G)) = 0.

Proof. The descent spectral sequence for the principal LC(G)–bundle QG −→ MC(G)

gives the following exact sequence in the analytic topology

(4.1) H1(BLC(G), C
∗) →֒ H1(MC(G), O∗)

θ−→ H0(BLC(G), H
1(QG,O∗))

−→ H2(BLC(G), C
∗) −→ kernel(H2(MC(G), O∗) −→ H0(BLC(G), H

2(QG,O∗)))

−→ H1(BLC(G), H
1(QG,O∗)) .

Let s be the number of almost simple factors in the product decomposition of G. We

have H2
ét(QG, O∗

QG
)torsion = 0 by Proposition 3.1. Also, H1(QG, O∗) ∼= Zs [BLS, p. 186,

Lemma 1.4]. Therefore, from Proposition 3.4(1),

(4.2) H0(BLC(G), H
2(QG,O∗

QG
)) = 0 = H1(BLC(G), H

1(QG,O∗
QG

)) .

The homomorphism of the Picard groups

(4.3) θ : Pic(MC(G)) −→ Pic(QG) ∼= Zs

in (4.1) has a finite cokernel [BLS, p. 187, Proposition 1.5], in particular, this cokernel

is a torsion group. Since H2(BLC(G), C
∗) = 0 (see Proposition 3.4(3)), from (4.1) it

follows that θ in (4.3) is actually surjective. Now, using (4.2), from (4.1) we conclude that

H2(MC(G), O∗) = H2(BLC(G), C
∗) = 0.

Hence Br(MC(G)) = 0. �

Remark 4.2. It should be pointed out that the above arguments involving sheaves in

analytic topology can be replaced by an argument which uses only constant sheaves in Eu-

clidean topology. Using the exponential sequence, the Brauer group Br(X) for any X can

be expressed as the quotient of H2(X, C∗) by the image of H2(X, C). The isomorphism

now

H2(MC(G), C) ∼= H2(Q(G), C) ,

simplifies the terms in the descent spectral sequence associated to the constant sheaf C∗.

Let

ZG ⊂ G

be the center. Let M ss
C (G) be the coarse moduli space of semistable principal G–bundles

over C. The smooth locus of M ss
C (G) is the locus of regularly stable principal G-bundles

over C [BHf2, Corollary 3.6]. We recall that a principal G–bundle E is called regularly
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stable if E is stable, and the natural homomorphism ZG −→ Aut(E) is surjective (the

restriction to ZG of the action of G on E produces this homomorphism). Let

MC(G)
rs ⊂ MC(G)

be the open sub–stack defined by the regularly stable bundles [BHf1, Lemma 2.3]. Let

(4.4) p : MC(G)
rs −→ MC(G)

rs

be the morphism to the coarse moduli space, so MC(G)
rs is the moduli space of regularly

stable principal G–bundles over C.

Proposition 4.3. As before, G is semisimple.

(1) MC(G)
rs is an open sub–stack of the moduli stack MC(G) such that the comple-

ment is of codimension at least two.

(2) The morphism p in (4.4) defines a gerbe over MC(G)
rs banded by ZG.

Proof. See [Fa, Theorem II.6] or Theorem 2.4 of [BHf1] for a proof of the first part. The

second part is proved in Section 6 of [BHf1]. �

Let

(4.5) ψ ∈ H2(MC(G)
rs, ZG)

be the cohomology class defined by the gerbe in (4.4).

Let Z be a finite abelian group, and let

(4.6) α : M −→ M

be a gerbe banded by Z, where M is irreducible. Take any line bundle L over M. So L is

given by a functor LS from M(S) to the groupoid of line bundles on S for every C–scheme

S. In particular, LS defines for every object E in M(S) a group homomorphism

LS,E : AutM(S)(E) −→ AutOS
(LS(E)) = Γ(S,O∗

S) .

The compatibility conditions ensure that the composition

Z(S)
ιE−→ AutM(S)(E)

LS,E−→ Γ(S,O∗
S)

defines a 1–morphism Z×M −→ Gm×M over M. AsM is connected and Hom(Z,Gm)

is discrete, this 1–morphism is the pullback of some character χ : Z −→ Gm. We call χ

the weight of L. (See [BHf1, Section 6].)

