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Abstract

Various aspects of Morita theory of deformed algebras and in particular of star product
algebras on general Poisson manifolds are discussed. We relate the three flavours ring-theoretic
Morita equivalence, ∗-Morita equivalence, and strong Morita equivalence and exemplify their
properties for star product algebras. The complete classification of Morita equivalent star prod-
ucts on general Poisson manifolds is discussed as well as the complete classification of covariantly
Morita equivalent star products on a symplectic manifold with respect to some Lie algebra action
preserving a connection.

1 Introduction

Morita theory is a classical topic on ring theory having a more analytic cousin called strong Morita
theory in the context of C∗-algebras. The underlying idea is that one wants to learn something
about the categories of modules over a given ring by comparing it with the corresponding category
for some other ring: even if the category of left modules might be a very complicated object, it
can still be possible to state that for two (non-isomorphic) rings the corresponding categories are
equivalent. In the realm of unital rings this is precisely Morita equivalence. In the C∗-algebraic
framework one is interested not just in modules but in ∗-representations on Hilbert spaces or, more
generally, on Hilbert modules over some auxiliary C∗-algebra.

In deformation quantization one is interested in the representation theories of the deformed
algebras. But now the star product algebras are more specific than “just a ring” and hence a
purely ring-theoretic treatment would not seem to be appropriate. It simply will not capture all
interesting properties of the star products. One can achieve Hermitian star products yielding ∗-
algebras and using the ring ordering of R[[~]] one has a natural notion of positivity at hand. Thus
from this and many other aspects the star product algebras behave much more like C∗-algebras.
Hence one requires a more refined notion of representation theory leading to ∗-representations on
pre Hilbert spaces over C[[~]] as well as on pre Hilbert modules over auxiliary ∗-algebras over C[[~]].
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It turns out that one can transfer the notions of strong Morita theory from the C∗-algebraic theory
into this entirely algebraic framework, thereby extending the previous notions tremendously. This
way, star product algebras and C∗-algebras can be treated almost on the same footing even though
the star product algebras are not at all C∗-algebras.

In this review, we will focus on the recent developments in the understanding of the Morita
theory of deformed algebras in general and of the star product algebras as major class of examples.
Since recently in [9] the final classification of Morita equivalent star products in the general case of
Poisson manifolds was obtained, it seems to be a good point to give such an overview.

In Section 2, we start with some elementary presentation of the ring-theoretic aspects of Morita
theory as it can be found in any algebra textbook, see e.g. [28]. Then we pass to the notion of
∗-Morita equivalence as it was developed by Ara [1] and to the notion of strong Morita equivalence
which was first established by Rieffel for C∗-algebras in [30] and then for general ∗-algebras over
ordered rings in [11, 14]. Here we stress the functorial aspects of Morita theory and discuss in
particular the functoriality of the classical limit. Section 3 contains a brief introduction to the
existence and classification results in deformation theory based on Kontsevich’s formality theorem
[27]. Our focus is on the notions of equivalence of star products and of formal Poisson structures.
In Section 4 we explain the main result of [9] by first establishing the gauge action of formal series
of closed two-forms on formal Poisson structures. On the level of equivalence classes this provides
precisely the description of Morita equivalent star products in terms of classical data provided the
two-form is integral. The particular case of symplectic star products is easier and was discussed
earlier in [12]. In Section 5 we recall the basic notions of Morita theory in presence of symmetries
which will be modelled by a Hopf algebra action. Here the equivalence bimodules are required
to carry an action of the Hopf algebra, too, such that all structure maps have nice covariance
properties. One can now study the relations between the various notions of Morita equivalence.
Finally, in Section 6 we outline the main results of [24] where the classification of invariant star
products on a symplectic manifold up to covariant Morita equivalence with respect to a Lie algebra
action was obtained.
Acknowledgement: It is a great pleasure to thank the organisers of the Poisson 2010 conference
in Rio de Janeiro, and in particular Henrique Bursztyn, for the wonderful conference. Moreover, I
would like to thank the participants for various suggestions and comments on my talk.

2 Morita Equivalence

In this section we first recall some basic notions of ring-theoretic Morita equivalence and specialize
this to ∗-algebras over ordered rings to establish the notions of ∗-Morita equivalence and strong
Morita equivalence.

We consider unital algebras over some fixed commutative unital ring C. Later on, in deformation
quantization the cases C = C or C[[~]] will be used. One can abandon the condition of having
unital algebras by imposing some slightly weaker requirements (non-degeneracy and idempotency)
but we do not need this more general framework here.

The idea of Morita theory is to replace ordinary algebra homomorphisms Φ: A −→ B by
something more general in order to have more freedom when comparing algebras. The new arrows
between algebras will now be bimodules. Consider a (B,A)-bimodule

B
E

A
: this notation says that

B acts from the left while A acts from the right. By convention, all bimodules will have a compatible
C-module structure and all structure maps will be C-(multi-)linear in the following. Moreover, the
units of A and B will act as identity on

B
E

A
. We will view

B
E

A
now as an arrow from A to B. If

C
F

B
is another bimodule for some additional algebra C then the composition of bimodules will be
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the tensor product over the algebra in the middle, i.e.

