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Abstract

We study Fourier multipliers resulting from martingale nisforms of
general levy processes.

1 Introduction

For each bounded functiowf : R? — C there is a unique bounded linear operator
M on L*(R?) defined in terms of the Fourier transform as follows,

Mf=Mf. (1.1)

The operator norm of1 on L*(R?) is || M|| = || M|« It has long been of interest
to studysymbols)M for which theFourier multiplier M extends to a bounded
linear operator on’.?(R9) for p € (1,00). Fourier multipliers resulting from
transforming jumps of symmetric Lévy process have beeamntg obtained in

[2]. By using Burkholder’s inequalities for differentiallyibordinate continuous
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time martingales with jumps/] in the general form of Wang’[5], we proved that
their operator norms of?(R%) do not exceed

1
pr—1l=max{p—1,——}. (1.2)
p—1

For a broad discussion of Burkholder's method and its mangnstons and ap-
plications, we refer the reader td][ In this note we adapt the methods af |
to non-symmetric Lévy processes. The resulting multiplere given in Theo-
rem1.1below. We remark that fgr = 0 and symmetrid” the result was proved
in [2, Theorem 1]. The present Theordmi is a generalization, but the symbols
(1.4) are very similar to those given i2].

Given a Borel measurgé > 0 onR? such that/({0}) = 0 and

min(|z|?, 1)V (dz) < oo (1.3)
R4
(that is, a Lévy measure), a finite Borel measure= 0 on the unit spher& in
R?, and Borel measurable complex-valued functiorms R? andy onS such that
lolleo < 1and||¢||. < 1, we define

% fs (&, 9)2 @ (0) pu (dO) + fRd [1—cos(& 2)] o (2)V (dz)
3 J5 (€,0)° 1 (df) + fou [1 — cos(€,2)] V (dz)

where we letM/ (¢) = 0 if the denominator equals zero. Clearly/||,, < 1.
Here and for the rest of this paper, the pairing between vgcto

M () = ;o (14)

d
Em=> &mn., if&neR orC?, (1.5)

n=1

is without complex conjugation. We also dentg = S°7_ [€.]> = (£, 8). If
M vanishes on a set of positive Lebesgue measure,ithen), ;. = 0 and hence
M = 0. This was proved in7].

Theorem 1.1.1f 1 < p < oo and M is defined by1.1) and(1.4) then

Ml < " =DIfll,. feLPRY). (1.6)
In particular, lettingl” = 0 in (1.4) yields the symbol

5600 (0)  (d6)
Jo €07 uan)
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or

(AE, €)
M) = , 1.8
whereA = [Ay], ,_, ,andB = [By,], ,_, , aregivenby
bri= [0 (O)n(d0) . Bus= [ 600 (ap). (19)
S S

These matrices are symmetric, dhis nonnegative definite. We have
he = [oe.000u6), R,
S
and (B¢, €) = [,(&,6)*u(df), hence

(A, &) < (BE,E), EeR’. (1.10)

For instance, the approach yields the bownd- 1 for the multiplier with the
symbol—2¢,&,/[¢|* via

0 -1 0 0
-1 0 0 0

A - . . )
0O 0 0 0

andB = I, the identity matrix. We thus obtaR; R,, the second order Riesz
transform multiplied by two. It is known that the norm of tloperator indeed
equalsp* — 1 [12, Corollary 3.2], so the constant ih.¢) cannot be improved in
general. On the other hand, our method will only give the ujyoend2(p* — 1)
for the norm of the operator resulting from

1 —

A= [ i } (1.11)
andB = 1. Namely, we will show in Lemma!.2 below that in this case the
representationl(9 may only hold with||¢||., > 2. We should remark thaf\¢| =
€| for & € R? (JAE| < 2[¢] for € € C?), and itis known that the estima2ép* — 1)
is not optimal; seell] and the discussion in Sectiagn

The paper is organized as follows. Sectidinas a didactic purpose. We
namely consideB = T in (1.9). This case can be resolved by means of the
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standard Itd calculus for the Brownian motion. A similag@ment was first given

in [4], and has since appeared in many different places andg®tbat we believe

it is worth repeating here with notation emphasizing an@egvith Sections.

In this way we hope to make the rest of the paper more readablidse less
familiar with the stochastic calculus of Lévy processesSéction3 we give the
proof and a discussion of Theorelril. First of all, by using a simple algebra we
reduce the symbolsl(4) to those of P, Theorem 1]. This gives a proof but not
much insight, since] only concerns symmetric Lévy processes. Therefore in the
remainder of Sectio8 we present the stochastic calculus leading to the symbols
(1.4). Our main purpose is to explain why the non-symmetry of tlee@ss is not
reflected in the symbol. For instance we will seedr2@ that the drift of the Lévy
process does not contribute 16. Examples and further discussion are given in
Section4.

