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EVEN GALOIS REPRESENTATIONS AND THE FONTAINE–MAZUR

CONJECTURE II

FRANK CALEGARI

Abstract. We prove, under mild hypotheses, that there are no irreducible two-dimensional po-
tentially semi-stable even p-adic Galois representations of Gal(Q/Q) with distinct Hodge–Tate
weights. This removes the ordinary hypotheses required in our previous work [9]. We construct
examples of irreducible two-dimensional residual representations that have no characteristic zero
geometric deformations.

1. Introduction

Let GQ denote the absolute Galois group of Q, and let

ρ : GQ → GL2(Qp)

be a continuous irreducible representation unramified away from finitely many primes. In [21],
Fontaine and Mazur conjecture that if ρ is semi-stable at p, then either ρ is the Tate twist of an
even representation with finite image or ρ is modular. In [32], Kisin establishes this conjecture in
almost all cases under the additional hypotheses that ρ|Dp has distinct Hodge–Tate weights and ρ
is odd (see also [19]). The oddness condition in Kisin’s work is required in order to invoke the work
of Khare and Wintenberger [29, 30] on Serre’s conjecture. If ρ is even and p > 2, however, then
ρ will never be modular. Indeed, when ρ is even and ρ|Dp has distinct Hodge–Tate weights, the
conjecture of Fontaine and Mazur predicts that ρ does not exist. In [9], some progress was made
towards proving this claim under the additional assumption that ρ was ordinary at p. The main
result of this paper is to remove this condition. Up to conjugation, the image of ρ lands in GL2(O)
where O is the ring of integers of some finite extension L/Qp (see Lemme 2.2.1.1 of [8]). Let F

denote the residue field, and let ρ : GQ → GL2(F) denote the corresponding residual representation.
We prove:

1.1. Theorem. Let ρ : GQ → GL2(Qp) be a continuous Galois representation which is unramified
except at a finite number of primes. Suppose that p > 7, and, furthermore, that

(1) ρ|Dp is potentially semi-stable, with distinct Hodge–Tate weights.
(2) The residual representation ρ is absolutely irreducible and not of dihedral type.

(3) ρ|Dp is not a twist of the representation

(

ω ∗
0 1

)

where ω is the mod-p cyclotomic character.

Then ρ is modular.

Taking into account the work of Colmez [15] and Emerton [19], this follows directly from the
main result of Kisin [32] when ρ is odd. Thus, it suffices to assume that ρ is even and derive
a contradiction. As in [9], the main idea is to use potential automorphy to construct from ρ a
RAESDC automorphic representation π for GL(n) over some totally real field F whose existence is

Supported in part by NSF Career Grant DMS-0846285 and the Sloan Foundation. MSC2010 classification: 11R39,
11F80.

1

http://arxiv.org/abs/1012.4819v1


incompatible with the evenness of ρ. It was noted in [9] that improved automorphy lifting theorems
would lead to an improvement in the main results of that paper. Using the recent work of Barnet–
Lamb, Gee, Geraghty, and Taylor [2], it is a simple matter to deduce the main theorem of this
paper if ρ is a twist of a crystalline representation sufficiently deep in the Fontaine–Laffaille range
(explicitly, if twice the difference of the Hodge–Tate weights is at most p−2). However, if one wants
to apply the main automorphy lifting theorem (Theorem 4.2.1) of [2] more generally, then (at the
very least) one has to assume that ρ|Dp is potentially crystalline. Even under this assumption, one
runs into the difficulty of showing that ρ|Dp is potentially diagonalizable (in the notation of that
paper) which seems out of reach at present. Instead, we use an idea we learnt from Gee (which
is also crucially used in [2, 3, 4]) of tensoring together certain “shadow” representations in order
to manoeuvre ourselves into a situation in which we can show a certain representation (which we
would like to prove is automorphic) lies on the same component (of a particular local deformation
ring) as an automorphic representation. In [2, 3], it is important that one restricts, following the
idea of M. Harris, to tensoring with representations induced from characters, since then one is still
able to prove the modularity of the original representation. In contrast, we shall need to tensor
together representations with large image. Ultimately, we construct (from ρ) a regular algebraic
self dual automorphic representation for GL(9) over a totally real field E+ with a corresponding
p-adic Galois representation ̺ : GE+ → GL9(Qp). If ρ is even, then (by construction) it will the
case that Trace(̺(c)) = +3 for any complex conjugation c. This contradicts the main theorem
of [41], and thus ρ must be odd. In order to understand the local deformation rings that arise, and
in order to construct an appropriate shadow representation, we shall have to use the full strength
of the results of Kisin [32] for totally real fields in which p splits completely. This is the reason why
condition 3 of Theorem 1.1 is required, even when ρ is even.

It will be convenient to prove the following, which, in light of the main theorem of [32], implies
Theorem 1.1. Recall that ω denotes the mod-p cyclotomic character.

1.2. Theorem. Let F+ be a totally real field in which p splits completely. Let ρ : GF+ → GL2(Qp)
be a continuous Galois representation unramified except at a finite number of primes. Suppose that
p > 7, and, furthermore, that

(1) ρ|Dv is potentially semi-stable, with distinct Hodge–Tate weights, for all v|p.
(2) The representation Sym2ρ|G

F+(ζp)
is irreducible.

(3) If v|p, then ρ|Dv is independent of v|p and is not a twist of the representation

(

ω ∗
0 1

)

.

Then, for every real place of F+, ρ is odd.

1.3. Remark. Under the conditions of Theorem 1.2, it follows that ρ is potentially modular over
an extension in which p splits completely (see Remark 3.8).

In section 5, we give some applications of our theorem to universal deformation rings. In partic-
ular, we construct (unrestricted) universal deformation rings of large dimension such that none of
the corresponding Galois representations are geometric.

1.4. Remark. A word on notation. There are only finitely many letters that can plausibly be used
to denote a global field, and thus, throughout the text, we have resorted to using subscripts. In
order to prepare the reader, we note now the existence in the text of a sequence of inclusions of
totally real fields:

F+ ⊆ F+
1 ⊆ F+

2 ⊆ F+
3 ⊆ F+

4 ⊆ F+
5 ⊆ F+

6 ,
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and corresponding degree two CM extensions F3 ⊆ . . . ⊆ F6. The subscript implicitly records
(except for one instance) the number of times a theorem of Moret-Bailly (Theorem 3.1) is applied.
(This is not literally true, since many of the references we invoke also appeal to variations of this
theorem.)

As usual, the abbreviations RAESDC and RACSDC for an automorphic representation π for
GL(n) stand for regular, algebraic, essentially-self-dual, and cuspidal; and regular, algebraic,
conjugate-self-dual, and cuspidal, respectively.

Acknowledgements. I would like to thank Toby Gee, Matthew Emerton, and Richard Taylor
for useful conversations, Jordan Ellenberg for a discussion about the inverse Galois problem, Toby
Gee for explaining some details of the proof of Theorem 2.2.1 of [2] as well as keeping me informed
of changes between the first and subsequent versions of [2], Mark Kisin for explaining how his
results in [32] could be used to deduce that every component of a certain local deformation ring
contained a global point, Brian Conrad for help in proving Lemma 7.3 and discussions regarding the
material of Section 7, and Florian Herzig for conversations about adequateness and the cohomology
of Chevalley groups.

