
ar
X

iv
:1

01
2.

47
55

v1
  [

cs
.I

T
] 

 2
1 

D
ec

 2
01

0

Mutual information, matroids and extremal dependencies

Emmanuel Abbe

Abstract

In this paper, it is shown that the rank function of a matroid can be represented by a “mutual
information function” if and only if the matroid is binary. The mutual information function
considered is the one measuring the amount of information between the inputs (binary uniform)
and the output of a multiple access channel (MAC). Moreover, it is shown that a MAC whose
mutual information function is integer valued is “equivalent” to a linear deterministic MAC, in
the sense that it essentially contains at the output no more information than some linear forms of
the inputs. These notes put emphasis on the connection between mutual information functionals
and rank functions in matroid theory, without assuming prior knowledge on these two subjects.
The first section introduces mutual information functionals, the second section introduces basic
notions of matroid theory, and the third section connects these two subjects. It is also shown that
entropic matroids studied in the literature correspond to specific cases of MAC matroids.

1 Information Measures

Definition 1. Let X and Y be two finite sets called respectively the input and output alphabets
and let M(X ) denote the set of probability measures on X . A channel W with input alphabet X
and output alphabet Y is a collection of conditional probability measures {W (·|x) ∈ M(Y) : x ∈ X}.
For fixed alphabets, we denote the set of channels by M(Y|X ).

Definition 2. The mutual information of a probability measure µ ∈ M(X × Y) is defined by

I(µ) = D(µ||µX × µY) = Eµ log
µ

µX × µY
,

where µX and µY are respectively the marginals in X and Y of µ.
If X and Y are two random variables on respectively X and Y, then I(X;Y ) denotes I(µ) where

µ is the joint distribution of X,Y .
If P ∈ M(X ) is an input distribution and W ∈ M(Y|X ) is a channel, then I(P,W ) denotes I(µ)

where µ = P ◦W .
The uniformmutual information (UMI) of a channelW ∈ M(Y|X ) is given by I(W ) := I(UX ◦W ),

where UX is the uniform distribution on X .

For a given channel W and for any input distribution PX , I(PX ,W ) has the following operational
meaning in information theory: it is an achievable rate for reliable communication on a discrete
memoryless channel with transition probability W . In particular, I(W ) is an achievable rate and the
largest achievable rate is given by the capacity C = maxP∈M(X ) I(P,W ).

Definition 3. A multiple access channel (MAC) W with m users, input alphabet X and output
alphabet Y, is a channel having input alphabet Xm and output alphabet Y, i.e., an element of
M(Y|Xm). A binary MAC is a MAC for which X = F2.
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Let Em = {1, . . . ,m}.

Definition 4. The mutual information function (MIF) of a MAC W ∈ M(Y|Xm) with input distri-
butions P1, . . . , Pm ∈ M(X ) is defined by the function

I(P1, . . . , Pm,W ) : 2Em → R

S 7→ I[S](P1, . . . , Pm,W ) := I(X[S];Y,X[Sc]), (1)

where
(X[Em], Y ) ∼ (P1 × . . .× Pm) ◦W.

If P1 = . . . = Pm = UX , we call this function the uniform mutual information function (UMIF) and
we denote it by I(W ) (the same notation is used for the single-user mutual information, which is not
a conflicting notation since single-user channels correspond to 1-user MACs).

The operational meaning of the MIF is the following: the region

{(R1, . . . , Rm) : 0 ≤
∑

i∈S

Ri ≤ I(X[S];Y X[Sc]), S ⊆ Em}

represent achievable rates on a memoryless MAC W , when the m users are not allowed to cooperate
during the communication. (If the m users were allowed to cooperate, rates given by I(P,W ) for
any P ∈ M(Xm) would be achievable.) If there are no restriction on the input distributions, the
closure of the convex hull of all such regions (for any input distributions) gives the capacity region.

2 Matroids

Definition 5. A matroid M is an ordered pair (E,I), where E is a finite set called the ground set
and I is a collection of a subsets of E called the independent sets, which satisfies:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.

(I3) If I1, I2 ∈ I and |I1| < |I2|, then there exists an element e ∈ I2 − I1

such that I1 ∪ {e} ∈ I.

We then say that M is a matroid on E with independent sets I.

Definition 6. Let M be a matroid given by (E,I).

• A basis is a maximal (with respect to the inclusion) subset of E which is independent. The
collection of bases is denoted by B. Note that all the subsets of the bases are the independent
sets. Hence, a matroid can be defined by its bases.

• An dependent set is a subset of E which is not independent. The collection of dependent sets
is denoted by D = Ic.

