AUTOEQUIVALENCES OF THE TENSOR CATEGORY OF $U_q\mathfrak{g}$ -MODULES

SERGEY NESHVEYEV AND LARS TUSET

ABSTRACT. We prove that for $q \in \mathbb{C}^*$ not a nontrivial root of unity the cohomology group defined by invariant 2-cocycles in a completion of $U_q\mathfrak{g}$ is isomorphic to $H^2(P/Q;\mathbb{T})$, where P and Q are the weight and root lattices of \mathfrak{g} . This implies that the group of autoequivalences of the tensor category of $U_q\mathfrak{g}$ -modules is the semidirect product of $H^2(P/Q;\mathbb{T})$ and the automorphism group of the based root datum of \mathfrak{g} . For q=1 we also obtain similar results for all compact connected separable groups.

In a previous paper [6] we showed that if G is a compact connected group then the cohomology group defined by invariant unitary 2-cocycles on \hat{G} is isomorphic to $H^2(\widehat{Z(G)};\mathbb{T})$ and we conjectured that for semisimple Lie groups a similar result holds for the q-deformation of G. In the present note we will prove that this is indeed the case using the technique from our earlier paper [5], where we considered symmetric cocycles and were inspired by the proof of Kazhdan and Lusztig of equivalence of the Drinfeld category and the category of $U_q\mathfrak{g}$ -modules [2]. For q=1 this gives an alternative proof of the main results in [6, Section 2] and allows us, at least in the separable case, to extend those results to non-unitary cocycles relying neither on ergodic actions nor on reconstruction theorems. At the same time this proof is less transparent than that in [6] and, as opposed to [6], relies heavily on the structure and representation theory of compact Lie groups.

We will follow the notation and conventions of [5]. Let G be a simply connected semisimple compact Lie group, \mathfrak{g} its complexified Lie algebra. Fix a Cartan subalgebra and a system $\{\alpha_1, \ldots, \alpha_r\}$ of simple roots. The weight and root lattices are denoted by P and Q, respectively. For $q \in \mathbb{C}^*$ not a nontrivial root of unity consider the quantized universal enveloping algebra $U_q\mathfrak{g}$. Denote by $\mathcal{C}_q(\mathfrak{g})$ the tensor category of admissible finite dimensional $U_q\mathfrak{g}$ -modules, and by $\mathcal{U}(G_q)$ the endomorphism ring of the forgetful functor $\mathcal{C}_q(\mathfrak{g}) \to \mathcal{V}ec$.

An invertible element $\mathcal{E} \in \mathcal{U}(G_q \times G_q)$ is called a 2-cocycle on \hat{G}_q if

$$(\mathcal{E} \otimes 1)(\hat{\Delta}_q \otimes \iota)(\mathcal{E}) = (1 \otimes \mathcal{E})(\iota \otimes \hat{\Delta}_q)(\mathcal{E}).$$

A cocycle is called invariant if it commutes with elements in the image of $\hat{\Delta}_q$. The set of invariant 2-cocycles forms a group under multiplication, which we denote by $Z^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$. Cocycles of the form $(a \otimes a)\hat{\Delta}_q(a)^{-1}$, where a is an invertible element in the center of $\mathcal{U}(G_q)$, form a subgroup of the center of $Z^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$. The quotient of $Z^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$ by this subgroup is denoted by $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$.

The center of $\mathcal{U}(G_q)$ is identified with functions on the set P_+ of dominant integral weights. By [5, Proposition 4.5] a function on P_+ is a group-like element of $\mathcal{U}(G_q)$ if and only if it is defined by a character of P/Q. Therefore the Hopf algebra of functions on P/Q embeds into the center of $\mathcal{U}(G_q)$. Hence every 2-cocycle c on P/Q can be considered as an invariant 2-cocycle \mathcal{E}_c on \hat{G}_q . Explicitly, if U and V are irreducible $U_q\mathfrak{g}$ -modules with highest weights μ and η , then \mathcal{E}_c acts on $U \otimes V$ as multiplication by $c(\mu, \eta)$. We can now formulate our main result.

