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AUTOEQUIVALENCES OF THE TENSOR CATEGORY OF Uqg-MODULES

SERGEY NESHVEYEV AND LARS TUSET

Abstract. We prove that for q ∈ C∗ not a nontrivial root of unity the cohomology group defined
by invariant 2-cocycles in a completion of Uqg is isomorphic to H2(P/Q;T), where P and Q are the
weight and root lattices of g. This implies that the group of autoequivalences of the tensor category
of Uqg-modules is the semidirect product of H2(P/Q;T) and the automorphism group of the based
root datum of g. For q = 1 we also obtain similar results for all compact connected separable groups.

In a previous paper [6] we showed that if G is a compact connected group then the cohomology

group defined by invariant unitary 2-cocycles on Ĝ is isomorphic to H2(Ẑ(G);T) and we conjectured
that for semisimple Lie groups a similar result holds for the q-deformation of G. In the present note
we will prove that this is indeed the case using the technique from our earlier paper [5], where we
considered symmetric cocycles and were inspired by the proof of Kazhdan and Lusztig of equivalence
of the Drinfeld category and the category of Uqg-modules [2]. For q = 1 this gives an alternative
proof of the main results in [6, Section 2] and allows us, at least in the separable case, to extend those
results to non-unitary cocycles relying neither on ergodic actions nor on reconstruction theorems.
At the same time this proof is less transparent than that in [6] and, as opposed to [6], relies heavily
on the structure and representation theory of compact Lie groups.

We will follow the notation and conventions of [5]. Let G be a simply connected semisimple
compact Lie group, g its complexified Lie algebra. Fix a Cartan subalgebra and a system {α1, . . . , αr}
of simple roots. The weight and root lattices are denoted by P and Q, respectively. For q ∈ C∗ not
a nontrivial root of unity consider the quantized universal enveloping algebra Uqg. Denote by Cq(g)
the tensor category of admissible finite dimensional Uqg-modules, and by U(Gq) the endomorphism
ring of the forgetful functor Cq(g)→ Vec.

An invertible element E ∈ U(Gq ×Gq) is called a 2-cocycle on Ĝq if

(E ⊗ 1)(∆̂q ⊗ ι)(E) = (1 ⊗ E)(ι ⊗ ∆̂q)(E).

A cocycle is called invariant if it commutes with elements in the image of ∆̂q. The set of invariant

2-cocycles forms a group under multiplication, which we denote by Z2
Gq

(Ĝq;C
∗). Cocycles of the

form (a⊗a)∆̂q(a)
−1, where a is an invertible element in the center of U(Gq), form a subgroup of the

center of Z2
Gq

(Ĝq;C
∗). The quotient of Z2

Gq
(Ĝq;C

∗) by this subgroup is denoted by H2
Gq

(Ĝq;C
∗).

The center of U(Gq) is identified with functions on the set P+ of dominant integral weights. By [5,
Proposition 4.5] a function on P+ is a group-like element of U(Gq) if and only if it is defined by a
character of P/Q. Therefore the Hopf algebra of functions on P/Q embeds into the center of U(Gq).

Hence every 2-cocycle c on P/Q can be considered as an invariant 2-cocycle Ec on Ĝq. Explicitly,
if U and V are irreducible Uqg-modules with highest weights µ and η, then Ec acts on U ⊗ V as
multiplication by c(µ, η). We can now formulate our main result.

Theorem 1. The homomorphism c 7→ Ec induces an isomorphism

H2(P/Q;T) ∼= H2
Gq

(Ĝq;C
∗).
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In particular, if g is simple and g 6∼= so4n(C) then H2
Gq

(Ĝq;C
∗) is trivial, and if g ∼= so4n(C) then

H2
Gq

(Ĝq;C
∗) ∼= Z/2Z.

The last statement follows from the fact that for simple Lie algebras the group P/Q is cyclic
unless g ∼= so4n(C), in which case P/Q ∼= Z/2Z× Z/2Z, see e.g. Table IV on page 516 in [1].

Note that for q > 0 the same result holds for unitary cocycles. This easily follows by polar
decomposition, see [5, Lemma 1.1].

In the proof of the theorem we will assume that q 6= 1, the case q = 1 is similar and for unitary
cocycles is also proved by a different method in [6].

Our first goal will be to construct a homomorphism H2
Gq

(Ĝq;C
∗) → H2(P/Q;T). For every

µ ∈ P+ fix an irreducible Uqg-module Vµ with highest weight µ and a highest weight vector ξµ.
Recall [5, Section 2] that for µ, η ∈ P+ there exists a unique morphism

Tµ,η : Vµ+η → Vµ ⊗ Vη such that ξµ+η 7→ ξµ ⊗ ξη.