• A circuit is a minimal (w.r. to the inclusion) subset of E which is dependent. The collection
of circuits is denoted by C.

Definition 7. On any matroid M , we define a rank function r : P(E) → Z+ such that for any
S ⊆ E, r(S) is given by the cardinality of a maximal independent set contained in (or equal to) S.
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Note: one should check that this is a well defined function, i.e., that any two maximal independent
sets in S have the same cardinality. This is actually due to the fact that all the bases in a matroid
have the same cardinality. This also implies that r(E) is given by the cardinality of a basis. We
denote R := r(E).

Lemma 1. The rank function satisfies the following properties.

(R1) If X ⊆ E, then r(X) ≤ |X|.

(R2) If X1 ⊆ X2 ⊆ E, then r(X1) ≤ r(X2).

(R3) If X1,X2 ⊆ E, then

r(X1 ∪X2) + r(X1 ∩X2) ≤ r(X1) + r(X2).

Note: all the objects that we have defined so far (independent sets, dependent sets, bases, circuits,
rank function) can be used to define a matroid, i.e., we can define a matroid as a ground set E with
a collection of circuits or a ground set E with a rank function, etc. Moreover, each of these objects
can be characterized by a set of axioms, as for example in the following lemma.

Lemma 2. Let E be a finite set and r : P(E) → Z+. We have that r is a rank function of a matroid
on E if and only if r satisfies (R1), (R2) and (R3).

Definition 8. A vector matroid over a field F is a matroid whose ground set is given by the column
index set of a matrix A defined over F , and whose independent sets are given by the column index
subsets indicating linearly independent columns. We denote such a matroid by M = M [A]. We call
A a representative matrix of the matroid.

For a vector matroid, the objects defined previously (dependent sets, bases, rank function) nat-
urally match with the objects defined by the corresponding linear algebraic definition. The matroid
theory is also connected to other fields such as graph theory. For an undirected graph, the set of edges
define a ground set and a collection of edges that does not contain a cycle defines an independent
set. A major problem in matroid theory, consist in identifying whether a given matroid belongs to a
certain class of structured matroids, such as vector matroids or graphic matroids. We are particularly
interested here in the problem of determining whether a given matroid can be expressed as a vector
matroid over a finite field.

Definition 9. A matroid is representable over a field F if it is isomorphic to a vector matroid over
the field F . A F2 representable matroid is called a binary matroid.

Note that there are several equivalent representation matrices of a given representable matroid
over a field. It easy to show that on a rank R matroid which is representable on F , one can always
pick a representative matrix of the form [IR|A], where A is an R× (n −R) matrix. This is called a
standard representative matrix.

We review here some basic construction defined on matroids.

Definition 10. Let M be a matroid with ground set E and independent sets I. Let S ⊆ E.

• The restriction of M to S, denoted by M |S, is the matroid whose ground set is S and whose
independent sets are the independent sets in I which are contained in (or equal to) S.

• The contraction of M by S, denoted by M/S, is the matroid whose ground set is E − S and
whose independent sets are the subsets I of E−S for which there exists a basis B of M |S such
that I ∪B ∈ I. We will see an equivalent definition of the contraction operation when defining
the dual of matroid.
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• A matroid N that is obtained from M by a sequence of restrictions and contractions is called
a minor of M .

We now define a matroid which is particular with respect to the representability theory of binary
matroids.

Definition 11. Let m,n ∈ Z+ with m ≤ n. Let E be a finite set with n elements and B the
collection of m-element subsets of E. One can easily check that this collection determines the bases
of a matroid on E. We denote this matroid by Um,n and call it the uniform matroid of rank m on a
set with n elements.

The following are two major theorems concerning the representation theory of binary matroids.

Theorem 1. [Tutte] A matroid is binary if and only if it has no minor that is U2,4.

Theorem 2. [Whitney] A matroid is binary if and only if the symmetric sum (△) of any two circuits
is the union of disjoint circuits.

Remark 1. In a binary matroid, the circuit space of a matroid is equal to the kernel of its representa-
tive matrix. Indeed, if we multiply a circuit C by the representative matrix A, we are summing the
columns corresponding to a circuit. But this sum must be 0, since a circuit is a minimal dependent
set, and therefore, we can express one of the columns as the sum of the others.

Next, we introduce the duality subject, which will play a central role in the applications of our
next section.

Theorem 3. Let M be a matroid on E with a set of bases B. Let B∗ = {E −B : B ∈ B}. Then B∗

is the set of bases of a matroid on E. We denote this matroid by M∗ and call it the dual of M .

