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VECTOR GROUPOIDS

VASILE POPUŢA and GEORGHE IVAN

ABSTRACT. The main purpose of this paper is to study the vector groupoids.

This is an algebraic structure which combines the concepts of Brandt groupoid and

vector space such that these are compatible. The new concept of vector groupoid

has applications in geometry and other areas. 1

1 INTRODUCTION

A groupoid, also known as a virtual group [16], is an algebraic structure
introduced by H. Brandt [1]. A groupoid (in the sense of Brandt) can be
thought as a set with a partially defined multiplication, for which the usual
properties of a group hold whenever they make sense.

A generalization of Brandt groupoid has appeared in [9]. C. Ehresmann
added further structures ( topological and differentiable as well as algebraic)
to groupoids.

Groupoids and its generalizations (topological groupoids, Lie groupoids,
measure groupoids, sympectic groupoids etc.) are mathematical structures
that have proved to be useful in many areas of science [algebraic topology
([3], [8]), harmonic analysis and operators algebras ([8], [18], [22]), differen-
tial geometry and its applications ([4], [6], [14], [17], [21]), noncommutative
geometry ([5]), algebraic and geometric combinatorics ([13], [20]), dynamics
of networks ([7], [11], [19] and more].

It is remarkable to note that according to A. Connes [5], Heisenberg
was discovered quantum mechanics by considering the groupoid of quantum
transitions rather than the group of symmetry.

The paper is organized as follows. In Section 2 we define groupoids
and useful properties of them are presented. In Section 3 we introduce the
concept of vector groupoid and its properties are established. In Section 3
we give some algebraic constructions of vector groupoids.

2 BRANDT GROUPOIDS

We recall the minimal necessary backgrounds on groupoids for our de-
velopments (for further details see e.g. [2], [10], [12], [15] and references
therein for more details).

Definition 2.1. ([6]) A groupoid G over G0 ( in the sense of Brandt

) is a pair (G,G0) of nonempty sets such that G0 ⊆ G endowed with two
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surjective maps α, β : G → G0 ( called source, respectively target, a par-
tially binary operation (called multiplication) m : G(2) → G, (x, y) 7−→
m (x, y) := x·y, where G(2) := G×(β,α)G = {(x, y) ∈ G×G | β (x) = α (y)}
is the set of composable pairs and a map ι : G→ G, x 7−→ ι(x) := x−1

( called inversion), which verify the following conditions:
(G) (associativity): (x · y) · z = x · (y · z) in the sense that if one of

two products (x · y) · z and x · (y · z) is defined, then the other product is also
defined and they are equals;

(G2) (units): for each x ∈ G ⇒ (α(x), x), (x, β(x)) ∈ G(2) and we
have α(x) · x = x · β(x) = x;

(G3) (inverses): for each x ∈ G ⇒ (x, x−1), (x−1, x) ∈ G(2) and we
have x−1 · x = β(x), x · x−1 = α(x).

A groupoid G over G0 with the structure functions α, β,m, ι is denoted
by (G,α, β,m, ι,G0) or (G,α, β,G0) or (G,G0). The element α(x) respec-
tively β(x) is called the left unit respectively right unit of x; G0 is called
the unit set of G. The map (α, β) defined by:

(α, β) : G→ G0 ×G0, (α, β)(x) := (α(x), β(x)), x ∈ G,

is called the anchor map of G. For each u ∈ G0, the set Gu := α−1(u) (
resp. Gu := β−1(u) ) is called α− fibre ( resp. β− fibre ) of G at u ∈ G0.
If u, v ∈ G0 we will write Gu

v = α−1(u) ∩ β−1(v).
A groupoid (G,G0) is said to be transitive, if its anchor map is surjective.
Convention. (1) We write sometimes xy for m(x, y) , if (x, y) ∈ G(2).
(2) Whenever we write a product in a given groupoid, we are assuming

that it is defined. �

In the following proposition we summarize some basic rules of algebraic
calculation in a Brandt groupoid obtained directly from definitions.

Proposition 2.1. ([12]) In a groupoid (G,α, β,m, ι,G0) the following
assertions hold :

(i) α(u) = β(u) = u, u · u = u and ι(u) = u, ∀u ∈ G0;
(ii) α (x · y) = α (x) and β (x · y) = β (y) , ∀ (x, y) ∈ G(2);
(iii) α

(
x−1

)
= β (x) and β

(
x−1

)
= α (x) , ∀x ∈ G;

(iv) (cancellation law) If for x, y1, y2, z ∈ G we have (x, y1), (x, y2),
(y1, z), (y2, z) ∈ G(2), then:

(a) x · y1 = x · y2 ⇒ y1 = y2; (b) y1 · z = y2 · z ⇒ y1 = y2.

(v) For each x ∈ G we have (x−1)−1 = x.
(vi) If (x, y) ∈ G(2), then (y−1, x−1) ∈ G(2) and the equality holds:

(x · y)−1 = y−1 · x−1.

(vii) For all (x, y) ∈ G(2), the following equalities hold:

x−1 · (x · y) = y and (x · y) · y−1 = x.
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In a groupoid (G,G0) for any u ∈ G0, the set G(u) := α−1(u)∩β−1(u) =
{x ∈ G | α(x) = β(x) = u } is a group under the restriction of the partial
multiplication m to G(u), called the isotropy group at u of G.

Proposition 2.2. ([12]) Let (G,α, β,m, ι,G0) be a groupoid. Then:
(i) α ◦ ι = β, β ◦ ι = α and ι ◦ ι = IdG.
(ii) ϕ : G(α(x)) → G(β(x)), ϕ(z) := x−1zx is an isomorphism of

groups.
(iii) If (G,G0) is transitive, then all isotropy groups are isomorphes.

