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We present an information geometric analysis of quanturarg/ément generated by arwave scattering
event between two minimum uncertainty Gaussian wave pacWég conjecture that the pre and post-collisional
guantum dynamical scenarios related to an elastic heaalfisi@n are macroscopic manifestations emerging
from specific underlying microscopic statistical struesir Then we describe them by uncorrelated and corre-
lated Gaussian statistical models, respectively. Thaellus to express the entanglement strength, quantified
by purity, in terms of scattering potential and incidenttigée energies. Furthermore, we show how the entan-
glement duration can be related to the scattering poteaiclincident particle energies. Finally, we uncover a
guantitative relation between entanglement and informnageometric complexity of motion.

PACS numbers: Probability Theory (02.50.Cw), RiemanniagoiBetry (02.40.Ky), Complexity (89.70.Eg), Entropy
(89.70.Cf), Entanglement Measures (03.67.Mn), EntangférRroduction (03.67.Bg).

One of the most important features of composite quantum arécal systems is their ability to become entangléd[1, 2].
In general, quantum entanglement is described by quantuaralations among the distinct subsystems of the entire ositg
guantum system. For such correlated quantum systems gt gossible to specify the quantum state of any subsysteepat
dently of the remaining subsysterhs [1]. Apart from theseands) the fundamental meaning of quantum entanglemerillia st
widely debated issuél[3].

From a conceptual point of view, the simplest and most réatisechanism of generating entanglement between twocpesti
is via scattering processés [4, 5]. The two particles caminecentangled as they approach each other as a consequence of
mutual interactions. For instance, for interaction passwith a strong repulsive core, quantum interferenceveen incident
and reflected waves can generate transient entanglemeat.tié¢ collision, the two particles may still be entangled ahare
forms of quantum information in the final scattered stateaifQum entanglement can also be generated during inelafiigians
between the dissipative walls of a container and the quasistem confined within it [6]. Entanglement may also be irdlic
in multi-atom systems confined in a harmonic trap interagtia a delta interaction potential [7].

In order to obtain a clear and detailed understanding ofrgiéanent, it is first necessary to quantify it. It is knownttfa
maximally entangled states it is not possible to specifygilrentum state of any subsystem, while for separable stasge§hus,
one is led to consider the von Neumann entropy of the reduegel, sneasuring its degree of mixedness, as an entanglement
measure. This turns out to be correct for pure bipartiteestit] (the case we are considering in this Letter), whilenfare
general states other entanglement measures should beth ].

Apart from the above presented remarks, a great deal rernaiclsar about the physical interpretation of entanglement
measures$ [11] and much remains unsatisfactory about o@rstachding of scattering-induced quantum entanglemspegially
with regard to how interaction potentials and particle giesr control the entanglement [4]. Finally, our knowleddehe
connections between entanglement and complexity of mogiorains far from complete [11.2].

In this Letter we investigate the potential utility of thaformation Geometric Approach to Chaos (IGAC) [13,(14] in charac-
terizing the quantum entanglement produced by a head-stictallision between two Gaussian wave packets intergatia
a scattering process [15].

IGAC is a theoretical framework developed to study the caxipy of informational geodesic flows on curved statistivan-
ifolds underlying the probabilistic description of phyalichiological or chemical systems. IGAC is the informatgeometric
analogue of conventional geometrodynamical approacté: where the classical configuration space is replaceal sig-
tistical manifold with the additional possibility of comtgring complex dynamics arising from non conformally flatries (the
Jacobi metric is always conformally flat). For recent amglimns of the IGAC to quantum physics we referito [18, 19]/18][
for instance, we proposed a novel information-geometi@gcatterization of chaotic (integrable) energy level stats of a quan-
tum antiferromagnetic Ising spin chain in a tilted (transeg external magnetic field and conjectured that our firelinght find
some potential physical applications in quantum energgl Istatistics. Here we conjecture that the scattering indwgiantum
entanglement is a macroscopic manifestation emerging $meuific statistical microstructures. Specifically, usimfigrmation
geometric techniques [20] and inductive inference metti@l$22], we propose that the pre and post-collisional stesare
modelled by an uncorrelated [23] and correlated Gausséistital modell[24], respectively. We present an analyionnec-
tion between the entanglement strength - quantified in tefrpsirity - to the scattering potential and incident pagtiehergies.
Furthermore, we relate the entanglement duration to thitesitey potential and incident particle energies. Finadlg uncover
a quantitative relation between quantum entanglementrenihformation geometric complexity of motidn |25].

Before describing the physical system being studied, wallrdtat spatially localized Gaussian wave packets arecislhe
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useful to describe naturally occurring quantum states heg &re easy to handle since many important properties sethe
states can often be obtained in an analytic fasHioh [26].theamore, the Wigner distribution of Gaussian wave packets
positive-definite and therefore Gaussian states coulddzethas essentially classidal[27].