Lemma 3. If r is the rank function of M , then the rank function of M∗ is given by

r∗(S) = r(Sc) + |S| − r(E).

We can then define the contraction operation via duality.

Definition 12. The contraction of M by S is given by the dual of the restriction of M∗ on S, i.e.,
M/S = (M∗|S)∗.

We conclude this section with the definition of polymatroids.

Definition 13. A polymatroid is an ordered pair of a finite set E called the ground set and a β-rank
function ρ : P(E) → R+ which satisfies

(R1) f(∅) = 0.

(R2) If X1 ⊆ X2 ⊆ E, then f(X1) ≤ f(X2).

(R3) If X1,X2 ⊆ E, then

f(X1 ∪X2) + f(X1 ∩X2) ≤ f(X1) + f(X2).

The region of Rm defined by {(R1, . . . , Rm) : RS ≤ f(S), S ⊆ E} is called a polyhedron.

We refer to [7] for more details on matroid theory.
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3 Extremal Dependencies

This section connects the two previous ones, by characterizing MACs having an integer valued UMIF,
i.e., a matroidal UMIF. Note that there exists a wide class of problems connecting information and
matroid theory, such as characterizing entropic matroids; we refer to [2, 4, 5, 6, 9, 10] and references
therein, and we show in Section 4.2 that entropic matroids are particular cases of MAC matroids.
An application of the results presented here is given in [1], for a MAC polar code construction.

Recall that Em = {1, . . . ,m}.

Theorem 4 ([2]). For any m ≥ 1, any MAC W ∈ M(Y|Xm) and any P1, . . . , Pm ∈ M(X ) the func-
tion ρ = I(P1, . . . , Pm,W ) defined in (1) is a β-rank function on Em and (Em, ρ) is a polymatroid.

We denote this polymatroid by M [P1, . . . , Pm,W ]. We use M [W ] when P1 = . . . = Pm = UX .
If for a polymatroid M we have M ∼= M [W ] (where ∼= means isomorphic), we say that W is a
representative channel of M .

In this section, we are interested in characterizing the MACs for which the function ρ is integer
valued, i.e., for which (Em, ρ) defines a matroid. We restrict ourselves to binary MACs and we only
consider the case where P1, . . . , Pm are all given by the uniform distribution. One can easily come
up with examples of binary MACs that would provide an integral ρ. But we are mostly interested
in the reverse problem, i.e., in characterizing the matroids that admit such a mutual information
representation. From a communication point of view, such MACs are interesting because they are
trivial to communicate over with respect to both noise and interference management, and they indeed
correspond to the extremal MACs created in the polarization process of [1].

Definition 14. A matroid M is a BUMAC matroid if M ∼= M [W ] for a binary MAC W . Hence, a
BUMAC matroid is a matroid whose rank function is given by the UMIF (Definition 4) of a binary
MAC. “BUMAC” refers to binary uniform MAC.

Theorem 5. A matroid is BUMAC if and only if it is binary.

To prove this theorem, we first prove the following lemma.

Lemma 4. U2,4 is not BUMAC.

Proof. Assume that the rank function of U2,4 is the UNIF of a MAC. We then have

I(X[i, j];Y ) = 0, (2)

I(X[i, j];Y X[k, l]) = 2, (3)

for all i, j, k, l distinct in {1, 2, 3, 4}. Let y0 be in the support of Y . For x ∈ F
4
2, define P(x|y0) =

W (y0|x)/
∑

z∈F4

2

W (y0|z). Then from (3), P(0, 0, ∗, ∗|y0) = 0 for any choice of ∗, ∗ which is not

0, 0 and P(0, 1, ∗, ∗|y0) = 0 for any choice of ∗, ∗ which is not 1, 1. On the other hand, from (2),
P(0, 1, 1, 1|y0) must be equal to p0. However, we have form (3) that P(1, 0, ∗, ∗|y0) = 0 for any choice
of ∗, ∗ (even for 1, 1 since we now have P(0, 1, 1, 1|y0) > 0). At the same time, this implies that the
average of P(1, 0, ∗, ∗|y0) over ∗, ∗ is zero. This brings a contradiction, since from (2), this average
must equal to p0.

