AUTOEQUIVALENCES OF THE TENSOR CATEGORY OF $U_{q} \mathfrak{g}$-MODULES

SERGEY NESHVEYEV AND LARS TUSET

Abstract

We prove that for $q \in \mathbb{C}^{*}$ not a nontrivial root of unity the cohomology group defined by invariant 2-cocycles in a completion of $U_{q} \mathfrak{g}$ is isomorphic to $H^{2}(P / Q ; \mathbb{T})$, where P and Q are the weight and root lattices of \mathfrak{g}. This implies that the group of autoequivalences of the tensor category of $U_{q} \mathfrak{g}$-modules is the semidirect product of $H^{2}(P / Q ; \mathbb{T})$ and the automorphism group of the based root datum of \mathfrak{g}. For $q=1$ we also obtain similar results for all compact connected separable groups.

In a previous paper [6] we showed that if G is a compact connected group then the cohomology group defined by invariant unitary 2-cocycles on \hat{G} is isomorphic to $H^{2}(\widehat{Z(G)} ; \mathbb{T})$ and we conjectured that for semisimple Lie groups a similar result holds for the q-deformation of G. In the present note we will prove that this is indeed the case using the technique from our earlier paper [5], where we considered symmetric cocycles and were inspired by the proof of Kazhdan and Lusztig of equivalence of the Drinfeld category and the category of $U_{q} \mathfrak{g}$-modules [2]. For $q=1$ this gives an alternative proof of the main results in [6, Section 2] and allows us, at least in the separable case, to extend those results to non-unitary cocycles relying neither on ergodic actions nor on reconstruction theorems. At the same time this proof is less transparent than that in [6] and, as opposed to [6], relies heavily on the structure and representation theory of compact Lie groups.

We will follow the notation and conventions of [5]. Let G be a simply connected semisimple compact Lie group, \mathfrak{g} its complexified Lie algebra. Fix a Cartan subalgebra and a system $\left\{\alpha_{1}, \ldots, \alpha_{r}\right\}$ of simple roots. The weight and root lattices are denoted by P and Q, respectively. For $q \in \mathbb{C}^{*}$ not a nontrivial root of unity consider the quantized universal enveloping algebra $U_{q} \mathfrak{g}$. Denote by $\mathcal{C}_{q}(\mathfrak{g})$ the tensor category of admissible finite dimensional $U_{q} \mathfrak{g}$-modules, and by $\mathcal{U}\left(G_{q}\right)$ the endomorphism ring of the forgetful functor $\mathcal{C}_{q}(\mathfrak{g}) \rightarrow \mathcal{V}$ ec.

An invertible element $\mathcal{E} \in \mathcal{U}\left(G_{q} \times G_{q}\right)$ is called a 2-cocycle on \hat{G}_{q} if

$$
(\mathcal{E} \otimes 1)\left(\hat{\Delta}_{q} \otimes \iota\right)(\mathcal{E})=(1 \otimes \mathcal{E})\left(\iota \otimes \hat{\Delta}_{q}\right)(\mathcal{E}) .
$$

A cocycle is called invariant if it commutes with elements in the image of $\hat{\Delta}_{q}$. The set of invariant 2 -cocycles forms a group under multiplication, which we denote by $Z_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right)$. Cocycles of the form $(a \otimes a) \hat{\Delta}_{q}(a)^{-1}$, where a is an invertible element in the center of $\mathcal{U}\left(G_{q}\right)$, form a subgroup of the center of $Z_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right)$. The quotient of $Z_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right)$ by this subgroup is denoted by $H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right)$.

The center of $\mathcal{U}\left(G_{q}\right)$ is identified with functions on the set P_{+}of dominant integral weights. By [5, Proposition 4.5] a function on P_{+}is a group-like element of $\mathcal{U}\left(G_{q}\right)$ if and only if it is defined by a character of P / Q. Therefore the Hopf algebra of functions on P / Q embeds into the center of $\mathcal{U}\left(G_{q}\right)$. Hence every 2-cocycle c on P / Q can be considered as an invariant 2-cocycle \mathcal{E}_{c} on \hat{G}_{q}. Explicitly, if U and V are irreducible $U_{q} \mathfrak{g}$-modules with highest weights μ and η, then \mathcal{E}_{c} acts on $U \otimes V$ as multiplication by $c(\mu, \eta)$. We can now formulate our main result.

