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We present an information geometric analysis of quantum entanglement generated by ans-wave scattering
event between two minimum uncertainty Gaussian wave packets. We conjecture that the pre and post-collisional
quantum dynamical scenarios related to an elastic head-on collision are macroscopic manifestations emerging
from specific underlying microscopic statistical structures. Then we describe them by uncorrelated and corre-
lated Gaussian statistical models, respectively. This allows us to express the entanglement strength, quantified
by purity, in terms of scattering potential and incident particle energies. Furthermore, we show how the entan-
glement duration can be related to the scattering potentialand incident particle energies. Finally, we uncover a
quantitative relation between entanglement and information geometric complexity of motion.

PACS numbers: Probability Theory (02.50.Cw), Riemannian Geometry (02.40.Ky), Complexity (89.70.Eg), Entropy
(89.70.Cf), Entanglement Measures (03.67.Mn), Entanglement Production (03.67.Bg).

One of the most important features of composite quantum mechanical systems is their ability to become entangled [1, 2].
In general, quantum entanglement is described by quantum correlations among the distinct subsystems of the entire composite
quantum system. For such correlated quantum systems, it is not possible to specify the quantum state of any subsystem indepen-
dently of the remaining subsystems [1]. Apart from these remarks, the fundamental meaning of quantum entanglement is still a
widely debated issue [3].

From a conceptual point of view, the simplest and most realistic mechanism of generating entanglement between two particles
is via scattering processes [4, 5]. The two particles can become entangled as they approach each other as a consequence of
mutual interactions. For instance, for interaction potentials with a strong repulsive core, quantum interference between incident
and reflected waves can generate transient entanglement. After the collision, the two particles may still be entangled and share
forms of quantum information in the final scattered state. Quantum entanglement can also be generated during inelastic collisions
between the dissipative walls of a container and the quantumsystem confined within it [6]. Entanglement may also be induced
in multi-atom systems confined in a harmonic trap interacting via a delta interaction potential [7].

In order to obtain a clear and detailed understanding of entanglement, it is first necessary to quantify it. It is known that for
maximally entangled states it is not possible to specify thequantum state of any subsystem, while for separable states it is. Thus,
one is led to consider the von Neumann entropy of the reduced state, measuring its degree of mixedness, as an entanglement
measure. This turns out to be correct for pure bipartite states [8] (the case we are considering in this Letter), while formore
general states other entanglement measures should be invoked [9, 10].

Apart from the above presented remarks, a great deal remainsunclear about the physical interpretation of entanglement
measures [11] and much remains unsatisfactory about our understanding of scattering-induced quantum entanglement, especially
with regard to how interaction potentials and particle energies control the entanglement [4]. Finally, our knowledge of the
connections between entanglement and complexity of motionremains far from complete [12].

In this Letter we investigate the potential utility of theInformation Geometric Approach to Chaos (IGAC) [13, 14] in charac-
terizing the quantum entanglement produced by a head-on elastic collision between two Gaussian wave packets interacting via
a scattering process [15].

IGAC is a theoretical framework developed to study the complexity of informational geodesic flows on curved statisticalman-
ifolds underlying the probabilistic description of physical, biological or chemical systems. IGAC is the informationgeometric
analogue of conventional geometrodynamical approaches [16, 17] where the classical configuration space is replaced bya sta-
tistical manifold with the additional possibility of considering complex dynamics arising from non conformally flat metrics (the
Jacobi metric is always conformally flat). For recent applications of the IGAC to quantum physics we refer to [18, 19]. In [19],
for instance, we proposed a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quan-
tum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field and conjectured that our findings might find
some potential physical applications in quantum energy level statistics. Here we conjecture that the scattering induced quantum
entanglement is a macroscopic manifestation emerging fromspecific statistical microstructures. Specifically, usinginformation
geometric techniques [20] and inductive inference methods[21, 22], we propose that the pre and post-collisional scenarios are
modelled by an uncorrelated [23] and correlated Gaussian statistical model [24], respectively. We present an analytical connec-
tion between the entanglement strength - quantified in termsof purity - to the scattering potential and incident particle energies.
Furthermore, we relate the entanglement duration to the scattering potential and incident particle energies. Finally, we uncover
a quantitative relation between quantum entanglement and the information geometric complexity of motion [25].