A group bundle is a groupoid (G,G0) with the property that α(x) =
β(x) for all x ∈ G. Moreover,a group bundle is the union of its isotropy
groups G(u) = α−1(u), u ∈ G0 (here, two elements may be composed iff
they lie in the same fiber α−1(u) ).

If (G,α, β,G0) is a groupoid then Is(G) := {x ∈ G | α(x) = β(x)} is
a group bundle, called the isotropy group bundle of G.

Example 2.1. (i) Any group G having e as unity, is a groupoid over
G0 = {e} with the structure functions α, β,m, ι given by:
α(x) = β(x) = e, ι(x) = x−1 for all x ∈ G and m(x, y) = xy for all x, y ∈ G.

(ii) Any set X can be endowed with a nul groupoid structure over
itself. For this we take: α = β = ι = IdX ; x, y ∈ X are composable iff
x = y and we define x · x = x.

(iii) The Cartesian product G := X×X has a structure of groupoid over
∆X = {(x, x) ∈ X×X | x ∈ X} by taking the structure functions as follows:
α̃(x, y) := (x, x), β̃(x, y) := (y, y); the elements (x, y) and (y′, z) are
composable in G := X×X iff y′ = y and we define (x, y) · (y, z) = (x, z)
and the inverse of (x, y) is defined by (x, y)−1 := (y, x). This is usually
called the pair or coarse groupoid. Its unit set is G0 := ∆X . The isotropy
group G(u) at u = (x, x) is the nul group {(u, u)}.

Example 2.2. (i) The symmetry groupoid SG(X). Let X be a nonempty
set and consider

G := SG(A,X) = {f : A→ A | ∅ 6= A ⊆ X, f is bijective } and

G0 := {IdA | ∅ 6= A ⊆ X}, where IdA is the identity map on A.

Let G(2) := {(f, g) ∈ G × G|D(f) = D(g)}, where D(f) denotes the
domain of f . The structure functions α, β : G → G0, ι : G → G and the
multiplication m : G(2) → G are given by:

α(f) := IdD(f), β(f) := IdD(f), ι(f) := f−1 and m(f, g) := f ◦ g.
Then (G,G0) is a groupoid, called the groupoid of bijective functions

from the subsets A of X onto A or the symmetry groupoid of the set X.
The isotropy group at u = IdA is the symmetry group of the set A, i.e.

G(u) = {f : A→ A | f is bijective }.

3



In particular, the symmetry groupoid of a finite set X = {x1, x2, . . . , xn},
is called the symmetry groupoid of degree n and is denoted by SGn. Its unit
set is SGn,0 = {IdA | ∅ 6= A ⊆ {x1, x2, . . . , xn}}. The cardinals of these
finite sets are given by:

| SGn | =
n∑

k=1

k!
(
n
k

)
, | SGn,0 | = 2n − 1.

(ii) The Galois groupoid Gal(E/K). Let F/K be an extension field of a
field K, i.e. K is a subfield of F . We consider an indexed family E := (Ei)i∈I
of intermediate fields Ei, that is K ⊆ Ei ⊆ F for each i ∈ I. Let

Γ := Gal(E/K) = {ϕ : Ei → Ei | ϕ is a K -automorphism } and

Γ0 := Gal(E/K)0 = {IdEI
| i ∈ I}.

Let Γ(2) := {(ϕ,ψ) ∈ Γ × Γ|D(ϕ) = D(ψ)}. The structure functions

α, β : Γ→ Γ0, ι : Γ→ Γ and m : Γ(2) → Γ are given by:

α(ϕ) := IdD(ϕ), β(ϕ) := IdD(ϕ), ι(ϕ) := ϕ−1 and m(ϕ,ψ) := ϕ ◦ ψ.

Then Gal(E/K) is a groupoid over Gal(E/K)0, called the Galois groupoid
associated to E. The isotropy group at u = IdEi

is the Galois group
Gal(Ei/K).

Definition 2.2. ([6]) By morpfism of groupoids or groupoid mor-
phism between the groupoids (G,α, β,m, ι,G0) and (G′, α′, β′,m′, ι′, G′

0),
we mean a map f : G→ G′ which verifies the following conditions:

(i) ∀ (x, y) ∈ G(2) =⇒ (f(x), f(y)) ∈ G′

(2);

(ii) f(m(x, y)) = m′(f(x), f(y)), ∀ (x, y) ∈ G(2).

Proposition 2.3. If f : G −→ G′ is a morpfism of groupoids, then:

(a) f (u) ∈ G′

0, ∀ u ∈ G0; (b) f
(
x−1

)
= (f (x))−1 , ∀ x ∈ G.

From Proposition 2.3(a) follows that a groupoid morphism f : G → G′

induces a map f0 : G0 → G′

0 taking f0(u) := f(u), (∀)u ∈ G0, i.e. the map
f0 is the restriction of f to G0. We say that (f, f0) : (G,G0)→ (G′, G′

0) is a
morphism of groupoids.

If G0 = G′

0 and f0 = IdG0
, we say that f : G→ G′ is a G0 - morphism

of groupoids over G0.
A groupoid morphism (f, f0) is said to be isomorphism of groupoids or

groupoid isomorphism, if f and f0 are bijective maps.

Proposition 2.4. ([12]) Let (G,α, β,m, ι,G0) and (G′, α′, β′,m′, ι′, G′

0) be
two groupoids. The pair (f, f0) : (G,G0) −→ (G′, G′

0) where f : G −→ G′

and f0 : G0 −→ G′

0, is a groupoid morphism if and only if the following
conditions are verified:

(i) α′ ◦ f = f0 ◦ α and β′ ◦ f = f0 ◦ β;
(ii) f (m (x, y)) = m′ (f (x) , f (y)) , ∀ (x, y) ∈ G(2).
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Remark 2.1. Applying Propositions 2.3 and 3.4 we can conclude that a
groupoid morphism (f, f0) : (G,G0) −→ (G′, G′

0) is linked with the struc-
ture functions by the relations :

α′ ◦ f = f0 ◦ α, β′ ◦ f = f0 ◦ β, m′ ◦ (f × f) = f ◦m, ι′ ◦ f = f ◦ ι (2.1)

where (f × f)(x, y) := (f(x), f(y)), ∀ x, y ∈ G×G.