2. Local Deformation Rings

Let E be a finite extension of Qp (the coefficient field), and let V be a d-dimensional vector space
over E with a continuous action of GK , where K/Qp is a finite extension. Let us suppose that V
is potentially semi-stable [22]. Let

τ : IK → GLd(Qp).

be a continuous representation of the inertia subgroup of K. Fix an embedding K →֒ Qp. Attached
to V is a d-dimensional representation of the Weil–Deligne group of K. If the restriction of this
representation to the inertia subgroup is equivalent to τ , we say that V is of type τ . Also associated
to V is a p-adic Hodge type v, which records the breaks in the Hodge filtration associated to V
considered as a de Rham representation (cf. [31], §2.6). Let F be a finite field of characteristic p,
and let us now fix a representation

ρ : GK → GLn(F).

Let R2

ρ be the universal framed deformation ring of ρ. The following theorem is a result of Kisin

(see [31], Theorem 2.7.6).

2.1. Theorem (Kisin). There exists a quotient R2,τ,v
ρ of R2

ρ such that the Qp-points of the scheme

Spec(R2,τ,v
ρ [1/p]) are exactly the Qp points of Spec(R2

ρ ) that are potentially semi-stable of type τ
and Hodge type v. It is unique if it is assumed to be reduced and p-torsion free.

Note that restricting ρ to some finite index subgroup GL induces a functorial map of correspond-
ing local deformation rings:

Spec(R2,τ,v
ρ [1/p]) → Spec(R2,τ,v

ρ|GL
[1/p]),

where, by abuse of notation, τ in the second ring denotes the restriction of τ to IL (and corre-
spondingly with v). We use 1 to denote the trivial type.

2.2. Definition. A point of Spec(R2,τ,v
ρ [1/p]) is very smooth if it defines a smooth point on

Spec(R2,τ,v
ρ|GL

[1/p]) for every finite extension L/K.
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In sections §1.3 and §1.4 of [2], various notions of equivalence are defined between representations.
We would like to define a mild (obvious) extension of these definitions when v|p. Suppose that ρ1
and ρ2 are two continuous d-dimensional representations of GK with coefficients in some finite
extension E over Qp. Let O denote the ring of integers of E. Let us assume that ρ1 and ρ2
come with a specific integral structure, i.e., a given GK -invariant O-lattice. Equivalently, we may
suppose that ρ1 and ρ2 are representations GK → GLd(O). In particular, the mod-p reductions
ρ1 and ρ2 are well defined. Such extra structure arises, for example, if the representations ρi are
the local representations attached to global representations whose mod-p reductions are absolutely
irreducible.

2.3. Definition. Suppose ρ1 and ρ2 are two continuous GK-representations with given integral
structure. If ρ1 and ρ2 are potentially semi-stable, we say that ρ1  ρ2 (respectively, ρ1  ρ2) if
ρ1 ≃ ρ2, the representations ρ1 and ρ2 have the same type τ , the same Hodge type v, and lie on the
same irreducible component of Spec(R2,τ,v

ρ [1/p]), and, furthermore, that ρ1 corresponds to a very

smooth point of Spec(R2,τ,v
ρ [1/p]) (respectively, smooth point of Spec(R2,τ,v

ρ [1/p])).

2.4. Remark. If ρ1  ρ2, we say (following [2], §1.3, §1.4) that ρ1 very strongly connects to ρ2 (or
ρ1 “zap” ρ2). (If ρ1  ρ2, then ρ1 strongly connects to ρ2, or ρ1 “squig” ρ2.) If ρ1  ρ2, then clearly
ρ1  ρ2, and moreover ρ1|GL

 ρ2|GL
(and hence ρ1|GL

 ρ2|GL
) for any finite extension L/K.

2.5. Remark. If ρ1 and ρ2 are both potentially crystalline representations, then one may also
consider the ring R2,τ,v,cr

ρ parametrizing representations which are potentially crystalline (cf. [31]).

One may subsequently define the notions  and  relative to this ring. Since Spec(R2,τ,v,cr
ρ [1/p])

is smooth (ibid.), the relationships ρ1  ρ2 and ρ1  ρ2 are symmetric, and one may simply write
ρ1 ∼ ρ2 (“ρ1 connects to ρ2”, cf. [2]). The scheme Spec(R2,τ,v

ρ [1/p]) is not in general smooth, so we
must impose strong connectedness in the potentially semi-stable case in order for the arguments
of [2] to apply. In this paper, whenever we have p-adic representations ρ1 and ρ2, we shall write
ρ1 ∼ ρ2 only when ρ1 and ρ2 are potentially crystalline, and by writing this we mean that they are
connected relative to Spec(R2,τ,v,cr

ρ [1/p]).

In order to deduce in any particular circumstance that ρ1  ρ2, it will be useful to have some
sort of criteria to determine when ρ1 corresponds to a very smooth point. If V is a potentially
semi-stable representation of GK , let D = Dpst(V ) denote the corresponding weakly admissible

(ϕ,N,Gal(K/K))-module. Let
D(k) ⊂ Qp ⊗Qnr

p
D

denote the subspace generated by the (generalized) eigenvectors of Frobenius of slope k. Since
Nϕ = pϕN , there is a natural map N : D(k + 1) → D(k).

2.6. Lemma. Let V be a potentially semi-stable representation of GK of type τ and Hodge type v.
Suppose that N : D(k+1) → D(k) is an isomorphism whenever the target and source are non-zero.
Then V is a very smooth point on Spec(R2,τ,v

ρ [1/p]).

Proof. The explicit condition follows from the proof of Lemma 3.1.5 of [31]. �

The condition of Lemma 2.6 is a (somewhat brutal) way of insisting that the monodromy op-
erator N is as nontrivial as possible, given the action of Frobenius. By Theorem 3.3.4 of [31],
Spec(R2,τ,v

ρ [1/p]) admits a formally smooth dense open subscheme.

2.7. Example. If V is a 2-dimensional representation that is potentially semi-stable but not poten-
tially crystalline, then Symn−1(V ) is very smooth for all n.
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2.8. Remark. One expects that a local p-adic representation associated to an RACDSC auto-
morphic representation π is very smooth on the corresponding local deformation ring. In fact,
this would follow by the proof of Lemma 1.3.2 of [2] if one had local–global compatibility at all
primes (cf. Conjecture 1.1 and Theorem 1.2 of [44]). Since local–global compatibility is still un-
known, however, we must take more care in ensuring that the local representations associated to
automorphic representations we construct are (very) smooth.

3. Realizing local representations

It will be useful in the sequel to quote the following extension of a theorem of Moret–Bailly.

3.1. Theorem. Let E be a number field and let S be a finite set of places of E. Let F/E be an
auxiliary finite extension of number fields. Suppose that X/E is a smooth geometrically connected
variety. Suppose that: For v ∈ S, Ωv ⊂ X(Ev) is a non-empty open (for the v-topology) subset.
Then there is a finite Galois extension H/E and a point P ∈ X(H) such that

(1) H/E is linearly disjoint from F/E.
(2) Every place v of S splits completely in H, and if w is a prime of H above v, there is an

inclusion P ∈ Ωv ⊂ X(Hw).
(3) Suppose that for any place u of Q, S contains either every place v|u of E or no such places.