The image of Tµ,η is the isotypic component of Vµ ⊗ Vη with highest weight µ+ η. Hence if E is an
invariant 2-cocycle then it acts on this image as multiplication by a nonzero scalar cE(µ, η). As in the
proof of [5, Lemma 2.2], identity (Tµ,η ⊗ ι)Tµ+η,ν = (ι⊗ Tη,ν)Tµ,η+ν implies that cE is a two-cocycle
on P+. Furthermore, the cohomology class [cE ] of cE in H2(P+;C

∗) depends only on the class of E in

H2
Gq

(Ĝq;C
∗), since if a ∈ U(Gq) is a central element acting on Vµ as multiplication by a scalar a(µ)

then the action of (a⊗a)∆̂q(a)
−1 on the image of Tµ,η is multiplication by a(µ)a(η)a(µ+η)−1. Thus

the map E 7→ cE defines a homomorphism H2
Gq

(Ĝq;C
∗)→ H2(P+;C

∗).

Given a cocycle on P/Q, we can consider it as a cocycle on P and then get a cocycle on P+ by
restriction. Thus we have a homomorphism H2(P/Q;T) → H2(P+;C

∗). It is injective since the
quotient map P+ → P/Q is surjective and a cocycle on P/Q is a coboundary if it is symmetric.

Lemma 2. For every invariant 2-cocycle E on Ĝq the class of cE in H2(P+;C
∗) is contained in the

image of H2(P/Q;T).

Proof. Consider the skew-symmetric bi-quasicharacter b : P+ × P+ → C∗ defined by

b(µ, η) = cE (µ, η)cE (η, µ)
−1.

It extends uniquely to a skew-symmetric bi-quasicharacter on P . To prove the lemma it suffices to
show that the root lattice Q is contained in the kernel of this extension. Indeed, since H2(P/Q;T)
is isomorphic to the group of skew-symmetric bi-characters on P/Q, it then follows that there exists
a cocycle c on P/Q such that the cocycle cEc

−1 on P+ is symmetric. Then by [4, Lemma 4.2] the
cocycle cEc

−1 is a coboundary, so cE and the restriction of c to P+ are cohomologous.
To prove that Q is contained in the kernel of b, recall [5, Section 2] that for every simple root αi

and weights µ, η ∈ P+ with µ(i), η(i) ≥ 1 we can define a morphism

τi;µ,η : Vµ+η−αi
→ Vµ ⊗ Vη such that ξµ+η−αi

7→ [µ(i)]qiξµ ⊗ Fiξη − q
µ(i)
i [η(i)]qiFiξµ ⊗ ξη.

The image of τi;µ,η is the isotypic component of Vµ ⊗ Vη with highest weight µ + η − αi. Since the
element E is invariant, it acts on this image as multiplication by a nonzero scalar ci(µ, η). As in
the proof of [5, Lemma 2.3], consider now another weight ν with ν(i) ≥ 1. The isotypic component
of Vµ ⊗ Vη ⊗ Vν with highest weight µ + η + ν − αi has multiplicity two, and is spanned by the
images of (ι⊗Tη,ν)τi;µ,η+ν and (ι⊗ τi;η,ν)Tµ,η+ν−αi

, as well as by the images of (Tµ,η ⊗ ι)τi;µ+η,ν and
(τi;µ,η ⊗ ι)Tµ+η−αi,ν . We have

[η(i)]qi(Tµ,η ⊗ ι)τi;µ+η,ν − [ν(i)]qi(τi;µ,η ⊗ ι)Tµ+η−αi ,ν = [µ(i) + η(i)]qi(ι⊗ τi;η,ν)Tµ,η+ν−αi
. (1)

Apply the element

Ω := (E ⊗ 1)(∆̂q ⊗ ι)(E) = (1⊗ E)(ι⊗ ∆̂q)(E)
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to this identity. The morphisms (Tµ,η ⊗ ι)τi;µ+η,ν , (τi;µ,η ⊗ ι)Tµ+η−αi,ν and (ι ⊗ τi;η,ν)Tµ,η+ν−αi
are

eigenvectors of the operator of multiplication by Ω on the left with eigenvalues cE (µ, η)ci(µ+ η, ν),
ci(µ, η)cE (µ+η−αi, ν) and ci(η, ν)cE (µ, η+ν−αi), respectively. Since the morphisms (Tµ,η⊗ι)τi;µ+η,ν

and (τi;µ,η⊗ ι)Tµ+η−αi,ν are linearly independent, by applying Ω to (1) we conclude that these three
eigenvalues coincide. In particular,

ci(µ, η)cE (µ+ η − αi, ν) = ci(η, ν)cE (µ, η + ν − αi).

