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UNITARY EQUIVALENCE TO A TRUNCATED TOEPLITZ

OPERATOR: ANALYTIC SYMBOLS

STEPHAN RAMON GARCIA, DANIEL E. POORE, AND WILLIAM T. ROSS

Abstract. Unlike Toeplitz operators on H
2, truncated Toeplitz operators do

not have a natural matricial characterization. Consequently, these operators
are difficult to study numerically. In this note we provide criteria for a matrix
with distinct eigenvalues to be unitarily equivalent to a truncated Toeplitz
operator having an analytic symbol. This test is constructive and we illustrate
it with several examples. As a byproduct, we also prove that every complex
symmetric operator on a Hilbert space of dimension ≤ 3 is unitarily equivalent
to a direct sum of truncated Toeplitz operators.

1. Introduction

Interest in truncated Toeplitz operators has blossomed over the last several
years [4, 5, 7, 8, 15, 26–29, 31], sparked by a seminal paper of D. Sarason [26]. Un-
fortunately, only the very simplest truncated Toeplitz operators, the finite Toeplitz
matrices, have any sort of practical matricial description. Thus the numerical study
of truncated Toeplitz operators is difficult, even in low dimensions. For instance,
while the theory of pseudospectra for Toeplitz matrices has recently undergone
spirited development [33, Ch. II], many basic questions about truncated Toeplitz
operators remain unanswered. For instance, finding a characterization of rank-two
self-adjoint truncated Toeplitz operators is still an open problem [26, p. 508], de-
spite the fact that all rank-one truncated Toeplitz operators have already been
identified [26, Thm. 5.1].

Although a few results concerning matrix representations of truncated Toeplitz
operators have been obtained [7,8,31], the general question of determining whether
a given matrix represents a truncated Toeplitz operator, with respect to some or-
thonormal basis, appears difficult. On the other hand, it is known that every
truncated Toeplitz operator is unitarily equivalent to a complex symmetric ma-
trix [11, 13], a somewhat more general issue which has been studied by several
authors [3, 12, 32, 34].

Our work is partly motivated by the question of whether truncated Toeplitz op-
erators serve as some sort of model for complex symmetric operators. A significant
amount of evidence has been produced in this direction, starting with D. Sarason’s
early observation that the Volterra integration operator is unitarily equivalent to a
truncated Toeplitz operator [25] (see also [23, p. 41]). Since then, many other exam-
ples of complex symmetric operators which are representable in terms of truncated
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Toeplitz operators have emerged. For instance, normal operators [8, Thm. 5.6],
rank-one operators, [8, Thm. 5.1], 2 × 2 matrices [8, Thm. 5.2], and inflations of
finite Toeplitz matrices [8, Thm. 5.7] are unitarily equivalent to truncated Toeplitz
operators. The recent preprint [31] contains a host of other examples.

Before stating our main results, we briefly review some of the necessary prelimi-
naries. Let H2 denote the Hardy space on the open unit disk D, let H∞ denote the
Banach algebra of all bounded analytic functions on D, and let L∞ := L∞(∂D) and
L2 := L2(∂D) denote the usual Lebesgue spaces on the unit circle ∂D [9, 19]. To
each nonconstant inner function Θ we associate the model space KΘ := H2⊖ΘH2,
which is the reproducing kernel Hilbert space corresponding to the kernel

Kλ(z) :=
1−Θ(λ)Θ(z)

1− λz
, z, λ ∈ D.

For our purposes, we find it more convenient to work with the normalized kernels

kλ :=
√

1−|λ|2
1−|Θ(λ)|2Kλ. The space KΘ carries a natural conjugation (an isometric,

conjugate-linear, involution)

Cf := fzΘ, (1)

defined in terms of boundary functions [11,13,15]. The normalized conjugate kernels

k̃λ := Ckλ are of particular interest to us.
For each symbol ϕ in L2 the corresponding truncated Toeplitz operator Aϕ is the

densely defined operator on KΘ given by

Aϕf := PΘ(ϕf). (2)

When we wish to be specific about the inner function Θ, we often write AΘ
ϕ in place

of Aϕ. The adjoint of Aϕ is the operator Aϕ and it is easy to see that Aϕ = CA∗
ϕC

where C denotes the conjugation (1). In other words, Aϕ is a complex symmetric

operator [11, 13, 14] and hence it can be represented as a complex symmetric (i.e.,
self-transpose) matrix with respect to some orthonormal basis of KΘ [11] (see also
[15, Sect. 5.2]).

We are most interested in the case where ϕ ∈ H∞ and Θ is a finite Blaschke
product having distinct zeros z1, z2, . . . , zn. In this case we have

kzi =

√

1− |zi|2
1− ziz

, k̃zi =

√

1− |zi|2Θ(z)

z − zi
.

For each ϕ in H∞ the eigenvalues of the analytic truncated Toeplitz operator AΘ
ϕ

are given by ϕ(z1), ϕ(z2), . . . , ϕ(zn), with corresponding normalized eigenvectors

k̃z1 , k̃z2 , . . . , k̃zn [1, p. 10]. In particular, nonzero eigenvectors of an analytic trun-
cated Toeplitz operator are never orthogonal to each other.