Before describing the physical system being studied, we recall that spatially localized Gaussian wave packets are especially
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useful to describe naturally occurring quantum states and they are easy to handle since many important properties of these
states can often be obtained in an analytic fashion [26]. Furthermore, the Wigner distribution of Gaussian wave packetsis
positive-definite and therefore Gaussian states could be tagged as essentially classical [27].

The physical system being considered consists of two interacting spin-0 particles of equal massm. For such a system, a
complete set of commuting observables is furnished by the momentum operators of each particle [28]. In terms of the center of
mass and relative coordinates, the HamiltonianH of the system becomes

H = Hcm +Hrel, (1)

with

Hcm =
P 2

2M
and Hrel =

p2

2µ
+ V (r) , (2)

whereM ≡ 2m is the total mass andµ ≡ m
2 is the reduced mass. The interaction potentialV (r) is isotropic and has a short

ranged such thatV (r) ≈ 0 for r > d. Before colliding, the two particles are in the form of disentangled Gaussian wave packets,
each characterized by a widthσ0 in momentum space. The initial distance between the two particles isR0 and their average
initial momenta - setting the Planck constant~ equal to one - are∓k0, respectively. From [15], after some straightforward
algebra it follows that the initial (pre-collisional) two-particle square wave amplitude in momentum space is given by

P (QM)
pre (k, k0, σ0) =

1√
πσ0

exp

[

− (k − k0)
2

σ2
0

]

, (3)

where we have made use of the center of mass and relative coordinatesK ≡ k1 + k2 andk ≡ 1
2 (k1 − k2), respectively. The

choiceK = 0 is a natural one representing the two-particle system experiencing an exact head-on collision, with each particle’s
momentum having equal magnitude but opposite sign. As a sideremark we point out that recent research suggests that quantum
entanglement may be an observer-dependent concept in non-inertial frames [29]. In this context, we observe that the frame in
which K = 0 is inertial and non-accelerating. For this reason, the possible observer-dependence of entanglement is not an
issue in the present work. Similarly, following [15] and after some tedious algebra it turns out that the final (long time limit,
post-collisional) two-particle square wave amplitude in momentum space is given by

P (QM)
post (k, k0, σ0; rQM) =

1
√
πσ0

[

1 + 2
√
2√
3
rQM + 1√

2
r2QM

] exp

(

− (k − k0)
2

σ2
0

)[

1 + rQM exp

(

− (k − k0)
2

2σ2
0

)]2

, (4)

with

rQM = rQM (k0, R0, θ (k0)) ≈ −θ (k0)

k0R0
≈ −|f0 (k0)|

R0
, (5)

whereθ (k) andf0(k) ≡ exp[2iθ(k)]−1
2ik are thes-wave scattering phase shift and scattering amplitude, respectively, and we are

considering them aroundk = k0 and in the limit of low-energy scattering, i.e.θ (k) ≪ 1.
As pointed out earlier, in order to properly analyze entanglement, the entanglement entropy obtained from the long timelimit

post-collisional wave function is required. In most cases however, this must be performed numerically. Thus, to approach the
problem analytically and simultaneously gain insights into the problem, it is convenient to make use of the linearized version of
the entropy of the system, i.e. of the purity of the system [15]. The purity function is defined as

P def
= Tr

(

ρ2A
)

, (6)

whereρA ≡ TrB (ρAB) is the reduced density matrix of particleA andρAB is the two-particle density matrix associated with the
post-collisional two-particle wave function. For pure two-particle states, the smaller the value ofP the higher the entanglement.
That is, the loss of purity provides an indicator of the degree of entanglement. Hence, a disentangled product state corresponds
toP = 1. We emphasize that the purity has been used as a measure of thedegree of entanglement in various physical situations
[30], especially in atomic physics in order to characterizethe two-body correlations in dynamical atomic processes [31, 32].
Under the assumption that the two particles are well separated both initially (before collision) and finally (after collision) [33]
and assuming that the colliding Gaussian wave packets are very narrow in the momentum space (σ0 ≪ 1 such that the phase shift
can be treated as a constantθ (k0)), it follows that the purity of the post-collisional two-particle wave function is approximately
given by [15]