C B

zz
C
F

B
B A.

zz
B
E

A
C A.hh

C
F

B
⊗B B

E
A

(1)

As a unit morphism one uses the canonical bimodule
A
A

A
where A acts on itself by left and right

multiplications. Now ⊗ is not directly associative but only associative up to a natural isomorphism.
Also,

A
A

A
is not directly a unit element for ⊗ but again only up to a natural isomorphism. Thus

we have to identify isomorphism classes of bimodules: this results in an honest category which we
denote by Bimod. Strictly speaking, we should confine ourselves to bimodules and algebras from
some Grothendieck universe in order to get honest sets of morphisms. But this is a technical issue
which will not affect the notion of Morita equivalence at all.

While passing to isomorphism classes of bimodules has the advantage to yield a category we
can also stay with the bimodules directly and taking into account that ⊗ is not really associative.
This leads to a bicategory where the 1-morphisms are the bimodules and the 2-morphisms, i.e. the
morphisms between the 1-morphisms, are the bimodule homomorphisms. Such 2-morphisms can
then be depicted by

B A

zz

B
E

A

B A
dd

B
E

′

A

Φ

��

(2)

for a bimodule homomorphism Φ :
B
E

A
−→

B
E

′

A
. Note that we require Φ to be C-linear as well. It

is then a classical result that the natural isomorphisms implementing the associativity for ⊗ and
the unit properties of

A
A

A
satisfy the necessary coherence properties to yield a bicategory (weak

2-category), see [3]. This bicategory will then be denoted by Bimod.
We are now in the position to state the definition of Morita equivalence:

Definition 2.1 (Morita equivalence and Picard group) Two unital C-algebras A and B are
Morita equivalent if they are isomorphic in Bimod. A bimodule

B
E

A
representing an invertible

arrow in Bimod is called an equivalence bimodule. The groupoid of invertible arrows in Bimod is
called the Picard groupoid, denoted by Pic. The isotropy group of it at A is called the Picard group
Pic(A) of A.

Alternatively, we can also use isomorphisms in Bimod in the sense of bicategories, i.e. two objects
A and B are isomorphic if there are 1-morphisms in both directions such that their compositions
are isomorphic (via 2-morphisms) to the identity morphisms

A
A

A
and

B
B

B
, respectively. This

gives then the Picard bigroupoid Pic as well as the Picard bigroup Pic(A) at A.
The main task of Morita theory is then twofold: first one would like to know which algebras are

Morita equivalent, this is described by the orbits of the Picard groupoid. Second, one would like
to understand in how many different ways two algebras can be Morita equivalent. Thanks to the
groupoid structure this is equivalent to determine the isotropy groups, i.e. the Picard groups: they
encode how many self-equivalences an algebra has. The classical theorem of Morita determines
now the structure of equivalence bimodules:
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Theorem 2.2 (Morita)
B
E

A
is an equivalence bimodule for two unital C-algebras A and B iff

there is an idempotent e = e2 ∈ Mn(A) in some matrix algebra over A such that the right A-
module E

A
is isomorphic to eAn and one has AeA = A as well as B ∼= EndA( EA

) ∼= eMn(A)e.

Here AeA denotes the two-sided ideal generated by the n2 components of e and the isomorphism in
the last statement are those induced by the action of B and eMn(A)e on E

A

∼= eAn. In particular,
an equivalence bimodule

B
E

A
is a finitely generated and projective module over A. This shows

already that we have to look for equivalence bimodules inside the K0-theory of A. Since Morita
equivalence is a symmetric relation by the very definition, we can equivalently formulate things in
terms of B instead.

Example 2.3 As a first example relevant for the following we consider the smooth complex-valued
functions A = C∞(M) for a smooth manifold M . Then it is well-known that any finitely generated
projective module over C∞(M) is isomorphic as a right module to the sections Γ∞(E) of a complex
vector bundle E −→ M . Moreover, this gives an equivalence bimodule with EndC∞(M)(Γ

∞(E)) ∼=
Γ∞(End(E)) iff the fiber dimension of E is not zero. Thus the Morita equivalent algebras to C∞(M)
are isomorphic to the sections Γ∞(End(E)) of the endomorphism bundle End(E) for arbitrary non-
zero vector bundles E −→M .

This example also allows to determine the Picard group of C∞(M): Since the only way to get
the endomorphism algebra Γ∞(End(E)) to be isomorphic to C∞(M) is by a line bundle L −→M we
have the following result: Implementing the isomorphism by choosing an appropriate automorphism
of C∞(M) we can arrange to get a symmetric bimodule where C∞(M) acts on Γ∞(L) from left
and right in the same way. Since Γ∞(L) determines L completely, we are left with the classification
of line bundles, which is done via the Chern class. Since the automorphisms of C∞(M) are just
the pull-backs with diffeomorphism, we arrive at the result that

Pic(C∞(M)) = Diffeo(M)⋉H2(M,Z) (3)

as group where the semidirect product comes from the usual action of the diffeomorphism on the
integral cohomology classes by pull-backs.

Let us now pass to the more specific case where the underlying scalars are of the form C = R(i)
with an ordered ring R and i2 = −1. In this case we have on one hand the complex conjugation
in C and on the other hand, inherited from the ordering of R, the notion of positivity. We want to
transfer this now to algebras over C as well: instead of general unital algebras we consider now ∗-
algebras, i.e. algebras equipped with an anti-linear, involutive anti-automorphism, the ∗-involution
denoted by a 7→ a∗. Then we can speak of positivity in the following way: a linear functional
A −→ C is positive if ω(a∗a) ≥ 0 for all a ∈ A. Using this, we say that an algebra element a ∈ A

is positive if ω(a) ≥ 0 for all positive linear functionals. We denote the positive algebra elements
by A+. Clearly, a∗a and any convex combination of such elements are in A+ but there might be
more. Note also that there are other scenarios where one employs a more sophisticated version of
positivity for the price of additional structures like for O∗-algebras, see e.g. [31].