One of the main results of this note is the following simple criterion for determin-
ing whether or not a given matrix is unitarily equivalent to a trunctated Toeplitz
operator having an analytic symbol.

Theorem 1.1. If M ∈ Mn(C) has distinct eigenvalues λ1, λ2, . . . , λn with corre-

sponding unit eigenvectors x1,x2, . . . ,xn, then M is unitarily equivalent to an ana-

lytic truncated Toeplitz operator if and only if there exist distinct points z1, z2, . . . , zn−1

in D such that

〈xn,xi〉〈xi,xj〉〈xj ,xn〉 =
(1− |zi|2)(1− |zj |2)

1− zjzi
(3)
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holds for 1 ≤ i ≤ j < n.

The method of Theorem 1.1 is constructive, in the sense that if (3) is satisfied,
then we can construct an inner function Θ and a polynomial ϕ such that M is
unitarily equivalent to AΘ

ϕ (denoted M ∼= AΘ
ϕ ). In fact, Θ is the Blaschke product

having zeros at z1, z2, . . . , zn−1 and zn = 0.
Although the condition (3) appears somewhat complicated, it encodes a wealth

of geometric data. For instance, setting j = i in (3) yields |〈xi,xn〉|2 = 1 − |zi|2.
This in turn provides us with the formula

|zi| =
√

1− |〈xi,xn〉|2 (4)

for the moduli of the unknown points z1, z2, . . . , zn−1. Furthermore, the proof of
Theorem 1.1 actually implies that

|〈xi,xj〉|2 = |〈kzi , kzj 〉|2 = 1− ρ2(zi, zj)

where

ρ(z, w) :=

∣
∣
∣
∣

z − w

1− wz

∣
∣
∣
∣

denotes the pseudohyperbolic metric on D. In other words, we can obtain the
pseudohyperbolic distances ρ(zi, zj) directly from the data x1,x2, . . . ,xn:

ρ(zi, zj) =
√

1− |〈xi,xj〉|2. (5)

Let us briefly summarize the contents of this note. The proof of Theorem 1.1
is contained in Section 2. In Section 3, we use elementary hyperbolic geometry
and some of the preceding geometric observations to construct an illuminating
example. Sections 4 and 5 provide complete analyses of the 2× 2 and 3× 3 cases,
respectively. Among other things, we prove that every complex symmetric operator
on a three-dimensional Hilbert space is unitarily equivalent to a direct sum of
truncated Toeplitz operators (Theorem 5.2). Section 6 concerns a simple necessary
condition for a matrix to be unitarily equivalent to an analytic truncated Toeplitz
operator. We conclude this note in Section 7 with a number of open problems that
we hope will spur further research into this topic.

Acknowledgments: We relied heavily upon numerical experiments to test several
conjectures (which eventually led to proofs of Theorems 5.1 and 5.2). We wish to
thank J. Tener for independently confirming several of our numerical observations.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we require a few preliminaries. We first note that for
each disk automorphism ψ, the weighted composition operator Uψ : KΘ → KΘ◦ψ
defined by Uψf :=

√
ψ′(f ◦ ψ) is unitary and furnishes a bijection between the set

of analytic truncated Toeplitz operators on KΘ and those on KΘ◦ψ . In particular,

AΘ
ϕ
∼= A

Θ◦ψ
ϕ◦ψ (6)

holds for all ϕ in H∞ [8, Prop. 4.1]. Our next ingredient is the following simple
lemma, which is inspired by the proof of [3, Thm. 2].

Lemma 2.1. Let X and Y be n-dimensional Hilbert spaces. If x1, x2, . . . , xn ∈
X and y1, y2, . . . , yn ∈ Y are linearly independent sets of unit vectors such that

〈yi, yj〉 6= 0 for 1 ≤ i, j ≤ n, then the following are equivalent:
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(i) There exist unimodular constants α1, α2, . . . , αn and a unitary operator

U : X → Y such that Uxi = αiyi for 1 ≤ i ≤ n.

(ii) There exist unimodular constants α1, α2, . . . , αn such that

〈xi, xj〉 = αiαj〈yi, yj〉

for 1 ≤ i ≤ j ≤ n.

(iii) For some fixed k,

〈xk, xi〉〈xi, xj〉〈xj , xk〉 = 〈yk, yi〉〈yi, yj〉〈yj , yk〉 (7)

holds for 1 ≤ i ≤ j ≤ n.

(iv) The condition (7) holds for 1 ≤ i ≤ j ≤ k ≤ n.