The physical system being considered consists of two idtieigaspind particles of equal mass.. For such a system, a
complete set of commuting observables is furnished by theembum operators of each partidle/[28]. In terms of the aesfte
mass and relative coordinates, the Hamiltorfianf the system becomes

H= Hcm + Hreh (1)
with
P2 2
Hcm = m and Hre| = é)—lu + V (T) y (2)

whereM = 2m is the total mass and = % is the reduced mass. The interaction poteritigt) is isotropic and has a short
ranged such thal” (r) ~ 0 for r > d. Before colliding, the two particles are in the form of disEmgled Gaussian wave packets,
each characterized by a wid#ly in momentum space. The initial distance between the twaghestis R, and their average
initial momenta - setting the Planck constdnequal to one - are-k, respectively. From [15], after some straightforward
algebra it follows that the initial (pre-collisional) twgarticle square wave amplitude in momentum space is given by

2
PFS%M) (k, ko, 00) = \/;100 exp [—w] ; (3

90
where we have made use of the center of mass and relativeicatasl = k; + by andk = % (k1 — k2), respectively. The
choiceK = 0 is a natural one representing the two-particle system épeng an exact head-on collision, with each particle’s
momentum having equal magnitude but opposite sign. As areidark we point out that recent research suggests thatuuant
entanglement may be an observer-dependent concept imedial frames|[29]. In this context, we observe that thenfean
which K = 0 is inertial and non-accelerating. For this reason, theiplessbserver-dependence of entanglement is not an
issue in the present work. Similarly, following [15] andeafsome tedious algebra it turns out that the final (long tiimé,|
post-collisional) two-particle square wave amplitude iomentum space is given by
2
(k — ko)
1 —_—— , (4
+ rQm exp ( 207 4)

1 k— ko)
P (k. ko, 003 rqm) = 23 L . 1P <_(cr720)>
Voo [+ 2 2rou + S| 0

with

0 (ko) _ [fo (ko)
koRo Ro

rom = rom (Ko, Ro, 8 (ko)) ~ — , %)
whered (k) and fo (k) = % are thes-wave scattering phase shift and scattering amplitudeecively, and we are
considering them arourid= k&, and in the limit of low-energy scattering, i.e (k) < 1.

As pointed out earlier, in order to properly analyze entangint, the entanglement entropy obtained from the longltimie
post-collisional wave function is required. In most casewéver, this must be performed numerically. Thus, to apgrdhe
problem analytically and simultaneously gain insightsitiite problem, it is convenient to make use of the linearizzdion of
the entropy of the system, i.e. of the purity of the syster).[T&e purity function is defined as

P d:efTr (pi) , (6)

whereps = Trg (pag) is the reduced density matrix of particleandp 4 5 is the two-particle density matrix associated with the
post-collisional two-particle wave function. For pure tparticle states, the smaller the valuedthe higher the entanglement.
That is, the loss of purity provides an indicator of the degréentanglement. Hence, a disentangled product statespmmnds

to P = 1. We emphasize that the purity has been used as a measuredeftee of entanglement in various physical situations
[30], especially in atomic physics in order to charactettze two-body correlations in dynamical atomic proces@s.
Under the assumption that the two particles are well sepatath initially (before collision) and finally (after cisiion) [33]

and assuming that the colliding Gaussian wave packets ay@agrow in the momentum space)(< 1 such that the phase shift
can be tr%ed as a constérik)), it follows that the purity of the post-collisional two-file wave function is approximately
given by [15]

So (ki
Pr~1- %O)Ugollision’ (7
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whereS, (ko) = 47 | fo (ko)|” is the scattering cross section angll..;, i the spatial width of the wave packets at the collision
time tcoliision = }2—8 with

o
Ocollision = —0- (8)

0'2 2
1+(§,§°)

Equation[(T) implies that the loss of purity is solely colled by the ratio of the scattering cross sectiy( k) to the transverse
areao—c_oﬁisionof the wave packets. Although very interesting, Wang's wsial[15] does not address the problem of how the
interaction potentials and particle energies control ttetering-induced entanglement and it does not discusgasgible
connection between the entanglement generated in thesogtprocess and the complexity of the motion related tgtkeand
post-collisional quantum dynamical scenarios.