Lemma 4.4. Let β ∈ H2(M, Z) be the class of the gerbe in (4.6). Then there is an

exact sequence

0 −→ Pic(M)
α∗

−→ Pic(M)
wt−→ Hom(Z, Gm)

β∗−→ Br(M)
α∗

−→ Br(M) ,

where β∗ takes a homomorphism η : Z −→ Gm to the image of β under the homomor-

phism H2(M, Z) −→ H2(M, Gm) induced by η.
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Proof. This is the Leray spectral sequence for O∗
M −→ M α−→ M . The only points to

note are that

α∗O∗
M = O∗

M

and R1α∗O∗
M is the constant sheaf Hom(Z, Gm). �

Theorem 4.5. There is an exact sequence

0 −→ Zs
p∗−→ Zs

wt−→ Hom(ZG, Gm)
ψ∗−→ Br(MC(G)

rs) −→ 0 ,

where s is the number of almost simple factors in G, p∗ is the homomorphism of Picard

groups induced by p in (4.4), wt is the weight map defined above, and ψ∗ is constructed

using the class ψ in (4.5).

Proof. From Theorem 4.1 and Proposition 4.3(1) it follows that Br(MC(G)
rs) = 0.

Therefore, Lemma 4.4 applied to the gerbe in (4.4) produces the exact sequence. �

5. The twisted case

In this section the semisimple group G is assumed to be simply connected. But the

moduli stack and moduli space will be twisted.

Fix a maximal torus T of G. As before, the center of G will be denoted by ZG. Let σ

be the rank of G, so σ is the dimension of T .

As before, for any m, let µm ⊂ C∗ be the group of all m–th roots of 1. We fix an

isomorphism

(5.1) ρ : T −→ (Gm)
σ with ρ(ZG) =

σ∏

i=1

µri .

Using this isomorphism, the homomorphism

(Gm)
σ −→ (Gm)

σ

defined by
∏σ

i=1 zi 7−→
∏σ

i=1(zi)
ri produces an isomorphism

T/ZG
∼−→ T .

Let C(G) denote the quotient of G× T by ZG for the diagonal action. The projections

q : C(G) −→ T/ZG = T and p : C(G) −→ G/ZG

induce morphisms of stacks

(5.2) det : MC(C(G)) −→ MC(T )

and

(5.3) MC(C(G)) −→ MC(G/ZG) .

For an element d = (d1, . . . , dσ) ∈ Zσ, let OC(dp) denote the rational point of MC(T )

defined by (OC(d1p0), . . . ,OC(dσp0)). Define

(5.4) Md

C(G) := det−1(OC(dp)) ⊂ MC(C(G)) ,
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where det is the morphism in (5.2). Let

(5.5) Φ : Md

C(G) −→ MC(G/ZG)

be the restriction of the morphism in (5.3).

Take any δ ∈ ZG. Consider

ρ(δ) = (a1 , · · · , aσ) ∈ (Gm)
σ ,

where ρ is the homomorphism in (5.1). Take d ∈ Zσ such that there is an element

r := (r1, . . . , rσ) ∈ Zσ

satisfying the condition that exp(−2π
√
−1di/ri) = ai for every i ∈ [1 , σ].

The connected components of MC(G/ZG) are parametrized by π1(G/ZG) = ZG (see

Lemma 3.2). Let

MC(G/ZG)
δ ⊂ MC(G/ZG)

be the connected component corresponding to the element δ. Let

Mδ
C(G) := Φ−1(MC(G/ZG)

δ) ⊂ Md

C(G)

be the open and closed sub–stack of Md

C(G), where Φ is the morphism in (5.5). This

Mδ
C(G) is called the twisted moduli stack (see [BLS, Section 2]).

The restriction

Φ|Mδ
C
(G) : Mδ

C(G) −→ MC(G/ZG)
δ

is surjective.

The group G/ZG will also be denoted by Gad. The connected components of L(Gad)

are parametrized by ZG (see Lemma 3.2). Let

(LGad)
δ ⊂ L(Gad)

be the connected component corresponding to δ.

The following proposition is proved in [BLS] (see [BLS, p. 189, (2.4)]):

Proposition 5.1 ([BLS]). For any δ ∈ ZG, and any ζ ∈ (LGad)
δ(C), there is a natural

isomorphism

Mδ
C(G)

∼= ζ−1LC(G)ζ\QG̃ .

Proposition 5.1 implies that the of proof of Theorem 4.1 goes through in this twisted

case. So we have the following theorem:

Theorem 5.2. For any δ ∈ ZG, the group Br(Mδ
C(G)) is trivial.

There is a coarse moduli space M δ
C(G)

ss for the open sub–stack of Mδ
C(G) defined

by the locus of semistable principal C(G)–bundles. There is also an open subscheme

M δ
C(G)

rs ⊂ M δ
C(G)

ss corresponding to the regularly stable principal C(G)–bundles.