Applying this to η = ν = µ we get
b(2µ − αi, µ) = 1.

Since b is skew-symmetric, this gives b(αi, µ) = 1. The latter identity holds for all µ ∈ P+ with
µ(i) ≥ 1. Since every element in P can be written as a difference of two such elements µ, it follows
that αi is contained in the kernel of b. �

Therefore the map E 7→ cE induces a homomorphism H2
Gq

(Ĝq;C
∗)→ H2(P/Q;T). Clearly, it is a

left inverse of the homomorphism H2(P/Q;T)→ H2
Gq

(Ĝq;C
∗) constructed earlier. Thus it remains

to prove that the homomorphism H2
Gq

(Ĝq;C
∗)→ H2(P/Q;T) is injective.

Assume E is an invariant 2-cocycle such that the cocycle cE on P+ is a coboundary. Then the con-
siderations in [5, Section 2] following Lemma 2.2 apply and show that replacing E by a cohomologous
cocycle we may assume that

ETµ,η = Tµ,η and Eτi;ν,ω = τi;ν,ω (2)

for all µ, η ∈ P+, 1 ≤ i ≤ r and ν, ω ∈ P+ such that ν(i), ω(i) ≥ 1. Therefore to prove injectivity it
suffices to show the following result.

Proposition 3. If E is an invariant 2-cocycle on Ĝq with property (2) then E = 1.

By [5, Corollary 4.4] the result is true under the additional assumption that E is symmetric, that
is, R~E = E21R~ for an R-matrix R~ ∈ U(Gq ×Gq), which depends on the choice of a number ~ ∈ C

such that q = eπi~. We will show that this assumption is automatically satisfied for any ~.

The results of [5, Section 4] up to (but not including) Lemma 4.3 apply to any invariant cocycle
satisfying (2). To formulate these results recall some notation.

For every weight µ ∈ P+ fix an irreducible Uqg-module V̄µ with lowest weight −µ and a lowest
weight vector ξ̄µ. For λ ∈ P and µ, η ∈ P+ such that λ+ µ ∈ P+ there exists a unique morphism

trηµ,λ+µ : V̄µ+η ⊗ Vλ+µ+η → V̄µ ⊗ Vλ+µ such that ξ̄µ+η ⊗ ξλ+µ+η 7→ ξ̄µ ⊗ ξλ+µ.

Using these morphisms define an inverse limit Uqg-module

Mλ = lim
←−
µ

V̄µ ⊗ Vλ+µ.

Denote by trµ,λ+µ the canonical mapMλ → V̄µ⊗Vλ+µ. The moduleMλ is considered as a topological
Uqg-module with a base of neighborhoods of zero formed by the kernels of the maps trµ,λ+µ, while
all modules in our category Cq(g) are considered with discrete topology. Then HomUqg(Mλ, V ) is the

inductive limit of the spaces HomUqg(V̄µ ⊗ Vλ+µ, V ). The vectors ξ̄µ ⊗ ξλ+µ define a topologically
cyclic vector Ωλ ∈Mλ. For any finite dimensional admissible Uqg-module V the map

ηV : HomUqg(⊕λMλ, V )→ V, ηV (f) =
∑

λ

f(Ωλ),

is an isomorphism.
The results of [5, Section 4] up to Lemma 4.3 can be summarized by saying that for every invariant

cocycle E satisfying (2) there exist a character χ of P/Q, an invertible morphism E0 of ⊕λMλ onto
itself preserving the direct sum decomposition, and an invertible element c in the center of U(Gq)
such that

trµ,λ+µ E0 = χ(µ)−1E trµ,λ+µ and ηV (fE0) = c ηV (f) (3)
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for all µ ∈ P+, λ ∈ P such that λ + µ ∈ P+, all finite dimensional admissible Uqg-modules V and
f ∈ HomUqg(Mλ, V ).

Proof of Proposition 3. As we have already remarked, by [5, Corollary 4.4] it suffices to show that
R~E = E21R~ for some ~ such that q = eπi~. We will prove a stronger statement: σE = Eσ for any
braiding σ on Cq(g).

By (3), since trµ,λ+µ(Ωλ) = ξ̄µ ⊗ ξλ+µ, for any µ, η, ν ∈ P+ and f ∈ HomUqg(V̄µ ⊗ Vη, Vν) we have

χ(µ)−1fE(ξ̄µ ⊗ ξη) = c(ν)f(ξ̄µ ⊗ ξη).