Theorem 1. The homomorphism $c \mapsto \mathcal{E}_{c}$ induces an isomorphism

$$
H^{2}(P / Q ; \mathbb{T}) \cong H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right)
$$

[^0]In particular, if \mathfrak{g} is simple and $\mathfrak{g} \neq \mathfrak{s o}_{4 n}(\mathbb{C})$ then $H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right)$ is trivial, and if $\mathfrak{g} \cong \mathfrak{s o}_{4 n}(\mathbb{C})$ then $H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$.

The last statement follows from the fact that for simple Lie algebras the group P / Q is cyclic unless $\mathfrak{g} \cong \mathfrak{s o}_{4 n}(\mathbb{C})$, in which case $P / Q \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, see e.g. Table IV on page 516 in [1].

Note that for $q>0$ the same result holds for unitary cocycles. This easily follows by polar decomposition, see [5, Lemma 1.1].

In the proof of the theorem we will assume that $q \neq 1$, the case $q=1$ is similar and for unitary cocycles is also proved by a different method in [6].

Our first goal will be to construct a homomorphism $H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right) \rightarrow H^{2}(P / Q ; \mathbb{T})$. For every $\mu \in P_{+}$fix an irreducible $U_{q} \mathfrak{g}$-module V_{μ} with highest weight μ and a highest weight vector ξ_{μ}. Recall [5. Section 2] that for $\mu, \eta \in P_{+}$there exists a unique morphism

$$
T_{\mu, \eta}: V_{\mu+\eta} \rightarrow V_{\mu} \otimes V_{\eta} \text { such that } \xi_{\mu+\eta} \mapsto \xi_{\mu} \otimes \xi_{\eta}
$$

The image of $T_{\mu, \eta}$ is the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu+\eta$. Hence if \mathcal{E} is an invariant 2-cocycle then it acts on this image as multiplication by a nonzero scalar $c_{\mathcal{E}}(\mu, \eta)$. As in the proof of [5, Lemma 2.2], identity $\left(T_{\mu, \eta} \otimes \iota\right) T_{\mu+\eta, \nu}=\left(\iota \otimes T_{\eta, \nu}\right) T_{\mu, \eta+\nu}$ implies that $c_{\mathcal{E}}$ is a two-cocycle on P_{+}. Furthermore, the cohomology class $\left[c_{\mathcal{E}}\right]$ of $c_{\mathcal{E}}$ in $H^{2}\left(P_{+} ; \mathbb{C}^{*}\right)$ depends only on the class of \mathcal{E} in $H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right)$, since if $a \in \mathcal{U}\left(G_{q}\right)$ is a central element acting on V_{μ} as multiplication by a scalar $a(\mu)$ then the action of $(a \otimes a) \hat{\Delta}_{q}(a)^{-1}$ on the image of $T_{\mu, \eta}$ is multiplication by $a(\mu) a(\eta) a(\mu+\eta)^{-1}$. Thus the map $\mathcal{E} \mapsto c_{\mathcal{E}}$ defines a homomorphism $H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right) \rightarrow H^{2}\left(P_{+} ; \mathbb{C}^{*}\right)$.

Given a cocycle on P / Q, we can consider it as a cocycle on P and then get a cocycle on P_{+}by restriction. Thus we have a homomorphism $H^{2}(P / Q ; \mathbb{T}) \rightarrow H^{2}\left(P_{+} ; \mathbb{C}^{*}\right)$. It is injective since the quotient map $P_{+} \rightarrow P / Q$ is surjective and a cocycle on P / Q is a coboundary if it is symmetric.

Lemma 2. For every invariant 2 -cocycle \mathcal{E} on \hat{G}_{q} the class of $c_{\mathcal{E}}$ in $H^{2}\left(P_{+} ; \mathbb{C}^{*}\right)$ is contained in the image of $H^{2}(P / Q ; \mathbb{T})$.
Proof. Consider the skew-symmetric bi-quasicharacter $b: P_{+} \times P_{+} \rightarrow \mathbb{C}^{*}$ defined by