Proof of Theorem 5. We start with the converse. LetM be a binary matroid on E with representative
matrix A. Let D be the deterministic channel defined by the matrix A, then we clearly have
M ∼= M [D].
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For the direct part, let M be a BUMAC matroid. We already know from Lemma 4 that M
cannot contain U2,4 as a minor. If instead U2,4 is obtained by a contraction of Sc from M , i.e.,
M/Sc ∼= U2,4, it means that (M∗|S)∗ ∼= U2,4. Since U2,4 is self dual, we have M∗|S ∼= U2,4. Let us
denote by r∗ the rank function of M∗. We have for any Q ⊆ E

r∗(Q) = |Q|+ r(Qc)− r(E),

= |Q|+ I(X[Qc];Y X[Q]) − I(X[E];Y ),

= |Q| − I(X[Q];Y ),

where the last equality follows from the chain rule of the mutual information. Since r∗(·) restricted
to S is the rank function of U2,4, we have in particular

r∗(T ) = 2, ∀T ⊂ S s.t. |T | = 2

r∗(S) = 2,

that is,

2− I(X[T ];Y ) = 2, ∀T ⊂ S s.t. |T | = 2 (4)

4− I(X[S];Y ) = 2.

This implies, by the chain rule of the mutual information,

I(X[T ];Y X[S − T ]) = 2, ∀T ⊂ S s.t. |T | = 2. (5)

Hence, from the proof of Lemma 4, (4),(5) cannot simultaneously hold and U2,4 cannot be a
minor of M . From Tutte’s Theorem (cf. Theorem 1), M is binary.

Previous theorem gives a characterization of BUMAC matroids. Note that, if we were interested
in characterizing binary matroids through BUMAC matroids, then the following corollary holds.

Definition 15. A BULMAC matroid is a BUMAC matroid with linear deterministic representative
channel.

Corollary 1. The family of binary matroids is isomorphic to the family of BULMAC matroids.

We now formally establish the connection between extremal MACs and linear deterministic
MACs.

Theorem 6. Let W be a binary MAC with m users whose UMIF is integer valued, i.e., M [W ] is a
binary matroid. Let A be a matrix representation of M [W ] and let Y be the output of W when the
input X[Em] (with i.i.d. uniform components) is sent. Then

I(AX[Em];Y ) = rankA = I(X[Em];Y ).

This theorem says that for a binary MAC with integer valued UMIF, the output of i.i.d. uniform
inputs contains all the information about the corresponding linear form of the inputs and nothing
more. In that sense, MACs with integer valued UMIF are “equivalent” to linear deterministic MACs.
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Proof. Let M = M [W ] with M [W ] ∼= M [A] and let us assume that M has rank R. Let B be the set
of bases of M and let B∗ be the set of bases of M∗. Since r(B) = |B| = R for any B ∈ B, we have

r(B) = I(X[B];Y X[Bc]) = R, ∀B ∈ B. (6)

Moreover, the rank function of M∗ is given by

r∗(S) = |S| − I(X[S];Y )

and for all D ∈ B∗, we have r∗(D) = |D| = |Em| −R. Hence

r∗(D) = |Em| −R = |Em| −R− I(X[D];Y ), ∀D ∈ B∗,

or equivalently

I(X[D];Y ) = 0, ∀D ∈ B∗. (7)

Hence, form (6) and (7) and the fact that B∗ = {Em −B : B ∈ B}, we have

I(X[B];Y X[Bc]) = r, ∀B ∈ B, (8)

I(X[Bc];Y ) = 0, ∀B ∈ B. (9)

Note that (8) means that if any realization of the output Y is given together with any realization
of X[Bc], we can determine X[B]. Moreover, (9) means that X[Bc] is independent of Y . Let us
analyze how these conditions translate in terms of probability distributions. Let y0 ∈ Supp(Y ). We
define

p0(x) := W (y0|x)/
∑

x′∈Fm

2

W (y0|x
′

), ∀x ∈ F
m
2 .

From (8), if p0(x) > 0, we must have p0(x
′

) = 0 for any x
′

such that x
′

[Bc] = x[Bc] for some Bc ∈ B∗.
From (9), we have that

∑

x′ :x′ [Bc]=x[Bc]

p0(x) = 2R−m, ∀B ∈ B, x[Bc] ∈ F
m−R
2 .