Theorem 1. The homomorphism $c \mapsto \mathcal{E}_c$ induces an isomorphism

$$H^2(P/Q; \mathbb{T}) \cong H^2_{G_q}(\hat{G}_q; \mathbb{C}^*).$$

Date: December 21, 2010; minor changes January 8, 2011. Supported by the Research Council of Norway.

In particular, if \mathfrak{g} is simple and $\mathfrak{g} \not\cong \mathfrak{so}_{4n}(\mathbb{C})$ then $H^2_{G_q}(\hat{G}_q;\mathbb{C}^*)$ is trivial, and if $\mathfrak{g} \cong \mathfrak{so}_{4n}(\mathbb{C})$ then $H^2_{G_q}(\hat{G}_q;\mathbb{C}^*) \cong \mathbb{Z}/2\mathbb{Z}$.

The last statement follows from the fact that for simple Lie algebras the group P/Q is cyclic unless $\mathfrak{g} \cong \mathfrak{so}_{4n}(\mathbb{C})$, in which case $P/Q \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, see e.g. Table IV on page 516 in [1].

Note that for q > 0 the same result holds for unitary cocycles. This easily follows by polar decomposition, see [5, Lemma 1.1].

In the proof of the theorem we will assume that $q \neq 1$, the case q = 1 is similar and for unitary cocycles is also proved by a different method in [6].

Our first goal will be to construct a homomorphism $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P/Q; \mathbb{T})$. For every $\mu \in P_+$ fix an irreducible $U_q\mathfrak{g}$ -module V_μ with highest weight μ and a highest weight vector ξ_μ . Recall [5, Section 2] that for $\mu, \eta \in P_+$ there exists a unique morphism

$$T_{\mu,\eta}: V_{\mu+\eta} \to V_{\mu} \otimes V_{\eta}$$
 such that $\xi_{\mu+\eta} \mapsto \xi_{\mu} \otimes \xi_{\eta}$.

The image of $T_{\mu,\eta}$ is the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu + \eta$. Hence if \mathcal{E} is an invariant 2-cocycle then it acts on this image as multiplication by a nonzero scalar $c_{\mathcal{E}}(\mu,\eta)$. As in the proof of [5, Lemma 2.2], identity $(T_{\mu,\eta} \otimes \iota)T_{\mu+\eta,\nu} = (\iota \otimes T_{\eta,\nu})T_{\mu,\eta+\nu}$ implies that $c_{\mathcal{E}}$ is a two-cocycle on P_+ . Furthermore, the cohomology class $[c_{\mathcal{E}}]$ of $c_{\mathcal{E}}$ in $H^2(P_+; \mathbb{C}^*)$ depends only on the class of \mathcal{E} in $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$, since if $a \in \mathcal{U}(G_q)$ is a central element acting on V_{μ} as multiplication by a scalar $a(\mu)$ then the action of $(a \otimes a)\hat{\Delta}_q(a)^{-1}$ on the image of $T_{\mu,\eta}$ is multiplication by $a(\mu)a(\eta)a(\mu+\eta)^{-1}$. Thus the map $\mathcal{E} \mapsto c_{\mathcal{E}}$ defines a homomorphism $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P_+; \mathbb{C}^*)$.

Given a cocycle on P/Q, we can consider it as a cocycle on P and then get a cocycle on P_+ by restriction. Thus we have a homomorphism $H^2(P/Q; \mathbb{T}) \to H^2(P_+; \mathbb{C}^*)$. It is injective since the quotient map $P_+ \to P/Q$ is surjective and a cocycle on P/Q is a coboundary if it is symmetric.

Lemma 2. For every invariant 2-cocycle \mathcal{E} on \hat{G}_q the class of $c_{\mathcal{E}}$ in $H^2(P_+; \mathbb{C}^*)$ is contained in the image of $H^2(P/Q; \mathbb{T})$.