Throughout the paper we only consider Borel functions, messand sets in
Re. Forl < p < oo we letL? = LP(RY dx) be the class of complex-valued
functions f on R? with finite || f]|, = [ [z |/f(2)[Pdz] VP [ = Lo(RY) are
those functionsf for which || f||.c = sup,ega |f(2)] < o0, C}f = {f € L™ :
|IVfllee < oo}, andC! consists of those functions ifil which have compact
support. Similarly,L® are compactly supported functionsiri®°. We recall that
C!is dense inL? for eachp € [1, o0). Our convention for the Fourier transform
will be

7(e) = /R €I f()dz, R

If pis a probability measure dR? andk € L*, then Fubini’s theorem yields

/R . /R ) k(z +y)p(dy)dx = / k(z)dz . (1.12)

2 Brownian martingales and I1td calculus

In this section we present a simple approach to Fourier pligis with symbols of
the form (L.8). We will use the familiar Itd6 calculus for the Brownian nuant, for
which we refer the reader ta 7], [1€] or [19]. The main ideas will be similar to
those in Sectior® below, but the calculations are shorter and simpler. Asadlye
mentioned, we hope that this will be easier to read for thaseilfar with the
basics of the Itd calculus but perhaps not as familiar vhihgtochastic calculus
of jump processes used in Sectign



We letP andE be the probability and expectation for a family Bfownian
incrementsB; ;. Namely, IetBt(l), Bt(z), t > 0, be independent Brownian motions
in R? starting at the origin, leB, = —B(_lft if u<0OandB, = BY if u > 0. For
—o00 < s <t<ooweletB;, = B, — B,. These increments are independent for
disjoint time intervals. They are also Gaussian and cedeveh variance — s.

We will consider the filtration

Fi=0{Bs;; s<t}, teR,

and the Gaussian convolution semigroup

pi(x) = (27t) "V exp(—|z|?/2t), t>0, z € R?. (2.1)
It is well-known that
B(&) =2 cer?, (2.2)
and that the heat equation holds fgfz),
0 1

We also have that;_,(x)dz is the distribution ofB, ;, for s < t. Letg € C}}. For
z € R? and finitet < u, we define

P, .g9(x) = Eg(z + Biy) = pu—t * g(2) , (2.4)

andP, ,g(x) = g(x). Fors <t < u we define the following Brownian parabolic
martingale
Gy = Gi(z;s,u;9) = Pryg(z + Bgy) (2.5)

Indeed,t — G, is an{F;}-martingale ons, u|. This follows from the Markov
property of the Brownian motion; se& [Lemma 2]. Note that regardlessiothe
entire time intervals, u] is involved inG; as the "evolution” froms to ¢ proceeds
via the Brownian motion, while that fromto u goes by its expectations. In fact,
the martingale equals an Itd integral plus a constant. fifiews from (2.4) and
(2.3 by simply applying the 1td formula to the process> (v — t, B; — By),

t t
G — Gy — / (gpv,ug) (2 + By)dv + / Vo Pong(e + B.y)dB,

t 1 t
+/ §Ava7ug(x + B;p)dv = / V.P,ug(x + Bs,)dB, . (2.6)
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(G i1s bounded, hence square integrable. The quadratic \@riafiG is

t
G.Gl =GP + [ 9. Poagle + B o, 2.7)
Let A be areal or complex x d matrix such that
|Az| < |2|, zeCq. (2.8)

Let f € CL. Fors <t < u we consider the martingale
F, = Fy(x;s,u; f,A) = /t AV, P, . f(x+ Bs,)dB,. (2.9)
The quadratic variation of is
[F,F), = / t AV, P, o f(z + Byy)|* dv. (2.10)

By (2.9), F = F(x;s,u; f,A) is differentially subordinatéo G = G(x; s, u; f),
in the following sense introduced iB]f

0 <|[G,G|;—[F, F]; isnon-decreasing fot € [s,u]. (2.11)
Letp € (1,00). By [5, Theorem 2],
E[Fy(z;s,u; [, A))" < (p" = D) E[Gi(;s,u; f)IP, s<t<u, (212

providedp € (1,00). By (2.12), (1.12 and @.1),

| BRswfapis < 00 =17 [ BlGusisw s
Rd R4

= ("= DI (2.13)
Letq = p/(p — 1). By Holder’s inequality folP ® dx, (2.13 and (.12,

| BlR s, Mgl Blds < 07 = DIflall- 2.14)

Therefore there is a unique functiéne L? such that

A(g) = AdEFu(x;s,U;f,A)g(x+Bs,u)dx=/ h(z)g(z)dz ,  (2.15)

R4
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if g € L7, and we have
1], < (0" = DI S5 - (2.16)