Then one can choose H to be a compositum EM where:
(a) M/Q is a totally real Galois extension.
(b) If there exists a v ∈ S and a prime p such that v|p, then p splits completely in M .

Proof. Omitting part (3), this is (a special case of) Proposition 2.1 of [27]. To prove the additional
statement, it suffices to apply Proposition 2.1 of [27] to the restriction of scalars Y = ResE/Q(X).

�

As a first application of this theorem, we prove the following result, which shows that the inverse
Galois problem can be solved “potentially”, even with the imposition of local conditions at a finite
number of primes.

3.2. Proposition. Let G be a finite group, let E/Q be a finite extension, and S a finite set of
places of E. Let F/E be an auxiliary finite extension of number fields. For each finite place v ∈ S,
let Dv ⊂ G be a subgroup that occurs as the automorphism group of some finite Galois extension of
Ev. For each real infinite place v ∈ S, let cv ∈ G be an element of order dividing 2. There exists a
number field K/E and a finite Galois extension of number fields L/K with the following properties:

(1) There is an isomorphism Gal(L/K) = G.
(2) L/E is linearly disjoint from F/E.
(3) All places in S split completely in K.
(4) For all finite places w of K above v ∈ S, the decomposition group Dw ⊂ G is conjugate to

the group Dv.
(5) For all real places w|∞ of K above v ∈ S, complex conjugation cw ∈ G is conjugate to cv.

Proof. Suppose that G acts faithfully on n letters, and let G →֒ Σ denote the corresponding
map from G to the symmetric group. (Any group admits such a faithful action, e.g., the regular
representation.) There is an induced action of G on Q[x1, x2, . . . , xn], and we may let XG =
Spec(Q[x1, x2, . . . , xn]

G). There are corresponding morphisms

An → XG → XΣ.

The scheme XG is affine, irreducible, geometrically connected, and contains a Zariski dense smooth
open subscheme. The variety XΣ is canonically isomorphic to affine space An over Spec(Q) via the
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symmetric polynomials. Under the projection to XΣ, A K-point of XG (for any perfect field K)
gives a polynomial over K such that the Galois group of its splitting field L is a (not necessarily
transitive) subgroup of G. Without loss of generality, we may enlarge S in the following way: For
each conjugacy class 〈g〉 ∈ G, we add to S an auxiliary finite place v and impose a local condition
that the decomposition group at v is unramified and is the subgroup generated by g. For all v ∈ S,
let Ωv ⊂ XG(Ev) denote the smooth points of XG such that the corresponding extension Lv/Ev
has Galois group Dv (if v is finite) or 〈cv〉 (if v is a real infinite place). By assumption, these sets
are non-zero, and by Krasner’s Lemma they are open. We deduce by Theorem 3.1 (applied to the
smooth open subscheme of XG) that there exists a Galois extension L/K with Galois group H ⊂ G
with the required local decomposition groups at each place w above v. By construction, for every
g ∈ G there exists a finite unramified place w in K such that the conjugacy class of Frobenius at w
in Gal(L/K) is the conjugacy class of g. It follows that the intersection of H with every conjugacy
class of G is nontrivial, and hence H = G by a well known theorem of Jordan (see Theorem 4′

of [38]). Thus the theorem is established. �

3.3. Remark. A weaker version of Proposition 3.2, namely, that every finite group G occurs at
the Galois group Gal(L/K) for some extension of number fields, is a trivial consequence of the fact
that Σ = Sn occurs as the Galois group of some extension of Q, since we may take L to be any
such extension and K = LG. If we insist that some place v splits completely in K, however, this
will typically force L to also split completely at v.

Let ρ : GF+ → GL2(Qp) be as in Theorem 1.2. After increasing F+ (if necessary), we may
assume that ρ is semi-stable at all primes of residue characteristic different from p. Attached to ρ
is a residual representation ρ : GF+ → GL2(F) for some finite field F of characteristic p.

3.4. Proposition. There exists a totally real field F+
1 /F

+ and a residual Galois representation
rres : GF+

1
→ GL2(F) with the following properties:

(1) All primes above p split completely in F+
1 .

(2) The residual representation rres : GF+
1
→ GL2(F) has image containing SL2(Fp).

(3) For each v|p in F+, and for each w above v in F+
1 , there is an isomorphism rres|Dw ≃ ρ|Dv.

(4) If v ∤ p, then rres|Dv is unramified.
(5) rres is totally odd at every real place of F+

1 .
(6) F+

1 ∩Q(ζp) = Q.

Proof. Proposition 3.2 immediately guarantees a residual representation satisfying all the conditions
with the possible exception of (4), which can be achieved by a further base extension. �

3.5. Lemma. After possibly increasing O, there exists a global lift rres : GF+
1

→ GL2(O) of rres
such that:

(1) If rres|Dv is reducible for all v|p, then rres is ordinary and crystalline with distinct Hodge–
Tate weights.

(2) If rres|Dv is irreducible for all v|p, then rres is crystalline in the Fontaine–Laffaille range
with distinct Hodge–Tate weights.

(3) If v ∤ p, then rres|Dv is unramified.

Remark. For any rres, then either (1) or (2) holds, since we are assuming that rres|Dv for v|p does
not depend on v.

Proof. Theorems of this kind (minimal lifting theorems) were first proved by Khare–Wintenberger,
see in particular Corollary 4.7 of [30]. We avoid appealing directly to [30] only because the results of
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ibid. are only formulated for Gal(Q/Q) representations. Instead, we may appeal to Proposition 3.2.1
of [2] (in the ordinary case) or Proposition 4.3.1 of [2] (for both cases), since these theorems are
conveniently formulated for totally real fields. To apply these theorems, we remark that our running
assumption p > 7 implies that p > 6, that we may take the CM field F1 to be any CM field in
which all primes in p split completely, and that any local residual Galois representation:

rlocal : Gal(Qp/Qp) → GL2(F)

clearly admits a crystalline ordinary lift if rlocal is reducible and a Fontaine–Laffaille crystalline lift
if it is irreducible. �

3.6. Proposition. There exists a totally real field F+
2 /F

+
1 and a Hilbert modular form f for F+

2
with a corresponding residual representation ρf : GF+

2
→ GL2(F) with the following properties:

(1) There is an isomorphism ρf ≃ rres|GF+
2
.

(2) All primes above p split completely in F+
2 .

(3) F+
2 ∩Q(ζp) = Q.

3.7. Remark. This remark may be omitted on first reading. A general strategy of proving such
results was developed by Taylor in a sequence of two papers [42, 43]. Theorem 1.6 of [42] implies
Proposition 3.6 under the additional assumption that ρ|Dv is reducible for v|p and det(ρ) = ω. The
idea, loosely speaking, is as follows. For some totally real field E, consider the moduli space X of
polarized Hilbert–Blumenethal abelian varieties A with an action of OE such that:

(1) For a prime p ⊂ OE , there is an isomorphism A[p] ≃ rres.
(2) For a prime λ ⊂ OE with residue characteristic some auxiliary prime l 6= p, there is an

isomorphism A[λ] ≃ IndQMχ mod λ with some irreducible induced modular representation.