Proof. Consider the skew-symmetric bi-quasicharacter $b: P_+ \times P_+ \to \mathbb{C}^*$ defined by

$$b(\mu, \eta) = c_{\mathcal{E}}(\mu, \eta) c_{\mathcal{E}}(\eta, \mu)^{-1}.$$

It extends uniquely to a skew-symmetric bi-quasicharacter on P. To prove the lemma it suffices to show that the root lattice Q is contained in the kernel of this extension. Indeed, since $H^2(P/Q; \mathbb{T})$ is isomorphic to the group of skew-symmetric bi-characters on P/Q, it then follows that there exists a cocycle c on P/Q such that the cocycle $c_{\mathcal{E}}c^{-1}$ on P_+ is symmetric. Then by [4, Lemma 4.2] the cocycle $c_{\mathcal{E}}c^{-1}$ is a coboundary, so $c_{\mathcal{E}}$ and the restriction of c to c0 are cohomologous.

To prove that Q is contained in the kernel of b, recall [5, Section 2] that for every simple root α_i and weights $\mu, \eta \in P_+$ with $\mu(i), \eta(i) \geq 1$ we can define a morphism

$$\tau_{i;\mu,\eta} \colon V_{\mu+\eta-\alpha_i} \to V_{\mu} \otimes V_{\eta} \text{ such that } \xi_{\mu+\eta-\alpha_i} \mapsto [\mu(i)]_{q_i} \xi_{\mu} \otimes F_i \xi_{\eta} - q_i^{\mu(i)} [\eta(i)]_{q_i} F_i \xi_{\mu} \otimes \xi_{\eta}.$$

The image of $\tau_{i;\mu,\eta}$ is the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu + \eta - \alpha_i$. Since the element \mathcal{E} is invariant, it acts on this image as multiplication by a nonzero scalar $c_i(\mu,\eta)$. As in the proof of [5, Lemma 2.3], consider now another weight ν with $\nu(i) \geq 1$. The isotypic component of $V_{\mu} \otimes V_{\eta} \otimes V_{\nu}$ with highest weight $\mu + \eta + \nu - \alpha_i$ has multiplicity two, and is spanned by the images of $(\iota \otimes T_{\eta,\nu})\tau_{i;\mu,\eta+\nu}$ and $(\iota \otimes \tau_{i;\eta,\nu})T_{\mu,\eta+\nu-\alpha_i}$, as well as by the images of $(T_{\mu,\eta} \otimes \iota)\tau_{i;\mu+\eta,\nu}$ and $(\tau_{i;\mu,\eta} \otimes \iota)T_{\mu+\eta-\alpha_i,\nu}$. We have

$$[\eta(i)]_{q_i}(T_{\mu,\eta}\otimes\iota)\tau_{i;\mu+\eta,\nu} - [\nu(i)]_{q_i}(\tau_{i;\mu,\eta}\otimes\iota)T_{\mu+\eta-\alpha_i,\nu} = [\mu(i)+\eta(i)]_{q_i}(\iota\otimes\tau_{i;\eta,\nu})T_{\mu,\eta+\nu-\alpha_i}.$$
 (1)

Apply the element

$$\Omega := (\mathcal{E} \otimes 1)(\hat{\Delta}_q \otimes \iota)(\mathcal{E}) = (1 \otimes \mathcal{E})(\iota \otimes \hat{\Delta}_q)(\mathcal{E})$$