Proof. The implications (i) ⇔ (ii) ⇒ (iv) ⇒ (iii) are obvious. We therefore prove
only (iii) ⇒ (ii). Setting j = k in (7) reveals that |〈xi, xk〉| = |〈yi, yk〉| 6= 0 for
1 ≤ i ≤ n. In light of this, we conclude from (7) that |〈xi, xj〉| = |〈yi, yj〉| 6= 0 for
1 ≤ i, j ≤ n whence the constants

βij =
〈xi, xj〉
〈yi, yj〉

are unimodular and satisfy βij = βikβkj for 1 ≤ i, j ≤ n. Now define αi = βik for
1 ≤ i ≤ n and observe that

〈xi, xj〉 = βij〈yi, yj〉 = βikβkj〈yi, yj〉 = αiαj〈yi, yj〉. �

With additional effort, one can remove the hypothesis that 〈yi, yj〉 6= 0 for 1 ≤
i, j ≤ n. However, this is unnecessary in our case since eigenvectors of an analytic
truncated Toeplitz operator cannot be orthogonal to each other.

Proof of Theorem 1.1. (⇒) Suppose that UM = AΘ
ϕU where ϕ ∈ H∞ and U :

Cn → KΘ is unitary. Next observe that if Mxi = λixi, then A
Θ
ϕ (Uxi) = λi(Uxi)

for 1 ≤ i ≤ n. Thus there exists an enumeration z1, z2, . . . , zn of the zeros of
Θ and unimodular constants α1, α2, . . . , αn so that Uxi = αik̃zi for 1 ≤ i ≤ n.
Without loss of generality we may assume that zn = 0. Indeed, otherwise let ψ be

an automorphism of D satisfying ψ(0) = zn and note that M ∼= AΘ
ϕ
∼= A

Θ◦ψ
ϕ◦ψ by (6)

(by precomposing with a rotation, we may also assume that 0 < z1 < 1 if we wish).
By Lemma 2.1, it follows that

〈xn,xi〉〈xi,xj〉〈xj ,xn〉 = 〈k̃0, k̃zi〉〈k̃zi , k̃zj 〉〈k̃zj , k̃0〉
= 〈kzi , k0〉〈kzj , kzi〉〈k0, kzi〉

=
(1 − |zi|2)(1 − |zj|2)

1− zjzi

for 1 ≤ i, j ≤ n, which is the desired condition (3).

(⇐) Suppose that there exist distinct points z1, z2, . . . , zn−1 in D such that (3)
holds and let Θ be a Blasckhe product of order n having its zeros at the points
z1, z2, . . . , zn−1 and zn = 0. It follows from (3) that

〈xn,xi〉〈xi,xj〉〈xj ,xn〉 = 〈k̃0, k̃zi〉〈k̃zi , k̃zj 〉〈k̃zj , k̃0〉
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for 1 ≤ i, j ≤ n whence by Lemma 2.1 there exists a unitary operator U : Cn → KΘ

and unimodular constants α1, α2, . . . , αn such that Uxi = αik̃zi for 1 ≤ i ≤ n. If ϕ

is a polynomial satisfying ϕ(zi) = λi for 1 ≤ i ≤ n, then AΘ
ϕ k̃zi = λik̃zi whence

UMxi = λiUxi = ϕ(zi)αik̃zi = αiA
Θ
ϕ k̃zi = AΘ

ϕUxi

for 1 ≤ i ≤ n so that M ∼= AΘ
ϕ . �

3. Hyperbolic geometry

It is easy to construct matrices which are not unitarily equivalent to any analytic
truncated Toeplitz operator. For instance, any matrix having a pair of orthogonal
eigenvectors suffices. On the other hand, what can be said about matrices having
distinct eigenvalues and such that no pair of eigenvectors is orthogonal? Using some
basic hyperbolic geometry, we can construct a family of such matrices which are
not unitarily equivalent to an analytic truncated Toeplitz operator.

Example 1. Let us begin by searching for a matrix M ∈ Mn(C) having dis-
tinct eigenvalues and whose corresponding normalized eigenvectors x1,x2, . . . ,xn
are such that the condition (3) does not hold for any points z1, z2, . . . , zn in D. Fix
0 < g < 1 and let G be the n× n matrix with entries

Gij =

{

1 if i = j,

g if i 6= j.

Since G = guu∗ + (1− g)I where u = (1, 1, . . . , 1) and I denotes the n× n identity
matrix, it follows that the eigenvalues of G are precisely

1− g, 1− g, . . . , 1− g
︸ ︷︷ ︸

n− 1 times

, 1 + (n− 1)g,

whence G is positive definite. A routine computation confirms that the entries of
the positive square root X of G are given by

Xij =







(n− 1)
√
1− g +

√

1 + (n− 1)g

n
if i = j,

−√
1− g +

√

1 + (n− 1)g

n
if i 6= j,

and hence each column xi of X = (x1|x2| · · · |xn) is a unit vector. If λ1, λ2, . . . , λn
are distinct complex numbers and D = diag(λ1, λ2, . . . , λn), then the matrix M =
XDX−1 satisfies X∗X = G and Mxi = λixi for 1 ≤ i ≤ n.