Proposition 5.3. The codimension of the complement of Mδ
C(G)

rs in Mδ
C(G) is at least

two.

The smooth locus of M δ
C(G)

ss is M δ
C(G)

rs.
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Proof. Let Mδ
C(G/ZG)

rs be the sub–stack of Mδ
C(G/ZG) corresponding to the regularly

stable principal C(G)–bundles; that it is a sub–stack follows from [BHf1, Lemma 2.3]. By

[Fa, Theorem II.6] or [BHf1, Theorem 2.4] it follows that the complement of Mδ
C(G/ZG)

rs

in Mδ
C(G/ZG) has codimension at least two. Taking inverse image for the morphism Φ,

the first part of the proposition follows.

The proof that the smooth locus of M δ
C(G)

ss is M δ
C(G)

rs is identical to that of [BHf2,

Corollary 3.6]. �

The morphism

(5.6) p : Mδ
C(G)

rs −→ M δ
C(G)

rs

defines a gerbe banded by ZG. Let

(5.7) ψ ∈ H2(M δ
C(G)

rs, ZG)

be the class of this gerbe.

We now have the following moduli space version of Theorem 5.2.

Theorem 5.4. There is an exact sequence

0 −→ Pic(M δ
C(G)

rs)
p∗−→ Pic(Mδ

C(G)
rs)

wt−→ Hom(ZG,Gm)
ψ∗−→ Br(M δ

C(G)
rs) −→ 0 ,

where p is the morphism in (5.6), wt is the weight defined earlier, and ψ∗ takes a homo-

morphism η : ZG −→ Gm to the image of ψ under the homomorphism H2(M, Z) −→
H2(M, Gm) induced by η.

6. Brauer group of moduli: G is not simply connected

In this section we compute the Brauer group of the moduli stack and the smooth locus

of the moduli space of principal G-bundles when the group G is not necessarily simply

connected.

Let G̃ be the universal cover of the semisimple group G. The fundamental group π1(G)

is a subgroup of the center

ZG̃ ⊂ G̃ .

Fix a maximal torus T̃ ⊂ G̃. We fix an isomorphism

ρ : T̃ −→ (Gm)
σ with ρ(π1(G)) =

σ∏

i=1

µri .

There is a canonical isomorphism π0(MC(G)) = π0(L(G)) ∼= π1(G). Take any δ ∈
π1(G). Let

L(G)δ ⊂ L(G) and MC(G)
δ ⊂ MC(G)

be the connected components corresponding to δ.

The above notation MC(G)
δ for a connected component should not be confused with

the previous notation Mδ
C(G) for a twisted moduli stack. It should also be clarified that
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the twisted moduli stack (or the twisted moduli space) is defined only for simply connected

groups.

The following proposition is proved in [BLS]; see [BLS, p. 186, Proposition 1.3].

Proposition 6.1. Take any δ ∈ π1(G). For any ζ ∈ L(G)δ(C), there is a natural

isomorphism

MC(G)
δ ∼= ζ−1LC(G)ζ\QG̃ .

Let

(6.1) qδG : QG̃ −→ MC(G)
δ

be the quotient morphism in Proposition 6.1.

Let

(6.2) q̂δ
G̃

: QG̃ −→ Mδ
C(G̃)

be the quotient morphism in Proposition 5.1. There is a natural morphism of stacks

(6.3) γ : Mδ
C(G̃) −→ MC(G)

δ .

This morphism γ takes the semistable locus inMδ
C(G̃) to the semistable locus inMC(G)

δ.

Hence it induces a morphism

(6.4) γ1 : M δ
C(G̃) −→ MC(G)

δ

between the corresponding coarse moduli spaces of semistable bundles.

Let

MC(G)
δ,rs ⊂ MC(G)

δ

be the smooth locus; we recall that MC(G)
δ,rs parametrizes the regularly stable bundles

in MC(G)
δ (see [BHf2, Corollary 3.6]). Define the finite group

Γ := H1(C, π1(G)) .

Lemma 6.2. (1) The morphism qδG in (6.1) factors as follows:

QG̃

q̂δ
G̃−→ Mδ

C(G̃)
γ−→ MC(G)

δ ,

where q̂δ
G̃
and γ are defined in (6.2) and (6.3) respectively.

(2) The restriction of the morphism γ1 in (6.4) to the Zariski open subset

γ−1
1 (MC(G)

δ,rs) ⊂ M δ
C(G̃)

rs

defines a principal Γ–bundle over MC(G)
δ,rs.

