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Abstract. We show that if p is an odd prime then

p−1∑

k=0

EkEp−1−k ≡ 1 (mod p)

and
p−3∑

k=0

EkEp−3−k ≡ (−1)(p−1)/22Ep−3 (mod p),

where E0, E1, E2, . . . are Euler numbers. Moreover, we prove that for any

positive integer n and prime number p > 2n+ 1 we have

p−1+2n∑

k=0

EkEp−1+2n−k ≡ s(n) (mod p)

where s(n) is an integer only depending on n.

1. Introduction

The Euler numbers En (n ∈ N = {0, 1, 2, . . .}) are integers defined by

E0 = 1 and
n
∑

k=0
2|k

(

n

k

)

En−k = 0 for n ∈ Z+ = {1, 2, 3, . . .}.

It is well known that E2n+1 = 0 for all n ∈ N and

sec x =

∞
∑

n=0

(−1)nE2n
x2n

(2n)!

(

|x| <
π

2

)

.
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The exponential generating function for Euler numbers is given by

2ex

e2x + 1
=

∞
∑

n=0

En
xn

n!

(

|x| <
π

2

)

.

Thus
(

2ex

e2x + 1

)2

=
∞
∑

k=0

Ek
xk

k!

∞
∑

l=0

El
xl

l!
=

∞
∑

n=0

f(n)
xn

n!
,

where

f(n) =

n
∑

k=0

(

n

k

)

EkEn−k.

In this paper we are interested in the usual convolution of Euler numbers
given by

∑n
k=0 EkEn−k. The reader may consult [PS], [SP] and [S11] for

related background.
Now we present our main results.

Theorem 1.1. Let p be an odd prime. Then

p−3
∑

k=0

EkEp−3−k ≡ 2

(

−1

p

)

Ep−3 (mod p), (1.1)

where (−) denotes the Jacobi symbol. Moreover, for any n = 0, 1, 2, . . . we
have

p−1+2n
∑

k=0

EkEp−1+2n−k ≡ s(n) + δ(p, n) (mod p), (1.2)

where

s(n) =
n
∑

k=0

E2kE2n−2k (1.3)

and

δ(p, n) =

{

1 if n > 0 & p− 1 | 2n,

0 otherwise.

Example 1.1. Here are the values of s(n) with n ∈ {0, 1, 2, 3, 4, 5}:

s(0) = 1, s(1) = −2, s(2) = 11, s(3) = −132, s(4) = 2917, s(5) = −104422.

Thus, for any odd prime p we have

p−1
∑

k=0

EkEp−1−k ≡1 (mod p), (1.4)

p+1
∑

k=0

EkEp+1−k ≡− 2 (mod p) if p > 3, (1.5)

p+3
∑

k=0

EkEp+3−k ≡11 (mod p) if p > 5. (1.6)
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Applying (1.2) again and again we immediately obtain the following
consequence.

Corollary 1.1. Let n = p−1
2 q+r with q ∈ {1, 2, 3, . . .} and r ∈ {0, . . . (p−

3)/2}. Then we have

s(n) ≡ s(r) + (q − 1)δr,0 (mod p). (1.7)

By a further refinement of our method to prove Theorem 1.1 and some
complicated discussions, we can deduce the following theorem though we
will not give the details of the proof since it is similar to that of Theorem
1.1.

Theorem 1.2. For any odd prime p, we have

∑

i+j+k=p−3

EiEjEk ≡ −2Ep−3 (mod p). (1.8)

Also, for each n ∈ N there is a unique integer t(n) such that if p > 2n+ 1
is a prime then

∑

i+j+k=p−1+2n

EiEjEk ≡ t(n) (mod p). (1.9)

In particular,

t(0) = 3, t(1) = −9, t(2) = 68, t(3) = −1068.

Theorems 1.1 and 1.2 should have their q-analogues. We leave this to
those who are interested in such things.

2. Proof of Theorem 1.1

Lemma 2.1. Let p be an odd prime and let k ∈ N be even. Then

Ek ≡ 2

p−1
∑

j=1
2∤j

(

−1

j

)

jk + δk,0

(

−1

p

)

(mod p). (2.1)

Proof. By [S05, (1.1)],

Ek ≡

p−1
∑

i=0

(−1)i(2i+ 1)k (mod p).
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Observe that

p−1
∑

i=0

(−1)i(2i+ 1)k − (−1)(p−1)/2pk

=

(p−3)/2
∑

i=0

(

(−1)i(2i+ 1)k + (−1)p−1−i(2(p− 1− i) + 1)k
)

≡2

(p−3)/2
∑

i=0

(−1)i(2i+ 1)k = 2

p−1
∑

j=1
2∤j

(

−1

j

)

jk (mod p).