Definition 2.3. ([8]) A groupoid morphism (f, f0) : (G,G0) −→ (G′, G′

0)
satisfying the following condition:

∀ x, y ∈ G such that (f(x), f(y)) ∈ G′

(2) ⇒ (x, y) ∈ G(2) (2.2)

will be called strong morphism or homomorphism of groupoids.

Example 2.3. Let the symmetry groupoid SGn of the finite set
X = {x1, x2, . . . , xn} and the multiplicative group {+1,−1} ( regarded as
groupoid over {+1} ). We define the map

sgn♯ : SGn → {+1,−1}, f ∈ SGn 7−→ sgn♯(f) := sgn(f),

where sgn(f) is the signature of the permutation f of degree k = |D(f)|.
We have that sgn♯ : SGn → {+1,−1} is a groupoid morphism.
Indeed, let f, g ∈ G(2), where G = SG(A,X) such that D(f) = D(g) :=

Ak := {xj1 , . . . , xjk} ⊆ X, 1 ≤ k ≤ n. Then f and g are permutations of
Ak and f ◦ g is also a permutation of Ak. It is clearly that the condition (i)
from Definition 2.2 is verified. Also, it is well known that
sgn(f ◦ g) = sgn(f) · sgn(g). Hence sgn♯(m(f, g)) = sgn♯(f) · sgn♯(g).
Therefore the condition (ii) from Definition 2.2 holds.

The map sgn♯ : SGn → {+1,−1} is not a groupoid homomorphism.
Indeed, for X = {x1, x2, x3, x4} we consider the permutations f, g ∈ SG4,

where f =

(
x1 x2 x3
x2 x3 x1

)
and g =

(
x1 x3 x4
x4 x3 x1

)
. Then

sgn♯(f) = +1, sgn♯(g) = −1 and (sgn♯(f), sgn♯(g)) ∈ {+1,−1}×{+1,−1}.
But f and g are not composable in SG4, since D(f) 6= D(g).

3 VECTOR GROUPOIDS

Definition 3.1. A vector groupoid over a field K, is a groupoid (V, α, β,⊙, ι, V0)
such that:

(3.1.1) V is a vector space over K, and the units set V0 is a subspace of V .
(3.1.2) The source and the target maps α and β are linear maps.

(3.1.3) The inversion ι : V −→ V, x 7−→ ι(x) := x−1 is a linear map and
the following condition is verified:

(1) x+ x−1 = α(x) + β(x), for all x ∈ V.

(3.1.4) The map m : V(2) := {(x, y) ∈ V × V | α(y) = β(x)} → V,
(x, y) 7−→ m(x, y) := x⊙ y, satisfy the following conditions :
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1. x ⊙ (y + z − β(x)) = x⊙ y + x ⊙ z − x, for all x, y, z ∈ V , such that
α(y) = β(x) = α(z).

2. x ⊙ (ky + (1 − k)β(x)) = k(x ⊙ y) + (1 − k)x, for all x, y ∈ V , such
that α(y) = β(x).

3. (y + z − α(x)) ⊙ x = y ⊙ x + z ⊙ x − x, for all x, y, z ∈ V , such that
α(x) = β(y) = β(z).

4. (ky+(1− k)α(x))⊙x = k(y⊙x)+ (1− k)x for all x, y ∈ V , such that
α(x) = β(y).

When there can be no confusion we put xy or x · y instead of x⊙ y.
From Definition 3.1 follows the following corollary.

Corollary 3.1. Let (V, α, β,⊙, ι, V0) be a vector groupoid. Then:
(i) The source and target α, β : V → V0 are linear epimorphisms.
(ii) The inversion ι : V → V is a linear automorphism.
(iii) The fibres α−1(0) and β−1(0) and the isotropy group

V (0) := α−1(0) ∩ β−1(0) are vector subspaces of the vector space V .

Example 3.1. Let V be a vector space over a field K. If we define the maps
α0, β0, ι0 : V −→ V, α0(x) = β0(x) = 0, ι0(x) = −x, and the multiplication
law m0(x, y) = x+ y, then (V, α0, β0,m0, ι0, V0 = {0}) is a vector groupoid
called vector groupoid with a single unit. We will denote this vector groupoid
by (V,+). Therefore, each vector space V over K can be regarded as vector
groupoid over V0 = {0}. �

Example 3.2. Let V be a vector space over a field K. Then V has a
structure of null groupoid over V ( see Example 2.1(ii) ). In this case the
structure functions are α = β = ι = IdV and x⊙ x = x for all x ∈ V . We
have that V0 = V and the maps α, β, ι are linear. Since x + ι(x) = x + x
and α(x) + β(x) = x+ x imply that the condition 3.1.3(1) holds. It is easy
to verify the conditions 3.1.4(1)- 3.1.4(4) from Definition 3.1. Then V is a
vector groupoid, called the null vector groupoid associated to V . �

Example 3.3. Let V be a vector space over a field K. We consider the pair
groupoid (V ×V, α̃, β̃, m̃, ι̃,∆V ) associated to V ( see Example 2.1(iii)). We
have that V ×V is a vector space over K and the source α̃ and target β̃ are
linear maps. Also, the inversion ι̃ : V ×V → V ×V is a linear isomorphism.
Therefore it follows that the conditions (3.1.1) − (3.1.3) are satisfied. By
a direct computation we verify that the relations 3.1.4(1) - 3.1.4(4) from
Definition 3.1 hold. Hence V × V is a vector groupoid called the coarse
vector groupoid or pair vector groupoid associated to V . �

Example 3.4. The vector groupoid V 2(p, q). Let V be a vector space
over a field K and let p, q ∈ K such that pq = 1. The maps α, β, ι : V 2 −→
V 2, α(x, y) := (x, px), β(x, y) := (qy, y), ι(x, y) := (qy, px) together with the
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multiplication law given on V 2
(2) := {((x, y), (qy, z)) | x, y, z ∈ V } ⊂ V

2×V 2,

by (x, y) · (qy, z) := (x, z) determine on V 2 a structure of vector groupoid.
This is called the pair or the coarse vector groupoid of type (p, q) and it is
denoted by V 2(p, q).