Suppose toward a contradiction that M is unitarily equivalent to AΘ
ϕ for some

ϕ ∈ H∞ and some Blaschke product Θ having distinct zeros z1, z2, . . . , zn (the
hypothesis that D has distinct eigenvalues ensures that the zi are distinct). By

(5) it follows that ρ(zi, zj) =
√

1− g2 for i 6= j. Since the hyperbolic metric (also
called the Poincaré metric) on D satisfies

ψ(z, w) := log
1 + ρ(z, w)

1− ρ(z, w)
,

it follows that

ψ(zi, zj) =

{

r if i 6= j,

0 if i = j,
(8)
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where r = 2 tanh−1
√

1− g2 [19, p. 4-5]. This is impossible if n ≥ 5. Indeed,
suppose that z1, z2, z3, z4, z5 satisfy (8). Recalling that a pseudohyperbolic circle
is also a Euclidean circle [19, p. 3], we obtain circles Γ1,Γ2, both of the same
pseudohyperbolic radius, such that z1, z3, z4, z5 ∈ Γ2 and z2, z3, z4, z5 ∈ Γ1. This
implies that {z3, z4, z5} ⊆ Γ1 ∩ Γ2, which contradicts the fact that two distinct
Euclidean circles can meet in at most two points.

A slightly more complicated proof shows that (8) is also impossible if n = 4.
Although the corresponding result is obvious in the Euclidean plane, to prove it
in the hyperbolic plane one first recalls that the Poincaré model of the hyperbolic
plane satisfies Hilbert’s axioms [20, Sect. 39]. One can then prove that Propositions
I.2-I.22 and I.24-I.28 of Euclid’s Elements [10] can be obtained in the Poincaré
model [20, Thm. 10.4] and then proceed as in the Euclidean case.

It actually turns out that any matrix 3×3 or larger produced using the method of
Example 1 cannot be a complex symmetric operator. In particular, no such matrix
can be unitarily equivalent to a truncated Toeplitz operator, analytic or otherwise.
First note that the entries of W = X−1 are given by

Wij =







1
n

(

n−1√
1−g + 1√

1+(n−1)g

)

if i = j,

1
n

(

− 1√
1−g + 1√

1+(n−1)g

)

if i 6= j.

Writing W = (w1|w2| · · · |wn) in column-by-column format, we find that

‖wi‖ =

√

1 + (n− 2)g

1 + [(n− 2)− (n− 1)g]g

for i = 1, 2, . . . , n. Upon dividing W by the preceding quantity we obtain the
matrix Y = (y1|y2| · · · |yn) whose entries are given by

Yij =







√
1−g+(n−1)

√
1+(n−1)g

n
√

1+(n−2)g
if i = j,

√
1−g−

√
1+(n−1)g

n
√

1+(n−2)g
if i 6= j,

and whose columns y1,y2, . . . ,yn are unit vectors. Since M = XDX−1 and X is
self-adjoint, it follows that M∗ = Y DY −1 Therefore y1,y2, . . . ,yn are unit eigen-
vectors of M∗ corresponding to the eigenvalues λ1, λ2, . . . , λn. If n ≥ 3, then

|〈xi,xj〉| = g 6= g

1 + (n− 2)g
= |〈yi,yj〉|,

whence M is not a complex symmetric operator by [3, Thm. 1].

4. The 2× 2 case

If M ∈ M2(C) and Θ is a Blaschke product of order two, then there exists a
truncated Toeplitz operator on KΘ which is unitarily equivalent toM [8, Thm. 5.2].
However, if one insists upon using analytic symbols, then things are quite different.

Corollary 4.1. If M ∈ M2(C), then M is unitarily equivalent to an analytic

truncated Toeplitz operator if and only if either

(i) M is a multiple of the identity,

(ii) M is not normal.
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Proof. (⇒) Suppose that M ∼= AΘ
ϕ for some Blaschke product Θ of order two and

some ϕ in H∞.

Case 1: If Θ has distinct zeros z1, z2, then k̃z1 and k̃z2 are linearly independent
eigenvectors of Aϕ corresponding to the eigenvalues ϕ(z1) and ϕ(z2), respectively.
In particular, M is diagonalizable. If ϕ(z1) = ϕ(z2), then M is a multiple of the

identity. If ϕ(z1) 6= ϕ(z2), then Aϕ is not normal since 〈k̃z1 , k̃z2〉 6= 0.

Case 2: If Θ has a repeated root, then by (6) we may assume that Θ(z) = z2.
ThusM is unitarily equivalent to a lower-triangular Toeplitz matrix. Since a normal
triangular matrix is diagonal [2, p. 133], it follows that M is either non-normal or
a multiple of the identity matrix.

(⇐) If M is a multiple of the identity matrix, then there is nothing to prove.
Suppose now that M is not normal. If M has repeated eigenvalues, then Schur’s
theorem on unitary triangularization [21, Thm. 2.3.1] asserts that M is unitarily
equivalent to a lower triangular Toeplitz matrix and hence an analytic truncated
Toeplitz operator. Suppose that M has distinct eigenvalues with corresponding
unit eigenvectors x1 and x2. The only nontrivial condition in (3) that needs to be
satisfied is 1− |z1|2 = |〈x2,x1〉|2 6= 0, which has many solutions. �

Example 2. Consider the non-normal matrix

M =

(
1 2
0 3

)

,

whose eigenvalues are λ1 = 1 and λ2 = 3. Corresponding unit eigenvectors of M
corresponding to these eigenvalues are

x1 = (1, 0), x2 = ( 1√
2
, 1√

2
).