Using Theorem 3.1, one deduces the existence of a suitable totally real field F+
2 . In [43], Taylor

considers the case when rres|Dp is irreducible, and in Proposition 4.1 of [43] proves the potential
modularity of ρ without any restriction on the determinant except that it is totally odd. The main
innovation is to consider a twisted moduli space Xµ, where µ is a finite character lifting det(rres)ω

−1.
The author expects that a “fibre product” of this argument can be constructed to deduce Proposi-
tion 3.6, even under the weaker condition that rres|Dv for v|p need not be independent of v. Instead,
we present an alternative argument using minimal lifting theorems (of Khare–Wintenberger type)
as well as recent modularity lifting theorems, which allows us to avoid generalizing the arguments
of [42, 43].

Proof of Proposition 3.6. We divide the proof into two cases, depending on whether rres|Dv is
reducible or not (for v|p).

Suppose that rres|Dv is reducible. We first construct a cyclic Galois extension A/F+
1 such that:

(1) det(rres)|GAF+
1
= ω · ψ2|GAF+

1
for some character ψ of GQ.

(2) A ∩Q(ζp) = Q.
(3) A is totally real.

Suppose that det(rres)ω
−1 = µ. The character µ is totally even. Choose an auxiliary prime l ≡ 1

mod 2 ·deg(µ) which is unramified in F+
1 (ker(µ)). Then there exists a character ψ of GQ of degree

2 det(µ) which is totally ramified at l. Let A = F+
1 (µψ−2). Since µ and ψ2 are totally even, A is

totally real. Clearly A is totally ramified at l, and thus A ∩ Q(ζp) = F+
1 ∩ Q(ζp) = Q. Yet, by

construction, det(rres)|GAF+
1

= ωµ = ωψ2. We now apply Theorem 1.6 of [42] to ψ−1rres|GAF+
1

(modified using the restriction of scalars trick as in part (3) of Theorem 3.1) to deduce that rres is
modular over an extension of the form AF+

2 , where all primes above p split completely in F+
2 /F

+
1 .
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By Theorem 6.1.7 of [4], we may assume, moreover, that the representation is ordinarily modular.
Consider the representation:

rres|GAF+
2
→ GL2(O).

By assumption, this representation is ordinary, and residually ordinarily modular. Hence it is
modular by Theorem B of [2]. Since A is solvable, we deduce by a standard base change argument
(Theorem 4.2 (p.202) of [1]) that rres|GF+

2
is modular, and we are done.

Suppose that rres|Dv is irreducible. (This is the easier case, because Taylor’s construction in [43]
has no restiction on the determinant other than being totally odd.) We modify the proof of Propo-
sition 4.1 of [43] as follows. Although the formulation of Taylor’s result is for Galois representations
of GQ, the argument remains unchanged for Galois representations of totally real fields in which p
splits completely and for which rres|Dv is irreducible and independent of v|p. Apply Theorem 3.1
to Taylor’s twisted moduli space Xµ over F+

1 . We deduce as in [43] that rres is modular over an
extension AF+

2 , where all primes above p split completely in F+
2 /F

+
1 . Moreover, as follows from

the arguments of §5 of ibid. (Corollary 5.2 and its application in Lemma 5.6, see also [23]), that
rres arises as the mod-p representation associated to a Hilbert modular form π of parallel weight k
and level co-prime to p for some 2 ≤ k ≤ p− 1. Consider the representation:

rres|GF+
2
→ GL2(O).

From the discussion above, we know that this representation is residually modular from an automor-
phic representation π whose associated local representations are crystalline in the Fontaine–Laffaille
range. Hence it is modular by Theorem 4.2.1 of [2], and we are done. �

3.8. Remark. If ρ is odd for all infinite places of F+
1 , then we may take rres to be ρ, and Propo-

sion 3.6 implies that ρ|GF+
2

is modular. By Theorem 2.2.18 of [33], it follows in this case that ρ is

modular over F+
2 . (This is not literally correct, because ρ may not have image containing SL2(Fp)

and so not virtually satisfy Condition 2 of Proposition 3.4. However, one may check that the only
fact used about the image of r so far is that it is irreducible.)

Having realized the representations ρ|Dv for v|p inside the mod-p reduction of some Hilbert
modular form f , we now realize the representations ρ|Dv in characteristic zero as coming from
Hilbert modular forms (to the extent that it is possible).

3.9. Proposition. Let p > 2 be prime. There exists a Hilbert modular form g over F+
2 with the

following properties:

(1) The residual representation ρg : GF+
2
→ GL2(F) is equal to ρf .

(2) For each place v|p of F+
2 , ρg|Dv ∼ ρ|Dw if ρ|Dw is potentially crystalline, and ρg|Dv  ρ|Dw

otherwise.
(3) For each finite place v of F+

2 away from p, ρg|Dv is unramified.

Proof. Consider the modular representation ρf = rres|GF+
2

constructed in Proposition 3.6. By con-

struction, it is modular of minimal level and is unramified outside p. It follows from Theorem 2.2.18
and Corollary 2.2.17 of [32] that (in the notation of ibid.) M∞ is faithful as an R̄∞-module. Recall

that R̄∞ = R̄2,ψ
Σp

Jx1, . . . , xgK is a power series ring over a tensor product of local deformation rings.

Here Σp denotes the set of places dividing p. Consider a component Z of Spec(R̄∞) such that the
characteristic zero points of Z lie on the same local component as ρ|Dv for v|p (if ρ|Dv lies on mul-
tiple components, choose any component). Since all the (equivalent) conditions of Lemma 2.2.11
of ibid. hold, we know (as in the proof of and notation of that lemma) that R̄∞ is a finite torsion free
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OJ∆∞K-module. In particular, Z surjects onto Spec(OJ∆∞K). In particular, there is a non-trivial
fibre at 0. Since M0 = M∞ ⊗OJ∆∞K O is a space of classical modular forms (of minimal level),
we deduce the existence of g. Note that if ρ|Dw is semi-stable but not crystalline, then ρg is very
smooth by Example 2.7, and hence ρg|Dv  ρ|Dw for v|p. �

3.10. Remark. The faithfulness ofM∞ as a R̄∞-module is not a clear consequence of the Fontaine–
Mazur conjecture. That is, a priori, the collection of all global representations may surreptitiously
conspire to avoid a given local component. Thus, without any further ideas, the new cases of the
Fontaine–Mazur conjecture proved by Emerton [19] do not allow us to realize all local representa-
tions globally when

ρ|Dp ∼

(

ω ∗
0 1

)

.

We have now constructed a Hilbert modular form g whose p-adic representation is a “shadow” of
ρ, that is, lies on the same component as ρ of every local deformation space at a place dividing p.
However, the global mod-p representations ρ and ρg are unrelated. In order to prove a modularity
statement, we will need to construct a second pair of shadow representations with the same residual
representation as ρ and ρg. It will never be the case, however, that ρ will be automorphic over
a totally real field unless ρ is totally odd. The main idea of [9] was to consider the representa-
tion Sym2(ρ) as a conjugate self-dual representation over some CM field. In the sequel, we shall
construct a pair of RACSDC ordinary crystalline shadow representations which realize the mod-p
representations Sym2(ρ) and Sym2(ρg). By abuse of notation, let v denote the Hodge type of ρ

for any prime dividing p, so v is literally a collection of Hodge types for each v|p in F+ (adding
subscripts would add nothing to the readability of the following argument).