If p = q = 1, then the vector groupoid V 2(1, 1) coincide with the pair
vector groupoid associated to V (see Example 3.3 ).

If n is a prime number and p, q ∈ Zn, such that pq = 1, then Z
2
n(p, q) is

called the modular or cryptographic vector groupoid. �

Example 3.5. Let V be vector space over a field K. One consider the maps
α, β, ι : V 3 −→ V 3, α(x1, x2, x3) := (x1, x1, 0), β(x1, x2, x3) := (x2, x2, 0),
ι(x1, x2, x3) := (x2, x1,−x3) together with the multiplication law given on
V 3
(2) = {((x1, x2, x3), (x2, y2, y3)) | x1, x2, x3, y2, y3 ∈ V } ⊂ V 3 × V 3 by

(x1, x2, x3)⊙ (x2, y2, y3) := (x1, y2, x3 + y3).
Then (V 3, α, β, ι,⊙, V 3

0 ), where V 3
0 = {(x, x, 0) | x ∈ V }, is a vector

groupoid. �

In the following proposition, we give, in addition to those in Proposition
2.1, other rules of algebraic calculation in a vector groupoid.

Proposition 3.1. In a vector groupoid (V, α, β,⊙, ι, V0) the following as-
sertions hold :

(i) 0 · x = x, ∀ x ∈ α−1(0);

(ii) x · 0 = x, ∀ x ∈ β−1(0);

(iii) For all x, y ∈ β−1(0), we have x− α(x) = y − α(y) =⇒ x = y;

(iv) for all x, y ∈ α−1(0), we have x− β(x) = y − β(y) =⇒ x = y.

Proof. (i) If x ∈ α−1(0), then α(x) = 0 = β(0). So (0, x) ∈ V(2) and, using
the condition (G2) from Definition 2.1, one obtains that 0 ·x = α(x) ·x = x.
(iv) Let x, y ∈ α−1(0) such that x−β(x) = y−β(y). Then α(x) = α(y) = 0
and x − y = β(x) − β(y). Since α is linear map and applying Proposition
2.1 (i), one obtains that 0 = α(x) − α(y) = α(x − y) = α(β(x) − β(y)) =
β(x)− β(y) = x− y, and so x = y.

Similarly, we prove that the assertions (ii) and (iii) hold.

Proposition 3.2. Let (V, α, β,⊙, ι, V0) be a vector groupoid. Then:
(i) tβ : α−1(0) −→ β−1(0), tβ(x) := β(x)−x is a linear isomorphism.
(ii) tα : β−1(0) −→ α−1(0), tα(x) := α(x)−x is a linear isomorphism.

Proof. (i) Let be x1, x2 ∈ V and k1, k2 ∈ K. Then tβ(k1x1 + k2x2) =
= β(k1x1 + k2x2)− (k1x1 + k2x2) = k1(β(x1)− x1) + k2(β(x2)− x2) =
= k1tβ(x1) + k2tβ(x2). Hence tβ is a linear map.

Let now x, y ∈ α−1(0) such that tβ(x) = tβ(y). Applying Proposition
3.1(iv), one obtains x = y, and so the map tβ is injective.
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For any y ∈ β−1(0) we take x = α(y) − y. Clearly x ∈ α−1(0). We have
tβ(x) = β(α(y)−y)−(α(y)−y) = α(y)−β(y)−α(y)+y = y, since β(y) = 0.
Hence the map tβ is surjective. Therefore tβ is a linear isomorphism.

(ii) Similarly we prove that tα is a linear isomorphism.

Proposition 3.3. Let (V,+, ·, α, β,⊙, ι, V0) be a vector groupoid over K
and u ∈ V0 any unit of V . The following assertions hold.

(i) The isotropy group V (u) := {x ∈ V | α(x) = β(x) = u} endowed
with the laws ⊞ : V × V → V and ⊠ : K × V → V given by:

x⊞ y = x+ y − u, ∀ x, y ∈ V (u) (3.1)

k ⊠ x = kx+ (1− k)u, ∀ k ∈ K, x ∈ V (u), (3.2)

has a structure of vector space over K.
(ii) The vector space (V (u),⊞,⊠) together with the restrictions of

structure functions α, β, ι to V (u) and the multiplication
⊡ : V (u)(2) = V (u)× V (u)→ V (u) given by:

x⊡ y = (x− u)⊙ (y − u) + u, ∀ x, y ∈ V (u) (3.3)

has a structure of vector groupoid with a single unit over K.

Proof. (i) Using the linearity of the functions α and β we verify that the
laws ⊞ and ⊠ given by (3.1) and (3.2) are well-defined. For instance, for
x, y ∈ V (u) we have α(x ⊞ y) = α(x + y − u) = α(x) + α(y) − α(u) = u,
since α(x) = α(y) = α(u) = u. Similarly, β(x⊞ y) = u. Hence x⊞ y ∈ V (u).
It is easy to verify that (V (u),⊞) is a commutative group. Its null vector is
the element u ∈ V (u). The opposite ⊟ x of x ∈ V (u) is ⊟ x = 2u− x.