Guided by the proof of Theorem 1.1, we set

z1 =
√

1− |〈x2,x1〉|2 = 1√
2

and z2 = 0. Next, we search for a polynomial ϕ(z) such that

ϕ( 1√
2
) = 1, ϕ(0) = 3.

One such polynomial is ϕ(z) = 3 − 2
√
2z, from which we conclude that M is

unitarily equivalent to AΘ
ϕ where

Θ(z) = z

(
z − 1√

2

1− 1√
2
z

)

.

Following J. Tener [32], we say that a matrix is UECSM if it is unitarily equivalent
to a complex symmetric matrix (i.e., it represents a complex symmetric operator
with respect to some orthonormal basis). Although there are many proofs of the
following result (see [3, Cor. 3], [6, Cor. 3.3], [13, Ex. 6], [12], [16], [17, Cor. 1], [22,
p. 477], or [32, Cor. 3]), we feel compelled to provide yet another.

Corollary 4.2. If M ∈ M2(C), then M is UECSM.

Proof. Let M be a 2 × 2 matrix. If M is either a multiple of the identity or
normal, then M is trivially UECSM (by the Spectral Theorem). Otherwise, M is
unitarily equivalent to an analytic truncated Toeplitz operator by (4.1) and hence
UECSM [11,13]. �
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5. The 3× 3 case

Although the 3 × 3 case is significantly more complicated than the 2 × 2 case,
we are still able to arrive at a complete solution, including a simple computational
criterion (9). Moreover, we also show that every 3×3 complex symmetric matrix is
unitarily equivalent to a direct sum of truncated Toeplitz operators (Theorem 5.2).

Theorem 5.1. If M ∈ M3(C) has distinct eigenvalues λ1, λ2, λ3 with correspond-

ing normalized eigenvectors x1,x2,x3 satisfying 〈xi,xj〉 6= 0 for 1 ≤ i, j ≤ 3, then
the following are equivalent:

(i) M is unitarily equivalent to an analytic truncated Toeplitz operator,

(ii) M is unitarily equivalent to a complex symmetric matrix,

(iii) The condition

detX∗X = (1− |〈x1,x2〉|2)(1 − |〈x2,x3〉|2)(1− |〈x3,x1〉|2) (9)

holds, where X = (x1|x2|x3) is the matrix having x1,x2,x3 as its columns.

Proof. (i) ⇒ (ii) This implication is well-known [11, 13, 26] (i.e., every truncated
Toeplitz operator is a complex symmetric operator).

(ii) ⇒ (iii). Without loss of generality, we may assume that M =M t is a complex
symmetric matrix. In this case x1,x2,x3 are unit eigenvectors ofM

∗ corresponding
to the eigenvalues λ1, λ2, λ3. In light of the fact that

λi〈xi,xj〉 = 〈Mxi,xj〉 = 〈xi,M∗xj〉 = 〈xi,Mxj〉 = 〈xi, λjxj〉 = λj〈xi,xj〉,

we see that 〈xi,xj〉 = 0 for i 6= j.
We claim that

|〈x1,x1〉|2 = (1− |〈x1,x2〉|2)(1− |〈x3,x1〉|2), (10)

|〈x2,x2〉|2 = (1− |〈x1,x2〉|2)(1− |〈x2,x3〉|2), (11)

|〈x3,x3〉|2 = (1− |〈x2,x3〉|2)(1− |〈x3,x1〉|2). (12)

We prove only (11), since (10) and (12) can be proven using a similar method.
First note that x1 and x2 are linearly independent since λ1 6= λ2. Since 〈x3,x1〉 =
〈x3,x2〉 = 0, it follows that {x1,x2,x3} is a basis for C3. Thus the basis {e1, e2, e3}
defined by setting e1 = x1, e3 = x3, and

e2 =
x2 − 〈x2, e1〉e1

‖x2 − 〈x2, e1〉e1‖
=

x2 − 〈x1,x2〉x1
√

1− |〈x1,x2〉|2
,

is orthonormal. Since x2 is a unit vector it follows that

1 = |〈x2, e1〉|2 + |〈x2, e2〉|2 + |〈x2, e3〉|2

= |〈x2,x1〉|2 +
∣
∣
∣
∣
∣

〈

x2,
x2 − 〈x1,x2〉x1
√

1− |〈x1,x2〉|2

〉∣
∣
∣
∣
∣

2

+ |〈x2,x3〉|2

=
|〈x2,x2〉|2

1− |〈x1,x2〉|2
+ |〈x2,x3〉|2,

which is equivalent to (11).
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Since XtX = diag(〈x1,x1〉, 〈x2,x2〉, 〈x3,x3〉), it follows from (10), (11), and (12)
that

detX∗X = | detX |2

= | detXtX |
= |〈x1,x1〉〈x2,x2〉〈x3,x3〉|
= (1 − |〈x1,x2〉|2)(1− |〈x2,x3〉|2)(1 − |〈x3,x1〉|2).