As before we want now to replace the obvious notion of ∗-homomorphism by some bimodule
version. Here we rely on the particular case of C∗-algebras where this theory was studied first.
However, the essence is entirely algebraic and thus works in our general setting as well. We consider
again a (B,A)-bimodule

B
E

A
, now together with a inner product

〈·, ·〉
A
:

B
E

A
×

B
E

A
−→ A, (4)

such that 〈·, ·〉
A
is C-linear in the second argument and satisfies 〈x, y · a〉

A
= 〈x, y〉

A
a as well as

〈x, y〉
A
= ( 〈y, x〉

A
)∗, and 〈b · x, y〉

A
= 〈x, b∗ · y〉

A
for all x, y ∈

B
E

A
, a ∈ A, and b ∈ B. Finally,
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we require 〈·, ·〉
A
to be non-degenerate. In this case we will call

B
E

A
together with 〈·, ·〉

A
an inner

product (B,A)-bimodule. Note that the definition is not symmetric in A and B. As a second variant
we consider a completely positive inner product where we require in addition

(
〈xi, xj〉A

)
∈Mn(A)+. (5)

Here n ∈ N and x1, . . . , xn ∈
B
E

A
and the ∗-algebra structure on Mn(A) is the usual one induced

from the one on A. In general it will be quite difficult to determine whether an inner product
is completely positive because we first have to determine all positive linear functionals of Mn(A)
in order to determine the positivity of a matrix. However, there are many examples and more
particular situations where things simplify. A bimodule with such a completely positive inner
product is then called a pre Hilbert bimodule.

The inner product bimodules as well as pre Hilbert bimodules are now used to define (bi-)
categories Bimod

∗ and Bimod
str (Bimod

∗ and Bimod
str, respectively) by adapting the notion of

the tensor product appropriately. In fact, it is rather easy to see that the definition

〈φ⊗ x, ψ ⊗ y〉F⊗E

A
=

〈
x, 〈φ,ψ〉F

B
· y

〉
E

A
(6)

for x, y ∈
B
E

A
and φ,ψ ∈

C
F

B
extends to a well-defined inner product on

C
F

B
⊗B B

E
A

except
that it might still be degenerate. However, a further quotient by the degeneracy space will yield a
well-defined inner product. The quotient together with this new inner product then defines a new
composition, the tensor product ⊗̂B. It is slightly more tricky to see that also complete positivity
is preserved by ⊗̂B. In both cases, with this new tensor product we get honest categories Bimod

∗

and Bimod
str after passing to isometric isomorphism classes or, without identifying, bicategories

Bimod
∗ and Bimod

str, respectively. In the bicategory case we have to require that the 2-morphisms
are not just bimodule morphisms but adjointable bimodule morphisms, i.e. there exists an adjoint
with respect to the inner product. In analogy to Definition 2.1 we can now state the following:

Definition 2.4 (∗-Morita and strong Morita equivalence) Two unital ∗-algebras A and B

are ∗-Morita equivalent or strongly Morita equivalent if they are isomorphic in Bimod
∗ or in

Bimod
str, respectively. A bimodule

B
E

A
representing an invertible arrow in Bimod

∗ or Bimod
str is

called a ∗-equivalence or strong equivalence bimodule, respectively. The groupoid of invertible ar-
rows in Bimod

∗ and in Bimod
str is called the ∗-Picard groupoid Pic

∗ and the strong Picard groupoid
Pic

str. The isotropy groups of them at A are called the ∗-Picard group Pic
∗(A) and the strong Picard

group Pic
str(A) of A.

For unital ∗-algebras one can prove that the tensor product ⊗̂ of ∗-equivalence or strong equiva-
lence bimodules does not require the additional quotient procedure. Moreover, it is easy to see that
after forgetting about the inner product one obtains an equivalence bimodule in the ring-theoretic
sense. This yields well-defined groupoid morphisms

Pic
str

Pic

''OOOOOO

Pic
str

Pic
∗// Pic
∗

Pic

wwooooooo (7)

by successively forgetting structure. On the level of the Picard groups many properties of these
forgetful morphisms have been discussed in [14]. In particular, even for a C∗-algebra A over C the
group morphism Pic

str(A) −→ Pic(A) is in general nor surjective, though always injective.
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In a last step we consider now formal deformations. Here we will consider a unital algebra A

over C together with a formal associative deformation ⋆ in the sense of Gerstenhaber [20]. This
means we have C-bilinear maps Cr : A×A −→ A such that

a ⋆ b =

∞∑

r=0

~
rCr(a, b) (8)

defines a C[[~]]-bilinear associative product for A[[~]] where C0(a, b) = ab is the original product of
A. Since we work in the unital setting, we require that 1A is still a unit with respect to ⋆. We will
abbreviate this by A = (A[[~]], ⋆).