In this Letter, we attempt to provide satisfying answersuohsunsolved relevant issues. We conjecture that the pre and
post-collisional quantum dynamical scenarios charazgdrby [8) and[{4), respectively, and describing the quargntan-
glement (quantified in terms of the puri® in (@) produced by a head-on collision between two Gaussiave packets
are macroscopic manifestations emerging from specific lyidg microscopic statistical structures. Specificallye propose
thatPé%’V') (k, ko, 00) can be interpreted as a limiting case (initial time limitjsarg from a Gaussian probability distribution

PUS) (K, kol ptk,» ks o),

1 2 2
exp i —5ez | (k1 — i)™ + (k2 — pxy)
def 20 1 2
PSS (ky, kapty s prgr ) = { [ ” 9

2702

As a matter of fact, using the center of mass and relativedinatesi’ andk and choosing< = 0, we obtain that; = k,
ko = —k. Finally, settingug, = ko, ux, = —ko ando = o, we obtain

PR (k, ko, 00) = PSS (k, ko, 00) - (10)

Similarly, we propose thaPéSS'\{') (k, ko, 00; rom) can be viewed as a limiting case (final or long time limit) eagsfrom a
Gaussian probability distributioR{sa) (k1, k2|, , ftks, 0 716),

P {_202(11—r.%3 [(kl — ) = 2116 (k1 — ) (k2 — ) + (ko — ngﬂ }

2mo2\/1 — 1 ’

B (K, ko iy s ey 03 1iG) = (11)

wherer|g def Mﬁw is the correlation coefficient. Using the center of mass atative coordinated and k& and
choosingK = 0, we obtain thak, = k, ko = —k. Finally, settingqux, = ko, ux, = —ko ando = o¢, we obtain
1 (k — ko)
P9 (k, ko, o0 = —_——. 12
post ( 0,00 T|G) ﬁaom exXp 0,(2) (1 — TIG) ( )

In this case it turns out that when both the weak correlatign 1) and the weak scattering conditiong(; < 1) are satisfied,
we obtain an excellent overlapping betwegeh (4) (12),

BRI (k, ko, o0; rom) = Psat (. ko, 00; 716) , for rig < 1 andrgm < 1, (13)
assuming thaty, oo, rom andrc are fixed numerical constants and lettingissume values in the neighborhoodkgf At
this stage our conjecture is only mathematically sustaimethe formal identitie(10) an@ (1L3). To render our conjeztlso
physically motivated, recall thatwave scattering can also be described in terms of a seajtpatential’ () and the scattering
phase shift) (k). For the problem under consideratidf(-) equals the constant valiéfor 0 < r < d while it is vanishing for
r > d. The quantitied” andd denote the height (fo¥" > 0; repulsive potential) or depth (fdr < 0; attractive potential) and
range of the potential, respectively. Integrating theabplart of Schrdinger equation with this potential for thatsered wave
and imposing the matching conditionrat= d for its solution and its first derivative leads to [34] 35]

kin COt (kmd) - kout COt (koutd + 9) y (14)

with kin = /2u (T — V) for 0 < r < d andkoy = /2uT for r > d. The quantitieg: andT are the reduced mass and kinetic
energy of the two-particle system in the relative coordisatespectivelykin andk,y represent the conjugate-coordinate wave
vectors inside and outside the potential region, respelgtiEquation[(I4) indicates that the scattering poterifigl) shifts
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the phase of the scattered wave at points beyond the sogttegion. We will show that equation {(14) allows to explait o
information geometric modeling and relate thevave scattering phase shifto the correlation coefficienic.
Our information geometric modeling may be briefly descrirethe following way. The pre-collisional scenario is char-

acterized by the information geometric dynamics on the ediistatistical manifold\t{“"°™ of uncorrelated Gaussian prob-
ability distributionsP{%) (ky, ka|u, , iy, o) given in [3). Furthermore, the post-collisional scenasicharacterized by the

pre
information geometric dynamics on the curved statisticahifold M) of correlated Gaussian probability distributions

P&%{ (k1, k2lttky s Pokns 05 71G) given in [(I1). Omitting technicalldetails that will appemgwhereG], it turns out.that in the
limit of low energys-wave scatteringkod < 1) and low correlationsi(c < 1), the matching conditiof (14) in the information

geometric framework leads to

1
0 (ko) ~ —gT.Gd?’kg, (15)
where
Voo2uV
"G = 5 = k—g- (16)
Combining [I5) and{16), we obtain
2
0 (ko) = _gqu?’ko. (17)

Equation[[1), obtained via information geometric dynaahinethods, is in perfect agreement with the result pregdntf87]
where standard Schrodinger’s quantum dynamics was enthldyes is the first significant finding of this Letter and alkoto
state that our conjecture is also physically motivated.