to this identity. The morphisms $(T_{\mu,\eta} \otimes \iota)\tau_{i;\mu+\eta,\nu}$, $(\tau_{i;\mu,\eta} \otimes \iota)T_{\mu+\eta-\alpha_i,\nu}$ and $(\iota \otimes \tau_{i;\eta,\nu})T_{\mu,\eta+\nu-\alpha_i}$ are eigenvectors of the operator of multiplication by Ω on the left with eigenvalues $c_{\mathcal{E}}(\mu,\eta)c_i(\mu+\eta,\nu)$, $c_i(\mu,\eta)c_{\mathcal{E}}(\mu+\eta-\alpha_i,\nu)$ and $c_i(\eta,\nu)c_{\mathcal{E}}(\mu,\eta+\nu-\alpha_i)$, respectively. Since the morphisms $(T_{\mu,\eta}\otimes\iota)\tau_{i;\mu+\eta,\nu}$ and $(\tau_{i;\mu,\eta}\otimes\iota)T_{\mu+\eta-\alpha_i,\nu}$ are linearly independent, by applying Ω to (1) we conclude that these three eigenvalues coincide. In particular,

$$c_i(\mu, \eta)c_{\mathcal{E}}(\mu + \eta - \alpha_i, \nu) = c_i(\eta, \nu)c_{\mathcal{E}}(\mu, \eta + \nu - \alpha_i).$$

Applying this to $\eta = \nu = \mu$ we get

$$b(2\mu - \alpha_i, \mu) = 1.$$

Since b is skew-symmetric, this gives $b(\alpha_i, \mu) = 1$. The latter identity holds for all $\mu \in P_+$ with $\mu(i) \geq 1$. Since every element in P can be written as a difference of two such elements μ , it follows that α_i is contained in the kernel of b.

Therefore the map $\mathcal{E} \mapsto c_{\mathcal{E}}$ induces a homomorphism $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P/Q; \mathbb{T})$. Clearly, it is a left inverse of the homomorphism $H^2(P/Q; \mathbb{T}) \to H^2_{G_q}(\hat{G}_q; \mathbb{C}^*)$ constructed earlier. Thus it remains to prove that the homomorphism $H^2_{G_q}(\hat{G}_q; \mathbb{C}^*) \to H^2(P/Q; \mathbb{T})$ is injective.

Assume \mathcal{E} is an invariant 2-cocycle such that the cocycle $c_{\mathcal{E}}$ on P_+ is a coboundary. Then the considerations in [5, Section 2] following Lemma 2.2 apply and show that replacing \mathcal{E} by a cohomologous cocycle we may assume that

$$\mathcal{E}T_{\mu,\eta} = T_{\mu,\eta} \text{ and } \mathcal{E}\tau_{i;\nu,\omega} = \tau_{i;\nu,\omega}$$
 (2)

for all $\mu, \eta \in P_+$, $1 \le i \le r$ and $\nu, \omega \in P_+$ such that $\nu(i), \omega(i) \ge 1$. Therefore to prove injectivity it suffices to show the following result.

Proposition 3. If \mathcal{E} is an invariant 2-cocycle on \hat{G}_q with property (2) then $\mathcal{E} = 1$.

By [5, Corollary 4.4] the result is true under the additional assumption that \mathcal{E} is symmetric, that is, $\mathcal{R}_{\hbar}\mathcal{E} = \mathcal{E}_{21}\mathcal{R}_{\hbar}$ for an R-matrix $\mathcal{R}_{\hbar} \in \mathcal{U}(G_q \times G_q)$, which depends on the choice of a number $\hbar \in \mathbb{C}$ such that $q = e^{\pi i \hbar}$. We will show that this assumption is automatically satisfied for any \hbar .

The results of [5, Section 4] up to (but not including) Lemma 4.3 apply to any invariant cocycle satisfying (2). To formulate these results recall some notation.