Passing to formal power series gives rise to various classical limit maps, where we set ~ = 0.
On the level of algebra elements we write

cl(a) = a0 for a =

∞∑

r=0

~
rar ∈ A[[~]], (9)

which is a C-linear algebra morphism cl : (A[[~]], ⋆) −→ A. If we have two deformations B and
A of B and A, respectively, then for a (B,A)-bimodule

B
E

A
we define the classical limit as the

quotient
cl :

B
E

A
−→ cl(

B
E

A
) =

B
E

A

/
~

B
E

A
. (10)

The result cl(
B
E

A
) is viewed as a (B,A)-bimodule. It is now easy to see that cl(

A
A

A
) ∼= A

A
A
and

that the tensor product is compatible with cl up to natural isomorphisms. This simple observation
can be summarized as follows. To keep track of the ring we denote the category of bimodule over
algebras over C and C[[~]] by BimodC and BimodC[[~]], respectively. Then one has the sub-category
Bimod ⊆ BimodC[[~]] of those algebras over C[[~]] which are formal deformations of algebras over
C as above. For the morphisms in Bimod we allow all bimodules and not just those of the form
E = E[[~]]. Then cl induces a functor

cl : Bimod −→ BimodC, (11)

called the classical limit functor. Hence we also get immediately a groupoid morphism

cl : Pic −→ PicC, (12)

which ultimately results in a group morphism

cl : Pic(A) −→ Pic(A) (13)

for every deformation A of A. Again, one is interested in understanding the properties of this clas-
sical limit morphism (12) and in particular the behaviour of the Picard groups under deformation
(13). Many results on this have been obtained in [13].

Also for ∗-algebras one can define a classical limit functor similar to (11): here one considers
Hermitian deformations which are formal deformations ⋆ such that the original ∗-involution is still
a ∗-involution also with respect to the deformed product ⋆. Then the quotient procedure for the
bimodules has to be modified as the resulting inner product on the naive quotient

B
E

A

/
~

B
E

A
will

in general be degenerate. Thus we have to divide by the degeneracy space and get a functor

cl : Bimod
∗ −→ Bimod

∗
C, (14)

which also gives groupoid and group morphisms for the ∗-Picard groupoid and ∗-Picard groups,
respectively. Finally, for the strong version one has to take care once more: the complete positivity
of the inner product on the classical limit may fail. The way out is to allow only those Hermitian
deformations which are completely positive deformations, see e.g. [15] for examples.
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3 Deformation Quantization

After the algebraic preliminaries on Morita theory we pass now to the geometric situation of
deformation quantization of Poisson manifolds.

Let (M,π1) be a Poisson manifold with Poisson tensor π1 ∈ Γ∞(Λ2TM). Then a formal
deformation of π1 is a formal series

π = ~π1 + ~
2π2 + · · · ∈ ~Γ∞(Λ2TM)[[~]], (15)

such that we still have the Jacobi identity Jπ, πK = 0. Such a formal series is also called a formal
Poisson tensor. The set of all formal Poisson tensors is denoted by FPoiss(M) and those with
fixed first order π1 are denoted by FPoiss(M,π1). A formal vector field is a formal series X =
~X1 + ~

2X2 + · · · ∈ ~Γ∞(TM)[[~]]. For a formal vector field X the exponential series exp(LX)
of the Lie derivative is a well-defined operator on formal series with coefficients in some type of
tensor fields on M . We call exp(LX) the formal diffeomorphism induced by X. The Baker-
Campbell-Hausdorff theorem shows that the composition of two formal diffeomorphisms exp(LX)
and exp(LY ) is again a formal diffeomorphism exp(LBCH(X,Y )) since both X and Y start in first
order of ~ making the BCH series BCH(X,Y ) a well-defined formal vector field again. This way,
we obtain the group of formal diffeomorphisms FDiffeo(M) acting on various tensor fields. Indeed,
one can think of formal vector fields, formal Poisson structures, formal diffeomorphisms, etc. as the
∞-jet around ~ = 0 of vector fields, Poisson structures, diffeomorphisms, etc., depending smoothly
on the parameter ~. However, we will not need this point of view here.

Since the Schouten bracket J·, ·K is natural with respect to the Lie derivative, it is clear that a
formal diffeomorphism exp(LX) maps a formal Poisson structure π to a formal Poisson structure
exp(LX)(π) again. Moreover, the first order term π1 is preserved by this action. This motives the
definition that two formal Poisson structures π and π′ are called equivalent if they are in the same
FDiffeo(M)-orbit, i.e. if there is a formal vector field such that

eLX (π) = π′. (16)

In this case we necessarily have π1 = π′1 and we write π ∼ π′. The equivalence classes of this
equivalence relation are then denoted by

FPoiss(M) = FPoiss(M)
/
FDiffeo(M) and FPoiss(M,π1) = FPoiss(M,π1)

/
FDiffeo(M).

(17)
They are the moduli space for the inequivalent formal deformations of a given Poisson structure
π1. In general, it will be very complicated to determine the set FPoiss(M,π1) for a given Poisson
structure π1. By abstract deformation theory one can say that [π2] is a well-defined class in the
second Poisson cohomology of π1 but it is not clear which such infinitesimal deformations can
actually be lifted to formal deformations of all order in ~. If however, π1 is symplectic and comes
from a symplectic form ω1 then the moduli space FPoiss(M,π1) is easily be described by the
inequivalent formal deformations of ω. Here the result is

FPoiss(M,π1) = [ω] + ~H2
dR(M,C)[[~]], (18)

where we have (artificially) put an affine space modeled on H2
dR(M,C)[[~]] instead of H2

dR(M,C)[[~]]
itself, just to keep track of the symplectic form we started with. The proofs of these facts are well-
known and can e.g. be found in the textbook [33, Sect. 4.2.4].

Let us now recall the basic notions from deformation quantization [2], see also the textbook [33]
for a detailed exposition. On a Poisson manifold (M,π1) a star product ⋆ is a formal associative
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deformation of C∞(M) as in (8) with the additional requirements that the first order commutator

C1(f, g)− C1(g, f) = i{f, g} (19)

gives the Poisson bracket coming from π1. Moreover, one requires that the Cr are bidifferential
operators. The set of all star products onM is sometimes denoted by Def(M) and the star products
quantizing the Poisson structure π1 are then Def(M,π1).