Proof. See [BLS, p. 189, (2.4)]. �

We can apply the Serre spectral sequence to the principal Γ–bundle in Lemma 6.2 and

get the following:
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Theorem 6.3. The Brauer group computation for MC(G)
δ,rs and M δ

C(G̃)
rs are related by

the following exact sequence:

H1(Γ, C∗) →֒ H1(MC(G)
δ,rs, O∗) −→ H1(M δ

C(G̃)
rs, O∗)

−→ H2(Γ, C∗) −→ Br(MC(G)
δ,rs) −→ Br(M δ

C(G̃)
rs) −→ 0 .

Let MC(G)
δ,rs be the open sub–stack of MC(G)

δ defined by the regularly stable bun-

dles. The morphism to the coarse moduli space

(6.5) p : MC(G)
δ,rs −→ MC(G)

δ,rs

is a gerbe banded by ZG, and we have the induced homomorphism

p∗ : Br(MC(G)
δ,rs) −→ Br(MC(G)

δ) .

Now the exact sequence in Lemma 4.4 can be used in relating the Brauer group of the

smooth locus of the moduli space to the Brauer group of the stack. The kernel of the

above homomorphism p∗ can be computed using a result of [BHf1] which will be recalled

below.

Let Ψ ⊂ Hom(ZG̃ ⊗Z ZG̃ ,Q/Z) be the abelian group of all symmetric bilinear maps

b : ZG̃ × ZG̃ −→ Q/Z

that come from an even W–invariant symmetric bilinear form

Λcoroots × Λcoroots −→ Z .

Let

(6.6) Ψ(G) ⊂ Ψ

be the subgroup of elements b such that b(π1(G)× π1(G)) = 0.

Given an element δ ∈ π1(G), let

(6.7) evδG : Ψ(G) −→ Hom(ZG̃/π1(G) ,Q/Z)

be the evaluation map that sends any b to b(δ,−) : ZG −→ Q/Z.

The following proposition (Proposition 7.4 in [BHf1]) computes the weight map.

Proposition 6.4. The kernel of the homomorphism

p∗ : Br(MC(G)
δ,rs) −→ Br(MC(G)

δ)

is given by the Coker(evδC).

This and Theorem 4.5 together imply the following:

Corollary 6.5. If G is almost simple and simply connected, then Br(MC(G)
rs) = Z∨

G.
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7. A direct approach

In this section we pursue the earlier spectral sequence argument.

Let G̃ −→ G be the universal cover with G semisimple. The kernel of this homomor-

phism is identified with π1(G). Let

Γ := H1(C, π1(G))

be the finite group.

Lemma 7.1. There is a short exact sequence

0 −→ LC(G̃)/π1(G) −→ LC(G) −→ Γ −→ 0 .

The quotient space LC(G̃)/π1(G) has the homotopy type of G× Ω(G̃)2g−1

Proof. The short exact sequence is established in [BLS, p. 185, (1.2b)]. The statement

on homotopy type is a consequence of the fact that LC(G̃) itself has the homotopy type

of G̃× Ω(G̃)2g−1 (see Theorem 3.3). �

Lemma 7.2. We have

(1) H1(B(LC(G̃)/π1(G)), C
∗) = 0, and

(2) H2(B(LC(G̃)/π1(G)), C
∗) = π1(G)

∨.

Proof. Since LC(G̃) is connected (see Lemma 3.2),

π1(B(LC(G̃)/π1(G)) = π0(LC(G̃)/π1(G)) = 0 .

Hence the first statement follows.

To prove the second statement, consider the product decomposition

B(LC(G̃)/π1(G)) = BG× B(ΩG̃)2g−1 ,

and apply the Künneth decomposition to it. The individual cohomology computations are

done as follows. We have H1(BG, C∗) = 0 and H1(B(ΩG̃), C∗) = 0 because π1(BG) =

π0(G) = 0; also,

π1(B(ΩG̃)) = π0(ΩG̃) = π1(G̃) = 0 .

These and Hurewicz isomorphism imply that

H2(B(ΩG̃), C∗) ∼= Hom(π2(B(ΩG̃)), C∗) and H2(BG, C∗) ∼= Hom(π2(BG), C
∗) .

Since π2(B(ΩG̃)) = π1(ΩG̃) = π2(G̃) = 0, and π2(BG) = π1(G), the second statement

in the proposition follows. �

As before, Γ := H1(C, π1(G)). The following is a generalization of Proposition 3.4.