Hence, for any B ∈ B and any x[Bc] ∈ F
m−R
2 , we have

∨

x′ :x′ [Bc]=x[Bc]

p0(x
′

) = 2R−m, (10)

∑

x′ :x′ [Bc]=x[Bc]

p0(x
′

) = 2R−m. (11)

Let ⋆ := 2R−m. Previous constraints imply that p0(x) ∈ {0, ⋆} for any x ∈ F
m
2 and that the number of

x with p0(x) = ⋆ is exactly 2|Em|−r. Let us assume w.l.o.g. that p0(0̄) = ⋆, where 0̄ is the all 0 vector.
Note that we know one solution that satisfies previous conditions. Namely, the solution that assigns
a ⋆ to all vectors belonging to KerA. As expected, dimKer(A) = |Em| − rank(A) = |Em| − r. We
want to show that there cannot be any other assignment of the ⋆’s in agreement with the matroid M .
In the following, we consider elements of Fm

2 as binary vectors or as subsets of Em, since F
m
2

∼= 2Em .
The field operations on F

m
2 translate into set operations on 2Em , in particular, the component wise

7



modulo 2 addition x1 + x2 of binary vectors corresponds to the symmetric different x1△x2 of sets,
and the component wise multiplication x1 ·x2 of binary vectors corresponds to the intersection x1∩x2
of sets.

We now check which are the assignments which would not violate (10) and (11). We have assumed
w.l.o.g that 0̄ is assigned ⋆, hence ∅ is assigned ⋆. From (10), any x for which x[Bc] = 0 for some
B ∈ B, must be assigned 0. Note that

x[Bc] = 0 ≡ x · Bc = 0 ≡ x ⊆ B ≡ x ∈ I,

where I is the collection of independent sets of M . Hence, the elements which are assigned 0 by
checking the condition (10) are the independent sets of M , besides ∅ which is assigned ⋆.

For B ∈ B and s ∈ F
m
2 , we define

I(B) := {I ∈ I : I ⊆ B}

and
Is(B) := {x : x[Bc] = s[Bc]}.

Note that Is(B) = s+ I(B), indeed:

x[Bc] = s[Bc] ≡ x ·Bc = s ·Bc ≡ (x+ s) · Bc = 0 ≡ x+ s ⊆ B ≡ x ∈ s+ I(B).

Now, if r(S) = r(T ) for two sets S and T with T ⊆ S, we have

I(X[S − T ];Y X[Sc]) = 0.

This means that (Y,X[Sc]) is independent of X[S − T ]. From the point of view of probability
distributions, this means that

PX[S−T ]|YX[Sc](x[S − T ]|y0x[S
c]) =

1

2|T |
, ∀x[S − T ], x[Sc]

or equivalently,

∑

S−T

p0(x[E]) =
1

2|T |

∑

S

p0(x[E]), ∀x[T ], x[Sc].

Hence, if we set the components of x ∈ F
m
2 to frozen values on Sc, then, no matter how we freeze

the components of x on T , the average of p0(·) on S − T must be the same.
Let C ∈ C be a circuit. By the definition of circuits, if we remove any element of C we have a

basis of M |C. Let B be such a basis, we then have r(C) = r(B). We now want to freeze the values
on Cc and B in two ways.

1. If we pick d = C ∩Bc, then

Id(B) = {x : x ⊆ C −B}.

These are the elements that are strictly contained in C, i.e., elements of I, including ∅. Therefore,
the average of p0(·) must be ⋆ for this freezing.

2. If we pick d = C, we already know that the average of p0(·) must be ⋆, but we have

Id(B) = {x : x+ C ⊆ C −B}.
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These are the elements containing B, possibly elements of C − B but nothing else. Therefore, the
options are x = C or x ∈ I − ∅. This forces C to be assigned ⋆.

Hence, we have shown that all circuits of M must be assigned ⋆. This in turns imply several
other 0 assignments. Namely,

⋃

C∈C

C + (I − ∅) (12)

must be assigned 0.
Let us next consider a union of two disjoint circuits, D = C1 ⊔C2. Then, if we remove any single

elements of D, say by removing an element of C1, we obtain a disjoint union of an independent set
and a circuit, say I ⊔ C2. Hence,

r(C1 ⊔ C2) = r(I ⊔ C2).

We can then use the same technique as previously, but this time, we need to use that (12) is
assigned 0. Note that is important to assume that the union is disjoint, in order to guarantee that
C2 + I ⊔ C2 = I ∈ I.

We can then use an induction to show that any union of disjoint circuits must be assigned ⋆.
Finally, for a binary matroid, any symmetric difference of two circuits is given by a union of disjoint
circuits (this can be directly checked but notice that it is contained as one of the implications of
Theorem 2 due to Whitney). Hence, the space generated by the circuits, seen as elements of (Fm

2 ,+)
must be assigned ⋆, and using Remark 1, we conclude the proof since we have assigned the 1/⋆
numbers of ⋆ without any degrees of freedom, and the assignment is done on KerA.

3.1 Recursions using mutual information properties

In this section we re-derive some of the results of previous section using inductive arguments. We
start by checking a result similar to Theorem 6 for the case m = 3.