3.11. Proposition. Let p > 7 be prime. There exists a totally real field F+
4 /F

+
2 , a CM exten-

sion F4/F
+
2 , and a RACDSC automorphic representation π over F4 with a corresponding Galois

representation ρπ : GF4 → GL3(Qp) such that:

(1) ρπ is unramified at all places not dividing p · ∞.
(2) For every v|p, ρπ|Gv is ordinary and crystalline with Hodge type Sym2w, where w is a

Hodge type of some 2-dimensional de Rham representation.
(3) For all v|p and for all i, there is an inequality dimgri(Sym2v ⊗ Sym2w) ≤ 1.
(4) The image of the restriction of ρ to GF+

4
is the image of ρ on GQ.

(5) The restriction of ρg to GF+
4

has image containing SL2(Fp).

(6) The residual Galois representation ρπ : GF4
→ GL3(F) is isomorphic to the restriction of

Sym2(ρ) to GF4
.

(7) The Hilbert modular form g remains modular over F+
4 .

(8) The compatible family of Galois representations associated to π is irreducible after restric-
tion to any finite index subgroup of GF4 .

(9) If ρg|Dp is not potentially crystalline, the representation ρπ⊗Sym2(ρg)|Dp is a very smooth
point of

Spec(R2,Sym2(τ)⊗Sym2(1),Sym2v⊗Sym2w[1/p]).

(10) F4 ∩Q(ζp) = Q.

Proof. Let F+
3 /F

+
2 be a totally real field for which Sym2(ρ) becomes ordinary at all v|p. (In general,

the field F+
3 will be highly ramified at p). Increasing F+

3 if necessary, assume that the restriction
of Sym2(ρ) is unramified outside v|p, and that there exists a CM extension F3/F

+
3 which is totally
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unramified at all finite places. By Proposition 3.3.1 of [2], Sym2(ρ) admits minimal ordinary
automorphic lifts over some CM extension F4 = F+

4 .F3. (We use the fact that ρ is not of dihedral
type, so Sym2(ρ) is irreducible, and that p ≥ 2(3 + 1).) The resulting automorphic representation
π satisfies condition (1). Note that F4 may be chosen to be disjoint from any auxiliary field. This
implies that we may construct F4 so that conditions (1), (4), (5), (6), and (10) hold, The modularity
of g (by construction) arises from the fact that at some auxiliary prime λ, the mod-λ representation
associated to g is induced from a character. Choosing F5 to be disjoint from the fixed field of the
kernel of this representation ensures that condition (7) holds. Note that the freedom to choose the
Hodge type follows from the freedom to choose µ in Proposition 3.2.1 of [2], and thus we may chose π
to satisfy conditions (2) and (3). To verify that the compatible system associated to π is irreducible
over any finite index subgroup of GF4 (and so verifies condition (8)), we invoke Theorem 2.2.1 of [6].
It suffices to note that ρπ has non-solvable image, and thus π is not induced from an algebraic Hecke
character over a solvable extension. Finally, we must show that π can be chosen to satisfy (9). The
slopes of Frobenius of a crystalline representation are given by the breaks in the Hodge filtration.
In particular, we may choose a w so that the integers i such that griSym2(w) 6= 0 each differ by
≥ 4. If Sym2(ρg) is potentially semistable but not potentially crystalline, it follows from Lemma 2.6

that for such a w that any such tensor product ρπ⊗Sym2(ρg) will be very smooth. Thus, choosing
w appropriately, very smoothness is automatically satisfied. �

We may now construct a Hilbert modular form h as follows.

3.12. Proposition. Let p > 5. There exists a totally real field F+
5 /F

+
4 and a Hilbert modular form

h over F+
5 with a corresponding Galois representation ρh : GF+

5
→ GL2(Qp) such that:

(1) For every v|p, ρh|Dv is ordinary with Hodge type w.
(2) The residual representation ρh : GF+

5
→ GL2(F) is isomorphic to the restriction of ρg.

(3) The images of ρ and ρg remain unchanged upon restriction to SL2(Fp).

(4) The Hilbert modular form g remains modular over F+
5 , and the RACDSC representation π

remains modular over F5 = F+
5 .F4.

(5) For all places v not dividing p, ρh|Dv  ρ|Dv.
(6) F5 ∩Q(ζp) = Q.

Proof. We may prove this by modifying the proof of Proposition 3.11 as follows. Modify the field
F+
3 so that ρg is ordinary at all v|p and is unramified at all other finite places (but still has large

image), and such that ρg|Dv admits a ramified semi-stable lift for those primes v ∤ p which ramify

in ρ. Then let F+
5 denote a field for which we can simultaneously establish the modularity of

the GL(6) forms arising in the proof of Lemma 3.11 and the GL(2) form associated to ordinary
deformations of ρg. (It may have been more consistent to have combined Propositions 3.11 and 3.12
into a single Lemma, but it would have been more unwieldy.) �

4. The proof of Theorem 1.2

Let L/Q denote a field which contains the coefficient field of g and π. Let (L, ρg,λ) denote the
compatible family of Galois representations associated to g. There exists a prime of OF dividing p
such that the corresponding mod-p representation is ρg, which, by construction, has non-solvable
image. It follows that the form g does not have complex multiplication, and hence the images of
ρg,λ for all λ contains an open subgroup of SL2(Zl) where λ|l.

4.1. Proposition. There exists a totally real field F+
6 /F

+
5 , a CM extension F6/F

+
6 and a RACDSC

automorphic representation Π such that:
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(1) Π corresponds to Sym2(g)⊗ π.
(2) ρ and ρh have image containing SL2(Fp) after restriction to GF+

6
.

Proof. This is equivalent to showing that the compatible family

(L,Sym2(ρg,λ)⊗ ρπ,λ)

is potentially automorphic. This compatible system is essentially self-dual, orthogonal (automati-
cally since n = 9 is odd), and has distinct Hodge–Tate weights (by assumption 3 of Lemma 3.11).
Let us verify that it is irreducible. Since the image of ρg,λ restricted to any finite index subgroup
contains an open subgroup of SL2(Zl), and since the image of ρπ,λ restricted to any open subgroup
is irreducible (by part 8 of Proposition 3.11), their tensor product will be irreducible unless ρπ,λ
is (on some open subgroup) a twist of Sym2(ρg,λ). This implies that ρπ,λ is already equal to a

twist of Sym2(ρg,λ), since the latter representation has no inner twists. By multiplicity one [28] for

GL(3), we deduce that Sym2(g) is a twist of π. This contradicts the fact that the mod-p residual
representations representations Sym2(ρg) and ρπ are not twists of each other, since one extends to
a totally odd representation of GF+

5
and the other to a representation of GF+

5
which is even at some

infinite place. The potential automorphy follows from Theorem A of [2]. �

Let us now write E+ = F+
6 and E = F6, and consider the representations ρ, ρg, ρπ, and ρh as

representations of GE . Without loss of generality, we may assume that ρ is even for at least one
real place of F+ (and hence also of E+). Let us consider the representation

̺ : Sym2(ρ)⊗ Sym2(ρh) : GE → GL9(Qp).