Proposition 7.3. With the above notation,

(1) H1(BLC(G), Z) = 0, and

(2) there is a short exact sequence

(7.1) 0 −→ H2(Γ, C∗) −→ H2(BLC(G), C
∗)) −→ π1(G)

∨ −→ 0 .
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Proof. The first part follows from the fact that

π1(BLC(G)) = π0(LC(G)) = Γ

is a finite group.

For the second part we use Lemma 7.1 to realize the space B(LC(G̃)/π1(G)) as a

principal Γ–bundle over BLC(G). More precisely,

B(LC(G̃)/π1(G)) = (ELC(G))/(LC(G̃)/π1(G)) −→ ELC(G)/LC(G) = BLC(G) .

The Serre spectral sequence gives the following exact sequence

H0(Γ, H1(B(LC(G̃/π1(G))),C
∗)) −→ H2(Γ, C∗) −→ Ker(H2(BLC(G),C

∗) →

H0(Γ, H2(B(LC(G̃/π1(G))),C
∗))) −→ H1(Γ, H1(B(LC(G̃/π1(G))),C

∗)) .

By Lemma 7.2, this reduces to the one in the lemma. �

The analogue of Theorem 4.1 for a general semisimple group is the following.

Theorem 7.4. For any δ ∈ π1(G), the following exact sequence computes the Brauer

group of the moduli stack of principal G-bundles over C:

Pic(MC(G)
δ) −→ Pic(QG̃) −→ H2(BLC(G), C

∗) −→ Br(MC(G)
δ) −→ 0 ;

the above group H2(BLC(G), C
∗) is computed by the exact sequence in (7.1).

Proof. The proof of the theorem follows the same steps as in the proof of Theorem 4.1,

namely the descent spectral sequence and the cohomology computations — which are now

provided by Lemma 7.3. �

As the last step in the computation we prove the following.

Proposition 7.5. Consider the morphism p in (6.5). The induced homomorphism

p∗ : Br(M δ
C(G)

rs) −→ Br(Mδ
C(G)

rs) = Br(Mδ
C(G))

is surjective.

Proof. The above equality Br(Mδ
C(G)

rs) = Br(Mδ
C(G)) follows from Proposition 4.3.

Let G̃ −→ G be its universal covering homomorphism with the kernel π1(G). We get

an inclusion π1(G) ⊂ ZG̃, and the quotient is identified with ZG. We have a canonical

inclusion of

ZG →֒ LC(G̃)/π1(G) →֒ LC(G)

(see Lemma 7.1).

Let

Q1 ⊂ QG̃

be the open sub–stack defined by the inverse image of MC(G)
δ,rs under the morphism qδG

in (6.1). Choosing an element ζ ∈ (LG)δ(C) as in Proposition 6.1 we get an action of the

group LC(G)/ZG on Q1 whose quotient is MC(G)
δ,rs.
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Since the pullback of Q1 −→ MC(G)
δ,rs by p in (6.5) is identified with Q1 × Z(G), we

conclude, by taking cohomologies, that the diagram

H2(BLC(G), C
∗) −→ Br(MC(G)

δ,rs)x
x

H2(B(LC(G)/Z(G)), C
∗) −→ Br(MC(G)

δ,rs)

commutes. The upper horizontal arrow is surjective by Theorem 7.4. Hence to complete

the proof of the proposition it suffices to show that the homomorphism

H2(BLC(G), C
∗) −→ H2(B(LC(G)/Z(G)), C

∗)

is surjective. But this surjectivity follows by applying Lemma 7.3 to BLC(G) and

B(LC(G)/Z(G)) and observing that the terms in the exact sequences match. This com-

pletes the proof of the proposition. �

Combining the above proposition with Proposition 6.4 and Lemma 4.4 we get the

following.

Corollary 7.6. For any semisimple G, there is a short exact sequence

0 −→ Coker(evδG) −→ Br(MC(G)
δ,rs) −→ Br(MC(G)

δ) −→ 0 .

8. Computations for classical groups

8.1. The cases of SLn and PGLn. Take a positive integer n, and take any d ∈ [0 , n−1].

Fix a line bundle Ld on C of degree d. The twisted moduli stack Md
C(SLn) is the moduli

stack of vector bundles on C of rank n and determinant isomorphic to Ld. Theorem 4.1

and Theorem 5.2 imply that

Br(Md
C(SLn)) = 0

for any d.

By Proposition 6.4, the Brauer group of Md
C(SLn)

rs coincides with the cokernel of the

homomorphism evδG, and this can be computed to be Z/g.c.d.(n, d)Z by Table 1 of [BHf1].

This recovers the results of [BBGN].