Lemma 5. Let W be a binary MAC with 2 users. Let X[E2] with i.i.d. uniform binary com-
ponents and let Y be the output of W when X[E] is sent. If I(X[1];Y X[2]), I(X[2];Y X[1]) and
I(X[1]X[2];Y ) have specified integer values, then I(X[1];Y ), I(X[2];Y ) and I(X[1] +X[2];Y ) have
specified values in {0, 1}, and vice-versa.

Proof. Let

I := [I(X[1];Y X[2]), I(X[2];Y X[1]), I(X[1]X[2];Y )]

J := [I(X[1];Y ), I(X[2];Y ), I(X[1] +X[2];Y )].

Note that by the polymatroid property of the mutual information, we have

I ∈ {[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1], [1, 1, 2]}. (13)

Let y ∈ supp(Y ) and for any x ∈ F
2
2 define P(x|y) = W (y|x)/

∑
z∈F2

2

W (y|z) (recall that W is the

MAC with inputs X[1],X[2] and output Y ). Assume w.l.o.g. that p0 := P(0, 0|y) > 0.

• If I = [0, 0, 0] we clearly must have J = [0, 0, 0].
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• If I = [∗, 1, 1], we have I(X[2];Y X[1]) = 1 and we can determine X[2] by observing X[1] and
Y , which implies

P(01|y) = 0.

Moreover, since I(X[1];Y ) = I(X[1]X[2];Y )− I(X[2];Y X[1]) = 0, i.e., X[1] is independent of
Y , we must have that

∑
x[2] P(x[1]x[2]|y) is uniform, and hence,

P(00|y) = 1/2, P(10|y) + P(11|y) = 1/2.

Now, if ⋆ = 1, by a symmetric argument as before, we must have P(11|y) = 1/2 and hence we
the input pairs 00 and 11 have each probability half (a similar situation occurs when assuming
that P(x|y) > 0 for x 6= (0, 0)), and we can only recover X[1] +X[2] from Y , i.e., J = [0, 0, 1].
If instead ∗ = 0, we then have I(X[2];Y ) = I(X[1]X[2];Y ) − I(X[1];Y X[2]) = 1 and from a
realization of Y we can determine X[2], i.e., P(10) = 1/2 and J = [0, 1, 0].

• If I = [1, 0, 1], by symmetry with the previous case, we have J = [1, 0, 0].

• If I = [1, 1, 2], we can recover all inputs from Y , hence J = [1, 1, 1].

For the converse statement, Note that J must be given by [0, 0, 0], [0, 1, 0], [1, 0, 0], [0, 0, 1] or
[1, 1, 1]. Clearly, the case [0, 0, 0] implies I = [0, 0, 0].

For the case J = [0, 1, 0], note that I(X[2];Y ) = 1 implies h(X[2]|Y ) = 0, i.e., for any
y ∈ supp(Y ), h(X[2]|Y = y) = 0. This means that for any y ∈ supp(Y ), if p2(x[2]|y) > 0 for
some x[2], we must have p2(x̃[2]|y) = 0 for x̃[2] 6= x[2]. We use pi, i = 1, 2, for the probability dis-
tribution of X[i] given the realization Y = y and p12 for the probability distribution of (X[1],X[2])
given Y = y. Assume now (w.l.o.g.) that p12(0, 0|y) > 0. Since p2(x[2]|y) =

∑
x[1] p12(x[1]x[2]|y),

previous observation implies that p12(01|y) = p12(11|y) = 0. Moreover, I(X[1];Y ) = 0 implies that
h(X[1]|Y = y) = 1, i.e., for any realization of Y , the marginal of X[1] is uniform, which implies
p12(00|y) = p12(10|y) = 1/2. Hence, if we are given the realization of X[1] and Y , we can decide
what X[2] must be, and this holds no matter which values of (X[1],X[2]) is assigned a positive
probability, i.e., I(X[2];Y X[1]) = 1. If instead we are given X[2] and Y , we can not infer anything
about X[1], i.e., I(X[1];Y X[2]) = 0. Finally, by the chain rule, I(X[1]X[2];Y ) = 1. The case where
[I(X[1];Y ), I(X[2];Y ), I(X[1] + X[2];Y )] is equal to [1, 0, 0] can be treated symmetrically and the
other cases in a similar fashion.