P ≈ 1− S0 (k0)

π
σ2

collision, (7)
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whereS0 (k0) ≡ 4π |f0 (k0)|2 is the scattering cross section andσ−1
collision is the spatial width of the wave packets at the collision

time tcollision =
R0

k0

with

σcollision ≡
σ0

√

1 +
(

σ2

0
R0

2k0

)2
. (8)

Equation (7) implies that the loss of purity is solely controlled by the ratio of the scattering cross sectionS0 (k0) to the transverse
areaσ−2

collisionof the wave packets. Although very interesting, Wang’s analysis [15] does not address the problem of how the
interaction potentials and particle energies control the scattering-induced entanglement and it does not discuss anypossible
connection between the entanglement generated in the scattering process and the complexity of the motion related to thepre and
post-collisional quantum dynamical scenarios.

In this Letter, we attempt to provide satisfying answers to such unsolved relevant issues. We conjecture that the pre and
post-collisional quantum dynamical scenarios characterized by (3) and (4), respectively, and describing the quantumentan-
glement (quantified in terms of the purityP in (7)) produced by a head-on collision between two Gaussianwave packets
are macroscopic manifestations emerging from specific underlying microscopic statistical structures. Specifically,we propose
thatP (QM)

pre (k, k0, σ0) can be interpreted as a limiting case (initial time limit) arising from a Gaussian probability distribution
P (IG)

pre (k1, k2|µk1
, µk2

, σ),

P (IG)
pre (k1, k2|µk1

, µk2
, σ)

def
=

exp
{

− 1
2σ2

[

(k1 − µk1
)
2
+ (k2 − µk2

)
2
]}

2πσ2
. (9)

As a matter of fact, using the center of mass and relative coordinatesK andk and choosingK = 0, we obtain thatk1 = k,
k2 = −k. Finally, settingµk1

= k0, µk2
= −k0 andσ = σ0, we obtain

P (QM)
pre (k, k0, σ0) = P (IG)

pre (k, k0, σ0) . (10)

Similarly, we propose thatP (QM)
post (k, k0, σ0; rQM) can be viewed as a limiting case (final or long time limit) arising from a

Gaussian probability distributionP (IG)
post (k1, k2|µk1

, µk2
, σ; rIG),

P (IG)
post (k1, k2|µk1

, µk2
, σ; rIG) =

exp

{

− 1
2σ2(1−r2IG)

[

(k1 − µk1
)
2 − 2rIG (k1 − µk1

) (k2 − µk2
) + (k2 − µk2

)
2
]

}

2πσ2
√

1− r2IG
, (11)

whererIG
def
= 〈k1k2〉−〈k1〉〈k2〉

σ2 is the correlation coefficient. Using the center of mass and relative coordinatesK andk and
choosingK = 0, we obtain thatk1 = k, k2 = −k. Finally, settingµk1

= k0, µk2
= −k0 andσ = σ0, we obtain

P (IG)
post (k, k0, σ0; rIG) =

1√
πσ0

√
1− rIG

exp

[

− (k − k0)
2

σ2
0 (1− rIG)

]

. (12)

In this case it turns out that when both the weak correlation (rIG ≪ 1) and the weak scattering conditions (rQM ≪ 1) are satisfied,
we obtain an excellent overlapping between (4) and (12),