For the case of PGLn, the exact sequence given in Theorem 6.3 or Theorem 7.4 repro-

duces Theorem 1 of [BHg].

The above approach also works for quotients of SLn by finite subgroups of ZSLn
.

8.2. The cases Sp2n and PSp2n. We have Br(Md
C(Sp2n)) = 0 for d = 0 , 1 by Theorem

4.1 and Theorem 5.2.

From Corollary 6.5 we have Br(M0
C(Sp2n)

rs) = Z/2Z.

Proposition 8.1. Let d = 1.

(1) Assume that n ≥ 3 is odd. Then

Br(M1
C(Sp2n)

rs) = 0 .
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The square of the generating line bundle on M1
C(Sp2n) descends to M1

C(Sp2n)
rs

and generates Pic(M1
C(Sp2n))

rs.

(2) Assume that n ≥ 3 is even. Then Br(M1
C(Sp2n)

rs) = Z/2Z. The generating line

bundle on M1
C(Sp2n) descends to M

1
C(Sp2n)

rs and generates Pic(M1
C(Sp2n)

rs).

Proof. This follows by the combination of exact sequences in Theorem 5.4 and Proposition

6.4. The cokernel of the homomorphism evδG is 0 when n is odd, and it is Z/2Z when n

is even by Table 1 of [BHf1]. �

Remark 8.2. Let M1
C(Sp2n)

ss be the twisted moduli space of semistable bundles. Propo-

sition 8.1 has the interesting consequence that M1
C(Sp2n)

ss is locally factorial for odd n,

and it is not locally factorial for even n. This is because the Picard group ofM1
C(Sp2n)

ss is

always generated by the descent of the square of the generating line bundle on M1
C(Sp2n)

(see [BLS, p. 209, Proposition 11.2(a)]).

Note that π1(PSp2n) = ZSp
2n
. For d ∈ π1(PSp2n), let MC(PSp2n)

d ⊂ MC(PSp2n)

be the connected component corresponding to d. Similarly,

MC(PSp2n)
d,rs ⊂ MC(PSp2n)

rs

is the connected component corresponding to d. The locusMC(PSp2n)
d,rs inMC(PSp2n)

d

of regularly stable bundles is an open sub–stack such that the complement is of codimen-

sion at least two. Hence the Brauer groups of MC(PSp2n)
d and MC(PSp2n)

d,rs coincide.

Define

Γ := H2(C, µ2)

(the 2–torsion points of the Jacobian of C).

Proposition 8.3. Let d = 0 or 1. If n ≥ 3 is odd, then Br(MC(PSp2n)
d) ∼= H2(Γ, C∗).

If n ≥ 3 is even, then Br(MC(PSp2n)
d) ∼= H2(Γ, C∗)⊕ Z/2Z.

Proof. Let Ud,rs ⊂ Md
C(Sp2n)

rs be the Zariski open subset defined by the inverse image of

MC(PSp2n)
d,rs. The codimension of the complement of Ud,rs is at least two. To prove the

proposition one can use both the approaches described used here. For example, Theorem

6.3 gives the following exact sequence

(8.1) 0 −→ Z/mZ −→ H2(Γ, C∗) −→ Br(MC(PSp2n)
d,rs) −→ Br(Ud,rs) −→ 0 ,

where m is the smallest power of the generating line bundle on Ud,rs which descends to

the moduli space MC(PSp2n)
d,rs.

Since Md
C(Sp2n)

rs is smooth, and the codimension of the complement of Ud,rs is at least

two, the homomorphisms

Pic(Md
C(Sp2n)

rs) −→ Pic(Ud,rs) and Br(Md
C(Sp2n)

rs) −→ Br(Ud,rs)

induced by the inclusion Ud,rs →֒ Md
C(Sp2n)

rs are isomorphisms.

When n is even, by [BLS, p. 191, Proposition 4.2], the generating line bundle on the

affine Grassmannian QSp
2n

descends all the way to MC(PSp2n)
d,rs. Hence in this case we

have m = 1 in (8.1).
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When d = 0 with n odd, the generating line bundle on the affine Grassmannian de-

scends toM0
C(Sp2n)

rs (see Proposition 8.1), and not toMC(PSp2n)
0,rs by [BLS, Proposition

4.2]. Hence in this case we have m = 2 in (8.1).

If d = 1 with n odd, the smallest power of the generating line bundle on the affine

Grassmannian which descends toM1
C(Sp2n)

rs andMC(PSp2n)
0,rs is 2 (again by Proposition

8.1 and [BLS, Proposition 4.2]). Hence m = 1 in this case.