For a deeper understanding dfwe will use the classical Burkholder-Gundy in-

equalities (see for examplel [, p. 155] or the original papef]). Namely, for
eachr € (0, 00) there is constarit < ¢, < oo depending only om such that

T B(F;) < BIF, FI}/? < B (2.17)

whereF; = sup,,, | F,| is the maximal function of the martingalé. Applying
(2.17 for r = 1 yields the following integrability of;,,

u 1/2
/ E|F,(x;s,u; f,A)|dx < cl/ E (/ Vo Py f(x + Bs7v)|2dv> dx
R4 R4 s
u 1/2
<all v [ B( [ 9nuser Bola) ds
R4 s

u 1/2
§01||Vf||éé2/ (E/ |Vva7uf(x+Bs7v)|dv) dx
R4 s
< VI (- 5) / (Pl V £1(2))2 de < o0 (2.18)
Rd

because’; .|V f|(z) decays exponentially 8| — oo. It follows that|A(g)| <
c/|g]l- By considery approximating:/|h| we see that € L!. We will now give
an alternative representation &f We have

ab= (la+b]* —|a —b]* +ila+ib|* —ila—ib|*)/4, a,bcC. (2.19)
By this, 2.7) and @.10),
EF,G, = EF,(G, — G,)
B[ (AV.Puf (o B VoPuglo+ B o (220)
We claim that s
Ag) = /R ) / ) /R ) (AV Py f(2+Y), ViPoug(@+y)) po—s(dy)dvdz . (2.21)
Indeed, 2.217) follows from Fubini’s theorem, since
L] [ 1Rt o)l IPuSte+ o)l poms(dy)dods
< IVlleelVf1l1(u = 5) < o0



Arguing as in .18 the reader may also verify that

// | VePouf @4 ) Powg(@ + )l po-a(dy)dvdz <cyeylllllgly

but this will not be used in the sequel, arid1(?) gives a better constant.
Leté € RY, ee(z) = €9 € CF, & (x5 8,u; &) = Gy(x; 8, u; ¢¢). We have

(&, —(u—v)|¢|?
Pracelw) = [ 6y, (dy) = (),
R

and ,
Vo Pyyee(z) = e~ (uv)IE] /265(x)i§.

By (2.15, (2.21) and (L.12 we obtain

Dw

&)= [ ha)ectards = Afeq (2.22)
:/ / / (AV,P, . f(z +y),i€)e” P ey (a4 y)dop, s (y)dyda
// (AVL Py f(x),i€) e F e () dady

( iAEe” (u—v)[¢]? /2f(§) 5) (u—v)[€1*/2 q,,

I
\

. S - ) it 20,
andi(0) = 0. Thus the magf — h is a Fourier multiplier with the symbol

(AL, €)IE| 7?1 — e (mleF],

The reader puzzled by the fact that L' may find comfort in noticing that this
symbol is continuous at the origin. We let= 0 ands — —oc. The symbol
converges tgA¢, €)/|€|? and the functiorh converges inL? by Plancherel’s the-
orem. A subsequence converges almost everywhere, and oy's-Eemma and
(2.16) the limit hasZ? norm bounded byp* — 1)|| |, SinceC? is dense in’?,
the Fourier multiplier with the symbdlA¢, €)/|€|? extends tal?, with the norm
not exceeding* — 1.

If A is a general square real or compléx d matrix, thenA/||A| satisfies
(2.9), hence the Fourier multiplier with the symb@l¢, £)/|¢|? has the norm at
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most||A||(p* — 1) on L?. Here||A|| is the (spectral) operator norm Af induced
by the Euclidean norm ofi?. On occasions, if’,, f(z) has a restricted range of
values, 2.9) need only to hold in this range. In particular, the muléplgiven by
(1.8) and (L.17) has the norm at mog&t(p* — 1) when acting on complex-valued
functions, and at mosy2(p* — 1) when restricted to real-valued functions.

As already mentioned in the Introduction, the symbal§)(and theirL? esti-
mates are not new. We refer the readerlfofr a detailed discussion of further
symbols that can be obtained by transformations of morergéh@ integrals, and
for their applications. We also like to note that our caltiolas of the symbol may
be considered a probabilistic counterpart of the identity

(“T‘;’f) - g9 [Tt (2.23)

A semigroup counterpart o2(23 is mentioned in%].

