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NONFREE ACTIONS OF COUNTABLE

GROUPS AND THEIR CHARACTERS

A. M. Vershik

Abstract. We introduce a number of definitions of nonfree actions of groups. The
most important of them is that of a totally nonfree action; it is naturally related to
the theory of characters of groups and their factor representations. This short note
is a brief exposition of a part of a more detailed paper on this subject, which is now
in preparation.

To Rita’s memory

1. Definitions

Let G be a countable group acting on a Lebesgue space (X,A, µ) with continuous
measure. Given an element g ∈ G, denote by GX the (measurable) set of fixed
points of g: Gx = {x : gx = x}. According to a well-known definition, the action
is called free if µXg = 0 for g 6= id. Denote by AG the σ-subalgebra of A generated
by all such sets of fixed points: AG = σ- alg{Xg; g ∈ F}. For a free action, this
σ-algebra is trivial.

Definition 1. The action of G is called totally nonfree if the σ-algebra AG coin-

cides with the whole original σ-algebra: AG = A.

We can give a similar definition for arbitrary (uncountable) groups, but in this
case we should assume that the action is individual (i. e., there is a set of full
measure for all points of which the action of all group elements is well defined).

Consider the lattice (with respect to the natural order) L(G) of all subgroups

of G. This lattice has been intensively studied from the purely group-theoretic
point of view since the 1930s, and even earlier in the 19th century (see the recent
monograph [2]). In a natural way we can introduce a weak topology on the lattice
L(G) (a neighborhood of a given subgroup H is the family of all subgroups for
which the set of words of length at most n coincides with the same family for H)
and the corresponding Borel structure. Obviously, in this topology the lattice L(G)
is compact and is a totally disconnected uncountable separable Cantor set. The
group G acts on L(G) continuously by conjugation; this action is sometimes called
adjoint. We will study Borel conjugation-invariant probability measures on lattices
of subgroups. Apparently, problems concerning these measures and the dynamics
of the action of G on L(G) have not yet been studied.
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With almost every point x ∈ X we associate its stabilizer, i.e., the subgroup
Gx = {g : gx = x}, regarded as an element of the lattice, and denote this map by
ΨG : X → L(G):

ΨG : x 7→ Gx.

Obviously, the map ΨG is Borel-measurable.
Denote the σ-algebra generated by this map (i.e., the inverse image of the σ-

algebra of Borel sets on L(G)) by AG.

Lemma 2.

AG ⊆ A
G,

the equality takes place for countable groups.

Indeed, if the σ-algebra AG is trivial, then the inclusion is proved. Assume
that AG is nontrivial, and let ξ be the measurable partition (equivalence relation)
corresponding to the σ-algebra AG. Obviously, by the definition of a measurable
partition, two points belonging to the same block of ξ have the same stabilizer and
hence lie in the inverse image under ΨG of the same point.

Corollary 3. If the action of G is totally nonfree, then the map ΨG is a monomor-

phism mod0; in other words, the σ-algebra AG coincides with AG.

Definition 4. Let us say that the action of G is extremely nonfree if the map ΨG

is monomorphic; in other words, if the σ-algebra AG coincides with the whole σ-
algebra A. In terms of the action, this means that almost all points have different

stabilizers.

It is easy to give an example of uncountable group distinguishing between the
total and extremal nonfreeness of actions. For instance (though the group here is
continuous), the action of the group SO(3) on the projective plane P2R is extremely
nonfree, but not totally nonfree.

Consider the image νµ of the measure µ on L(G) under the map ΨG. Obviously,
νµ is invariant under conjugation. Observe the following simple but important fact.

Theorem 5. In the class of extremely nonfree actions of the group G, the measure

νµ defined above is a complete metric invariant of the action. In other words, two

extremely nonfree actions of the group G in spaces (X,A, µ) and (X ′,A′, µ′) are

metrically isomorphic if and only if the measures νµ and νµ′ on the lattice L(G)
coincide.

This follows immediately from the fact that the map ΨG, which transfers iso-
morphically an extremely nonfree action from an arbitrary Lebesgue space to the
lattice L(G), is monomorphic.