As a consequence @fl(7) aid15), we find that when both lowggreerd weak correlation regimes occur, the pufitef the
system becomes

4
P~1- §d6kgagollisionrl26' (18)

Equation [(I8) implies that the purify can be expressed in terms of physical quantities such asdtisng potential” (r)

and the initial quantitieg,, o9 and Ry via (8) and [IB). This is the second significant finding olsdinvithin our hybrid
approach (quantum dynamical results combined with inféionageometric modeling techniques) that allows to explew

the interaction potentidl (r) and the incident particle energi@scontrol the strength of the entanglement. The role played

by s in the quantities? andV suggests that the physical information about quantumes@agtand therefore about quantum

entanglement is encoded in the statistical correlatiofffictEnt, specifically in the covariance ter@ov (k1, k2) def (k1ko) —

(k1) (ko) appearing in the definition ofs.
An additional interesting finding uncovered by our approadhe entanglement duratiak,

A (k()' g0, TG ) = Tcorr. — Tuncorr. X ‘ln {1 - [(1 - 7’IG)71/2 - 1} : UA}’ B (19)

wherercor, andryncor, are the temporal intervals required for a particle to reaehstme value of momentuky from 0 in the
post-collisional scenario, in presence and in the abseinmerelationsrig, respectively, anga is given by

= (5) o () -2 (2) v o [(2)]] or @ 20)
27 \w) P \k) "1\ ke Fo R ST
Here, we can find the upper bound value-gf by means of[(19) an@(20),

2
re < —. (21)
na

For example, withry/ky ~ 1073 we haverig < 2 x 10~°. We observe that the entanglement duration can be corntraitte
the initial parameterg,, oo and the correlationgg (therefore via the incident particle energies and the egatj potential due
to (18)). Also, we notice that in the absence of correlatiaesrc — 0, A — 0. It is anticipated that the maximum duration
would be obtained wheng is the greatest and the ratig/k, is the smallest.

Our final finding uncovers an interesting quantitative catio@ between quantum entanglement quantified by the pirity
in (I8) and the information geometric complexity of motiom the uncorrelated and correlated curved statistical rokfsf
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M and MM | respectively. The information geometric complexity aéirtel in [25] represents the volume of the
effective parametric space explored by the system in ithigeo between the chosen initial and final macrostates. vbheme
itself is in general given in terms of a multidimensionaldi@htegral over the geodesic paths connecting the initial nal
macrostates. A geodesic on a curved statistical manifgicesents the maximum probability path a complex dynamicsesn
explores in its evolution between initial and final macrtesa For additional details, we refer to one of our latess@néations
appearing in[[25]. Here, omitting technical details anddfwing the works presented in [23./24) 36], one finds that

1—
Cl(corr.) 1 :G Cl(uncorr.), (22)
(corr. (uncorr.

whereC, ) andC,g ) denotes the information geometric complexities of motiartite chosen statistical manifolds. As
a side remark, we point out thdf {22) confirms that an incréaske correlational structure of the dynamical equatiaors f
the statistical variables labelling a macrostate of a systaplies a reduction in the complexity of the geodesic patihghe
underlying curved statistical manifolds [38] 39]. In otlerds, making macroscopic predictions in the presencemétadions

is easier than in their absence. Combiningd (18) (22)lovis that

[Cl(gncorr.)} 2 _ [CI(Gcorr.)} 2
[Cl(gncorr.)} 2 4 [CI(Gcorr.)} 2

From [23) it is evident that the scattering-induced quanémtanglement and the information geometric complexity ofiam
are connected. In particular, when purity goes to unitygegkement-free scenario), the difference between thelated and
uncorrelated information geometric complexities appheszero.

In conclusion, using information geometric techniques imaddictive inference methods, we have proposed that therqate a
post-collisional scenarios describing the quantum enésmgnt produced by a head-on elastic collision between taws&ian
wave packets are modelled by an uncorrelated and corre@aedsian statistical model, respectively. We showed that o
conjecture is physically motivated by Equati¢nl(15). lbaled us to connect the entanglement strength quantifiedrimste
of purity to the scattering potential and incident partieleergies (Egs. [(16) anfi{18)). We were also capable of mglati
the entanglement duratiah to the scattering potentidl (r) and incident particle energi&s (Eqs. [16) and[{19)). Finally,
we uncovered a quantitative relation between quantum glgarent measured by the purity and the information geometri
complexity of motion (Eq.[{23)). As a final remark, we point ¢that our analysis allows us to interpret quantum entangigm
as a perturbation of statistical space geometry in anatthetinterpretation of gravitation as perturbation of flzacetime. The
nature of the perturbation of statistical geometry is globais, together with the time-independence of the geoynktads to
the notion of non-locality. The perturbation of statistigaometry is associated with the scattering phase shiftanrtomentum
space.

We are confident that the present work represents signifijpargress toward the goal of understanding the relationship
between statistical microcorrelations and quantum em¢amgnt on the one hand and the effect of microcorrelationthen
dynamical complexity of informational geodesic flows on tileer. It is our hope to build upon the techniques employetim
work to ultimately establish a sound information-geonudtrterpretation of quantum entanglement.

4
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