For every weight $\mu \in P_+$ fix an irreducible $U_q\mathfrak{g}$ -module \bar{V}_{μ} with lowest weight $-\mu$ and a lowest weight vector $\bar{\xi}_{\mu}$. For $\lambda \in P$ and $\mu, \eta \in P_+$ such that $\lambda + \mu \in P_+$ there exists a unique morphism

$$\operatorname{tr}_{\mu,\lambda+\mu}^{\eta} \colon \bar{V}_{\mu+\eta} \otimes V_{\lambda+\mu+\eta} \to \bar{V}_{\mu} \otimes V_{\lambda+\mu} \text{ such that } \bar{\xi}_{\mu+\eta} \otimes \xi_{\lambda+\mu+\eta} \mapsto \bar{\xi}_{\mu} \otimes \xi_{\lambda+\mu}.$$

Using these morphisms define an inverse limit $U_q\mathfrak{g}$ -module

$$M_{\lambda} = \varprojlim_{\mu} \bar{V}_{\mu} \otimes V_{\lambda + \mu}.$$

Denote by $\operatorname{tr}_{\mu,\lambda+\mu}$ the canonical map $M_{\lambda} \to \bar{V}_{\mu} \otimes V_{\lambda+\mu}$. The module M_{λ} is considered as a topological $U_q\mathfrak{g}$ -module with a base of neighborhoods of zero formed by the kernels of the maps $\operatorname{tr}_{\mu,\lambda+\mu}$, while all modules in our category $\mathcal{C}_q(\mathfrak{g})$ are considered with discrete topology. Then $\operatorname{Hom}_{U_q\mathfrak{g}}(M_{\lambda},V)$ is the inductive limit of the spaces $\operatorname{Hom}_{U_q\mathfrak{g}}(\bar{V}_{\mu}\otimes V_{\lambda+\mu},V)$. The vectors $\bar{\xi}_{\mu}\otimes \xi_{\lambda+\mu}$ define a topologically cyclic vector $\Omega_{\lambda}\in M_{\lambda}$. For any finite dimensional admissible $U_q\mathfrak{g}$ -module V the map

$$\eta_V \colon \operatorname{Hom}_{U_q \mathfrak{g}}(\oplus_{\lambda} M_{\lambda}, V) \to V, \quad \eta_V(f) = \sum_{\lambda} f(\Omega_{\lambda}),$$

is an isomorphism.

The results of [5, Section 4] up to Lemma 4.3 can be summarized by saying that for every invariant cocycle \mathcal{E} satisfying (2) there exist a character χ of P/Q, an invertible morphism \mathcal{E}_0 of $\bigoplus_{\lambda} M_{\lambda}$ onto itself preserving the direct sum decomposition, and an invertible element c in the center of $\mathcal{U}(G_q)$ such that

$$\operatorname{tr}_{\mu,\lambda+\mu} \mathcal{E}_0 = \chi(\mu)^{-1} \mathcal{E} \operatorname{tr}_{\mu,\lambda+\mu} \quad \text{and} \quad \eta_V(f\mathcal{E}_0) = c \,\eta_V(f)$$
 (3)

for all $\mu \in P_+$, $\lambda \in P$ such that $\lambda + \mu \in P_+$, all finite dimensional admissible $U_q\mathfrak{g}$ -modules V and $f \in \operatorname{Hom}_{U_q\mathfrak{g}}(M_\lambda, V)$.

Proof of Proposition 3. As we have already remarked, by [5, Corollary 4.4] it suffices to show that $\mathcal{R}_{\hbar}\mathcal{E} = \mathcal{E}_{21}\mathcal{R}_{\hbar}$ for some \hbar such that $q = e^{\pi i \hbar}$. We will prove a stronger statement: $\sigma \mathcal{E} = \mathcal{E} \sigma$ for any braiding σ on $\mathcal{C}_q(\mathfrak{g})$.