This yields the desired condition (9).

(iii) ⇔ (i). In light of Theorem 1.1 and its proof, it follows that M is unitarily
equivalent to an analytic truncated Toeplitz operator if and only if there exist
z1 ∈ (0, 1) and z2 ∈ D such that (3) holds for 1 ≤ i, j, k ≤ 3. Moreover, by (4) we
know that z1 and z2 must be given by

z1 =
√

1− |〈x1,x3〉|2, z2 =
√

1− |〈x2,x3〉|2eit (13)

for some t ∈ R. In other words, M is unitarily equivalent to an analytic truncated
Toeplitz operator if and only if there exists a real number t such that the numbers
z1, z2, as defined by (13), satisfy (3):

〈x3,x1〉〈x1,x2〉〈x2,x3〉 =
|〈x1,x3〉|2|〈x2,x3〉|2

1− z2z1
,

which is equivalent to

z2z1 = 1− 〈x1,x3〉〈x3,x2〉
〈x1,x2〉

.

Substituting (13) into the preceding we obtain

e−it
√

1− |〈x1,x3〉|2
√

1− |〈x2,x3〉|2 = 1− 〈x1,x3〉〈x3,x2〉
〈x1,x2〉

,

which has a solution t ∈ R if and only if

(1− |〈x1,x3〉|2)(1 − |〈x2,x3〉|2) =
∣
∣
∣
∣
1− 〈x1,x3〉〈x3,x2〉

〈x1,x2〉

∣
∣
∣
∣

2

.

Expanding the preceding, we obtain

|〈x1,x3〉〈x3,x2〉|2 + |〈x2,x1〉〈x1,x3〉|2 + |〈x3,x2〉〈x2,x1〉|2

= |〈x1,x2〉〈x2,x3〉〈x3,x1〉|2 + 2Re〈x1,x2〉〈x2,x3〉〈x3,x1〉. (14)

Adding the quantity

1− |〈x1,x2〉|2 − |〈x2,x3〉|2 − |〈x3,x1〉|2

to both sides of (14) yields

1− |〈x1,x2〉|2 − |〈x2,x3〉|2 − |〈x3,x1〉|2 + 2Re〈x1,x2〉〈x2,x3〉〈x3,x1〉
= (1− |〈x1,x2〉|2)(1 − |〈x2,x3〉|2)(1− |〈x3,x1〉|2),

which is equivalent to (9). �

Theorem 5.2. IfM ∈ M3(C) is complex symmetric, thenM is unitarily equivalent

to a direct sum of truncated Toeplitz operators.
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In order to proceed with the proof of Theorem 5.2, we require the following
lemma from [16]. The proof in the preprint [16] is long and involved, since it requires
invoking the fact that a matrix 7× 7 or smaller which is unitarily equivalent to its
transpose is UECSM (this can fail for matrices 8 × 8 and larger). We provide a
much simpler proof below.

Lemma 5.3. If M ∈ M3(C), then M is UECSM if and only if

trM∗M2M∗2M = trMM∗2M2M∗. (15)

Proof. By Corollary 4.2 we may assume that M is irreducible since otherwise M
is obviously UECSM. We use the term irreducible in the operator-theoretic sense.
Namely, a matrix T ∈ Mn(C) is called irreducible if T is not unitarily equivalent
to a direct sum A ⊕ B where A ∈ Md(C) and B ∈ Mn−d(C) for some 1 < d < n.
Equivalently, T is irreducible if and only if the only normal matrices commuting
with T are multiples of the identity.

We claim that M is UECSM if and only if M ∼=M t. One direction is simple, for
ifM is UECSM, then there exist a unitary matrix U such that U∗MU = (U∗MU)t.
In other words, M(UU t) = (UU t)M t whence M ∼=M t.

On the other hand if M ∼= M t, then we may write M = UM tU∗ where U
is unitary. It follows that M t = UMU t whence MUU = UUM . Since M is
irreducible, UU = αI for some unimodular constant α. The preceding implies
that U = αU t whence α2 = 1. However, α = −1 is impossible since every skew-
symmetric matrix of odd dimension is singular. Therefore U = U t is symmetric and
unitary. By Takagi’s Factorization Theorem [21], we may write U = V V t where V
is unitary whence V ∗MV = (V ∗MV )t. In other words, M is UECSM.

Having shown that M is UECSM if and only if M ∼= M t, we need only show
that (15) holds if and only if M ∼= M t. To this end, we recall that a refinement
by Sibirskĭı [30] of a well-known result of Pearcy [24] asserts that A,B ∈ M3(C)
are unitarily equivalent if and only if Φ(A) = Φ(B) where Φ : M3(C) → C7 is the
function defined by

Φ(X) = (trX, trX2, trX3, trX∗X, trX∗X2, trX∗2X2, trX∗X2X∗2X). (16)

It is easy to see that the first six traces in (16) are automatically equal for X =M

and X =M t [16]. In other words, M ∼=M t if and only if trX∗X2X∗2X yields the
same value for X = M and X = M t. Using standard properties of the trace and
transpose one sees that this condition is equivalent to (15). �

With the preceding lemma in hand, we are now ready to prove Theorem 5.2.