For any x, y ∈ V (u) and k, k1, k2 ∈ K, the law ⊠ verify the following
relations:

(a) k ⊠ (x⊞ y) = (k ⊠ x)⊞ (k ⊞ y),

(b) (k1 + k2)⊠ x = (k1 ⊠ x)⊞ (k2 ⊠ x),

(c) k1 ⊠ (k2 ⊠ x) = (k1k2)⊠ x,

(d) 1⊠ x = x ( here 1 is the unit of the field K ).

Indeed, we have k⊠ (x⊞y) = k(x⊞y)+(1−k)u = k(x+y)+(1−2k)u
and (k⊠x)⊞ (k⊞ y) = (k⊠x)+ (k⊞ y)−u = k(x+ y)+ (1− 2k)u . Hence
the equality (a) holds.

In the same manner we prove that the equalities (b) - (d) hold. Therefore
(V,⊞,⊠) is a vector space.

(ii) From the above assertion follows that the condition (3.1.1) from
Definition 3.1 is satisfied.
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The restrictions of the linear maps α and β to V (u) are linear maps, and
so the condition (3.1.2) from Definition 3.1 holds.

Also, the restriction of the linear maps ι to V (u) is linear map. Applying
the equality 3.1.3(1) from Definition 3.1, for any x ∈ V (u) we have
x ⊞ ι(x) = x + ι(x) − u = α(x) + β(x) − u = α(x) ⊞ β(x). Therefore the
condition (3.1.3) from Definition 3.1 holds.

Let x, y ∈ V (u). Applying the properties of maps α and β we have
α(x⊡ y) = α((x − u)⊙ (y − u) + u) = α((x − u)⊙ (y − u)) + α(u) =
= α(x−u)+α(u) = α(x) = u and β(x⊡ y) = u and so x⊡ y ∈ V (u). Hence
the law ⊡ given by the relation (3.3) is well-defined.

If x, y, z ∈ V (u) then the following equality holds:

(e) x⊡ (y ⊞ z ⊞ (⊟β(x))) = (x⊡ y)⊞ (x⊡ z)⊞ (⊟x)).

Indeed, we have

(e.1) x⊡ (y ⊞ z ⊞ (⊟β(x))) = x⊡ (y ⊞ z ⊞ (⊟u)) = x⊡ (y ⊞ z ⊞ u) =
= x⊡ (y⊞ z) = (x− u)⊙ (y⊞ z− u)+u = (x−u)⊙ ((y−u)+ (z− u))+u.

Replacing in the equality 3.4.1(1) the elements x, y, z ∈ V (u) respec-
tively with x− u, y − u, z − u ∈ V (u), we obtain the following equality

(f) (x−u)⊙((y−u)+(z−u)) = (x−u)⊙(y−u)+(x−u)⊙(z−u)−(x−u),

since β(x− u) = 0.
Using the relation (f), the equality (e.1) becomes

(e.2) x⊡ (y⊞ z⊞ (⊟β(x))) = (x−u)⊙ (y−u) + (x− u)⊙ (z−u)+ 2u−x.

On the other hand we have

(e.3) (x⊡ y)⊞ (x⊡ z)⊞ (⊟x)) = ((x⊡ y)⊞ (x⊡ z))⊞ (2u− x) =
= (x⊡ y + x⊡ z − u)⊞ (2u− x) = x⊡ y + x⊡ z − x =
= (x− u)⊙ (y − u) + (x− u)⊙ (z − u) + 2u− x.

Using (e.2) and (e.3) we obtain the equality (e). Hence, the relation
3.4.1(1) from Definition 3.1 holds.

In the same manner we can prove that the relations 3.1.4(2) - 3.1.4(4)
from Definition 3.1 are verified.

We call (V (u),⊞,⊠, α, β,⊡, ι, V0(u) = {u}) the isotropy vector groupoid
at u ∈ V0 of V , when one refers to the above structure given on it.

Definition 3.2. Let (V1, α1, β1, V1,0) and (V2, α2, β2, V2,0) be two vector groupoids.
A groupoid morphism ( resp. groupoid homomorphism ) f : V1 −→ V2

with property that f is a linear map, is called vector groupoid morphism
( resp. vector groupoid homomorphism ).
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Example 3.6. Let (V, α, β,⊙, ι, V0) be a vector groupoid. We consider the
pair vector groupoid (V0 × V0, α̃, β̃, m̃, ι̃,∆V0

). Then
the anchor map (α, β) : V → V0×V0 is a homomorphism of vector groupoids
between the vector groupoids V and V0 × V0.

Indeed, if we denote (α, β) := f and consider the elements x, y ∈ G
such that (f(x), f(y)) ∈ (V0 × V0)(2), then β̃(f(x)) = α̃(f(y)) and we have

β̃(α(x), β(x)) = α̃(α(y), β(y)) ⇒ (β(x), β(x)) = (α(y), α(y)) ⇒ β(x)) =
α(y), i.e. (x, y) ∈ V(2). Therefore the condition (i) from Definition 2.2 holds.

For (x, y) ∈ V(2) we have
f(m(x, y)) = f(xy) = (α(xy), β(xy)) = (α(x), β(y)) and
m̃(f(x), f(y)) = m̃((α(x), β(x)), (α(y), β(y))) = (α(x), β(y)).
Hence the equality (ii) from Definition 2.2 is verified.
Let now two elements x, y ∈ V such that (f(x), f(y)) ∈ (V0 × V0)(2).

Then β̃(f(x)) = α̃(f(y)). Since f(x) = (α(x), β(x)) and f(y) = (α(y), β(y))
we deduce that (β(x), β(x)) = (α(y), α(y)). Therefore β(x) = α(y) and
(x, y) ∈ G(V ). Therefore the condition (2.2) from Definition 2.3 is satisfied.