P (QM)
post (k, k0, σ0; rQM) ≈ P (IG)

post (k, k0, σ0; rIG) , for rIG ≪ 1 andrQM ≪ 1, (13)

assuming thatk0, σ0, rQM andrIG are fixed numerical constants and lettingk assume values in the neighborhood ofk0. At
this stage our conjecture is only mathematically sustainedby the formal identities (10) and (13). To render our conjecture also
physically motivated, recall thats-wave scattering can also be described in terms of a scattering potentialV (r) and the scattering
phase shiftθ (k). For the problem under consideration,V (r) equals the constant valueV for 0 ≤ r ≤ d while it is vanishing for
r > d. The quantitiesV andd denote the height (forV > 0; repulsive potential) or depth (forV < 0; attractive potential) and
range of the potential, respectively. Integrating the radial part of Schrdinger equation with this potential for the scattered wave
and imposing the matching condition atr = d for its solution and its first derivative leads to [34, 35]

kin cot (kind) = kout cot (koutd+ θ) , (14)

with kin =
√

2µ (T − V ) for 0 ≤ r ≤ d andkout =
√
2µT for r > d. The quantitiesµ andT are the reduced mass and kinetic

energy of the two-particle system in the relative coordinates, respectively;kin andkout represent the conjugate-coordinate wave
vectors inside and outside the potential region, respectively. Equation (14) indicates that the scattering potentialV (r) shifts
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the phase of the scattered wave at points beyond the scattering region. We will show that equation (14) allows to exploit our
information geometric modeling and relate thes-wave scattering phase shiftθ to the correlation coefficientrIG.

Our information geometric modeling may be briefly describedin the following way. The pre-collisional scenario is char-
acterized by the information geometric dynamics on the curved statistical manifoldM(uncorr.)

s of uncorrelated Gaussian prob-
ability distributionsP (IG)

pre (k1, k2|µk1
, µk2

, σ) given in (9). Furthermore, the post-collisional scenario is characterized by the

information geometric dynamics on the curved statistical manifold M(corr.)
s of correlated Gaussian probability distributions

P (IG)
post (k1, k2|µk1

, µk2
, σ; rIG) given in (11). Omitting technical details that will appear elsewhere [36], it turns out that in the

limit of low energys-wave scattering(k0d ≪ 1) and low correlations (rIG ≪ 1), the matching condition (14) in the information
geometric framework leads to

θ (k0) ≈ −1

3
rIGd

3k30 , (15)

where

rIG =
V

T
=

2µV

k20
. (16)

Combining (15) and (16), we obtain

θ (k0) ≈ −2

3
µV d3k0. (17)

Equation (17), obtained via information geometric dynamical methods, is in perfect agreement with the result presented in [37]
where standard Schrodinger’s quantum dynamics was employed. This is the first significant finding of this Letter and allows to
state that our conjecture is also physically motivated.

As a consequence of (7) and (15), we find that when both low energy and weak correlation regimes occur, the purityP of the
system becomes

P ≈ 1− 4

9
d6k40σ

2
collisionr

2
IG. (18)

Equation (18) implies that the purityP can be expressed in terms of physical quantities such as the scattering potentialV (r)
and the initial quantitiesk0, σ0 andR0 via (8) and (16). This is the second significant finding obtained within our hybrid
approach (quantum dynamical results combined with information geometric modeling techniques) that allows to explainhow
the interaction potentialV (r) and the incident particle energiesT control the strength of the entanglement. The role played
by rIG in the quantitiesP andV suggests that the physical information about quantum scattering and therefore about quantum

entanglement is encoded in the statistical correlation coefficient, specifically in the covariance termCov (k1, k2)
def
= 〈k1k2〉 −

〈k1〉 〈k2〉 appearing in the definition ofrIG.
An additional interesting finding uncovered by our approachis the entanglement duration∆,

∆(k0, σ0, rIG ) ≡ τcorr. − τuncorr.∝
∣

∣

∣
ln
{

1−
[

(1− rIG)
−1/2 − 1

]

· η∆
}∣

∣

∣
, (19)

whereτcorr. andτuncorr. are the temporal intervals required for a particle to reach the same value of momentumk0 from 0 in the
post-collisional scenario, in presence and in the absence of correlationsrIG, respectively, andη∆ is given by