By construction, we observe that ̺ = Sym2(ρ) ⊗ Sym2(ρh) = ρπ ⊗ Sym2(ρg) = ρ(Π) is residually
modular. Moreover, we find that

ρ(Π)|Dv = ρπ ⊗ Sym2(ρg)|Dv  Sym2(ρ)⊗ Sym2(ρh)|Dv = ̺|Dv

for all v, with the possible exception of v|p. By Lemma 3.4.3 of Geraghty [24], the ordinary
deformation rings are smooth and connected, and hence, for v|p,

ρπ|Dv ∼ Sym2(ρh)|Dv .

On the other hand, by construction (Proposition 3.9 (2)), we also have (for v|p) that

Sym2(ρg)|Dv  Sym2(ρ)|Dv .

If ρ|Dv is potentially crystalline, then all four representations are potentially crystalline at v, and
we deduce that

ρπ ⊗ Sym2(ρg)|Dv ∼ Sym2(ρ)⊗ Sym2(ρh)|Dv .

On the other hand, if ρ|Dv is not potentially crystalline, then neither is ρg|Dv , and we deduce
from condition (9) of Lemma 2.6 that the left hand side corresponds to a very smooth point of the

corresponding local deformation ring Spec(R2,Sym2(τ)⊗Sym2(1),Sym2v⊗Sym2w[1/p]). Hence

ρ(Π)|Dv = ρπ ⊗ Sym2(ρg)|Dv  Sym2(ρ)⊗ Sym2(ρh)|Dv = ̺|Dv ,

and thus ρ(Π)|Dv  ̺|Dv. Since the fixed fields corresponding to Sym2(ρ) and Sym2(ρh) are
disjoint by construction, and since both representations have adequate image (in the sense of [45]),
the representation ̺ is also adequate, by Lemma 2(ii) of [25]. It follows from Theorem 7.1 below
(c.f. Theorem 2.2.1 of [2]) that ̺ is modular over E. (Since n = 9 is odd, the weakly regular
condition is vacuous.) Since the Galois representations ρ and ρh extend to the totally real subfield
E+, so does the representation ̺, and hence (by [1]) ̺ comes from a RAESDC representation for

11



GL(9)/E+. By assumption, however, there exists a real place of E+ and a correponding complex
conjugation cv ∈ GE+ such that ρ(cv) is a scalar. It follows that the image ̺(cv) of cv is conjugate
to





1
1

1



⊗





1
−1

1



 ,

which has trace +3. Since the representation ̺ is irreducible, automorphic, and 9 is odd, this
contradicts the main theorem (Proposition A) of [41], which says that such representations must
be “odd” in the sense that the trace of complex conjugation must be ±1. This completes the proof
of Theorem 1.2.

4.2. Remark. In [9], we proved (Theorem 1.3) that ordinary representations ρ : GK → GL2(Qp)
(satisfying certain supplementary hypotheses) had parallel weight. One may ask whether the meth-
ods of this paper can be used to generalize that result (presuming that p splits in K). Starting with
the tensor representation ψ = ρ⊗ρc, one is lead to a 16 dimensional representation ̺ = ψ⊗ρf ⊗ρg
for non-CM Hilbert modular forms f and g which one may show is modular for GL(16) over
some totally real field E+. It is not apparent, however, how this might lead to a contradiction,
since ̺(c) has trace 0 for any complex conjugation c, and known cases of functoriality do not yet
allow one to deduce the modularity of ψ from the modularity of ̺. Another approach is to con-
sider the representation ψ = Sym2ρ⊗ Sym2ρc, and a corresponding 81 dimensional representation
̺ = ψ ⊗ Sym2ρf ⊗ Sym2ρg. In this case, one should be able to deduce that ̺ is modular for
GL(81)/E+ for some totally real field E+, and that ̺(c) is conjugate to





























1 0 0
0 1 0
0 0 1

0 1
1 0

0 1
1 0

0 1
1 0





























⊗





1
−1

1



 ⊗





1
−1

1



 ,

which has trace 3, contradicting the main theorem of [41]. However, this approach only works when
ψ has distinct Hodge–Tate weights, and correspondingly one may only deduce (if ρ has Hodge–Tate
weights [0,m] and [0, n] with n ≥ m positive) that either n = m (which is the expected conclusion)
or n = 2m.

5. Applications to Universal Deformation Rings

If F/Q is a number field, and ρ : GF → GLn(F) is an irreducible continuous Galois representa-
tion, let X = XS(ρ) denote the rigid analytic space corresponding to the universal deformation ring
of ρ unramified outside a finite set of primes S. The space X contains a (presumably countable)
set of points which are de Rham (= potentially semi-stable) at all places above p. We call such
deformations geometric, and denote the corresponding set of points by Xgeom. Gouvêa and Mazur,
using a beautiful construction they called the infinite fern, showed (under the assumption that ρ
was unobstructed) that when F = Q, n = 2, and ρ is odd that Xgeom ⊂ X is Zariski dense (see [36]).
This raises the general question of when Xgeom is Zariski dense in X. The work of Gouvêa and
Mazur has been extended (in the same setting) by others, in particular Böckle [7] (cf. Theorem 1.2.3
of [19]). Chenevier [11] has recently generalized the infinite fern argument to apply to certain con-
jugate self dual representations for n ≥ 3 over CM fields, and has shown that the Zariski closure
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of Xgeom is (in some precise sense) quite large. As a consequence of our main result, however, we
prove the following theorem.

5.1. Theorem. Let p > 7, let F+/Q be a totally real field in which p splits completely, and let
ρ : GF+ → GL2(F) be a continuous irreducible representation whose image contains SL2(Fp).
Suppose that ρ is even for at least one real place of F+. Suppose that for all v|p,

ρ|Iv ∼

(

ψv ∗
0 1

)

where ∼ denotes up to twist, and ψv 6= ω is assumed to have order > 2, and ∗ 6= 0. Assume
moreover that ρ|Dv is independent of v for v|p. Let S be any finite set of places of F+. Then Xgeom

is empty, that is, ρ has no geometric deformations.

Proof. Assume otherwise. Let ρ be a point of Xgeom. By Theorem 1.2, there exists at least one
v|p such that the Hodge–Tate weights of ρ at v are equal. To be potentially semi-stable (or even
Hodge–Tate) of parallel weight zero is equivalent to being unramified over a finite extension. Thus,
up to twist, ρ|Iv has finite image, and, in particular, the projective image of ρ|Iv is finite. The only
finite subgroups of PGL2(Qp) ≃ PGL2(C) are either cyclic, dihedral, A4, S4, or A5. Thus, the
projective image of ρ|Iv must be one of these groups. By assumption, the projective image of ρ|Iv
is a non-dihedral group of order divisible by p > 7, hence ρ|Iv can not be finite up to twist either,
and ρ does not exist. �

We have the following corollary:

5.2. Corollary. There exist absolutely irreducible representations ρ such that the subset Xgeom ⊂ X

is not Zariski dense. In fact, there exist representations such that Xgeom is empty, but X has
arbitrary large dimension.