$$
b(\mu, \eta)=c_{\mathcal{E}}(\mu, \eta) c_{\mathcal{E}}(\eta, \mu)^{-1}
$$

It extends uniquely to a skew-symmetric bi-quasicharacter on P. To prove the lemma it suffices to show that the root lattice Q is contained in the kernel of this extension. Indeed, since $H^{2}(P / Q ; \mathbb{T})$ is isomorphic to the group of skew-symmetric bi-characters on P / Q, it then follows that there exists a cocycle c on P / Q such that the cocycle $c_{\mathcal{E}} c^{-1}$ on P_{+}is symmetric. Then by [4, Lemma 4.2] the cocycle $c_{\mathcal{E}} c^{-1}$ is a coboundary, so $c_{\mathcal{E}}$ and the restriction of c to P_{+}are cohomologous.

To prove that Q is contained in the kernel of b, recall [5, Section 2] that for every simple root α_{i} and weights $\mu, \eta \in P_{+}$with $\mu(i), \eta(i) \geq 1$ we can define a morphism

$$
\tau_{i ; \mu, \eta}: V_{\mu+\eta-\alpha_{i}} \rightarrow V_{\mu} \otimes V_{\eta} \text { such that } \xi_{\mu+\eta-\alpha_{i}} \mapsto[\mu(i)]_{q_{i}} \xi_{\mu} \otimes F_{i} \xi_{\eta}-q_{i}^{\mu(i)}[\eta(i)]_{q_{i}} F_{i} \xi_{\mu} \otimes \xi_{\eta} .
$$

The image of $\tau_{i, \mu, \eta}$ is the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu+\eta-\alpha_{i}$. Since the element \mathcal{E} is invariant, it acts on this image as multiplication by a nonzero scalar $c_{i}(\mu, \eta)$. As in the proof of [5, Lemma 2.3], consider now another weight ν with $\nu(i) \geq 1$. The isotypic component of $V_{\mu} \otimes V_{\eta} \otimes V_{\nu}$ with highest weight $\mu+\eta+\nu-\alpha_{i}$ has multiplicity two, and is spanned by the images of $\left(\iota \otimes T_{\eta, \nu}\right) \tau_{i ; \mu, \eta+\nu}$ and $\left(\iota \otimes \tau_{i ; \eta, \nu}\right) T_{\mu, \eta+\nu-\alpha_{i}}$, as well as by the images of $\left(T_{\mu, \eta} \otimes \iota\right) \tau_{i ; \mu+\eta, \nu}$ and $\left(\tau_{i ; \mu, \eta} \otimes \iota\right) T_{\mu+\eta-\alpha_{i}, \nu}$. We have

$$
\begin{equation*}
[\eta(i)]_{q_{i}}\left(T_{\mu, \eta} \otimes \iota\right) \tau_{i ; \mu+\eta, \nu}-[\nu(i)]_{q_{i}}\left(\tau_{i ; \mu, \eta} \otimes \iota\right) T_{\mu+\eta-\alpha_{i}, \nu}=[\mu(i)+\eta(i)]_{q_{i}}\left(\iota \otimes \tau_{i ; \eta, \nu}\right) T_{\mu, \eta+\nu-\alpha_{i}} . \tag{1}
\end{equation*}
$$

Apply the element

$$
\Omega:=(\mathcal{E} \otimes 1)\left(\hat{\Delta}_{q} \otimes \iota\right)(\mathcal{E})=(1 \otimes \mathcal{E})\left(\iota \otimes \hat{\Delta}_{q}\right)(\mathcal{E})
$$

to this identity. The morphisms $\left(T_{\mu, \eta} \otimes \iota\right) \tau_{i ; \mu+\eta, \nu},\left(\tau_{i ; \mu, \eta} \otimes \iota\right) T_{\mu+\eta-\alpha_{i}, \nu}$ and $\left(\iota \otimes \tau_{i ; \eta, \nu}\right) T_{\mu, \eta+\nu-\alpha_{i}}$ are eigenvectors of the operator of multiplication by Ω on the left with eigenvalues $c_{\mathcal{E}}(\mu, \eta) c_{i}(\mu+\eta, \nu)$, $c_{i}(\mu, \eta) c_{\mathcal{E}}\left(\mu+\eta-\alpha_{i}, \nu\right)$ and $c_{i}(\eta, \nu) c_{\mathcal{E}}\left(\mu, \eta+\nu-\alpha_{i}\right)$, respectively. Since the morphisms $\left(T_{\mu, \eta} \otimes \iota\right) \tau_{i ; \mu+\eta, \nu}$ and $\left(\tau_{i ; \mu, \eta} \otimes \iota\right) T_{\mu+\eta-\alpha_{i, \nu}}$ are linearly independent, by applying Ω to (1) we conclude that these three eigenvalues coincide. In particular,