3 Leévy-Ito calculus and Fourier multipliers

Proof of Theoreni.1 We will first considen, = 0in (1.4), i.e. we will prove the
theorem for symbols of the form

J[1—cos(§,2)] o (2) V (dz)
J 1 —=cos(& 2)]V (dz)

ForA ¢ R? we letV(A) = [V(A4) + V(—A4)]/2 (the symmetrization of/),
V(A) =[V(A)-V (—A)]/2 (the antisymmetric part df). We also define(z) =
[0(2) + d(—2)]/2, d(2) = [p(2) — ¢(—=2)]/2 for z € R% The functionz
cos(&, z) is symmetric, hencé,,[1 —cos(&, 2)]V (dz) = [a[1 —cos(&, 2)]V (dz).
We note that

(3.1)

OV = (GO +V) = (BV +00) + (37 + V)
as measures, and so for evérg R¢ we have

Jrall = cos(§, 2)]p(2)V(dz) _ [gall — cos(§, 2 )](95‘7 oV)(dz 2)

fRdl—COS(S, V=) [l cosE, =)V (dz) (3.2)

SinceV +V =V > 0, we have that/ = £V, with an antisymmetric real function
k suchthatk| < 1. Thus, in the numerator 08(2) we eventually integrate against
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¢*V, whereg* = ¢ + ko = 25(4 + @) + 155(4 — ¢), a convex combination.
If |¢| < 1 onR?then|) + ¢| < 1 onR? By convexity we see thgt*| < 1.
Application of [2, Theorem 1] toV and ¢* gives theL? estimate {.6) for the
Fourier multiplier with the symbol3.1).

We will now prove the general result. Considédrgiven by (L.4) and letz > 0.
In polar coordinatesr, §) € (0, 00) x S we define Lévy measure

ve(drdf) = 725, (dr)p(df) .

Here 6. is the probability measure concentrated 3. We consider multi-
plier M. on L?(R?) with symbol M. defined by 8.1) where the Lévy mea-
sure is replaced byl(.-.V + v. and the jump modulator is replaced by
1{‘Z‘>a}¢(z) + 1{‘Z‘:5}<p(z/|z|). We lete — 0 and note that

[ 1= eoste Ntef e ) = [ 0702 )
= 5 [€0relo)un). 33)

If f € L*(RY), thenM.f — Mf in L>(R?) by Plancherel’'s theorem and
bounded pointwise convergence of the symbols. A sequentef, converges
to Mf almost everywhere, as, — 0. If f € L*R?) N LP(RY) then by
Fatou's lemma and the first part of the proof applied/t6., we have that
IMfll, < (p* — 1)||f]l,- This proves the general case becaudeextends
uniquely to the whole of.»(R?) without increasing the norm. O

In the remainder of this section we will show how the symbblin (3.1) is
obtained from transforming parabolic martingales reldatedon-symmetric Lévy
processes. Our main purpose is to elucidate as clearly agopoat which point
the drift and asymmetry of the Lévy measure disappear flugrpicture, so that
only symmetric symbols remain. The phenomenon was quiteaisa to the
authors and it may be important in extending the methodsisfaaper. We will
closely follow the development oP]. The reader may also consuitq or [19]
for general information about the stochastic calculus ofguyprocesses.

For a measurqu, setA, function f and pointa we define the guantities
A(A) = p(=A), w(f) = [ f() A) = [, f(@)pdz), fo(z) =
o+ a), and(e () = ] J +a) <> (ﬁ)

Letr > 0be an arbltrar)ﬂnlte nonzero measure dRY' not charging the origin.
Let |v| = v(R?) and? = v/|v|. Let P andE be the probability and expectation
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for a family of independent random variablésand Z;, : = +1,£2, ..., where
eachT”; is exponentially distributed witl7; = 1/|v|, and eachZ; hasv as its
distribution. We letS; = Ty + ... + T;, fori = 1,2,...,andS; = —(T_; +
+1;),fori=—1,-2,.... For—oo <s <t <ooweletX,, = > o, Z,

Xetw = Deg o ZiandAX,, = X, — X, . We note that\'(B) = #{i :
(S;, Z;) € B} is a Poisson random measure Rn< R? with intensity measure
dvv(dr), andX,, = [ _ _, N (dvdz) is the Lévy-Itdo decomposition of’; see
[21]. Alternatively, we may also considgy’ as the initial datum, and the1s;, Z;)
may be defined as the atoms/dt The number osignalsS; such that < S; <t
equalsN (s,t) = N((s,t] x R%). We consider the generic compound Poisson
process with the drift,

X0y =X+ (t—s)b. (3.4)

Hereb ¢ R It is well-known that every Lévy process d@f can be obtained
as a limit of such processes. Again, we refer the readetip As we will see,
the study of{ X?,} easily reduces to that ¢fX,,}, or to the case of = 0. For
instance, our notation gives

Ef(X?) =Efr(X,,). (3.5)
Lemma 3.1. For boundedF : R x R? x R — C, and finites < ¢,
E ) F(S, Xl . Xlg)= // (v, X2, X2 ,_+2z)v(dz)dv. (3.6)
s<S;<t R4