If D = ~D1 + ~
2D2 + · · · ∈ ~DiffOp(M)[[~]] is a formal series of differential operators we

construct analogously to (16) an action on star products: the exponential series T = exp(D)
is a well-defined formal series of differential operators, now starting with the identity, i.e. T =
id+~T1+· · · . Conversely, every such formal series is of this form as we can always build D = log(T )
as a well-defined formal power series. Note that D vanishes on constants iff T is the identity on
constants. Now if ⋆ is a star product for π1 then also

f ⋆′ g = T−1(Tf ⋆ Tg) (20)

is easily shown to be a star product quantizing the same Poisson structure π1. Here we need that
D = log(T ) vanishes on constants in order to have again 1⋆′ f = f = f ⋆′ 1. This allows to interpret
the operators D as quantum analogs of formal vector fields while the operators T are the quantum
analogs of formal diffeomorphisms. We call such an operator T an equivalence transformation.
Clearly, we get a group structure by multiplying equivalence transformations which corresponds to
the Lie algebra structure of the operators D coming from the commutator. We end up with an
action of the group of equivalence transformations on Def(M) which preserves each Def(M,π1).
This allows to define two star products ⋆ and ⋆′ to be equivalent, denoted by ⋆ ∼ ⋆′, if they are in
the same orbit under the action (20) of the equivalence transformations. This gives us the analog
of (17) and we set

Def(M) = Def(M)
/
∼ and Def(M,π1) = Def(M,π1)

/
∼ . (21)

One of the major achievements in deformation quantization is now the famous statement of
Kontsevich that the two moduli spaces FPoiss(M,π1) and Def(M,π1) are in bijection for every
Poisson structure π1. More precisely, the formality map K of Kontsevich gives a construction
where a formal Poisson structure π = ~π1 + ~

2π2 + · · · is used to build a formal star product ⋆π in
such a way that ⋆π ∼ ⋆π′ iff π ∼ π′. The precise construction

π 7→ ⋆π (22)

requires the formality map K and is involved, both from the conceptual point of view as well as
technically, see [27] for further details. Thus the choice of a formality map results in a bijection

K∗ : FPoiss(M,π1) −→ Def(M,π1). (23)

As a remark we note that for a real formal Poisson structure π = π Kontsevich’s formality
on Rn produces a Hermitian star product, i.e. f ⋆π g = g ⋆π f . Also the global formality map of
Dolgushev has this property [18]. Finally, one can show that a Hermitian star product is always a
completely positive deformation [15].

4 Morita Equivalence of Star Products

The main question concerning Morita theory in deformation quantization is now which star products
are Morita equivalent. Since we have a good understanding of the equivalence classes of star
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products in terms of the equivalence classes of formal Poisson tensors one can refine the task as
follows: describe the Morita equivalence of ⋆π and ⋆π′ in terms of the equivalence classes of π and
π′. Indeed, since isomorphic algebras are Morita equivalence the Morita equivalence of ⋆π and ⋆π′

will only depend on the classes of π and π′. Moreover, since every star product is equivalent (and
hence isomorphic) to a ⋆π, it suffices to consider those.

There are now two reasons for star products to be Morita equivalent which we would like to
discuss separately. First it is clear that any Poisson diffeomorphism Φ: (M,π1) −→ (M,π1) maps
⋆π to an isomorphic star product

⋆π 7→ Φ∗(⋆π) ∼ ⋆Φ∗π, (24)

where we use in the second step that the global formalities have a good covariance property up to
equivalence. Since ⋆π and Φ∗(⋆π) are isomorphic (via Φ∗) they are Morita equivalent in a trivial way.
This is the simple part of the description. Note that for star products quantizing diffeomorphic but
different Poisson structures we still can have isomorphism via general diffeomorphisms. However,
we study Morita equivalence of star products for a fixed Poisson structure π1 on M .

The non-trivial part of Morita equivalence comes from the non-trivial classical equivalence
bimodules, the line bundles. We know from the classical limit morphism (12) that the classical
limit of an equivalence bimodule has to be a classical equivalence bimodule. Conversely, given a
line bundle L −→ M one can show that there is a unique way up to equivalence to deform the
right module structure of Γ∞(L) into a right module structure • for Γ∞(L)[[~]] with respect to
the star product algebra (C∞(M)[[~]], ⋆). Moreover, it turns out that the module endomorphisms
of this new, deformed right module are in bijection to Γ∞(End(L))[[~]] = C∞(M)[[~]]. Hence we
get an induced deformed product for C∞(M)[[~]] which turns out to be a star product ⋆′. Being
isomorphic to the module endomorphisms this induces also a left module structure •′ for ⋆′ such
that we get a bimodule in the end. Finally, ⋆′ is uniquely determined by L and ⋆ up to equivalence
since • was unique up to equivalence. Thus we get, on the level of equivalence classes, a well-defined
map

L : [⋆] 7→ [⋆′]. (25)

It is now easy to see that the deformed bimodule is still a Morita equivalence bimodule and all
Morita equivalences arise this way. These results have been obtained very early in [8, 10].

The remaining task is now to compute ⋆′ for a given ⋆ = ⋆π and determine the corresponding
π′ such that ⋆′ ∼ ⋆π.