$$
c_{i}(\mu, \eta) c_{\mathcal{E}}\left(\mu+\eta-\alpha_{i}, \nu\right)=c_{i}(\eta, \nu) c_{\mathcal{E}}\left(\mu, \eta+\nu-\alpha_{i}\right) .
$$

Applying this to $\eta=\nu=\mu$ we get

$$
b\left(2 \mu-\alpha_{i}, \mu\right)=1 .
$$

Since b is skew-symmetric, this gives $b\left(\alpha_{i}, \mu\right)=1$. The latter identity holds for all $\mu \in P_{+}$with $\mu(i) \geq 1$. Since every element in P can be written as a difference of two such elements μ, it follows that α_{i} is contained in the kernel of b.

Therefore the map $\mathcal{E} \mapsto c_{\mathcal{E}}$ induces a homomorphism $H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right) \rightarrow H^{2}(P / Q ; \mathbb{T})$. Clearly, it is a left inverse of the homomorphism $H^{2}(P / Q ; \mathbb{T}) \rightarrow H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right)$ constructed earlier. Thus it remains to prove that the homomorphism $H_{G_{q}}^{2}\left(\hat{G}_{q} ; \mathbb{C}^{*}\right) \rightarrow H^{2}(P / Q ; \mathbb{T})$ is injective.

Assume \mathcal{E} is an invariant 2-cocycle such that the cocycle $c_{\mathcal{E}}$ on P_{+}is a coboundary. Then the considerations in [5, Section 2] following Lemma 2.2 apply and show that replacing \mathcal{E} by a cohomologous cocycle we may assume that

$$
\begin{equation*}
\mathcal{E} T_{\mu, \eta}=T_{\mu, \eta} \text { and } \mathcal{E} \tau_{i ; \nu, \omega}=\tau_{i ; \nu, \omega} \tag{2}
\end{equation*}
$$

for all $\mu, \eta \in P_{+}, 1 \leq i \leq r$ and $\nu, \omega \in P_{+}$such that $\nu(i), \omega(i) \geq 1$. Therefore to prove injectivity it suffices to show the following result.
Proposition 3. If \mathcal{E} is an invariant 2-cocycle on \hat{G}_{q} with property (2) then $\mathcal{E}=1$.
By [5. Corollary 4.4] the result is true under the additional assumption that \mathcal{E} is symmetric, that is, $\mathcal{R}_{\hbar} \mathcal{E}=\mathcal{E}_{21} \mathcal{R}_{\hbar}$ for an R-matrix $\mathcal{R}_{\hbar} \in \mathcal{U}\left(G_{q} \times G_{q}\right)$, which depends on the choice of a number $\hbar \in \mathbb{C}$ such that $q=e^{\pi i \hbar}$. We will show that this assumption is automatically satisfied for any \hbar.

The results of [5, Section 4] up to (but not including) Lemma 4.3 apply to any invariant cocycle satisfying (2). To formulate these results recall some notation.

For every weight $\mu \in P_{+}$fix an irreducible $U_{q} \mathfrak{g}$-module \bar{V}_{μ} with lowest weight $-\mu$ and a lowest weight vector $\bar{\xi}_{\mu}$. For $\lambda \in P$ and $\mu, \eta \in P_{+}$such that $\lambda+\mu \in P_{+}$there exists a unique morphism

$$
\operatorname{tr}_{\mu, \lambda+\mu}^{\eta}: \bar{V}_{\mu+\eta} \otimes V_{\lambda+\mu+\eta} \rightarrow \bar{V}_{\mu} \otimes V_{\lambda+\mu} \text { such that } \bar{\xi}_{\mu+\eta} \otimes \xi_{\lambda+\mu+\eta} \mapsto \bar{\xi}_{\mu} \otimes \xi_{\lambda+\mu} .
$$

Using these morphisms define an inverse limit $U_{q} \mathfrak{g}$-module

$$
M_{\lambda}=\lim _{\overleftarrow{\mu}} \bar{V}_{\mu} \otimes V_{\lambda+\mu} .
$$