2. Extremely nonfree actions

We will consider conjugation-invariant measures on the lattice of subgroups.
Examples of such measures are the delta-measure at the identity or the atomic
measure on the set of conjugate subgroups with normalizer of finite index. More-
over, for every action of the group G with an invariant measure µ on an arbitrary
space (X,A, µ), the map ΨG sends µ to a conjugation-invariant measure on the
lattice L(G). We are interested only in continuous (and nontransitive in the case
of continuous groups) ergodic probability measures.
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Problem 1. For what countable groups do there exist conjugation-invariant con-

tinuous ergodic probability measures? Describe all such measures.

Examples of such groups are the infinite symmetric and similar groups; the
list of all such measures for them is known (see below). It is recently shown in
[4], as an answer to the above question, that for noncommutative free groups and
similar groups, such measures do exist; however, we still do not have their complete
description.

Let ν be such a measure on the lattice L(G). Is it true that the action of the
group G on the space (L(G), ν) is extremely nonfree? In general, this is not the
case; moreover, simple examples show that even if the action of G on the space
(X,µ) is extremely nonfree, in general, the ΨG-image νµ of the measure µ is such
that the action of G on the space (L(G), νµ) is not extremely nonfree. The reason
is as follows: since the stabilizer of a subgroup H , regarded as an element of the
lattice L(G), is its normalizer N(H) = {g ∈ G : gHg−1 = H}, it is quite possible
that the normalizers coincide for different subgroups. If the action of the group G
on the lattice L(G) with some measure ν by conjugation is extremely nonfree, we
will say that the measure ν itself is extremely nonfree.

Definition 6. A subgroup H of an arbitrary group G is called abnormal1 if it

coincides with its normalizer.

Proposition 7. A conjugation-invariant measure on L(G) is extremely nonfree if

and only if the measure of the set of abnormal subgroups is equal to one.

Proof. Assume that a measure ν is extremely nonfree, but there is a set of positive
ν-measure that consists of abnormal subgroups, i.e., subgroups H such that for
each of them we can find an element hH ∈ N(H) \H . Since G is countable, there
exists an element h such that the last condition holds for all subgroups from a set
of positive measure. Then for a subgroup H from this set we have hHh−1 6= H ,
but at the same time the normalizers of both subgroups, which are stabilizers for
the adjoint action, coincide, contradicting the extremal nonfreeness. The converse
is obvious. �

Consider the normalization operation N on the lattice of subgroups, which as-
sociates with every subgroup its normalizer: N (H) = N(H). It can be extended
to an operation on measures: N∗(ν)(E) = ν(N (E)). Obviously, if a measure ν is
invariant, then its image is also invariant. If the measure N∗(ν) is extremely non-
free, then we say that the measure ν is reducely extremely nonfree; this case occurs
often and hence should be distinguished. As follows from the above proposition, in
terms of the group this means that the measure ν is concentrated on subgroups H
satisfying the condition

N(N(H) = N(H)), or N 2(H) = N (H).

However, this is not always the case, and the normalization process does not in
general stabilize after the first step, or any finite number of steps.2

Anyway, we are mainly interested in extremely nonfree measures on lattices.

1The author does not know whether there is a generally accepted term for such subgroups.
2The author does not know corresponding examples, but, apparently, stabilization may not be

achieved after infinite and even countable number of steps.
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Problem 2. For what countable groups do there exist continuous ergodic probability

extremely nonfree measures invariant under conjugation?

Apparently, the class of such groups is significantly more narrow than the class
of groups solving the first problem.

3. Totally nonfree actions

Totally nonfree actions are defined above as actions for which the collection of
all sets of fixed points of different group elements generates the whole σ-algebra;
as we have seen, these actions are extremely nonfree, so that we can study them
on lattices of subgroups. Consider an extremely nonfree measure ν on the lattice
L(G) of subgroups of a group G. This measure is concentrated on the set of ab-
normal subgroups; let us formulate the condition of total nonfreeness. Following
the tradition, outlined above, to extend the term describing an action to the corre-
sponding measures, we say that a measure ν on the lattice L(G) is totally nonfree

if the adjoint action of G on the measure space (L(G), ν) is totally nonfree. Given
an element g ∈ G, we denote by Lg ⊂ L(G) the set of subgroups that contain g.