η∆ =

(

k0
σ0

)2

exp

[

(

σ0

k0

)2

− 3

4

(

σ0

k0

)4

+O
[

(

σ0

k0

)6
]]

for
σ0

k0
≪ 1. (20)

Here, we can find the upper bound value ofrIG by means of (19) and (20),

rIG <
2

η∆
. (21)

For example, withσ0/k0 ∼ 10−3 we haverIG < 2 × 10−6. We observe that the entanglement duration can be controlled via
the initial parametersk0, σ0 and the correlationsrIG (therefore via the incident particle energies and the scattering potential due
to (16)). Also, we notice that in the absence of correlations, i.e. rIG → 0, ∆ → 0. It is anticipated that the maximum duration
would be obtained whenrIG is the greatest and the ratioσ0/k0 is the smallest.

Our final finding uncovers an interesting quantitative connection between quantum entanglement quantified by the purityP
in (18) and the information geometric complexity of motion on the uncorrelated and correlated curved statistical manifolds
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M(uncorr.)
s andM(corr.)

s , respectively. The information geometric complexity as defined in [25] represents the volume of the
effective parametric space explored by the system in its evolution between the chosen initial and final macrostates. Thevolume
itself is in general given in terms of a multidimensional fold-integral over the geodesic paths connecting the initial and final
macrostates. A geodesic on a curved statistical manifold represents the maximum probability path a complex dynamical system
explores in its evolution between initial and final macrostates. For additional details, we refer to one of our latest presentations
appearing in [25]. Here, omitting technical details and following the works presented in [23, 24, 36], one finds that

C(corr.)
IG =

√

1− rIG

1 + rIG
C(uncorr.)

IG , (22)

whereC(corr.)
IG andC(uncorr.)

IG denotes the information geometric complexities of motion on the chosen statistical manifolds. As
a side remark, we point out that (22) confirms that an increasein the correlational structure of the dynamical equations for
the statistical variables labelling a macrostate of a system implies a reduction in the complexity of the geodesic pathson the
underlying curved statistical manifolds [38, 39]. In otherwords, making macroscopic predictions in the presence of correlations
is easier than in their absence. Combining (18) and (22) it follows that

P ≈ 1− 4

9
d6k40σ

2
collision











[

C(uncorr.)
IG

]2

−
[

C(corr.)
IG

]2

[

C(uncorr.)
IG

]2

+
[

C(corr.)
IG

]2











2

. (23)

From (23) it is evident that the scattering-induced quantumentanglement and the information geometric complexity of motion
are connected. In particular, when purity goes to unity (entanglement-free scenario), the difference between the correlated and
uncorrelated information geometric complexities approaches zero.

In conclusion, using information geometric techniques andinductive inference methods, we have proposed that the pre and
post-collisional scenarios describing the quantum entanglement produced by a head-on elastic collision between two Gaussian
wave packets are modelled by an uncorrelated and correlatedGaussian statistical model, respectively. We showed that our
conjecture is physically motivated by Equation (15). It allowed us to connect the entanglement strength quantified in terms
of purity to the scattering potential and incident particleenergies (Eqs. (16) and (18)). We were also capable of relating
the entanglement duration∆ to the scattering potentialV (r) and incident particle energiesT (Eqs. (16) and (19)). Finally,
we uncovered a quantitative relation between quantum entanglement measured by the purity and the information geometric
complexity of motion (Eq. (23)). As a final remark, we point out that our analysis allows us to interpret quantum entanglement
as a perturbation of statistical space geometry in analogy to the interpretation of gravitation as perturbation of flat spacetime. The
nature of the perturbation of statistical geometry is global. This, together with the time-independence of the geometry, leads to
the notion of non-locality. The perturbation of statistical geometry is associated with the scattering phase shift in the momentum
space.

We are confident that the present work represents significantprogress toward the goal of understanding the relationship
between statistical microcorrelations and quantum entanglement on the one hand and the effect of microcorrelations onthe
dynamical complexity of informational geodesic flows on theother. It is our hope to build upon the techniques employed inthis
work to ultimately establish a sound information-geometric interpretation of quantum entanglement.
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