The main idea how this is achieved is to use local transition functions to describe L. Then these
transition functions allow for a suitable quantum analog obeying a cocycle identity with respect to
the star product. This gives a local description of the deformed right module structure and hence
also a local description of ⋆′. Moreover, locally the two star products ⋆′ and ⋆ are even equivalent
and the difference between equivalence and Morita equivalence is a global effect. Next one uses
a two-form B representing 2πic1(L), e.g. the curvature of a connection on L. Then the idea is
to pass from the deformed transition functions to local expressions involving B. Here comes now
the following construction into the game. Recall that closed two-forms act on Poisson structures,
at least on the formal level, as follows: for B ∈ Γ∞(Λ2T ∗M)[[~]] and a formal Poisson structure
π ∈ ~Γ∞(Λ2TM)[[~]] we consider the corresponding (formal) bundle maps B♯ and π♯. Then the
gauge transformation of π by B is defined to be the formal bivector field τB(π) characterized by

τB(π)
♯ = π♯ ◦

1

id+B♯ ◦ π♯
. (26)

Since π starts in first order of ~ the inverse is well-defined indeed.
If B = dA is an exact two-form then we can build a formal vector field out of the potential A

via π and it is a straightforward computation that the corresponding formal diffeomorphism maps
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τB(π) to π. Thus in the exact case the gauged bivector field is equivalent to π. In particular, it
is again a formal Poisson structure. Since the Jacobi identity is a local property and since closed
two-forms are locally exact, τB(π) is always a Poisson structure if dB = 0. However, in general it
will no longer be equivalent to π. Note however, that the first order of τB(π) coincides with π1.

Another simple computation shows that the formal closed two-forms act on formal Poisson
structures via (26) where we view the closed formal two-forms as abelian group with respect to
the usual addition. Then the above results show that we get a well-defined action on the level of
deRham cohomology classes on one hand and on equivalence classes of formal Poisson structures
on the other hand, i.e.

H2
dR(M,C)[[~]] 	 FPoiss(M) and H2

dR(M,C)[[~]] 	 FPoiss(M,π1). (27)

The following statement is now the first main result of [9]. The formula was already found in [26]
on more heuristic arguments:

Theorem 4.1 Let (M,π1) be a Poisson manifold and π a formal Poisson structure with first order
π1. Let L −→ M be a line bundle with B ∈ Γ∞(Λ2T ∗M) representing 2πic1(L). Then the star
product ⋆′ obtained from (25) out of ⋆π is equivalent to ⋆π′ with

π′ = τB(π). (28)

This way, one has the full classification of star products up to ring-theoretic Morita equivalence: it
only remains to take into account the simpler part, i.e. the Poisson diffeomorphisms as discussed
above. It should be noted that the classification of star products by formal deformations of the
Poisson structure π1 requires the choice of a global formality. It should also be noted that in the
proof one needs a formality which is differential and vanishes on constants. The global formality
constructed in [18] fulfills all these requirements.

Remark 4.2 In the case of symplectic manifolds one has an alternative classification of star prod-
ucts by means of their characteristic class c(⋆) ∈ [ω]

i~ +H2
dR(M,C)[[~]], see e.g. [21]. Here ⋆ and ⋆′

are equivalent iff c(⋆) = c(⋆′). The important feature is that the class c can be defined intrinsically
without reference to any construction method for the star products. In particular, it does not rely
on the choice of a formality. The second main result of [9] is that the characteristic class c(⋆π) of
⋆π constructed from a global formality for a formal Poisson structure deforming the symplectic π1
is the “inverse” of the class of π. This matches the earlier result from [12] that in the symplectic
case one has

c(⋆′) = c(⋆) + 2πic1(L) (29)

where again ⋆′ is the star product from (25).

Remark 4.3 As a last remark here we note that the ∗-Morita and the strong Morita theory of star
products is now fairly easy: from general results in [14] one knows that Hermitian star products are
Morita equivalent iff they are strongly Morita equivalent. Moreover, the kernel and image of the
groupoid morphisms (7) are very well understood for the case of star product algebras. Thus the
additional requirements of having (completely positive) inner products on the equivalence bimodules
do not cause any further difficulties.
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5 Incorporating Symmetries

In many applications one is not just interested in Morita equivalence but in Morita equivalence
compatible with some additional symmetry: Here several possibilities arise like a symmetry of a Lie
algebra g acting on all algebras by derivations or a symmetry of a group G acting by automorphisms.
To combine these notions it is convenient to consider a Hopf algebra symmetry.

Let H be a Hopf algebra over C which should encode the type of symmetry which we want to
study. Then we consider H-module algebras, i.e. algebras A over C which carry an action of H:
there is a left module structure of H on A denoted by

⊲ : H ×A −→ A, (30)

such that in addition one has g ⊲ (ab) = (g(1) ⊲ a)(g(2) ⊲ b) for all g ∈ H and a, b ∈ A. Here we use
the Sweedler notation for the coproduct ∆(g) = g(1) ⊗ g(2) as usual. In the case of ∗-algebras we
require a Hopf ∗-algebra and the action should fulfill (g ⊲ a)∗ = S(g)∗ ⊲ a∗ where S is the antipode
of H. If H = U(g) is the universal enveloping algebra of a Lie algebra then ⊲ corresponds just to
a Lie algebra action by derivations and if H = C[G] is the group algebra of some group G, then
⊲ reduces to a group representation by automorphisms. Thus we cover the two cases mentioned
above.