Denote by $\operatorname{tr}_{\mu, \lambda+\mu}$ the canonical map $M_{\lambda} \rightarrow \bar{V}_{\mu} \otimes V_{\lambda+\mu}$. The module M_{λ} is considered as a topological $U_{q} \mathfrak{g}$-module with a base of neighborhoods of zero formed by the kernels of the maps $\operatorname{tr}_{\mu, \lambda+\mu}$, while all modules in our category $\mathcal{C}_{q}(\mathfrak{g})$ are considered with discrete topology. Then $\operatorname{Hom}_{U_{q} \mathfrak{g}}\left(M_{\lambda}, V\right)$ is the inductive limit of the spaces $\operatorname{Hom}_{U_{q} \mathfrak{g}}\left(\bar{V}_{\mu} \otimes V_{\lambda+\mu}, V\right)$. The vectors $\bar{\xi}_{\mu} \otimes \xi_{\lambda+\mu}$ define a topologically cyclic vector $\Omega_{\lambda} \in M_{\lambda}$. For any finite dimensional admissible $U_{q} \mathfrak{g}$-module V the map

$$
\eta_{V}: \operatorname{Hom}_{U_{q} \mathfrak{g}}\left(\oplus_{\lambda} M_{\lambda}, V\right) \rightarrow V, \quad \eta_{V}(f)=\sum_{\lambda} f\left(\Omega_{\lambda}\right),
$$

is an isomorphism.
The results of [5, Section 4] up to Lemma 4.3 can be summarized by saying that for every invariant cocycle \mathcal{E} satisfying (2) there exist a character χ of P / Q, an invertible morphism \mathcal{E}_{0} of $\oplus_{\lambda} M_{\lambda}$ onto itself preserving the direct sum decomposition, and an invertible element c in the center of $\mathcal{U}\left(G_{q}\right)$ such that

$$
\begin{equation*}
\operatorname{tr}_{\mu, \lambda+\mu} \mathcal{E}_{0}=\chi(\mu)^{-1} \mathcal{E} \operatorname{tr}_{\mu, \lambda+\mu} \text { and } \eta_{V}\left(f \mathcal{E}_{0}\right)=c \eta_{V}(f) \tag{3}
\end{equation*}
$$

for all $\mu \in P_{+}, \lambda \in P$ such that $\lambda+\mu \in P_{+}$, all finite dimensional admissible $U_{q} \mathfrak{g}$-modules V and $f \in \operatorname{Hom}_{U_{q} \mathfrak{g}}\left(M_{\lambda}, V\right)$.
Proof of Proposition 图. As we have already remarked, by [5, Corollary 4.4] it suffices to show that $\mathcal{R}_{\hbar} \mathcal{E}=\mathcal{E}_{21} \mathcal{R}_{\hbar}$ for some \hbar such that $q=e^{\pi i \hbar}$. We will prove a stronger statement: $\sigma \mathcal{E}=\mathcal{E} \sigma$ for any braiding σ on $\mathcal{C}_{q}(\mathfrak{g})$.

By (3), since $\operatorname{tr}_{\mu, \lambda+\mu}\left(\Omega_{\lambda}\right)=\bar{\xi}_{\mu} \otimes \xi_{\lambda+\mu}$, for any $\mu, \eta, \nu \in P_{+}$and $f \in \operatorname{Hom}_{U_{q \mathfrak{g}}}\left(\bar{V}_{\mu} \otimes V_{\eta}, V_{\nu}\right)$ we have

$$
\chi(\mu)^{-1} f \mathcal{E}\left(\bar{\xi}_{\mu} \otimes \xi_{\eta}\right)=c(\nu) f\left(\bar{\xi}_{\mu} \otimes \xi_{\eta}\right) .
$$

As the vector $\bar{\xi}_{\mu} \otimes \xi_{\eta}$ is cyclic, this means that $f \mathcal{E}=\chi(\mu) c(\nu) f$. Since this is true for all f, we conclude that \mathcal{E} acts on the isotypic component of $\bar{V}_{\mu} \otimes V_{\eta}$ with highest weight ν as multiplication by $\chi(\mu) c(\nu)$. In other words, \mathcal{E} acts on the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight ν as multiplication by $\chi(\bar{\mu}) c(\nu)$. It follows that

$$
\sigma \mathcal{E}=\chi(\bar{\mu}-\bar{\eta}) \mathcal{E} \sigma \quad \text { on } \quad V_{\mu} \otimes V_{\eta} .
$$