Lemma 6. Let W be a binary MAC with m users. Let X[Em] with i.i.d. uniform binary components
and let Y be the output of W when X[E] is sent. If I(X[S];Y X[Sc]) has a specified integer value for
any S ⊆ Em, then I(X[Em] · S;Y ) has a specified value in {0, 1} for any S ⊆ Em, and vice-versa.
Note: X[Em] · S = ⊕i∈SX[i]

The recursive argument for the proof of the direct part of this Lemma has been proposed by
Eren Şaşoğlu [8] and contains the idea behind this section. The direct statement in the Lemma is a
consequence of Theorem 6 but is proved here using the recursive approach.

Proof. Let I[S](W ) be assigned an integer for any S ⊆ Em. By the chain rule of the mutual
information

I(X[Em];Y ) = I(X[S];Y ) + I(X[Sc];Y X[S]),

and we can determine I(X[S];Y ) for any S. Since for any T ⊆ S

I(X[S];Y ) = I(X[T ];Y ) + I(X[S − T ];Y X[T ]),

10



we can also determine I(X[S];Y X[T ]) for any S, T ⊆ Em with S ∩ T = ∅. Hence we can determine

I(X[1],X[2];Y X[S])

I(X[1];Y X[S]X[2])

I(X[2];Y X[S]X[1])

and using Lemma 5, we can determine

I(X[1] +X[2];Y X[S])

for any S ⊆ Em with {1, 2} /∈ S, hence

I(X[i] +X[j];Y )

for any i, j ∈ Em.
Assume now that we have determined I(

∑
T X[i];Y X[S]) for any T with |T | ≤ k and S ⊆ Em−T .

Let T = {1, . . . , k} and let S ⊆ {k + 2, . . . ,m}.

I(
∑

T

X[i],X[k + 1];Y X[S])

= I(X[k + 1];Y X[S]) + I(
∑

T

X[i];Y X[S]X[k + 1]),

in particular, we can determine

I(X[k + 1];Y
∑

T

X[i],X[S])

= I(
∑

T

X[i],X[k + 1];Y X[S])

− I(
∑

T

X[i];Y X[S])

and

I(
∑

T

X[i],X[k + 1];Y X[S])

I(
∑

T

X[i];Y X[S]X[k + 1])

I(X[k + 1];Y
∑

T

X[i],X[S])

and using Lemma 5, we can determine

I(
∑

T

X[i] +X[k + 1];Y X[S])

hence

I(
∑

T

X[i];Y )
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for any T ⊆ Em with |T | = k+ 1. Hence, inducting this argument, we can determine I(
∑

T X[i];Y )
for any T ⊆ Em.

For the converse statement, assume that we are given I(X[Em] · S;Y ) ∈ {0, 1} for any S ⊆ Em.
In particular, I(Xi;Y ), I(Xi;Y ) and I(Xi+Xj ;Y ) is determined for any i, j ∈ Em, and hence, from
Lemma 5, we have that I(Xi;Y Xi) and I(XiXj ;Y ) are determined (and integer valued) for any
i, j ∈ Em.

Note that we can also determine I(X[Em] · T ;Y X[i]) for any T ⊂ Em and i ∈ Em − T ; indeed,
we know I(X[Em] · T ;Y ) for any T ⊂ Em, so for i ∈ Em − T , we know

I(X[i] +X[Em] · T ;Y ), (14)

I(X[i];Y ), (15)

I(X[Em] · T ;Y ), (16)

and hence, using Lemma 5, we can determine I(X[Em] · T ;Y X[i]).
Let us assume now that we have determined I(X[S];Y X[F − S]) for any F such that |F | ≤ k

and S ⊆ F , as well as I(X[Em] · T ;Y X[K]) for any K such that |K| ≤ k − 1 and T ⊆ Em − K.
We have already checked that this can be determined for k = 2. We now check that we can also
determine these quantities for k + 1 instead of k.

Let K with |K| = k − 1. Assume w.l.o.g. that 1, 2, 3 /∈ K. Since we assume to know

I(X[1];Y X[K]), (17)

I(X[1] +X[2];Y X[K]), (18)

I(X[1] +X[2] +X[3];Y X[K]), (19)

using Lemma 5, we can determine I(X[1] + X[2];Y X[K ∪ 3]). Using a similar argument we can
determine I(X[Em] · T ;Y X[K]) for any K such that |K| ≤ k and T ⊆ Em −K. Moreover, since we
now know I(X[1] +X[2];Y X[K]) and also

I(X[1];Y X[K]), (20)

I(X[2];Y X[K]), (21)

we can determine with Lemma 5

I(X[1];Y X[K ∪ 2]), (22)

I(X[2];Y X[K ∪ 1]), (23)