As the vector ξ̄µ ⊗ ξη is cyclic, this means that fE = χ(µ)c(ν)f . Since this is true for all f , we
conclude that E acts on the isotypic component of V̄µ ⊗ Vη with highest weight ν as multiplication
by χ(µ)c(ν). In other words, E acts on the isotypic component of Vµ ⊗ Vη with highest weight ν as
multiplication by χ(µ̄)c(ν). It follows that

σE = χ(µ̄− η̄)Eσ on Vµ ⊗ Vη.

But by assumption (2) the element E is the identity on the isotypic component of Vµ ⊗ Vη with
highest weight µ + η, so by considering the above identity on this isotypic component we conclude
that χ(µ̄ − η̄) = 1. Thus χ is the trivial character and σE = Eσ. This finishes the proof of
Proposition 3 and hence of Theorem 1. �

By a result of McMullen [3] any automorphism of the fusion ring of Cq(g), mapping irreducibles
into irreducibles, is implemented by an automorphism of the based root datum of g, hence by an
automorphism of the Hopf algebra Uqg. Hence, similarly to [6, Theorem 2.5], we get the following
consequence of Theorem 1.

Theorem 4. The group of C-linear monoidal autoequivalences of the tensor category Cq(g) is canon-
ically isomorphic to H2(P/Q;T)⋊Aut(Ψ), where Ψ is the based root datum of g.

The group P/Q is canonically identified with the dual of the center Z(G) of the group G, so for

q = 1 Theorem 1 can be formulated as H2
G(Ĝ;C∗) ∼= H2(Ẑ(G);C∗). In this form it can be extended

to a larger class of groups.

Theorem 5. For any compact connected separable group G we have a canonical isomorphism

H2
G(Ĝ;C∗) ∼= H2(Ẑ(G);C∗).

Proof. For Lie groups the proof is essentially the same as above, with P replaced by the weight lattice

of a maximal torus of G. In the general case we have a homomorphism H2(Ẑ(G);C∗)→ H2
G(Ĝ;C∗)

obtained by considering U(Z(G)) as a subring of U(G). To construct the inverse homomorphism,
for every quotient H of G which is a Lie group consider the composition

H2
G(Ĝ;C∗)→ H2

H(Ĥ ;C∗)→ H2(Ẑ(H);C∗),

where the first homomorphism is defined using the quotient map U(G)→ U(H). The map Z(G)→
Z(H) is surjective (since this is true for Lie groups), so Z(G) is the inverse limit of the groups Z(H).

Then H2(Ẑ(G);C∗) is the inverse limit of the groups H2(Ẑ(H);C∗). Therefore the above maps

H2
G(Ĝ;C∗) → H2(Ẑ(H);C∗) define a homomorphism H2

G(Ĝ;C∗) → H2(Ẑ(G);C∗). It is clearly a

left inverse of the map H2(Ẑ(G);C∗)→ H2
G(Ĝ;C∗), so it remains to show that it is injective.

In other words, we have to check that if E is an invariant cocycle on Ĝ such that its image
in U(H × H) is a coboundary for every Lie group quotient H of G, then E itself is a coboundary.
If E were unitary, this could be easily shown by taking a weak operator limit point of cochains, see
the proof of [6, Theorem 2.2], and would not require separability of G. In the non-unitary case we
can argue as follows.

Since G is separable, there exists a decreasing sequence of closed normal subgroups Nn of G
such that ∩n≥1Nn = {e} and the quotients Hn = G/Nn are Lie groups. Let En be the image
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of E in U(Hn × Hn). By assumption there exist invertible central elements cn ∈ U(Hn) such that

En = (cn⊗cn)∆̂(cn)
−1. For a fixed n consider the image a of cn+1 in U(Hn). Then cna

−1 is a central
group-like element in U(Hn). By [5, Theorem A.1] it is therefore defined by an element of the center
of the complexification (Hn)C of Hn. Since the homomorphism (Hn+1)C → (Hn)C is surjective, we
conclude that there exists a central group-like element b in U(Hn+1) such that its image in U(Hn)

is cna
−1. Replacing cn+1 by cn+1b we get an element such that En+1 = (cn+1 ⊗ cn+1)∆̂(cn+1)

−1

and the image of cn+1 in U(Hn) is cn. Applying this procedure inductively we can therefore assume
that the image of cn+1 in U(Hn) is cn for all n ≥ 1. Then the elements cn define a central element

c ∈ U(G) such that E = (c⊗ c)∆̂(c)−1. �

In [6, Theorem 2.5] we computed the group of autoequivalences of the C∗-tensor category of
finite dimensional unitary representations of G. The above theorem allows us to get a similar result
ignoring the C∗-structure.

Theorem 6. For any compact connected separable group G, the group of C-linear monoidal autoe-

quivalences of the category of finite dimensional representations of G is canonically isomorphic to

H2(Ẑ(G);C∗)⋊Out(G).
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