But by assumption (2) the element \mathcal{E} is the identity on the isotypic component of $V_{\mu} \otimes V_{\eta}$ with highest weight $\mu+\eta$, so by considering the above identity on this isotypic component we conclude that $\chi(\bar{\mu}-\bar{\eta})=1$. Thus χ is the trivial character and $\sigma \mathcal{E}=\mathcal{E} \sigma$. This finishes the proof of Proposition 3 and hence of Theorem (1)

By a result of McMullen [3] any automorphism of the fusion ring of $\mathcal{C}_{q}(\mathfrak{g})$, mapping irreducibles into irreducibles, is implemented by an automorphism of the based root datum of \mathfrak{g}, hence by an automorphism of the Hopf algebra $U_{q} \mathfrak{g}$. Hence, similarly to [6, Theorem 2.5], we get the following consequence of Theorem [1.
Theorem 4. The group of \mathbb{C}-linear monoidal autoequivalences of the tensor category $\mathcal{C}_{q}(\mathfrak{g})$ is canonically isomorphic to $H^{2}(P / Q ; \mathbb{T}) \rtimes \operatorname{Aut}(\Psi)$, where Ψ is the based root datum of \mathfrak{g}.

The group P / Q is canonically identified with the dual of the center $Z(G)$ of the group G, so for $q=1$ Theorem \square can be formulated as $H_{G}^{2}\left(\hat{G} ; \mathbb{C}^{*}\right) \cong H^{2}\left(\widehat{Z(G)} ; \mathbb{C}^{*}\right)$. In this form it can be extended to a larger class of groups.

Theorem 5. For any compact connected separable group G we have a canonical isomorphism

$$
H_{G}^{2}\left(\hat{G} ; \mathbb{C}^{*}\right) \cong H^{2}\left(\widehat{Z(G)} ; \mathbb{C}^{*}\right)
$$

Proof. For Lie groups the proof is essentially the same as above, with P replaced by the weight lattice of a maximal torus of G. In the general case we have a homomorphism $H^{2}\left(\widehat{Z(G)} ; \mathbb{C}^{*}\right) \rightarrow H_{G}^{2}\left(\hat{G} ; \mathbb{C}^{*}\right)$ obtained by considering $\mathcal{U}(Z(G))$ as a subring of $\mathcal{U}(G)$. To construct the inverse homomorphism, for every quotient H of G which is a Lie group consider the composition

$$
H_{G}^{2}\left(\hat{G} ; \mathbb{C}^{*}\right) \rightarrow H_{H}^{2}\left(\hat{H} ; \mathbb{C}^{*}\right) \rightarrow H^{2}\left(\widehat{Z(H)} ; \mathbb{C}^{*}\right)
$$

where the first homomorphism is defined using the quotient map $\mathcal{U}(G) \rightarrow \mathcal{U}(H)$. The map $Z(G) \rightarrow$ $Z(H)$ is surjective (since this is true for Lie groups), so $Z(G)$ is the inverse limit of the groups $Z(H)$. Then $H^{2}\left(\widehat{Z(G)} ; \mathbb{C}^{*}\right)$ is the inverse limit of the groups $H^{2}\left(\widehat{Z(H)} ; \mathbb{C}^{*}\right)$. Therefore the above maps $H_{G}^{2}\left(\hat{G} ; \mathbb{C}^{*}\right) \rightarrow H^{2}\left(\widehat{Z(H)} ; \mathbb{C}^{*}\right)$ define a homomorphism $H_{G}^{2}\left(\hat{G} ; \mathbb{C}^{*}\right) \rightarrow H^{2}\left(\widehat{Z(G)} ; \mathbb{C}^{*}\right)$. It is clearly a left inverse of the map $H^{2}\left(\widehat{Z(G)} ; \mathbb{C}^{*}\right) \rightarrow H_{G}^{2}\left(\hat{G} ; \mathbb{C}^{*}\right)$, so it remains to show that it is injective.