So (2.1) follows. �

Proof of Theorem 1.1. (i) In view of Lemma 2.1,

p−3
∑

k=0

EkEp−3−k ≡2

(

−1

p

)

× 2

p−1
∑

j=1
2∤j

(

−1

j

)

jp−3

+ 2

(p−3)/2
∑

k=0

p−1
∑

i=1
2∤i

(

−1

i

)

i2k2

p−1
∑

j=1
2∤j

(

−1

j

)

jp−3−2k

≡2

(

−1

p

)

Ep−3 + 4

p−1
∑

j=1
2∤j

(

−1

j

)2

jp−3

+ 8
∑

16i<j<p
2∤ij

(

−1

ij

)

jp−3 (i
2/j2)(p−1)/2 − 1

i2/j2 − 1

≡2

(

−1

p

)

Ep−3 + 4

p−1
∑

j=1

1

j2
− 4

(p−1)/2
∑

k=1

1

(2k)2

≡2

(

−1

p

)

Ep−3 (mod p).

In the last step we noted that

2

(p−1)/2
∑

k=1

1

k2
≡

(p−1)/2
∑

k=1

(

1

k2
+

1

(p− k)2

)

=

p−1
∑

k=1

1

k2
≡ 0 (mod p)

by the Wolstenhomle congruence. Thus (1.1) holds.
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(ii) Observe that

p−1+2n
∑

k=0

EkEp−1+2n−k =

(p−3)/2
∑

k=0

E2kEp−1+2n−2k +

n
∑

k=0

Ep−1+2kE2n−2k.

(2.2)
By Lemma 2.1,

Ep−1 ≡2

p−1
∑

j=1
2∤j

(

−1

j

)

= 2
(

1− 1 + · · ·+ (−1)(p−3)/2(p− 2)
)

=1−

(

−1

p

)

= E0 −

(

−1

p

)

(mod p)

and also
Ep−1+2k ≡ E2k (mod p) for k = 1, 2, 3, . . . .

Therefore

n
∑

k=0

Ep−1+2kE2n−2k ≡

n
∑

k=0

E2kE2n−2k −

(

−1

p

)

E2n (mod p). (2.3)

In view of Lemma 2.1, we also have

(p−3)/2
∑

k=0

E2kEp−1+2n−2k

≡

(

−1

p

)

2

p−1
∑

j=1
2∤j

(

−1

j

)

jp−1+2n

+

(p−3)/2
∑

k=0

2
∑

0<i<p
2∤i

(

−1

i

)

i2k2
∑

0<j<p
2∤j

(

−1

j

)

jp−1+2n−2k

≡

(

−1

p

)(

E2n − δn,0

(

−1

p

))

+ 4
∑

0<i,j<p
2∤ij

(

−1

ij

)

j2n
(p−3)/2
∑

k=0

i2k

j2k

≡

(

−1

p

)

E2n − δn,0 + 4
∑

0<j<p
2∤j

(

−1

j2

)

j2n
p− 1

2

+ 8
∑

0<i<j<p
2∤ij

(

−1

ij

)

j2n
(i2/j2)(p−1)/2 − 1

i2/j2 − 1
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Note that if 0 < i, j < p and 2 ∤ ij then i 6≡ −j (mod p) since i + j is
even while p is odd. Applying Fermat’s little theorem we obtain from the
above

(p−3)/2
∑

k=0

E2kEp−1+2n−2k ≡

(

−1

p

)

E2n − δn,0 − 2
∑

0<j<p
2∤j

j2n (mod p).

If p− 1 divides 2n, then
∑

0<j<p
2∤j

j2n ≡ |{0 < j < p : 2 ∤ j}| =
p− 1

2
(mod p).

When p− 1 ∤ 2n, we have

2

(p−1)/2
∑

j=1

j2n ≡

(p−1)/2
∑

j=1

(

j2n + (p− j)2n
)

=

p−1
∑

j=1

j2n ≡ 0 (mod p)

(cf. [IR, p. 235]) and hence

∑

0<j<p
2∤j

j2n =

p−1
∑

j=1

j2n −

(p−1)/2
∑

j=1

(2j)2n ≡ 0 (mod p).

Thus
(p−3)/2
∑

k=0

E2kEp−1+2n−2k ≡

(

−1

p

)

E2n−δn,0+[p−1 | 2n] (mod p), (2.4)

where [p− 1 | 2n] takes 1 or 0 according as p− 1 | 2n or not.
Combining (2.2)-(2.4) we get

p−1+2n
∑

k=0

EkEp−1+2n−k ≡

n
∑

k=0

E2kE2n−2k − δn,0 + [p− 1 | 2n] (mod p).

This proves (1.2).
So far we have completed the proof of Theorem 1.1. �
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