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Elementary construction of some Jenkins-Strebel differentials
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The behavior of trajectories of a regular quadratic differential on a Riemann surface is chaotic

but in one case. When the critical graph of the foliation is compact, its complement is a finite set

of cylinders swept out by homotopic closed leaves. The existence of such differentials was proved

by Jenkins and Strebel yet in 1950-1960 [1, 2, 3]. Later a more simple proof was given by Wolf

[9]. Mentioned results are purely existence theorems and there are very few explicit constructions

of those differentials. See e.g. [5, 6] for one- parametric families of them. Of course, one should

not think that Jenkins-Strebel (or JS) differentials are somewhat exceptional. After all, they are

dense in the space of regular quadratic differentials. The purpose of this note is to give an explicit

multi-parametric construction for JS differentials on real algebraic curves. Roughly speaking, the

square of any real holomorphic abelian differential subjected to certain linear restrictions will be

a JS quadratic differential.

Let a compact genus g Riemann surface X admits an anticonformal involution J̄ which we also

call reflection. The components of the set of fixed points of the involution are smooth closed curves

known as real ovals [4]. The reflection J̄ acts naturally on the space of 1-homologies of the surface

and splits it into the subspaces corresponding to eigenvalues ±1 of operator J̄ :

R
2g ∼= H1(X,R) = H+

1 (X,R)⊕H−

1 (X,R), H±

1 (X,R) := (I ± J̄)H1(X,R). (1)

The elements C = J̄C of the subspace H+

1 (X) we call even cycles. Respectively, the elements

C = −J̄C of the subspace H−

1 (X) we call odd cycles. The subspaces of even and odd cycles

contain the full rank lattices of integer cycles H±

1 (X,Z) := H±

1 (M,R) ∩ H1(X,Z). For example,

the oriented real ovals of the surface (if any) are its even integer cycles.

The intersection index of cycles is a non-degenerate skew-symmetric form on the spaceH1(M,R).

The reflection J̄ changes the orientation in any intersection point of integer cycles, therefore

J̄C1 ◦ J̄C2 = −C1 ◦ C2, C1, C2 ∈ H1(M,R). (2)
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Now we easily see that the subspaces of even and odd cycles are lagrangian (i.e. the intersection

form vanishes in the subspaces), their dimensions are equal and therefore equal to g.

The space Ω1(X) ∼= Cg of holomorphic differentials on X contains the subspace of the so called

real differentials Ω1
R
(X) ∼= Rg, which become complex conjugate after the action of reflection:

J̄∗η := η, η ∈ Ω1
R
(X). The integration of real differentials along even (resp. odd) cycles give us

real (resp. pure imaginary) numbers:

∫
C

ξ =

∫
±J̄C

ξ = ±

∫
C

J̄∗ξ = ±

∫
C

ξ = ±

∫
C

ξ.

Lemma 1 The space (H−

1 (X,R))∗ ∼= R
g of real linear functionals over odd cycles is canonically

isomorphic to each of the following two spaces:

(i) H+

1 (X,R); (ii) Ω1
R
(X).

(i). In this case the functional is given by the intersection form. The non-degeneracy of this form

implies that an even cycle annihilating all odd cycles should be zero.

(ii). In this case the functional is given by the formula

〈η|C−〉 := i

∫
C−

η, C− ∈ H−

1
(X).

If real differential η annihilates all odd cycles, then all of its periods are real and therefore η = 0.

Remarks: 1) Usually, for the normalization of abelian differentials they take half of a canonical

basis in the homologies: A- cycles or B-cycles. From statement (ii) of the above lemma it follows

that one can use either even or odd cycles for this purpose once the surface admits a reflection. To

generalize this observation let us show that any g-dimensional lagrangian subspace of the homology

space may be used for the normalization. In other words, there exist a unique holomorphic differ-

ential on the surface X with given periods in the basis of the lagrangian subspace of homologies.

We choose the basis C1, C2, . . . , C2g in the space of real homologies of the curve X so that the

first g elements are in the given lagrangian subspace. We do not assume that this basis is either

canonical or even integer. Riemann bilinear identity holds:

0 ≤ ||η||2 = i

∫
X

η ∧ η = −i

2g∑
s,j=1

Fsj

∫
Cs

η

∫
Cj

η, (3)

where the matrix Fsj is the inverse of the intersection matrix Cs ◦Cj . If
∫
Cj

η = 0 for j = 1, . . . , g,

then the sum in the right-hand side contains the terms with s, j > g only. But in the latter case

Fsj = 0. Indeed, the intersection matrix has block 2 × 2 structure with zero g × g matrix in (1,1)

position. The inverse matrix has zero block of the same size in (2,2) position. We see that only

zero holomorphic differential has zero periods along all cycles of our lagrangian subspace.
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2)From the above lemma it follows that there is a 1-1 correspondence between even cycles C+

and real differentials η on the surface given by the rule:

i

∫
C

η = C+ ◦ C, ∀C ∈ H−

1 (X,R).

This correspondence is not Poincare duality as the latter equality is not true for even cycles C.

3) Let the surface X has k real ovals. The span of real ovals in the homology space has real

dimension k if the surface is not separating (i.e. the surface with real ovals removed is connected).

Otherwise the dimension is 1 less. We’ll show that the differentials corresponding to the points of

this linear span are JS when squared. Therefore we give a k or (k − 1) -parametric family of JS

differentials on a given surface X .

Figure 1: Function H(x) as a height function on the surface with real ovals removed.

Theorem 1 Let the integral of real holomorphic differential η along an odd cycle C− vanishes if

the intersection index of C− with any real oval is zero. Then the foliation η2 > 0 is Jenkens-Strebel.

Proof. Let us remove real ovals from the surface. In the remaining part(s) of the surface one

can correctly define the function

H(x) := Im

∫ x

∗

η, x ∈ X \ {real ovals}.

Indeed, if the closed path C does not intersect real ovals, then

2Im

∫
C

η = Im

∫
C−J̄C

η = 0,

because (C − J̄C) ◦ C+ = 2C ◦ C+ = 0, where C+ is any real oval.

This globally defined function H(x) is constant on the boundary components of the cut surface

and its level lines are the leaves of the foliation η2 > 0 – see Fig. 1.
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Example. Let us consider a hyperelliptic curve with real branchpoints. The span of real ovals

is the entire space of even cycles. Therefore, the square of any real holomorphic differential is JS.

For general real hyperelliptic curves the bases in the lattices of even and odd integer cycles are

described in [8]. This makes the condition of Theorem 1 being explicit.
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