By (3), since $\operatorname{tr}_{\mu,\lambda+\mu}(\Omega_{\lambda}) = \bar{\xi}_{\mu} \otimes \xi_{\lambda+\mu}$, for any $\mu, \eta, \nu \in P_{+}$ and $f \in \operatorname{Hom}_{U_{q}\mathfrak{g}}(\bar{V}_{\mu} \otimes V_{\eta}, V_{\nu})$ we have $\chi(\mu)^{-1} f \mathcal{E}(\bar{\xi}_{\mu} \otimes \xi_{\eta}) = c(\nu) f(\bar{\xi}_{\mu} \otimes \xi_{\eta}).$

As the vector $\bar{\xi}_{\mu} \otimes \xi_{\eta}$ is cyclic, this means that $f\mathcal{E} = \chi(\mu)c(\nu)f$. Since this is true for all f, we conclude that \mathcal{E} acts on the isotypic component of $\bar{V}_{\mu} \otimes V_{\eta}$ with highest weight ν as multiplication by $\chi(\mu)c(\nu)$. In other words, \mathcal{E} acts on the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight ν as multiplication by $\chi(\bar{\mu})c(\nu)$. It follows that

$$\sigma \mathcal{E} = \chi(\bar{\mu} - \bar{\eta})\mathcal{E}\sigma \text{ on } V_{\mu} \otimes V_{\eta}.$$

But by assumption (2) the element \mathcal{E} is the identity on the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu + \eta$, so by considering the above identity on this isotypic component we conclude that $\chi(\bar{\mu} - \bar{\eta}) = 1$. Thus χ is the trivial character and $\sigma \mathcal{E} = \mathcal{E}\sigma$. This finishes the proof of Proposition 3 and hence of Theorem 1.

By a result of McMullen [3] any automorphism of the fusion ring of $C_q(\mathfrak{g})$, mapping irreducibles into irreducibles, is implemented by an automorphism of the based root datum of \mathfrak{g} , hence by an automorphism of the Hopf algebra $U_q\mathfrak{g}$. Hence, similarly to [6, Theorem 2.5], we get the following consequence of Theorem 1.

Theorem 4. The group of \mathbb{C} -linear monoidal autoequivalences of the tensor category $\mathcal{C}_q(\mathfrak{g})$ is canonically isomorphic to $H^2(P/Q; \mathbb{T}) \rtimes \operatorname{Aut}(\Psi)$, where Ψ is the based root datum of \mathfrak{g} .

The group P/Q is canonically identified with the dual of the center Z(G) of the group G, so for q=1 Theorem 1 can be formulated as $H^2_G(\hat{G};\mathbb{C}^*)\cong H^2(\widehat{Z(G)};\mathbb{C}^*)$. In this form it can be extended to a larger class of groups.

Theorem 5. For any compact connected separable group G we have a canonical isomorphism

$$H_G^2(\hat{G}; \mathbb{C}^*) \cong H^2(\widehat{Z(G)}; \mathbb{C}^*).$$

Proof. For Lie groups the proof is essentially the same as above, with P replaced by the weight lattice of a maximal torus of G. In the general case we have a homomorphism $H^2(\widehat{Z(G)}; \mathbb{C}^*) \to H^2_G(\widehat{G}; \mathbb{C}^*)$ obtained by considering $\mathcal{U}(Z(G))$ as a subring of $\mathcal{U}(G)$. To construct the inverse homomorphism, for every quotient H of G which is a Lie group consider the composition

$$H^2_G(\hat{G}; \mathbb{C}^*) \to H^2_H(\hat{H}; \mathbb{C}^*) \to H^2(\widehat{Z(H)}; \mathbb{C}^*),$$

where the first homomorphism is defined using the quotient map $\mathcal{U}(G) \to \mathcal{U}(H)$. The map $Z(G) \to Z(H)$ is surjective (since this is true for Lie groups), so Z(G) is the inverse limit of the groups Z(H). Then $H^2(\widehat{Z(G)}; \mathbb{C}^*)$ is the inverse limit of the groups $H^2(\widehat{Z(H)}; \mathbb{C}^*)$. Therefore the above maps $H^2_G(\hat{G}; \mathbb{C}^*) \to H^2(\widehat{Z(G)}; \mathbb{C}^*)$ define a homomorphism $H^2_G(\hat{G}; \mathbb{C}^*) \to H^2(\widehat{Z(G)}; \mathbb{C}^*)$. It is clearly a left inverse of the map $H^2(\widehat{Z(G)}; \mathbb{C}^*) \to H^2_G(\hat{G}; \mathbb{C}^*)$, so it remains to show that it is injective.