I(X[1]X[2];Y X[K]), (24)

and hence, we can determine I(X[K1];Y X[K2]) for |K1| ≤ 2 and |K1| + |K2| ≤ k + 1. From the
chain rule of the mutual information, we have

I(X[1]X[2]X[3];Y X[K − 3]) = I(X[1]X[2];Y X[K − 3]) + I(X[3];Y X[K − 3]X[1]X[2]) (25)

and both term in the right hand side above are already determined. Hence, by iterating the chain
rule argument, we can determine I(X[S];Y X[F − S]) for any F such that |F | ≤ k + 1 and S ⊆ F .
Finally, we can iterate these arguments on k to reach F = Em, i.e., to determine an integer for
I(X[S];Y X[Sc]) for any S ⊆ Em.
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3.2 Quasi-Extremal Channels

In this section, we provide technical steps necessary to extend previous results to polymatroids which
are “close” to matroids.

Lemma 7. Let W be a binary MAC with m users. Let X[Em] with i.i.d. uniform binary components
and let Y be the output of W when X[E] is sent. Let ε > 0, if I(X[S];Y X[Sc]) has a specified value
in Z+(−ε, ε) for any S ⊆ Em, then I(X[Em] ·S;Y ) has a specified value in [0, oε(1))∪ (1− oε(1), 1]
for any S ⊆ Em. Note: X[Em] · S = ⊕i∈SX[i]

The converse of this statement also holds. This lemma follows from the results of previous sections
and from the following lemmas.

Lemma 8. For two random variables X,Y such that X is binary uniform and I(X;Y ) < ε, we have

Pr{y : ‖PX|Y (·|y)− U(·)‖1 < ε1/2} ≥ 1− 2 ln 2 ε1/2,

where U is the binary uniform measure.

Proof. Since I(X;Y ) < ε, we have
D(PXY ||PXPY ) < ε

and from Pinsker’s inequality
1

2 ln 2
‖P −Q‖1 ≤ D(P ||Q)

we get

‖PXY − PXPY ‖1 =
∑

y

PY (y)‖PX|Y (·|y)− U(·)‖1 ≤ 2 ln 2 ε.

Therefore, by Markov’s inequality, we have

Pr{y : ‖PX|Y (·|y) − U(·)‖1 ≥ a} ≤
2 ln 2 ε

a

and by choosing a = ε1/2, we get the desired inequality.

Lemma 9. For two random variables X,Y such that X is binary uniform and h(X|Y ) < ε, define
Eε by

y ∈ Eε ⇐⇒ Pr{X = 0|Y = y}Pr{X = 1|Y = y} ≤ ε,

then
Pr{Eε} ≥ 1− γ(ε),

with γ(ε) → 0 when ε → 0.

This lemma tells us that if Pr{X = 0|Y = y} is not small, we must have that Pr{X = 1|Y = y}
is small with high probability. It is given as a problem in [3].
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4 Extensions

4.1 q-ary Matroids

The results of last sections are expected to generalize to the q-ary alphabet case, where q is a prime
or power of prime. In particular, we have the following.

Claim: A matroid is q-ary representable if and only if its rank function is given by the UMIF of
a MAC with q-ary inputs.

Hence, one could equivalently characterize q-ary matroids by characterizing rank functions which
are representable by q-ary alphabets MAC.

4.2 Entropic matroids

The following result can be found in [2].

Lemma 10. Let Z[Em] be an m-dimensional random vector with arbitrary distribution over F
m
q .

Then the function r : S 7→ H(Z[S]) is a β-rank function and (Em, r) is a polymatroid.

Hence, we can define a notion of entropic matroid, which is a matroid whose rank function is
representable by an entropic function as above.

We now show that entropic matroids can be studied as specific cases of MAC matroids. Consider
a specific MAC which consist of an additive noise perturbation of the input, i.e.,

Y [Em] = X[Em]⊕ Z[Em],

where X[Em] is an m-dimensional random vector with i.i.d. uniform components over Fq and Z[Em]
is an m-dimensional random vector of arbitrary distribution on F

m
q , independent of X[Em]. Then,

I(X[S];Y X[Sc]) = |S| −H(X[S]|Y X[Sc])

= |S| −H(Y [S]⊖ Z[S]|Y, (Y [Sc]⊖ Z[Sc]))

= |S| −H(Z[S]|Y,Z[Sc])

= |S| −H(Z[S]|Z[Sc])

= H(Z[S]) + |S| −H(Z[Em]).

Hence, an entropic matroid corresponds to a particular case of MAC matroid which has additive
noise.
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