Hence f : V → V0 × V0 is a groupoid homomorphism.
Let x, y ∈ V and a, b ∈ K. Since α, β are linear maps, we have

f(ax+ by) = (α(ax+ by), β(ax + by)) = (aα(x) + bα(y), aβ(x) + bβ(y)) =
= a(α(x), β(x)) + b(α(y), β(y)) = af(x) + bf(y), i.e. f is a linear map.

Therefore, the conditions from Definition 3.2 are verified. Hence f is a
vector groupoid homomorphism. �

4 ALGEBRAIC CONSTRUCTIONS OF VECTOR

GROUPOIDS

In this section we shall give some important ways of building up new vector
groupoids.

1. Direct product of two vector groupoids. Let given the vector
groupoids (V, αV , βV ,⊙V , ιV , V0) and (W,αW , βW ,⊙W , ιW ,W0). We have
that V0 ×W0 is a vector subspace of the direct product V ×W of vector
spaces V and W .

We can easy prove that V ×W endowed with the structure functions
αV×W , βV ×W ,⊙V×W and ιV×W given by
αV×W (v,w) := (αV (v), αW (w)), βV×W (v,w) := (βV (v), βW (w)),
(v1, w1)⊙V×W (v2, w2) := (v1⊙V v2, w1⊙Ww2), ιV×W (v,w) := (ιV (v), ιW (w))
for all v, v1, v2 ∈ V and w,w1, w2 ∈W , is a vector groupoid over V0 ×W0.

This vector groupoid is called the direct product of vector groupoids
(V, V0) and (W,W0).

By a direct computation we can verify that the projections
prV : V ×W → V and prW : V ×W →W are morphisms of vector groupoids,
called the canonical projections of the vector groupoid V ×W onto vector
groupoid V and W , respectively. The following assertion holds
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The direct product of two transitive vector groupoids is also a transitive
vector groupoid.

2. Trivial vector groupoid TVG(V,W ). Let W be a vector subspace
of a vector space V over K. The set V :=W×V ×W has a natural structure
of vector space. The set V0 := {(w, 0, w) ∈ V | w ∈W} is a vector subspace
of V (here 0 is the null vector of V ). We introduce on V :=W ×V ×W the
structure functions αV, βV,⊙V and ιV as follows.

For all (w1, v, w2) ∈ V, the source and target αV, βV : V→ V0 are defined
by

αV(w1, v, w2) := (w1, 0, w1); βV(w1, v, w2) := (w2, 0, w2).

The partially multiplication ⊙V : V(2) → V, where
V(2) = {((w1, v1, w2), (w

′

2, v2, w3)) ∈ V× V | w2 = w′

2} and the inversion
map ιV : V→ V are given by

(w1, v1, w2)⊙V(w2, v2, w3) := (w1, v1+v2, w3); ιV(w1, v, w2) := (w2,−v,w1).

It is easy to verify that the conditions of Definition 2.1 are satisfied.
Then (V, αV, βV,⊙V, ιV,V0) is a groupoid. Also, the condition (3.1.1) from
Definition 3.1 is verified.

Let now two elements x, y ∈ V and a, b ∈ K where x = (w1, v1, w2) and
y = (w3, v2, w4). We have

αV(ax+ by) = αV(aw1 + bw3, av1 + bv2, aw2 + bw4) =
= (aw1+ bw3, 0, aw1+ bw3) = a(w1, 0, w1)+ b(w3, 0, w3) = aαV(w1, v1, w2)+
+bαV(w3, v2, w4) = aαV(x) + bαV(y).

It follows that αV is a linear map. Similarly we prove that βV is a linear
map. Therefore the conditions (3.1.2) from Definition 3.1 hold.

For x = (w1, v1, w2) ∈ V and y = (w3, v2, w4) ∈ V and a, b ∈ K, we have
ιV(ax+ by) = ιV(aw1 + bw3, av1 + bv2, aw2 + bw4) =

= (aw2 + bw4,−av1 − bv2, aw1 + bw3) = a(w2,−v1, w1) + b(w4,−v2, w3) =
= aιV(w1, v1, w2) + bιV(w3, v2, w4) = aιV(x) + bιV(y).

It follows that ιV is a linear map. Also
x+ ιV (x) = (w1, v1, w2) + (w2,−v1, w1) = (w1 + w2, 0, w1 + w2) =

= (w1, 0, w1) + (w2, 0, w2) = αV (x) + βV (x).
Hence the condition (3.1.3) from Definition 3.1 holds.
For to verify the relation 3.1.4(1) from Definition 3.1 we consider the

arbitrary elements x, y, z ∈ V where x = (w1, v1, w2), y = (w3, v2, w4) and
z = (w5, v3, w6) such that αV(y) = βV(x) = αV(z). Then w2 = w3 = w5 and
follows x = (w1, v1, w2), y = (w2, v2, w4) and z = (w2, v3, w6).

For all k ∈ K we have
(i) x⊙V (y + z − βV(x)) = (w1, v1, w2)⊙V ((w2, v2, w4)+

+(w2, v3, w6)− (w2, 0, w2)) = (w1, v1, w2)⊙V (w2, v2 + v3, w4 + w6 − w2) =
= (w1, v1 + v2 + v3, w4 + w6 − w2) and

(ii) x⊙V y + x⊙V z − x = (w1, v1, w2)⊙V (w2, v2, w4)+
+(w1, v1, w2)⊙V (w2, v3, w6)− (w1, v1, w2) = (w1, v1 + v2, w4)+
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+(w1, v1 + v3, w6)− (w1, v1, w2) = (w1, v1 + v2 + v3, w4 + w6 − w2).
Using (i) and (ii) we obtain x⊙V (y + z − βV(x)) = x⊙V y + x⊙V z − x.