In other words, we have to check that if \mathcal{E} is an invariant cocycle on \hat{G} such that its image in $\mathcal{U}(H \times H)$ is a coboundary for every Lie group quotient H of G, then \mathcal{E} itself is a coboundary. If \mathcal{E} were unitary, this could be easily shown by taking a weak operator limit point of cochains, see the proof of [6, Theorem 2.2], and would not require separability of G. In the non-unitary case we can argue as follows.

Since G is separable, there exists a decreasing sequence of closed normal subgroups N_n of G such that $\cap_{n\geq 1}N_n=\{e\}$ and the quotients $H_n=G/N_n$ are Lie groups. Let \mathcal{E}_n be the image

of \mathcal{E} in $\mathcal{U}(H_n \times H_n)$. By assumption there exist invertible central elements $c_n \in \mathcal{U}(H_n)$ such that $\mathcal{E}_n = (c_n \otimes c_n) \hat{\Delta}(c_n)^{-1}$. For a fixed n consider the image a of c_{n+1} in $\mathcal{U}(H_n)$. Then $c_n a^{-1}$ is a central group-like element in $\mathcal{U}(H_n)$. By [5, Theorem A.1] it is therefore defined by an element of the center of the complexification $(H_n)_{\mathbb{C}}$ of H_n . Since the homomorphism $(H_{n+1})_{\mathbb{C}} \to (H_n)_{\mathbb{C}}$ is surjective, we conclude that there exists a central group-like element b in $\mathcal{U}(H_{n+1})$ such that its image in $\mathcal{U}(H_n)$ is $c_n a^{-1}$. Replacing c_{n+1} by $c_{n+1}b$ we get an element such that $\mathcal{E}_{n+1} = (c_{n+1} \otimes c_{n+1}) \hat{\Delta}(c_{n+1})^{-1}$ and the image of c_{n+1} in $\mathcal{U}(H_n)$ is c_n . Applying this procedure inductively we can therefore assume that the image of c_{n+1} in $\mathcal{U}(H_n)$ is c_n for all $n \geq 1$. Then the elements c_n define a central element $c \in \mathcal{U}(G)$ such that $\mathcal{E} = (c \otimes c) \hat{\Delta}(c)^{-1}$.

In [6, Theorem 2.5] we computed the group of autoequivalences of the C*-tensor category of finite dimensional unitary representations of G. The above theorem allows us to get a similar result ignoring the C*-structure.

Theorem 6. For any compact connected separable group G, the group of \mathbb{C} -linear monoidal autoequivalences of the category of finite dimensional representations of G is canonically isomorphic to $H^2(\widehat{Z(G)}; \mathbb{C}^*) \rtimes \operatorname{Out}(G)$.

References

- [1] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.
- [2] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), 335–381.
- [3] J.R. McMullen, On the dual object of a compact connected group, Math. Z. 185 (1984), 539–552.
- [4] S. Neshveyev and L. Tuset, Notes on the Kazhdan-Lusztig theorem on equivalence of the Drinfeld category and the category of $U_q(\mathfrak{g})$ -modules, preprint arXiv: 0711.4302v1 [math.QA].
- [5] S. Neshveyev and L. Tuset, Symmetric invariant cocycles on the duals of q-deformations, preprint arXiv: 0902.2365v1 [math.QA].
- [6] S. Neshveyev and L. Tuset, On second cohomology of duals of compact groups, preprint arXiv: 1011.4569v3 [math.OA].

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OSLO, P.O. BOX 1053 BLINDERN, NO-0316 OSLO, NORWAY *E-mail address*: sergeyn@math.uio.no

Faculty of Engineering, Oslo University College, P.O. Box 4 St. Olavs plass, NO-0130 Oslo, Norway $E\text{-}mail\ address$: Lars.Tuset@iu.hio.no