Proposition 8. An extremely nonfree measure on the lattice of subgroups L(G) is
totally nonfree if and only if the collection of sets Lg, g ∈ G, that are of positive

ν-measure generates the whole σ-algebra in the space (L(G), ν); in other words,

ν-almost every pair of different subgroups can be distinguished from each other by

a set Lg of positive ν-measure.

Indeed, the set of fixed points for an element g ∈ G is the set of subgroups whose
normalizers contain g; but for an extremely nonfree measure, almost all subgroups
are abnormal, i.e., coincide with their normalizers, hence this is the set of subgroups
containing g.

The most interesting problem involves totally nonfree actions.

Problem 3. For what countable groups do there exist continuous ergodic totally

nonfree probability measures invariant under conjugation? Describe all such mea-

sures. In a more general form, for what groups do there exist totally nonfree ac-

tions? Describe all such actions up to isomorphism.

As it will become clear from the next section, it is this class of groups that is
important for representation theory. Examples are the infinite symmetric group
SN, the group GL(∞, q) of infinite matrices over a finite field, etc.

4. Relation to representations and the theory of characters

Every action of a group G on a space (X,µ) with invariant measure gener-
ates a unitary representation of G in the space L2

µ(X) according to the formula
[Ug(f)](x) = f(gx) (Koopman representation). The question about the properties
of this representation and its irreducible decomposition is difficult even for Z (this
is the subject of the spectral theory of dynamical systems). Since the measure
is finite, we have the invariant one-dimensional subspace of constants. But the
following problem remains open.

Problem 4. In what cases is the Koopman representation irreducible in the or-

thogonal complement to the subspace of constants?
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Obviously, the ergodicity of the action is a necessary condition, because the de-
composition into ergodic components gives rise to the decomposition of the Hilbert
space L2

µ(X) into a direct integral (or direct sum) of invariant subspaces.

The problem can be formulated more specifically. Consider an ergodic action of a
group G on a space (X,µ) with invariant measure and the W ∗-algebra generated by
the operators of multiplication by bounded measurable functions and the operators
of the action of G. This algebra may be regarded as the image of the skew product
l1(G)⋌L∞(X) of the group algebra of G and the algebra L∞(X) of multiplication
operators. It turns out that it coincides with the algebra of all bounded operators;
indeed, the algebra of multiplication operators is a maximal commutative self-
conjugate subalgebra in the algebra of all bounded operators, and, besides, by
ergodicity, it has no nonconstant multiplicators commuting with the group action,
so that the commutant of this algebra is scalar, and our assertion follows from
the von Neumann bicommutant theorem. Thus Problem 4 can be equivalently
formulated as follows.

Problem 4′. In what cases does the W ∗-algebra spanned by the operators of the

group action contain all multiplicators with zero integral?

Most likely, Problem 4 is very difficult. Examples of a positive answer the author
is aware of are quite rare.

There exists another canonical representation associated with a measure-preserv-
ing action of a group, which goes back to von Neumann (see, e.g., [3]). It can be
called the trajectory, or groupoid representation; see, e.g., [5]. Consider the graph
Π of the group action, i.e., the set of pairs {(x, y) : y = gx, g ∈ G}, regarded as a
measurable partition in X×X . Endow it with the σ-finite measure M that induces
the measure µ on both factorsX×∗ and ∗×X and whose conditional measure in the
layer over each point (∗, y) or (x, ∗) is the counting (i.e., uniform infinite) measure
for all x and y. Then on Π we have two commuting actions of the group G with
invariant measure M — the left one, (x, y) 7→ (gx, y), and the right one, (x, y) 7→
(x, gy). Correspondingly, in the space L2

M (Π) we have two unitary representations
of the group G and two ∗-representations of the skew product mentioned above.
It is well known that if the action of G on the space (X,µ) is ergodic, then both
representations of the skew product are factor representations of type II1, the left
and the right factors being mutual commutants. The characteristic function of
the diagonal ∆ = {(x, x), x ∈ X}, i.e., the element 1∆ ∈ L2