In other words, we have to check that if \mathcal{E} is an invariant cocycle on \hat{G} such that its image in $\mathcal{U}(H \times H)$ is a coboundary for every Lie group quotient H of G, then \mathcal{E} itself is a coboundary. If \mathcal{E} were unitary, this could be easily shown by taking a weak operator limit point of cochains, see the proof of [6, Theorem 2.2], and would not require separability of G. In the non-unitary case we can argue as follows.

Since G is separable, there exists a decreasing sequence of closed normal subgroups N_{n} of G such that $\cap_{n \geq 1} N_{n}=\{e\}$ and the quotients $H_{n}=G / N_{n}$ are Lie groups. Let \mathcal{E}_{n} be the image
of \mathcal{E} in $\mathcal{U}\left(H_{n} \times H_{n}\right)$. By assumption there exist invertible central elements $c_{n} \in \mathcal{U}\left(H_{n}\right)$ such that $\mathcal{E}_{n}=\left(c_{n} \otimes c_{n}\right) \hat{\Delta}\left(c_{n}\right)^{-1}$. For a fixed n consider the image a of c_{n+1} in $\mathcal{U}\left(H_{n}\right)$. Then $c_{n} a^{-1}$ is a central group-like element in $\mathcal{U}\left(H_{n}\right)$. By [5, Theorem A.1] it is therefore defined by an element of the center of the complexification $\left(H_{n}\right)_{\mathbb{C}}$ of H_{n}. Since the homomorphism $\left(H_{n+1}\right)_{\mathbb{C}} \rightarrow\left(H_{n}\right)_{\mathbb{C}}$ is surjective, we conclude that there exists a central group-like element b in $\mathcal{U}\left(H_{n+1}\right)$ such that its image in $\mathcal{U}\left(H_{n}\right)$ is $c_{n} a^{-1}$. Replacing c_{n+1} by $c_{n+1} b$ we get an element such that $\mathcal{E}_{n+1}=\left(c_{n+1} \otimes c_{n+1}\right) \hat{\Delta}\left(c_{n+1}\right)^{-1}$ and the image of c_{n+1} in $\mathcal{U}\left(H_{n}\right)$ is c_{n}. Applying this procedure inductively we can therefore assume that the image of c_{n+1} in $\mathcal{U}\left(H_{n}\right)$ is c_{n} for all $n \geq 1$. Then the elements c_{n} define a central element $c \in \mathcal{U}(G)$ such that $\mathcal{E}=(c \otimes c) \hat{\Delta}(c)^{-1}$.

In [6. Theorem 2.5] we computed the group of autoequivalences of the C^{*}-tensor category of finite dimensional unitary representations of G. The above theorem allows us to get a similar result ignoring the C^{*}-structure.
Theorem 6. For any compact connected separable group G, the group of \mathbb{C}-linear monoidal autoequivalences of the category of finite dimensional representations of G is canonically isomorphic to $H^{2}\left(\widehat{Z(G)} ; \mathbb{C}^{*}\right) \rtimes \operatorname{Out}(G)$.

References

[1] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, RI, 2001.
[2] D. Kazhdan and G. Lusztig, Tensor structures arising from affine Lie algebras. III, J. Amer. Math. Soc. 7 (1994), 335-381.
[3] J.R. McMullen, On the dual object of a compact connected group, Math. Z. 185 (1984), 539-552.
[4] S. Neshveyev and L. Tuset, Notes on the Kazhdan-Lusztig theorem on equivalence of the Drinfeld category and the category of $U_{q}(\mathfrak{g})$-modules, preprint arXiv: 0711.4302v1 [math.QA].
[5] S. Neshveyev and L. Tuset, Symmetric invariant cocycles on the duals of q-deformations, preprint arXiv: 0902.2365 v 1 [math.QA].
[6] S. Neshveyev and L. Tuset, On second cohomology of duals of compact groups, preprint arXiv: 1011.4569v3 [math.OA].

Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, NO-0316 Oslo, Norway
E-mail address: sergeyn@math.uio.no
Faculty of Engineering, Oslo University College, P.O. Box 4 St. Olavs Plass, NO-0130 Oslo, Norway
E-mail address: Lars.Tuset@iu.hio.no

[^0]: Date: December 21, 2010; minor changes January 8, 2011.
 Supported by the Research Council of Norway.