In a next step we consider bimodules. On a (B,A)-bimodule
B
E

A
we want to implement also

an action of H. We require that
B
E

A
is a left H-module such that in addition

g ⊲ (b · x) = (g(1) ⊲ b) · (g(2) ⊲ x) and g ⊲ (x · a) = (g(1) ⊲ x) · (g(2) ⊲ a) (31)

for all g ∈ H, b ∈ B, x ∈
B
E

A
, and a ∈ A. In this case we call the bimodule H-covariant (or

H-equivariant).
It is now a simple check that

A
A

A
with its induced left H-module structure is a H-covariant

(A,A)-bimodule. Moreover, the tensor product ⊗ of H-covariant bimodules gives again a H-
covariant bimodule by defining the H-action on the tensor product according to

g ⊲ (φ⊗ x) = (g(1) ⊲ φ)⊗ (g(2) ⊲ x) (32)

for g ∈ H, φ ∈
C
F

B
, and x ∈

B
E

A
. Using now only H-equivariant bimodule morphisms to relate

H-covariant bimodules we obtain a category BimodH of unital C-algebras with H-action as objects
and isomorphism classes of H-covariant bimodules as morphisms. Not yet identifying bimodules
up to isomorphisms yields again a bicategory, denoted by Bimod

∗

H .
There is also a way to incorporate inner products. If

B
E

A
is a inner product (B,A)-bimodule

with an H-action then the compatibility with the inner product we need is

g ⊲ 〈x, y〉
A
= 〈S(g(1))

∗ ⊲ x, g(2) ⊲ y〉A (33)

for all g ∈ H and x, y ∈
B
E

A
. In this case we call

B
E

A
a H-covariant inner product bimodule.

For the morphisms between H-covariant inner product bimodules we take now the H-equivariant
adjointable bimodule morphisms. Again, it is a routine check that ⊗̂ is compatible with this
additional symmetry. This gives the category Bimod

∗

H with objects being the unital ∗-algebras
over C with a ∗-action of H and isometric H-equivariant isomorphism classes of H-covariant inner
product bimodules as morphisms. If in addition we take completely positive inner product, no
further compatibility is needed. We obtain the category Bimod

str
H . Again, we also have bicategories

Bimod
∗

H and Bimod
str
H in this case, the check of the needed coherences is slightly more involved

but still straightforward. Details on this can be found in [23,25] as well as in [16].
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It is now clear how to define Morita equivalence in the presence of symmetries: we use iso-
morphism in the categories BimodH , Bimod

∗

H , and Bimod
str
H to define H-covariant Morita equiv-

alence, H-covariant ∗-Morita equivalence and H-covariant strong Morita equivalence, respectively.
The corresponding groupoids of invertible arrows in these categories are then the H-covariant Pi-
card groupoid PicH , the H-covariant ∗-Picard groupoid Pic

∗

H , and the H-covariant strong Picard
groupoid Pic

str
H , respectively.

In [16, 24, 25] many general statements about these notions of H-covariant Morita equivalence
have been established. We mention just three aspects relevant for deformation quantization:

First one can define again a classical limit functor. Here one can even allow for a formal Hopf
algebra deformation H of H with deformed structure maps as usual. Then we get again a sub-
category BimodH of BimodH (defined over C[[~]] as before) with objects being those unital algebras
A over C[[~]] with H-action which are deformations of unital algebras A over C with H-action.
Then we get a classical limit functor

cl : BimodH −→ BimodH , (34)

restricting to a groupoid morphism on the level of the corresponding covariant Picard groupoids,
eventually leading to a group morphism

cl : PicH(A) −→ PicH(A). (35)

Analogously, there is a ∗-version for Hermitian deformations and a strong version for completely
positive deformations as well. We do not spell out the detail which should be clear. First steps in
understanding the kernel of (35) are available in [16]. It should also be mentioned that the classical
limit is already available on the level of the bicategories and gives a homomorphism of bicategories
there (a weak form of a 2-functor).

Second, one can successively forget information. This gives groupoid morphisms leading to the
commuting diagram

Pic
str
H

PicH

))SSSSSSSSSS
Pic

str
H Pic

∗

H
// Pic

∗

H

PicH

uukkkkkkkkkk

Pic
str

Pic
))SSSSSSSSSSS

Pic
str

Pic
∗,// Pic
∗,

Pic
uukkkkkkkkkkk

��

��

�� (36)

between the various types of Picard groupoids. Additionally, the classical limit fits into this diagram
nicely and gives yet some more groupoid morphisms making the doubled diagram also commutative.
Again, kernels and images of these forgetful morphisms have been studied in various contexts.

Third, one can study the Morita equivalence of crossed products using H-covariant Morita
equivalence. Having an H-action on A gives us a crossed product algebra structure on the tensor
product A⊗ H which we shall denote by A⋊H. Moreover, for a H-covariant bimodule

B
E

A
one

can construct a (B ⋊ H,A ⋊ H)-bimodule structure on the tensor product E ⊗ H, the resulting
bimodule will then be denoted by E⋊H. This results in a functor

BimodH −→ Bimod (37)

restricting to a groupoid morphism PicH −→ Pic and ultimately to a group morphism

PicH(A) −→ Pic(A⋊H). (38)

The same construction goes through in the case of inner product bimodules and pre Hilbert bi-
modules, see [25] for further details and examples.

12



6 g-Actions on Symplectic Manifolds

In this last section we apply our considerations on symmetries to the particular case of star products
on symplectic manifolds which are invariant under a Lie algebra action of some finite-dimensional
real Lie algebra g.