Proof. By consideringF™* (v, z,y) = F(v,x + (v — s)b,y + (v — s)b) we can
assume that = 0 in (3.6). In this case the proof of?] Lemma 1] applies (the
symmetry ofy was not used in that proof). For clarity we note théts, t) is
exponentially integrable, and so is the sum3rgy. O

In particular, for finites < ¢t and bounded” we have

E Z S sz - XS,SZ> - F<SZ7 ngi_’ XS,SZ—>:|

s<.5; <t
t
= E/ / [F(o, X0, X, +2)— F(v,X!,_, X!, )] v(dz)dv.(3.7)
Rd
In what follows we will consider the filtration
Fi=0{Xss; s gt}:a{th; s<t}, teR.
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Fort € R we define

o0

Z t" Z t
pt — e*t(V—\V|50 _' vV — V‘(S(] — e—t|l/‘ . (3.8)
n!

n=0
The series converges in the norm of absolute variation osorea. Clearly,

0
Ept ( ‘V‘(SO) *pt , t c R, (39)

andp;, * py, = pi, 41, TOr ty,to € R. By (3.8) we havep; > 0 for ¢t > 0. In fact,
Du—s IS the distribution ofX ,, as well as ofX ,_, wheneves < v. In particular,
if b = 0 then the sides of3.6) equal

t
[ [ [ reas e e, (3.10)
s JR JRA
and the extension tb# 0 is straightforward, see, e.g3.29. Let
V(€)= / [e"®*) — 1] v(dz), ¢&eR™. (3.11)
Rd

We directly verify that¥ is bounded and continuous dkf, ¥(—¢) = W¥(¢),
€) = [galcos(€, z) — 1]v(dz) (compare the denominator if.()), and

File) = [ ¢ Ip(da) =¥, e (3.12)
Rd

U is the Lévy-Khinchine exponent and.( 2 is the Lévy-Khinchin formula. We
also consider the convolution semigroup with the drift ofesh,

pg:<pt)tb7 t207

thatisp?(f) = p:(f*). We have

ﬂQZAf%M%M@:Mwmm>§€W- (3.13)

In what follows f € L andg € L. Forz € R? and finitet < u we define
P},9(r) = Eg(z + X,) = /R 9@+ ypi(dy). (3.14)
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This is the convolution with the reflection pf ,, and we have

PLF(E) = FOPL_(—€) = f(€)e i NEN+=0¥-0) ¢ cRI  (3.15)

We denoteP, , = P?,. By (3.14 we getP/, g = P, .(g"“~").
Fors <t < u we define the followingparabolic martingale

GY = Gl{ass,ur9) = Phuglo + X2) = Pug® Mo+ Xo0). (3.16)

We will also writeG; = GY. By [2, Lemma 2] and&.16), t — G? is indeed a
(bounded) F; }-martingale orjs, u| (see also the discussion below).

Let ¢ be complex-valued and l&b(z)| < 1 for z € R%.
Forxr € R?ands < t < u, we definel? = F(x;s,u; g, ¢) as

Z [Pgug(l" + Xf,si) - Psbi,ug(f + Xs,si—)} cb(Xi’,si - Xs,si—)

§<S; <t

Pt X ) gl + X2 @) (32)
s JRd

We let F, = F?, and note that?(z; s, u; g, ¢) = Fi(x;s,u; f“9° ¢). It now
follows from [2, Lemma 3 and Lemma 4] thdt’ is an{F; }-martingale int €
[s,u], andE|F;|? < oo for everyp > 0. We have

Gi(zis,usg) = Gilwis,u; g™ ") = Fy(a;s,u; 9“7 1) + Pou(g™ ™) (2)
= F)(z;s,u;9,1) + Go(w;s,u3 ) (3.18)

where we have used[Lemma 5]. The equality3;18 may also be considered a
consequence of 1td formula for the space-time pro¢ess(u — t, X ;). In fact,
this is very simple becausg; , is piecewise constant. We have

t
Gi(w;s,u39) — Gs(z;s,wg)z/ (ng,u) g(z+ X )dv

+ Z [Pyug(a+ X,0) — Poug(z + X)), (3.19)

s<v<t

where the sum is taken ovessuch thatX, , # X, ,_ (or see [ 7, Theorem 11.31],
[11, p. 140]). Using 8.9) and Lemm&3.1we now obtain that the expression has
zero expectation and, moreover, it is a martingale tf.et s + k(t — s) /n, where
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k=0,...,n, andn — oo. SinceF} is square integrable (in fact, exponentially
integrable), by orthogonality of increments we have