Pf. of Theorem 5.2. Suppose that M is a 3× 3 matrix. After possibly scaling and
adding a multiple of the identity, up to unitary equivalence M falls into precisely
one of the following classes:





0 0 0
a 0 0
b c 0



 ,

︸ ︷︷ ︸

one distinct eigenvalue





0 0 0
a 0 0
b c 1



 ,

︸ ︷︷ ︸

two distinct eigenvalues





0 0 0
a 1 0
b c λ



 ,

︸ ︷︷ ︸

three distinct eigenvalues

(17)

where a, b, c ∈ C and λ 6= 0, 1.

Case 1: If M has one distinct eigenvalue, then without loss of generality we may
assume that M is of the form of the first matrix listed in (17). Using Lemma 5.3
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and Mathematica it follows that M is UECSM if and only if

|a|2|c|2(|a|2 − |c|2) = 0

(see [17, Ex. 1] and [32, Ex. 1] for other approaches). In other words, M is UECSM
if and only if either (i) a = 0, (ii) c = 0, or (iii) |a| = |c|. If either a = 0 or c = 0,
then M has rank one whence M is unitarily equivalent to a truncated Toeplitz
operator by [8, Thm. 5.1]. On the other hand, if |a| = |c|, then conjugating M by a
diagonal unitary matrix shows that M is unitarily equivalent to a Toeplitz matrix
and hence M represents a truncated Toeplitz operator on Kz3 with respect to the
orthonormal basis {1, z, z2}.
Case 2: If M has exactly two distinct eigenvalues, then we may assume that M is
of the form of the second matrix listed in (17). Using Lemma 5.3 and Mathematica,
it follows that M is UECSM if and only if either (i) a = 0, (ii) b = c = 0, or (iii)
a, c 6= 0 and

|b+ ac|2 = |c|2(1 + |c|2). (18)

If a = 0, then M has rank one whence M is unitarily equivalent to a truncated
Toeplitz operator by [8, Thm. 5.1]. If b = c = 0, then M is the direct sum of a 2×2
and a 1 × 1 matrix. By [8, Thm. 5.2], it follows that M is unitarily equivalent to
the direct sum of truncated Toeplitz operators.

The third case is more difficult to handle. Suppose that a, c 6= 0 and that (18)
holds. Upon conjugating M by a suitable diagonal unitary matrix, we may further
assume that c > 0 and b+ ac ≥ 0. Let Θ denote the Blaschke product

Θ(z) = z2
(
z − r

1− rz

)

,

which has a double root at 0 and a simple zero at r ∈ (0, 1) which is to be deter-
mined. An orthonormal basis {e1, e2, e3} for KΘ is given by

e1(z) = 1, e2(z) = z, e3(z) = z2
√
1− r2

1− rz
. (19)

If ϕ(z) = αz + βz2, then the matrix for AΘ
ϕ with respect to the basis (19) is given

by




0 0 0
α 0 0

β
√
1− r2 (α+ βr)

√
1− r2 r(α + βr)



 . (20)

At this point it is easily verified that for

α = a, β =
b

c

√

1 + c2, r =
1√

1 + c2
,

the matrix (20) is precisely M . In other words, M is unitarily equivalent to an
analytic truncated Toeplitz operator on KΘ.

Case III: Suppose that M has three distinct eigenvalues. If M has a pair of
eigenvectors which are orthogonal, then we may assume thatM is of the form of the
third matrix listed in (17) where c = 0. In this case, Lemma 5.3 and Mathematica

tell us that M is UECSM if and only if |ab|2|λ − 1|2 = 0. Since λ 6= 1 it follows
that either a = 0 or b = 0. Both cases lead to the conclusion that M is unitarily
equivalent to the direct sum of a 2 × 2 and a 1 × 1 matrix. In particular, M is
unitarily equivalent to a direct sum of truncated Toeplitz operators.
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If M has no pair of nonzero eigenvectors which are orthogonal to each other,
then we may appeal to Theorem 5.1 to conclude that M is unitarily equivalent to
an analytic truncated Toeplitz operator. �

6. A necessary condition

Recall that every truncated Toeplitz operator is a complex symmetric operator
and hence UECSM [11, 13, 26]. Thus we might as well start with a complex sym-
metric matrixM in the first place. Unlike Theorem 1.1, the following proposition is
phrased completely in terms of the initial data x1,x2, . . . ,xn. In particular, there
is no mention whatsoever of the unknowns z1, z2, . . . , zn−1.

Corollary 6.1. Suppose that M ∈ Mn(C) is complex symmetric and has distinct

eigenvalues with corresponding unit eigenvectors x1,x2, . . . ,xn satisfying 〈xi,xj〉 6=
0 for i 6= j. The condition

|〈xi,xi〉|2 =

n∏

j=1
j 6=i

(1 − |〈xj ,xi〉|2) (21)

for i = 1, 2, . . . , n is necessary for M to be unitarily equivalent to an analytic

truncated Toeplitz operator. If n ≤ 3, then the preceding condition is also sufficient.