If d = 1 with n is odd, then the above observation and Proposition 8.1 together imply

the proposition.

In the remaining cases we get a short exact sequence of the form

(8.2) 0 −→ (Z/2Z)b −→ Br(MC(PSp2n)
d,rs) −→ Z/2Z −→ 0 .

To complete the proof of the proposition it suffices to show that the sequence in (8.2)

splits. To show that the sequence splits, it is enough to prove that the generating Brauer

class of Md
C(Sp2n)

rs (when it is non–trivial) is the pull back of a two–torsion class in

Br(MC(PSp2n)
d,rs).

Let Md
C(Sp2n)

rs ⊂ Md
C(Sp2n) be the sub–stack defined by the regularly stable bundles.

The Brauer group of Md
C(Sp2n)

rs (when it is non–trivial) is generated by the class of the

generic gerbe

(8.3) Md
C(Sp2n)

rs −→ Md
C(Sp2n)

rs

which is banded by µ2. The action of Γ = H2(C, µ2) on the moduli space Md
C(Sp2n)

rs

naturally lifts to define an action of Γ on the stack Md
C(Sp2n)

rs. The corresponding

quotient is a gerbe over MC(PSp2n)
d,rs = MC(PSp2n)

d,rs banded by µ2 whose pull back to

Md
C(Sp2n)

rs is the gerbe in (8.3). Consequently, the generating Brauer class ofMd
C(Sp2n)

rs

(when it is non–trivial) is the pull back of a two–torsion class in Br(Md
C(PSp2n)

rs). Hence

the exact sequence in (8.2) splits. �

8.3. The cases of Spinn, SOn and PSOn. The center ZSpinn of Spinn is Z/2Z when n

odd, and it is Z/4Z or Z/2Z× Z/2Z depending on whether n is of the form 4l + 2 or 4l.

Take any δ ∈ ZSpinn. Since the Dynkin index of the standard representation of Spinn in

SLn is 2, the Picard group of the twisted moduli stack Mδ
C(Spinn) is generated by the

Pffafian line bundle P whose square is the determinant bundle of cohomology.

By Theorem 4.1 and Theorem 5.2,

Br(Mδ
C(Spinn)) = 0 .

Proposition 8.4. (1) If δ ∈ ZSpinn is zero, then Br(M0
C(Spinn)

rs) = Z∨
Spinn

.

(2) Assume that n ≥ 4 is odd. Then Br(M1
C(Spinn)

rs) = Z/2Z. The Pffafian bundle

descends to M1
C(Spinn)

rs and generates the Picard group Pic(M1
C(Spinn)

rs).

(3) Assume that n = 4l+ 2 ≥ 8 and δ = 1 or 3 mod (4). Then Br(M δ
C(Spinn)

rs) =

0. The fourth power of the Pffafian descends to M δ
C(Spinn)

rs and it generates the

Picard group Pic(M δ
C(Spinn)

rs).



18 I. BISWAS AND Y. I. HOLLA

(4) Assume that n = 4l+2 ≥ 8 and δ = 2 mod (4). Then Br(M δ
C(Spinn)

rs) = Z/2Z.

The square of the Pffafian descends to M δ
C(Spinn)

rs generating Pic(M δ
C(Spinn)

rs).

(5) Assume that n = 4l ≥ 8 and δ 6= 0. Then Br(M δ
C(Spinn)

rs) = Z/2Z. The square

of the Pffafian descends to M δ
C(Spinn)

rs generating the Picard group.

Proof. In view of Proposition 6.4, this is a straightforward calculation using Table 1 in

[BHf1]. �

For the case of SOn, note that π1(SOn) ⊂ ZSpinn . For any δ ∈ π1(SOn), let

MC(SOn)
δ ⊂ MC(SOn)

be the connected component corresponding to δ. Similarly, let

MC(SOn)
δ,rs ⊂ MC(SOn)

rs

be the connected component corresponding to δ.

Define

Γ′ := H1(C, π1(SOn)
∨) .

Proposition 8.5. Let n ≥ 8. Take any δ ∈ π1(SOn).

(1) If δ = 0, then

Br(MC(SOn)
0,rs) = H2(Γ′, C∗)⊕ Z∨

Spinn
.

(2) If δ 6= 0, then Br(MC(SOn)
δ,rs) ∼= H2(Γ′, C∗)⊕ Z/2Z.

(3) We have Br(MC(SOn)
δ) ∼= H2(Γ′, C∗)⊕ Z/2Z.