E|F[° = Ezn:

k=1
= B Y|P g+ X0g) — P gl + X0 )7 |o(AXE )|,

s<S; <t

2
b b
Fs,tz o Fs,tzil‘

The convergence follows from the fact that the integral3ri () is Lipschitz
continuous irt. Hence the quadratic variatioril(f], [9]) of F” is
2
F' P = 3 [Phugle + XDs) = Phugla+ X2s ) [6(AX,s)

§<S; <t

(3.20)
By (3.19, the quadratic variation af”’ is

G*, G = P g@)P+ Y|P gz +X0s) — Phgle+ X2s )|

s<S; <t

Thus, F*(z; s,u; g, ¢) is differentially subordinate t@*(z; s, u; g), see R.1J).
This time we appeal to the result of Warith] Theorem 1] for general martingales
with jumps, to conclude that fgr € (1, o),

E|F}(z;s,u; f, )" < (0" = 1) E|Gi(z;s,us /)P, s<t<u. (3.21)

We haveG! (z;s,u; f) = f(z + X?,), and using§.21) and (L.12) we obtain
[ IR s s forde < 7 =17 [ B+ XL Pde = 7 = 171513
By Holder’s inequality and(.12) we get

[ Bl s i £ oo+ X2lde < 07 = DI llal. 322

Therefore there is a unique functiéne L? such that

[ BPis g0+ Xo)de = [ @@ @23)

R4

if g € L7, and we have
12l < (0" = DI S5 - (3.24)
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We will identify h. By (3.20), (2.19 and Lemma3.1,
EF)G, = EF)(z;s,u; f,0)[Gh(x;5,u; 9) — P ,g(x)]

s<S;<u

[Pg ,9(x+ X2s) — P ,9(z + X0 g )]0(AX,s,)
— // :1:+va_+2) Pb f(a?+Xb )}
W@+ X2, +2) = Plgle+ X2, )]o(z)v(dz)dv

= / /R/R fla+y+2) =P flx+y)] (3.25)
[Pf,u9<x +y+2) — PLugle +y)|o(2)v(dz)p)_(dy)dv.

To justify applications of Fubini’'s theorem in what folloywwe note that1.12
and the finiteness af imply

/R//R/ [Pl f(r+y+2) = P flx+y)

P g(z+y+2) = Pl g(z+y)| o(2)v(d2)p)_,(dy)dvda

< 4||9||oo|V|/ 1Py fllhdv < 4l|(u = s)llgllooll FIl < 00 (3.26)

In particular,h € L', see 8.23. Consideré € R% ec(z) = €&, and
El(z;s,u; &) = Gh(w; s,use¢), s <t < u. We have

Py yee(r) = / e CTHp_(dy) = eglx)eIIEIHENy <,
Rd

thus

EFbe? Pb 3.27
o //Rd/ flx+y+z) =P f(z+y)] (3.27)
eilemty)| — e IEEHYE 52V p(d2)pb_, (dy)dv .

We recall 8.23, (3.25, (3.26 and @3.27), and conclude that

/Rd/s /Rd/Rd fla+y+z)— Pl flx+y)]

HET T [i(62) _ 1]e@=EER VO () (d2)pb_(dy)dvdz .

15



Using (L.12 and @.15 we obtain

o = [ [ [ [Pt - Ph]

&) dy [1&2) — 1] EDTYEOl ()1 (dz)dv

_ // [ei(62) _ 1]f(£)elml-iEn +9(=¢)
]Rd

(€2) _ 1]eu=vEDTYE) () p(dz)dv
_ ¢ 2(u—v)RP (€ d i(&,2) d 3.28
f(e) / : o[ € S 1Pet) @28)

~

= O 1= ™) [ ool 2) = g((d)RI(E).

if RU(E) = [[cos(€, z)—1]v(dz) <0, andh(¢) = 0if RU(¢) = 0. This identifies
the functionh in (3.23. We conclude thaf +— & is a Fourier multiplier with the
symbol
fRd [COS(& Z) - 1]¢(Z)V(dz) [1 N 62(u_5)gce\1/(g)} . (329)
Jgalcos(&, z) — 1]v(dz)

By (3.29 and the density of'} in L?, the operator norm of the multiplier does not
exceedh* — 1 on LP. The above readily yields the symbo&1) with the samd.?
boundp* — 1 for the corresponding operators. Indeed/ ifs an arbitrary (i.e. not
necessarily finite or symmetric) Lévy measure, then weidens > 0 and define
v as the restriction of to {z : |z| > ¢}. We thenletu = 0,¢ | 0, s - —occ in
(3.29, and employ a limiting argument similar to the one follog/i{3.3).

Here we should note that the asymmetry of the Lévy measutettandrift
given byb have disappeared from our formulas $149.

4 Further discussion and examples

We will comment on the relation betweeh ) and (L.8).