Proof. Maintaining the notation and conventions of Theorem 1.1 and its proof, let

Θ(z) =
n∏

i=1

z − zi

1− ziz

and observe that
n∏

j=1
j 6=i

(1 − |〈xi,xj〉|2) =
n∏

j=1
j 6=i

ρ2(zi, zj) = (1− |zi|2)2|Θ′(zi)|2 (22)

holds by (5). Next note that the hypothesis upon the eigenvectors of M implies
that M is irreducible. Since M =M t, it follows that M = JM∗J where J denotes
the canonical conjugation

J(ζ1, ζ2, . . . , ζn) = (ζ1, ζ2, . . . , ζn)

on Cn. If J ′ is another conjugation which satisfies M = J ′M∗J ′, then JJ ′ is
unitary and commutes with M whence JJ ′ is a multiple of the identity. Thus
J is the unique conjugation, up to a unimodular constant factor, which satisfies
M = JM tJ .

Now suppose that UM = AΘ
ϕU for some unitary U : Cn → KΘ. Since AΘ

ϕ is
irreducible, a similar argument shows that the conjugation C : KΘ → KΘ defined
by Cf = fzΘ is the unique conjugation, up to a unimodular constant factor, such
that AΘ

ϕ = C(AΘ
ϕ )

∗C [11, 13, 26]. Since AΘ
ϕ = (UJU∗)(AΘ

ϕ )
∗(UJU∗) and UJU∗ is

a conjugation on KΘ, it follows that UJU
∗ = γC for some unimodular constant γ.

This yields

|〈xi,xi〉|2 = |〈xi, Jxi〉|2 = |〈Uxi, UJxi〉|2

= |〈Uxi, CUxi〉|2 = |〈k̃zi , kzi〉|2

= (1− |zi|2)2|Θ′(zi)|2
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=

n∏

j=1

(1− |〈xj ,xi〉|2)

by (22).
To see that (21) is sufficient in the 3 × 3 case, simply observe that (21) implies

(10), (11), and (12). In other words, (21) implies that (14) holds whence M is
unitarily equivalent to an analytic truncated Toeplitz operator by Theorem 5.1. �

7. Open problems

Although there has been a recent surge in activity devoted to truncated Toeplitz
operators under unitary equivalence [7, 8, 31], there are still many basic questions
left unanswered. We conclude this note with a series of open problems suggested
by this work.

Question 1. Is every complex symmetric matrix M ∈ Mn(C) unitarily equivalent
to a direct sum of truncated Toeplitz operators?

In other words, are truncated Toeplitz operators the basic building blocks of
complex symmetric operators? For n ≥ 4 numerical evidence strongly suggests that
the implication (i) ⇔ (ii) of Theorem 5.1 fails generically. In particular, (21) tends
to fail for all i = 1, 2, . . . , n for randomly generated complex symmetric matrices
M ∈ Mn(C) which satisfy the hypotheses of Corollary 6.1. On the other hand,
nothing that we know of prevents such a matrix from being unitarily equivalent to
a truncated Toeplitz operator with symbol in L∞ (as opposed to H∞).

Question 2. Let n ≥ 4. Is every complex symmetric matrixM ∈ Mn(C) having no
pair of orthogonal, nonzero eigenvectors unitarily equivalent to a truncated Toeplitz
operator?

A variant of the preceding is:

Question 3. Let n ≥ 4. Is every irreducible complex symmetric matrix M ∈
Mn(C) unitarily equivalent to a truncated Toeplitz operator?

Recently, first author and J. Tener [16] showed that every complex symmetric
matrix is unitarily equivalent to a direct sum of (i) irreducible complex symmetric
matrices or (ii) matrices of the form A⊕At where A is irreducible and not UECSM
(such matrices are necessarily 6 × 6 or larger). This immediately suggests the
following question.

Question 4. For A ∈ Mn(C), is the matrix A⊕At ∈ M2n(C) unitarily equivalent
to a direct sum of truncated Toeplitz operators?

Let S denote the unilateral shift and recall that S is not a complex symmetric
operator [11, Ex. 2.14], [13, Prop. 1], [17, Thm. 4], [18, Cor. 7]. On the other hand,
T = S∗ ⊕ S is a complex symmetric operator [14, Ex. 5] which appears to be a
promising candidate for a counterexample to Question 4 in the infinite-dimensional
setting.

One method for producing complex symmetric matrix representations of a given
truncated Toeplitz operator is to use modified Aleksandrov-Clark bases for KΘ. We
refer the reader to [15, Sect. 2.3, 5.2] for specific details.
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Question 5. Suppose that M ∈ Mn(C) is complex symmetric. If M is unitarily
equivalent to a truncated Toeplitz operator, does there exist an inner function Θ,
a symbol ϕ ∈ L∞, and a modified Aleksandrov-Clark basis β for KΘ such that M
is the matrix representation of AΘ

ϕ with respect to the basis β?

In other words, do all such unitary equivalences between complex symmetric
matrices and truncated Toeplitz operators arise essentially from Aleksandrov-Clark
representations?
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