M (Π), is a bicyclic
vector for the factors. This construction of a representation of the skew product is
called the von Neumann, or groupoid, or trajectory (since layers are trajectories of
the group action) construction. For a free action, it was suggested and studied in
the pioneering papers by von Neumann; nonfree actions were considered, e.g., by
Krieger. But the case of an extremely nonfree action first appeared in [7], where
it was considered as a particular example related to factor representations of the
infinite symmetric group and its relatives.

As in the previous example, we can restrict this representation to the group itself
and ask a similar question about these representations.

Problem 5. In what cases does the restriction of the groupoid representation to

the group generate the whole factor? Or, equivalently, when does the W ∗-algebra

spanned by the group operators contain all multiplicators and thus coincide with the

whole factor?
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Recall that a complex-valued function φ on a group is called a character if it is
nonnegative definite, central, and normalized:

{φ(gig
−1

j )}ni,j=1 ≥ 0, φ(ghg−1) = φ(h), φ(id) = 1.

The characters form a convex compact set in the weak topology, and extreme points
of this set are called indecomposable characters.

The importance of Problem 5 can be seen from the following correspondence
between the indecomposability of a character and the factorness.

Theorem 9. Consider an ergodic action of a group G on a space (X,µ) with

invariant measure; the function

φ(g) = µ(Xg) = µ{x : gx = x, x ∈ X} (∗)

is a character of G. If the restriction of the groupoid representation to the group

generates the whole factor, then this character is indecomposable.

Proof. First of all, we have the formula

< Ug1∆, 1∆ >= µ(Xg),

which implies the first assertion. As we know from the theory of von Neumann
algebras, a trace on a W ∗-algebra is indecomposable (i.e., cannot be written as a
convex combination of other traces) if and only if the corresponding representation
is a factor. In our case, the trace corresponds exactly to a group character. �

Thus we now can search for characters using group actions. We will see that
sometimes this method, with some supplements, allows one to describe all charac-
ters of a group.

In contrast to Problem 4, Problem 5 turns out to have a very lucid solution,
which is precisely the main result of this paper.

Theorem 10. The character defined by formula (∗) is indecomposable, and thus

generates a factor representation of the group G of type II1, if and only if the action

is totally nonfree.

Proof. We present a sketch of the proof. For definiteness, consider the left factor
representation of the group G in the space L2

M (Π), where the set Π ⊂ X × X
and the measure M were constructed above. We will prove that the cyclic hull of
the characteristic function of the diagonal 1∆ with respect to the left action of the
group coincides with the whole space L2

M (Π) if and only if the action of G on the
space (X,µ) is totally nonfree.

First consider the “diagonal subspace” H∆ of functions from L2

M (Π) supported
by the diagonal ∆ = {(x, x), x ∈ X}, and let R∆ ≡ R be the orthogonal projection
to H∆. Let us show that if, and only if, the group action is totally nonfree, then
the linear hull of the projections of the images of the vector 1∆ under the action
of G, i.e., Span{R[g(1∆)]; g ∈ G}, is everywhere dense in the subspace H∆. Note
that the projection R[g(1∆)], regarded as a function on the diagonal, is precisely
the indicator function of the set Xg of fixed points of g. The linear hull of all
these indicator functions coincides with the linear hull of the indicators of subsets
from the subalgebra generated by the subsets of fixed points of all elements of G.
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Indeed, this linear hull contains the indicators of the complements of subsets of
fixed points, since 1X̄g