Lemma4.1.1f A is a complex symmetritx d matrix, andA¢| < [£] for & € RY,
theny > 0 andy exist such thaf ||, < 2, and

(AE,€) = / (€.0)" ¢ (0) u(d6)  and / (€,0)"u(df) = (€,6), €€R?.
S S
If RA and A commute, then we may seldet|| ., < 1.
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Proof. Recall thatA is symmetric but not necessarily Hermitian. Assume first tha
A is normal, that isRA andSA commute. Then they have common eigenvectors
ar € R4, andAa, = M\yai, Wwhere), € C,and|)\,| < 1fork =1,...,d. For

£ € RY,
d
Z 5 ak ‘5‘27
k=1

and
d

(A, €) = (Z(&%)Aak,z £, ax)a ) Z)\k £, ar)?

k=1

Let p = Zzzl 0o, @Ndp(ar) = A, SO that||¢||l < 1. Hered, is the Dirac
measure at.

If RA andiSA do not commute then we consider each of them separately
as in the first part of the proof, and we add the respective unegas, and the
measuresu. We see that the resulting is bounded byi but we only obtain a

representation ofA¢, &) /[2(&, €)].
(|

We consider the Beurling-Ahlfors operator. It is the siraguihtegral on the
complex planeC (identified withRR?), defined for smooth compactly supported
functionsf as follows

_ 1 f(w)
Bf(z) = 7Tp.v./(c = w)zdm(w), zeC. (4.1)
Herem is the planar Lebesgue measure. It is well known thas a Fourier
multiplier with the symbol

=2

M(¢) = ‘% = ¢ Harsl (4.2)

where¢ = (£, &) € R?is identified with¢, + &, € C. For a detailed discussion
of B, its numerous connections and applications in analysisiapdifferential
equations and quasiconformal mappings, we refetjtajd the many references
given there.

The above symbal/ is precisely the one given byt ) and (L.11). In partic-
ular, Lemmad.1and Theoreni.1apply, and the operator norm &f on L? does
not exceed(p* — 1). In fact, i uniform on{1,4,e™/* e=™/*}, and¢(1) = 2,
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(i) = =2, p(e'™/*) = —2i, (e~ ™/*) = 2i, give a representatiord.(7) of (4.2).
We note that the boun2l(p* — 1) was first obtained in44] using certain Bell-
man function constructed from Burkholder’s discrete nmgaie inequalities. The
Itd calculus approach was presented4htp get this bound, as in our Secti@n
The best bound to date for the operator normBobn L? is given in [3]. We
refer the reader tol] for a thorough discussion of T. Iwaniec’s conjecture that
|B|| = p* — 1, and further references.

As it stands, our approach cannot improve the ba2(pd — 1) for (4.2) be-
cause of the following fact, which should be compared with)(

Lemma 4.2. If o and nonzerq, > 0 onS C R? are such that

/S (6.0)% o(6)u(d) = o5 / (€07 u(do), EcR,  (43)

then||¢|loo > 2.

Proof. We can assume thatis bounded. We denote= arg¢, s = arg#, and
identify () andp(df) with ¢(s) andu(ds), correspondingly. We have

—_

1 1 1., . L
(€,0)* = cos®(t — 5) = §(COS[2(t —s)]+1) = 5 + 162”6_2“ + 16_2“62“ :

and hence the left-hand side &f9) is
1 1 21t —2is 1 —2it 2is
5 [ pls)ulds) + 2e™ | e p(s)ulds) + e e p(s)u(ds).

S S S

However, the right-hand side equals

1 , 1 , 1 , .
—e_zn/u(ds) + —/6_2’5u(ds) + —6_4”/622‘9#((15).
2 g 4 4

S S
In particular,
1[5
= 18 d — _ d
1 [ etomtas =5 [ ntas).
which is impossible if| ||, < 2. O

Let u(ds) = ds. In view of the above proofp(s) = ¢** with integerk #
—2,0,2, yields the zero symbol. Ip(s) = =% then we arrive at**2¢ /2, in
particular we obtain an elegant representatiorddl)(
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Let V' be the Lévy measure of a non-zero symmetristable Lévy process in
R?, with « € (0, 2). In polar coordinates we have (see, e.g1][[6])

V(drd) = r"%dro(df), r>0,0¢€S, (4.4)

where the so-called spectral measurés finite and non-zero of8. Let ¢ be
complex-valued ofR? and such thafp(2)| < 1 ande¢(z) = ¢ (z/ |2]) for z # 0.
Letc, = [, [1 — coss]s~'~“ds. By a change of variable,

jéd[l-—-cos(g,z)hﬁ(z)lf(dz) _ j£(/£a11 — cos(&, r0)]6(r0)r="2dr o(do)
_— / (€.0)[° 6(6)o(d6). (4.5)

Theoreml.1lyields a multiplier bounded id? by p* — 1, with the symbol

01" 6(8)o(d6)
Js1(€,0)| o(do)

In particular, forj = 1, ..., d, we obtain

_ [S1hs _ d
M(g)_ |§1|a++|€d|a’ 5_(5177§d)€R . (47)

These are Marcinkiewicz-type multipliers, as [ p. 110].