Proof. Let F+/Q be a totally real field, and let ρ : GF+ → GL2(F) be a continuous irreducible
representation satisfying the conditions of Theorem 5.1. Suppose, furthermore, that ψv 6= ω−1 for
any v|p. The existence of such representations is guaranteed by Proposition 3.2. By Theorem 5.1,
Xgeom = ∅ for any finite set of auxiliary primes S. However, arguing exactly as in Theorem 1(a)
of [37], one deduces the existence of sets S for which X contains a smooth subvariety of dimension
(1+ δ) + 2r, where δ is the Leopoldt defect and r is the number of infinite places of F+ at which ρ
is odd. In order to see that Theorem 5.1 allows us to make r arbitrarily large, first find an auxiliary
totally real extension E+/Q in which p splits completely, and then apply Theorem 5.1 with S
containing all infinite places such that, for v|∞, cv has order two at all but one infinite place. �

Similarly, we note the following cases of the Fontaine–Mazur which do not require any assumption
on the Hodge–Tate weights or the parity of ρ:

5.3. Corollary. ρ : GQ → GL2(Qp) be a continuous Galois representation which is unramified
except at a finite number of primes. Suppose that p > 7, and, furthermore, that

(1) ρ|Dp is potentially semi-stable.
(2) The residual representation ρ is absolutely irreducible and is not of dihedral type.

(3) ρ|Dp is of the form:

(

ψ1 ∗
0 ψ2

)

where:

(a) ∗ is ramified.
(b) ψ1/ψ2 6= ω, and ψ1/ψ2|Ip has order > 2.

Then ρ is modular.
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Although proposition 3.2 guarantees the existence of infinitely many even Galois representations
over totally real fields with image containing SL2(Fp), it may also be of interest to construct at
least one example over Q (with p ≥ 11). We shall do this now.

5.4. Lemma. Let K/Q be a degree 11 extension with splitting field L/Q such that:

(1) 11 is totally ramified in K.
(2) G = Gal(L/Q) = PSL2(F11).
(3) ord11(∆K/Q) 6≡ 0 mod 10.

Let p denote a prime above 11 in L, and let I ⊆ D ⊂ G denote the corresponding inertia and
decomposition groups. Then I = D has order 55 and is the full Borel subgroup of G.

Proof. Since 11 is totally ramified in K/Q, the inertia group I has order divisible by [K : Q] = 11.
Since I ⊂ D is solvable, it follows that D is contained inside a Borel subgroup of G. Let F and E
denote the images of L and K under their embedding into Qp corresponding to p. We note that
D = Gal(F/Qp), and we have the following diagram:

L K Q

F
?

∩

ef = 1, 5
E
?

∩

e = 11
Qp

?

∩

It suffices to assume that |I| = 11 and deduce a contradiction. Suppose that |D| = 11, so F = E
is abelian over Qp. By local class field theory, F/Qp is (up to an unramified twist) given by the
degree p = 11 subfield of the p2-roots of unity. Thus

∆E/Qp
= ∆F/Qp

= 1120,

and thus ord11(∆E/Qp
) ≡ 0 mod 10, a contradiction.

Suppose that |D| = 55 and |I| = 11. Let In ⊆ I denote the lower ramification groups. The
p-adic valuation of the discriminant of F/Qp is given by the following formula:

ordp(∆F/Qp
) =

|D|

|I|
·

∞
∑

n=0

(|In| − 1) .

By assumption, |D|/|I| = 5 and |In| = 11 or 1 for all n. We deduce that ordp(∆F/Qp
) ≡ 0 mod 50.

On the other hand,
∆F/Qp

= NF/E(∆F/E) · (∆F/E)
5.

Since F/E is unramified, we deduce that

ord11(∆E/Qp
) =

1

5
ord11(∆F/Qp

) ≡ 0 mod 10.

Since ord11(∆K/Q) = ord11(∆E/Qp
), the lemma follows. �

5.5. Corollary. There exists a surjective even representation ρ : GQ → SL2(F11) with no geometric
deformations.

Proof. Let K be the field given by a root of the irreducible polynomial

x11 + 154 · x10 + 8591 · x9 + 207724 · x8 + 1846031 · x7 − 2270598 · x6 − 63850600 · x5

+ 73646034 · x4 + 582246423 · x3 − 1610954576 · x2 + 1500989952 · x− 481890304 = 0.
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This polynomial was obtained by specializing the parameters a and t of a polynomial found by
Malle (Theorem 9.1 of [35]) to a = 14 and t = −419 respectively. One may verify that 11 is totally
ramified in K/Q, that the splitting field L/Q is totally real with Galois group G = PSL2(F11), and
that the discriminant has a prime factorization as follows:

∆K/Q = 1112 · 1334620886698412181914 .

Since ord11(∆K/Q) = 12, it follows from Lemma 5.4 that the inertia group D at 11 is the full Borel
subgroup of G. We note also the factorization

133462088669841218191 · OK = p1p
2
2p

2
3q

2
1q2,

where pi and qi have residue degree 1 and 2 respectively. It follows that the residue degree and
the ramification index of every prime above 133462088669841218191 in L is even (in fact, 2).
Since 133462088669841218191 ≡ 3 mod 4, it follows from Theorem 1.1 of [34] that L embeds in
a SL2(F11)-extension N/Q which is totally real. Let ρ : GQ → Gal(N/Q) = SL2(F11) denote the
corresponding representation. We now show that ρ|D11 satisfies the conditions of Theorem 5.1.
Since the decomposition group at 11 maps surjectively onto the Borel of PSL2(F11), it is contained
in the Borel of SL2(F11). Any such representation may be twisted (in GL2(F11)) to be of the form

(

ψ ∗
0 1

)

for some character ψ. If ψ has order two, then the image of D11 will not surject onto the Borel of
PSL2(F11) (twisting does not affect this projection). If ψ = ω, however, then det(ρ) = ω · χ2 for
some character χ. Yet ρ has image in SL2(F11) and thus has trivial determinant, whilst ω is not
the square of any character. Thus ψ 6= ω, and Theorem 5.1 applies. �

6. Some remarks on the condition p > 7

One may wonder if the condition that p > 7 is used in an essential way in this argument. At the
very least, one will require that the representation

Sym2ρ : GQ → GL3(Fp)

be adequate. This fails to have adequate image if the image of ρ is SL2(Fp) and p ≤ 7. The
author expects that for p = 7 it should be sufficient to assume that the projective image of ρ is
either A4, S4, A5 or contains PSL2(F49), that for p = 5 that projective image is either A4, S4, or
contains PSL2(F25), and that for p = 3 the image contains PSL2(F27). The main technical issue
to address is exactly what form of adequateness is required in Proposition 3.2.1 of [2], although
another issue is that many of the references we cite include assumptions on p which would also
need to be modified (using [45]). The methods (in principle) also apply with p = 2, although many
more technical ingredients would need to be generalized in this case, in particular, the work of [32].