= 1 − 1Xg
; it also contains the indicators of intersections

of such subsets, since the intersection Xg ∩ Xh coincides with Xgh provided that
gx 6= h−1x almost everywhere, which we can assume without loss of generality.
Thus the indicator of the union of two subsets of fixed points also lies in this
linear hull, and hence it contains the indicators of all sets from the σ-subalgebra
generated by the sets of fixed points. If, and only if, the action is totally nonfree,
then, by definition, this σ-subalgebra is dense in the σ-algebra of all measurable
sets, and thus the linear hull Span{R[g(1∆)]; g ∈ G} is everywhere dense in the
subspace H∆. The image of 1∆ can be written as a sum of two terms: g[(1∆)] =
R[g(1∆)]∔(I−R∆)[g(1∆)]. The support of the second term lies outside the diagonal,
and, applying the action of group elements, we can “drive it to infinity,” i.e., we can
shift the support of (x, gx) by changing g. Meanwhile, the first term will still belong
to the subspace H∆, and the second term will weakly tend to zero. As a result, in
the limit we obtain an element from the linear hull mentioned above supported by
the diagonal. But bounded functions supported by the diagonal in the left (and also
right) representation act as multiplicators. Thus we have proved that if, and only
if, the action is totally nonfree, then the weak closure of the algebra of operators
of the group action contains all multiplicators, and this means precisely that the
representation of the group generates the whole factor formed by the skew product
of the group algebra and the Abelian group of multiplicators. �

Thus the notion of a totally nonfree action allows one to solve Problem 5, but
does not provide a solution to Problem 4: there exist examples of totally nonfree
actions of two groups such that for one of them the answer is positive, and for the
other one, the answer is negative. The reason is as follows: in order to obtain a
positive solution to Problem 5, we need to prove only that the single vector 1∆ is
cyclic, and in order to obtain a positive solution to Problem 4, we need to prove
that every vector that is not a constant and is not orthogonal to the subspace of
constants, is cyclic, which is a more difficult task.

Along with Theorem 9, Theorem 10 provides a method for finding indecompos-
able characters of groups: one should search for totally nonfree actions of the group,
and the measure of the set of fixed points of a given element for such an action
is the value of the corresponding character at this element. This construction has
another reserve component: if the group has cocycles with values in the circle R/Z
that are not cohomologous to 1, then, using them in the framework described above
as multiplicators, one can obtain representations nonequivalent to the previous ones
and new characters. The following problem is important.

Problem 6. For what groups does this construction give all indecomposable char-

acters of the group?

In turns out that this is the case for the infinite symmetric group, as follows
from a new interpretation of the papers by S. V. Kerov and the author published
in the 1980s ([7] and others).

By the way, observe (this concerns the construction of factor representations)
that considering the case of equal frequencies in Thoma’s theorem separately, as in
[7] and subsequent papers, turned out to be superfluous. The reason is that the
old construction used the groupoid of sequences with a Bernoulli measure, and the
present construction is based on the groupoid of subgroups; hence, whatever the
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probabilities are, applying Theorem 9, we obtain the whole factor and not a proper
subfactor as in the case of equal frequencies in the paper [7].

It seems that the situation is similar for the groups GLB(q), GL(∞, Fq), the
group of rational rearrangements of the interval, etc. Note also that our considera-
tions apply to the infinite-dimensional groups U(∞), O(∞), to the so-called Dye’s
trajectory group [8], etc.; for continuous groups, one should slightly modify some of
the definitions and arguments given above. The transition to the groupoid of con-
jugate subgroups makes the construction of representations completely invariant.
Besides, this groupoid is of interest in itself.

In the paper [1], which is under preparation, we describe all extremely nonfree
and totally nonfree actions of the infinite symmetric group, i.e., essentially, the
corresponding measures on the lattice of subgroups of this group, and show how
one can obtain from this description the complete list of characters of this group.
This is another, “dynamical” (i.e., based on considering group actions) proof of
Thoma’s theorem about the characters of the infinite symmetric group. A similar
proof is given for closely related groups. It turns out that the list of totally nonfree
measures on the lattice of subgroups is exhausted by the Bernoulli measures on
Young subgroups with infinite blocks; this result is yet another analog of the famous
de Finetti theorem.

In conclusion, we would like to mention that the classes of actions of countable
groups introduced in this paper, and groups for which such actions and the corre-
sponding measures on the lattices of subgroups do exist, are of interest beyond the
theory of representations and characters. Apparently, such groups are distinguished
also by other properties.

Translated by N. V. Tsilevich.
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