In the next example we will specialize ®’. Let o be a Lebesgue measure
on the circle, and(§) = e~%22% as in the comment following Lemm@a2. Let
¢ € R? andt = arg €. In view of (4.5), the numerator of the symbol is

Ca |§|O‘/|cos(t—s)\a6_2isds = o l€|” e‘2it/\cos(v)\°‘e2i”dv
S S

= co|[" e / |cos(v)|* cos(2v)dv .
s

M(¢) (4.6)

Fora,b > —1 we have

Ty Lo fasl b1\ 1D (YT ()
/Osm v COS vdv—28< SRR )—2 F(“+b+2) ;

2
see, e.g., 15, Chapter I]. Therefore

2 2
/ |cos(v)|* cos(2v)dv = / lcos(v)|* (2 cos?(v) — 1)dv
0 0
a+3 1 a+11 2a a+11
_4B< 2 ’5)_28< 2 ’§>_a+28< 2 ’5)’

19




where we used'(z + 1) = zI'(x). Since

2T 11
/0 |cos(v)|adU:2B<a_2|— ,5),

we obtain the symbol

_ @ -viangs
M(¢) = vt :
Fora — 2 we recover the boun2(p* — 1) for the Beurling-Ahlfors transform.
We will consider more general Levy measure®inof product form in polar
coordinates,

V(drdd) = p(dr)o(df), r>0,0¢€S. (4.8)

Hereo is finite onS and f;~ 2 A 1 p(dr) < oc. An interesting class of such mea-
sures are the so-called tempered stable Lévy processgg {3]). The following
example is on the borderline of the tempered stable proseksé
dr
dr) =e"—.
pldr) =e™"~
In view of the calculations following4.8) we like to note that

g0 4T
xr

/0 00[1 — cos(&,rn)]p(dr) = /0 00[1 — cos z]e /I

The Laplace transform ofl — cosz)/z equals0.51n (1 + s~2). Theoreml.1
yields a multiplier bounded i&? by p* — 1, with the symbol

Jsn[1+ (€,6)] 6(6)a(df)

M(&) = JIn 1 + (¢,60)-2 o(df) (4.9)
For instance, foj =1, ..., d, we obtain
-2
M(£) In(1+67) ceRY. (4.10)

T4 (1487

We conclude with a few general remarks. It is well known theg stochastic
calculus of the Brownian motion can be used to obtain nonpsgtric Fourier
symbols via harmonic (rather than parabolic) martingaldss goes back to the
pioneering paper of Gundy and VaropoulaS§][for Riesz transform, and we again
refer the reader to the survey papéf flor further discussion. Surprisingly, non-
symmetric Lévy processes do not bring about non-symmsymabols. We owe
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to Mateusz Kwasnicki yet another explanation of this pmeanon, using time re-
versal of Lévy processes (private communication). Ousg@nédiscussion leaves
wide open the problem of modifying the jumps of Lévy pro@sss such a way
as to obtain non-symmetric multipliers.

We also note that McConnell studied ifhg] extensions of the Hormander
multiplier theorem. He used the Cauchy process composédhaimonic func-
tions on the upper half-space Rf**. This may be considered a special case of
our parabolic martingales; seef Lemma 2.1]. However, the Cauchy process is
obtained by optional stopping of ttié + 1)-dimensional Brownian motion on the
half-space, and sd [j] is more related to the work of Gundy and Varopoul®g][
than to the parabolic martingales of Bafiuelos and Méntlrnandéz4].

The relationship between (L0, (2.8) and the condition in Lemmé& 1 calls for
further study. We also wonder if the boufid||.. < 2 in the proof of Lemmat.1
may be improved for non-normal.

If Levy measures satisfy, < v,, then

_ fRd [1—cos(&, z)] vi(dz)
Jga [1 = cos(&,2)] va(dz)

defines an’? multiplier with the norm not exceeding — 1, which follows from
Theoreml.lwith V = 15, ¢ = 1 A dvy/dvy andp = 0. The observation allows
to study inclusions between anisotropic Sobolev spade$) ([

An interesting problem, indirectly touched upon by Lenvn3 is the follow-
ing: Can we handle a class of Fourier multipliers bounded.biby specifying
the denominator and some boundedness and differentygiibperties of the ra-
tio (1.4), so to recover bounded and¢ from these?

Acknowledgement: We thank Mateusz Kwasnicki for discussions on sym-
metrization and Stanistaw Kwapieh for comments 0.
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