7. A remark on potential modularity theorems

In recent modularity lifting results [5, 2, 3, 4, 24] for l-adic representations, a weak form of
local-global compatibility at primes v|l is invoked (in this section only, we work with l-adic rep-
resentations rather than p-adic representations in order to be most compatible with [5]), namely,
that automorphic forms of level co-prime to l give rise to crystalline Galois representations (of the
correct weight). In general, local–global compatibility for RACDSC cuspidal forms for GL(n) is
only known in the crystalline case (as follows from [44]), although partial results are known in the
semi-stable case. In this section, we show how to prove modularity results similar to Theorem 2.2.1
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of [5] without local–global compatibility, allowing for a modularity lifting theorem in the poten-
tially semi-stable case. We claim no great originality, as the proof is essentially the same as the
proof of Theorem 2.2.1 of [2] (or Theorem 7.1 of [45]) with the addition of one simple ingredient
(Lemma 7.3 below). (The authors of [2] inform me that they have a different method for dealing
with the potentially semi-stable case which was not included in [2] for space reasons.) (One should
also compare the statement of this theorem to Theorem 7.1 of [45].)

7.1. Theorem. Let F be an imaginary CM field with maximal totally real subfield F+. Suppose l
is odd and let n be a positive integer. Let

r : GF → GLn(Ql)

be a continuous representation and let r denote the corresponding residual representation. Also, let

µ : GF+ → Q
×

be a continuous homomorphism. Suppose that (r, µ) enjoys the following properties:

(1) r∨ ≃ rcǫn−1
l µ|GF

.
(2) µ(cv) is independent of v|∞.
(3) the reduction r is absolutely irreducible and r(GF (ζl)) ⊂ GLn(Fl) is adequate.
(4) There is a RAECDSC automorphic representation (π, χ) of GLn(AF ) with the following

properties.
(a) (r, µ) ≃ (rl,ι(π), rl,ι(χ)).
(b) For all places v ∤ l of F at which π or r is ramified, we have

rl,ι(π)|GFv
∼ r|GFv

.

(c) For all places v|l of F , r|GFv
is potentially semi-stable and we have

rl,ι(π)|GFv
 r|GFv

.

(d) If n is even, π has slightly regular weight.

Then (r, µ) is automorphic.

7.2. Remark. The only difference between this theorem and Theorem 2.2.1 of [2] is that:

(1) We do not assume that π is potentially unramified above l.
(2) We require for v|l that rl,ι(π)|GFv

 r|GFv
rather than rl,ι(π)|GFv

∼ r|GFv
.

(3) We impose that π has slightly regular weight (this is only a condition when n is even). This
is because we require that the Galois representation associated to π can be realized geomet-
rically. Perhaps using the methods of [12] this assumption can be eliminated. Alternatively,
one could try to work with the representation rl,ι(π)

⊗2 which can be realized geometrically
(see [10]).

Proof. We make the following minor adjustment to the proof of Theorem 7.1 of [45] (cf. Theo-
rem 2.2.1 of [2]). The character χ may be untwisted after some solvable ramified extension. We
now modify the deformation problem consided in the proof of Theorem 3.6.1 of [3] as follows.
At v|l, we consider deformations (with a fixed finite collection of Hodge types v) that become
potentially semi-stable over some fixed extension L/K, where L will be determined below. The
argument proceeds in the same manner providing there exists a map from R → T, and, (in light
of the fact that the deformation rings at l might have non-smooth points in characteristic zero)
the hypothesis that rl,ι(π)|GFv

corresponds to a smooth point in the local deformation ring. For
any fixed level structure, the Galois representations arising from quotients of TQn are potentially
semi-stable over some extension L/K by a theorem of Tsuji [46]. We are required, however, to
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show that we may find a fixed L/K such that the Galois representations obtained by adding any
set of auxiliary Taylor–Wiles primes are semi-stable over the same field L.

7.3. Lemma. Let K/Ql be a finite extension, and let X be a proper flat scheme over Spec(OK)
with smooth generic fibre. Then there exists a finite extension L/K with the following property:
For every finite étale map π : Y → X, the étale cohomology groups H i(YK ,Ql) become semi-stable
as representations of GL.

Proof. After making a finite extension L/K, there exists (via the theory of alterations [17]) a proper
hypercovering X• of X such that for all n ≤ 2 dim(X):

(1) Xn is proper and flat over Spec(OL)
(2) Xn has smooth generic fibre and semi-stable special fibre.

By cohomological descent, there is a spectral sequence

Hm(Xn,L,Ql) ⇒ Hm+n(XL,Ql).

The cohomology groups on the left are semi-stable by Tsuji’s proof of Cst. Since the property
of being semi-stable is preserved by taking sub-quotients, it follows that the GL-representation
H i(XL,Ql) (for i ≤ 2 dim(X)) has an exhaustive filtration by semi-stable GL-modules. Hence the

semi-simplification of H i(XL,Ql) is semi-stable. Since H i(XL,Ql) is also de Rham [20], it follows

that H i(XK ,Ql) = H i(XL,Ql) is itself semi-stable as a GL-representation for i ≤ 2 dim(X). The
cohomology of XK vanishes outside this range, so the claim follows for all i. This recovers Tsuji’s
Theorem (Cpst). Let us now consider a finite étale morphism Y → X. We may form a hypercovering
Y• = X• ×X Y of Y . The properties (1) and (2) of the hypercovering X• are preserved under base
change by a finite étale map, and thus the cohomology of Y is also semi-stable over L. �

7.4. Remark. For an expositional account of the theory of hypercoverings and cohomological
descent in the étale topology, see [16].

Consider the (compact) Shimura variety Sh (over Spec(OK)) associated to the unitary similitude
group G as in [14, 26, 39], where L = Lξ is an automorphic vector bundle for an irreducible
algebraic representation ξ of G. Let Am denote the nth self-product of the universal abelian
variety over Sh, and let π : Am → Sh denote the (smooth, proper) projection. For a suitable
m, one can write L = eRmπ∗Ql(r) for some m = mξ and r = rξ, and e is some idempotent
(cf. [26], p.98). Finally, let Sh(N) denote the finite étale cover of Sh corresponding to the addition
of auxiliary level N -structure for some N co-prime to p. Let Am(N) denote the base change of Am

to Sh(N); it is finite étale over Am. The Leray spectral sequence gives a map

Hp(Sh(N)K , R
qπ∗Ql(r)) ⇒ Hp+q(Am(N)K ,Ql(r)).

Multiplication by n on A induces the map nj on Rjπ∗Ql. The formation of the spectral sequence
is compatible with this map, and hence it commutes with the differentials in the spectral sequence,
which correspondingly degenerates (cf. the argument of Deligne, p.169 of [18]). Thus

Hn(Sh(N)K ,L ) = eHn(Sh(N)K , R
mπ∗Ql(r))

occurs as a subquotient of H i(A(N)K ,Ql(r)) for some i. Let X = Am and Y = Am(N). By
Lemma 7.3, we deduce that

Hn(Sh(N)K ,L )

is semi-stable over a fixed extension L/K for all N depending only on n and ξ. If π has weakly
regular weight, the the Galois representation associated to π in [39] can be realized geometrically
in the étale cohomology of an automorphic sheaf on Sh as considered above. Moreover, the Galois
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representations corresponding to automorphic forms arising in the Taylor–Wiles constructions at
auxiliary primes arise in the étale cohomology of the same sheaf on Sh(N) for some auxiliary
level N . It follows that the local Galois representations associated to the Hecke rings TQn are all
quotients of a local deformation ring involving a fixed finite set of types, which is the necessary
local input for the modularity lifing theorem (Theorem 7.1) of [45]. �
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