Proof. The proof is very similar to that for Spn as done in Proposition 8.1.

For any δ ∈ π1(SOn), let

U δ,rs ⊂ M δ
C(Spinn)

rs

be the Zariski open subset given by the inverse image of MC(SOn)
δ,rs. The codimension

of the complement of U δ,rs inM δ
C(Spinn) is at least two. Now Theorem 6.3 gives the exact

sequence

(8.4) 0 −→ Z/mZ −→ H2(Γ′, C∗) −→ Br(MC(SOn)
δ,rs) −→ Br(U δ,rs) −→ 0 ,

where m is the smallest power of the generating line bundle on U δ,rs which descends to

MC(SO2)
δ,rs.

We will show that the integer m defined in (8.4) is 1. This amounts to showing that the

generating line bundle on M δ
C(Spinn)

rs descend to the quotient MC(SOn)
δ,rs = U δ,rs/Γ′.

If δ = 0, this follows from the existence of the Pffafian bundle.

Assume that δ 6= 0. We note that Proposition 8.4 gives the smallest power of the

Pffafian which descends to M δ
C(Spinn)

rs from the moduli stack Mδ
C(Spinn). Hence it

is enough to compute the power of the Pffafian on the moduli stack Mδ
C(Spinn) which

descends toMC(SOn)
δ,rs. To calculate this, we again use Proposition 6.4 and the Table 1 of
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[BHf1], and explicitly check that the power of the Pffafian which descends toMC(SOn)
δ,rs

coincide with the power that descends to M δ
C(Spinn)

rs.

Let

(8.5) 0 −→ H2(Γ′, C∗) −→ Br(MC(SOn)
δ,rs) −→ ZSpinn −→ 0 ,

be the exact sequence obtained from (8.4).

To conclude parts (1) and (2) of the proposition, we still need to show that the exact

sequence in (8.5) splits. The proof of this splitting is identical to the case for Spn; we

omit the details.

For the last part of the proposition, we use the existence of Pffafian to conclude that

the homomorphism

H2(BLC(SOn), C
∗) −→ Br(MC(SOn)

δ)

in Theorem 7.4 is an isomorphism. Now Proposition 7.3 gives an exact sequence

0 −→ H2(Γ′, C∗) −→ Br(MC(SOn)
δ) −→ Z/2Z −→ 0 .

This sequence splits by using the argument for splitting of the (8.5) and Proposition

7.5. �

For the case of PSO2n, The components of the moduli spaces are parametrized by the

center ZSpin
2n
. Since PSO2n is of adjoint type, the Brauer groups of MC(PSO2n)

δ,rs and

MC(PSO2n)
δ can be identified as before. Define

Γ1 := H1(C, Z∨
Spin

2n
) and B = H2(Γ1, C

∗) .

Using the above methods and description of the Picard and the Brauer groups as in

Proposition 8.4 and [BLS, Proposition 5.5] we get the following proposition.

Proposition 8.6. Let n ≥ 4. We have Br(MC(PSO2n)
δ,rs) = B/A2n,δ ⊕ Z∨, where the

groups A2n,δ is computed as follows: A4n,δ = Z/2Z (respectively, 0) if δ = 0 (respectively,

6= 0), and A4n+2,δ = Z/4Z (respectively, Z/2Z) if δ is 0 mod (4) (respectively, 2 mod (4)),

and A4n+2,δ = 0 otherwise.

There is a remaining classical group Ω4n for n ≥ 3 defined by taking quotient of Spin4n

by a central subgroup of order 2 which is not the one which defines SO4n. There are two

choices for such a sub-group and they define isomorphic groups.

We can use the methods described above to determine the Picard and the Brauer groups

of the moduli spaces of Ω4n bundles and we get the following.

Proposition 8.7. (1) We have Br(MC(Ω4n)
δ,rs) ∼= H2(Γ, C∗) ⊕ Z/2Z. The square

of the Pffafian descends to MC(Ω4n)
δ,rs generating the Picard group.

(2) We have Br(MC(Ω4n)
δ) ∼= H2(Γ, C∗)⊕ A4n,d, where A4n,d = 0 if d = 0 or n is

odd, and A4n,d = Z/2Z otherwise. The Picard group of MC(Ω
δ
4n) is generated by

the descent of the Pffafian if n is even with d 6= 0, it is generated by the descent

of the square of the Pffafian in the other cases.
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The two exceptional groups E6 and E7 have nontrivial center. Using Theorem 7.4 and

Corollary 7.6 the Brauer group of the moduli for corresponding adjoint type groups can

be computed.
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