Hence the condition 3.1.4 (1) from Definition 3.1 holds.
Let now x = (w1, v1, w2), y = (w2, v2, w4) and k ∈ K. We have
(iii) x⊙V (ky + (1− k)βV(x)) = (w1, v1, w2)⊙V (k(w2, v2, w4)+

+(1− k)(w2, 0, w2)) = (w1, v1, w2)⊙V (w2, kv2, kw4 + (1− k)w2) =
= (w1, v1 + kv2, kw4 + (1− k)w2) and

(iv) k(x⊙V y) + (1− k)x = k((w1, v1, w2)⊙V ((w2, v2, w4))+
+(1− k)(w1, v1, w2) = k(w1, v1 + v2, w4) + (1− k)(w1, v1, w2) =
= (w1, v1 + kv2, kw4 + (1− k)w2)

Using the equalities (iii) and (iv) we obtain that the condition 3.1.4 (2)
from Definition 3.1 holds.

In the same manner we prove that the conditions 3.1.4 (3) and 3.1.4 (4)
hold. Hence V :=W × V ×W is a vector groupoid over V0. Its set of units
can be identified with the vector subspace W of V .

The vector groupoid (V := W × V × W,αV, βV,⊙V, ιV,V0) is called
the trivial vector groupoid associated to pair of vector spaces (V,W ) with
W ⊆ V. This vector groupoid is denoted by TVG(V,W ). The isotropy group
at u = (w, 0, w) ∈ V0 is V (u) = {(w, v,w) | v ∈ V } which identify with
the group (V,+).

3. Whitney sum of two vector groupoids over the same base.
Let (V, αV , βV ,⊙V , ιV , V0) and (V ′, αV ′ , βV ′ ,⊙V ′ , ιV ′ , V0) be two vector groupoids
over the same base ( i.e. V and V ′ have the same units). The set
V ⊕ V ′ := { (v, v′) ∈ V × V ′ | αV (v) = αV ′(v′), βV (v) = βV ′(v′) } has a
natural structure of vector space. It is clearly that
∆V0

= {(u, u) ∈ V0 × V0 | u ∈ V0} ⊆ V ⊕ V
′ is a vector subspace.

We introduce on W := V ⊕ V ′ the structure functions αW, βW,⊙W and
ιW as follows.

The source and target αW, βW : W→ ∆V0
are defined by

αW(v, v′) := (αV (v), αV (v)); βW(v, v′) := (βV (v), βV (v)), (v, v′) ∈W.

The partially multiplication ⊙W : W(2) →W, where
W(2) = {((v1, v

′

1), ((v2, v
′

2)) ∈ W×W | βV (v2) = αV (v1)} and the inversion
map ιW : V→W are given by

(v1, v
′

1)⊙W (v2, v
′

2) := (v1⊙V v2, v
′

1⊙V ′ v′2); ιW(v, v′) := (ιV (v), ιV ′(v′)).

By a direct computation we prove that the conditions of Definition 2.1
are satisfied. Then (W := V ⊕ V ′, αW, βW,⊙W, ιW,∆V0

) is a groupoid.
Also, the condition (3.1.1) from Definition 3.1 is verified.

Let now two elements x, y ∈ W and a, b ∈ K where x = (v1, v
′

1) and
y = (v2, v

′

2). We have
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αW(ax+by) = αW(av1+bv2, av
′

1+bv
′

2) = (αV (av1+bv2), αV (av1+bv2)) =
(aαV (v1) + bαV (v2), aαV (v1) + bαV (v2)) and

aαW(x) + bαW(y) = aαW(v1, v
′

1) + bαW(v2, v
′

2) = a(αV (v1), αV (v1)) +
b(αV (v2), αV (v2)) = (aαV (v1) + bαV (v2), aαV (v1) + bαV (v2)) since αV is a
linear map. It follows that αW is a linear map.

Similarly we obtain that βW is a linear map. Therefore the conditions
(3.1.2) from Definition 3.1 hold.

For x = (v1, v
′

1) ∈ W and y = (v2, v
′

2) ∈ W and a, b ∈ K, we have
successively

ιW(ax+by) = ιW(av1+bv2, av
′

1+bv
′

2) = (ιV (av1+bv2), ιV ′(av′1+bv
′

2)) =
(aιV (v1)+bιV (v2), aιV ′(v′1)+bιV ′(v′2)) = a(ιV (v1), ιV ′(v′1))+b(ιV (v2), ιV ′(v′2)) =
aιW (v1, v

′

1)+bιW (v2, v
′

2) = aιW (x)+bιW (y), since ιV and ιV ′ are linear map.
Using the equalities 3.1.3(1) for the inversion maps ιV and ιV ′ we have

x+ ιW (x) = (v, v′) + (ιV (v), ιV ′(v′)) = (v + ιV (v), v
′ + ιV ′(v′)) =

= (αV (v) + βV (v), αV ′(v′) + βV ′(v′)) = (αV (v) + βV (v), αV (v) + βV (v)) =
= αW (v, v′) + βW (v, v′) = αW (x) + βW (x) for any x = (v, v′) ∈W.