Thus let (M,ω) be a symplectic manifold endowed with an action of g, e.g. coming from an
action of a Lie group G with g as its Lie algebra. For technical reasons we require the action to
preserve a connection ∇. This is in fact a rather mild requirement: if a Lie group G acts properly
it preserves a connection, but there are other examples of non-proper actions which still preserve
a connection as e.g. the linear action of Sp(2n,R) on R2n which preserves the canonical flat
connection. Without restriction we can assume that ∇ is torsion-free and symplectic in addition.

It is now a well-known fact that Fedosov’s construction of a star product, see e.g. [19], gives
an invariant star product provided one has invariant geometric entrance data. More precisely, in
the situation where one has an invariant connection the moduli space Defg(M,ω) of invariant star
products Defg(M,ω) modulo invariant equivalences is in bijection to the second invariant deRham
cohomology H2

dR(M,C)g[[~]]. In fact, there is a g-invariant characteristic class

cg : Defg(M,ω) ∋ ⋆ 7→ cg(⋆) ∈
[ω]

i~
+H2

dR(M,C)g[[~]], (39)

inducing this bijection. Note that under the canonical forgetful map H2
dR(M,C)g −→ H2

dR(M,C)
the class cg(⋆) is mapped to c(⋆). The proofs of this result and also the case of Lie group actions
can be found in [4].

We are now interested in the g-covariant Morita theory of invariant symplectic star products.
In more detail, we would like to have a refined statement analogously to (29) using the invariant
characteristic class cg(·) instead.

First we study the classical limit of a g-covariant equivalence bimodule L between two g-
invariant star products ⋆′ acting from the left and ⋆ acting from the right. We know that there is
a unique symplectomorphism Ψ such that the twisted equivalence bimodule ΦL for Φ∗(⋆′) and ⋆
has a symmetric equivalence bimodule as classical limit, i.e. the smooth sections of a line bundle
L, unique up to isomorphism, with the same action of C∞(M) from the left and the right. One
can show that Ψ is necessarily g-equivariant and thus Ψ∗(⋆′) is again a g-invariant star product.
In a next step one shows that on the line bundle L we have a lift of the g-action on M together
with an invariant connection ∇L: the connection is obtained as the difference of the left and right
multiplications in the first order of ~. In fact, one can show by this construction that the original L
was isomorphic to the Ψ-twist of a g-covariant deformation of L with respect to two g-invariant star
products ⋆′′ and ⋆ such that ⋆′′ is g-equivariantly equivalent to Ψ∗(⋆′). The usage of ⋆′′ allows to
achieve that ⋆′′ and ⋆ have the same first order term (and not just the same first order commutator).

In the situation of Hermitian star products and a covariant ∗-equivalence bimodule one has
also a g-invariant pseudo Hermitian fiber metric h0 on L and ∇L is metric such that h0 is the
classical limit of the inner product on L. Finally, in the strong equivalence case, h0 is positive, i.e.
a Hermitian fiber metric.

Conversely, given a line bundle L over M which allows for a lift of the g-action and given
a g-invariant connection, we can always deform the classical bimodule structure into a quantum
bimodule structure preserving the g-invariance. This is a simple application of Fedosov’s construc-
tion adapted to vector bundles, see [32]. In the Hermitian case we can also deform a classical and
g-invariant fiber metric, preserving its positivity. Since in the Fedosov construction it is very easy
to keep track of the (invariant) characteristic classes cg(·), one arrives at the following theorem [24]:
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Theorem 6.1 Let M be a symplectic manifold with g-action such that a g-invariant (symplectic
torsion-free) connection of M exists. Moreover, let ⋆′ and ⋆ be two g-invariant (Hermitian) star
products on M . Then ⋆ and ⋆′ are g-covariantly (strongly) Morita equivalent iff there is a g-
equivariant symplectomorphism Ψ such that Ψ∗cg(⋆′)− cg(⋆) is in the image of the first map in

H2
g
(M,C) −→ H2

dR(M,C)g −→ HdR(M,C)g, (40)

and maps to a 2πi-integral class under the second map.

Here H2
g(M,C) denotes the g-equivariant deRham cohomology where we use the Cartan model to

define this cohomology. In particular, we do neither require a Lie group action integrating the Lie
algebra action of g nor any compactness assumptions.

In fact, one even knows that the equivalence bimodules are obtained from g-equivariant sym-
plectomorphism Ψ on one hand and from g-invariant deformations of line bundles L with a lifted
action on the other hand. Note also, that with the usual arguments it is now easy to lift from the
infinitesimal symmetry by g to the integrated symmetry by the connected and simply-connected
Lie group G integrating g. Finally, much of the above arguments can be carried through also in the
case of a discrete group symmetry, only the existence of invariant classical objects is more involved
in this case.

Going beyond the symplectic case to the general Poisson case should be possible by using the
equivariant formality theorem of Dolgushev [18] which are based on the existence of an invariant
connection on M : it is again the same classical data one has to invest and whose existence is
well-studied under various circumstances.

Remark 6.2 It is clear that the question of g-covariant Morita theory ultimately should result in an
understanding of the behaviour of Morita theory under reduction of star products. Concerning the
reduction aspect, one has by now a rather good understanding, starting from the BRST approach
in [7], see also [5, 17]. In [22] the representation theory of the reduced algebras was studied in
detail, including some aspects of Morita theory. The usage of invariant star products (and even
better: invariant star products with a quantum momentum map) will hopefully allow also to treat
the Morita theory of star products on singular quotients, see e.g. [6, 29].
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