Hence the conditions (3.1.3) from Definition 3.1 hold.
For to verify the relation 3.1.4(1) from Definition 3.1 we consider the

arbitrary elements x, y, z ∈ W where x = (v1, v
′

1), y = (v2, v
′

2) and z =
(v3, v

′

3). We assume that αW(y) = βW(x) = αW(z).
Applying the properties of the structure functions of the vector groupoids

V and V ′, we have
y + z − βW(x) = (v2, v

′

2) + (v3, v
′

3)− βW(v1, v
′

1) =
= (v2+v3, v

′

2+v
′

3)−(βV (v1), βV (v1)) = (v2+v3−βV (v1), v
′

2+v
′

3−βV (v1)) =
= (v2 + v3 − βV (v1), v

′

2 + v′3 − βV ′(v′1)) and
(a) x⊙W(y+z−βW(x)) = (v1, v

′

1)⊙W(v2+v3−βV (v1), v
′

2+v
′

3−βV ′(v′1)) =
= (v1 ⊙V (v2 + v3 − βV (v1), v

′

1 ⊙V ′ (v′2 + v′3 − βV ′(v′1)).
On the other hand we have
(b) x⊙W y + x⊙W z − x = (v1, v

′

1)⊙W (v2, v
′

2) + (v1, v
′

1)⊙W (v3, v
′

3)−
−(v1, v

′

1) = (v1 ⊙V v2, v
′

1 ⊙V ′ v′2) + (v1 ⊙V v3, v
′

1 ⊙V ′ v′3)− (v1, v
′

1) =
= (v1 ⊙V v2 + v1 ⊙V v3 − v1, v

′

1 ⊙V ′ v′2 + v′1 ⊙V ′ v′3 − v
′

1).
Using now the relations (a), (b) and the relations 3.1.4(1) for V and V ′,

we obtain the equality x⊙W (y + z − βW(x)) = x⊙W y+ x⊙W z− x. Hence
the condition 3.1.4 (1) holds.

We verify now the relation 3.1.4(4). For this, let x = (v1, v
′

1) ∈ W, y =
(v2, v

′

2) ∈W such that αW(y) = βW(x) and k ∈ K. We have
(c) (ky + (1− k)αW(x))⊙W x =

= (kv2 + (1− k)αV (v1), kv
′

2 + (1− k)αV ′(v′1))⊙W (v1, v
′

1) =
= ((kv2 + (1− k)αV (v1))⊙V v1, (kv

′

2 + (1− k)αV ′(v′1))⊙V ′ v′1) and
(d) k(y ⊙W x) + (1− k)x = k((v2, v

′

2)⊙W (v1, v
′

1)) + (1− k)(v1, v
′

1) =
= (k(v2 ⊙V v1) + (1− k)v1, k(v

′

2 ⊙V ′ v′1) + (1− k)v′1).
Using the equalities (c) and (d) and the relations 3.1.4(4) for V and V ′,

we obtain that the condition 3.1.4 (4) holds.
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In the same manner we prove that the conditions 3.1.4 (2) and 3.1.4 (3)
hold. Hence V ⊕ V ′ is a vector groupoid.

The vector groupoid (W := V ⊕ V ′, αW, βW,⊙W, ιW,∆V0
) is called the

Whitney sum of the vector groupoids (V, V0) and (V ′, V0). The base of this
vector groupoid can be identified with V0.

Proposition 4.1. If (V, V0) and (V ′, V0) are transitive vector groupoids,
then the Whitney sum (V ⊕ V ′,∆V0

) is a transitive vector groupoid.

Proof. It must prove that the anchor (αW, βW) : W→ ∆V0
×∆V0

is surjec-
tive.

If (V ⊕ V ′,∆V0
) is the Whitney sum of vector groupoids (V, V0) and

(V ′, V0), then the projections maps p : V ⊕ V ′ → V and p′ : V ⊕ V ′ → V ′

defined by p(v, v′) = v and p′(v, v′) = v′ are morphisms of vector groupoids.

Theorem 4.1. Let (V, V0) and (V ′, V0) be two vector groupoids. The triple
(V ⊕ V ′, p, p′) verifies the universal property of the Whitney sum:

for all triple (U, q, q′) composed by vector groupoid (U,αU , βU ,⊙U , ιU , V0)

and two morphisms of vector groupoids V ′
q′

←− U
q
−→ V , there exists

a unique morphism of vector groupoids ϕ : U → V ⊕ V ′ such that the
following diagram:

V ′ p′

←− V ⊕ V ′ p
−→ V

q′ տ ↑ϕ րq

U

is commutative.

Proof. We consider the map ϕ : U → V ⊕V ′ by taking ϕ(u) := (q(u), q′(u))
for all u ∈ U. By hypothesis the maps q : U → V and q′ : U → V ′ are vector
groupoid morphisms. Then (αV ◦ q)(u) = αU (u) and (αV ′ ◦ q′)(u) = αU (u),
for all u ∈ U. It follows that αV (q(u)) = αV ′(q′(u)). Similarly βV (q(u)) =
βV ′(q′(u)). Therefore ϕ(u) ∈W := V ⊕ V ′. Hence ϕ is well-defined.

Let now x, y ∈ U such that (x, y) ∈ U(2), i.e. βU (y) = αU (x). Also we
have (q(x), q(y)) ∈ V(2), i.e. βV (q(y)) = αV (q(x)), since q is a groupoid mor-
phism. Then (ϕ(x), ϕ(y)) ∈ W(2). Indeed, βW (ϕ(y)) = βW (q(y), q′(y)) =
(βV (q(y)), βV (q(y))) = (αV (q(x)), αV (q(x)) = αW (q(x), q′(x)) = αW (ϕ(x)).

For x, y ∈ U such that (x, y) ∈ U(2) we have ϕ(x⊙U y) =
= (q(x⊙U y), q

′(x⊙U y)) = (q(x)⊙V q(y), q
′(x)⊙V ′ q′(y)) = ϕ(x)⊙W ϕ(y).

Using the linearity of q and q′ it is easy to verify that ϕ is a linear map.
Therefore, ϕ is a vector groupoid morphism. We have p ◦ ϕ = q and
p′ ◦ ϕ = q′.

In a standard manner we prove that ϕ is a unique morphism of vector
groupoids such that the above diagram is commutative.
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