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Abstract

We study Fourier multipliers resulting from martingale transforms of
general Ĺevy processes.

1 Introduction

For each bounded functionM : Rd → C there is a unique bounded linear operator
M onL2(Rd) defined in terms of the Fourier transform as follows,

M̂f =Mf̂ . (1.1)

The operator norm ofM onL2(Rd) is‖M‖ = ‖M‖∞. It has long been of interest
to studysymbolsM for which theFourier multiplier M extends to a bounded
linear operator onLp(Rd) for p ∈ (1,∞). Fourier multipliers resulting from
transforming jumps of symmetric Lévy process have been recently obtained in
[2]. By using Burkholder’s inequalities for differentially subordinate continuous
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time martingales with jumps [7] in the general form of Wang [25], we proved that
their operator norms onLp(Rd) do not exceed

p∗ − 1 = max{p− 1,
1

p− 1
} . (1.2)

For a broad discussion of Burkholder’s method and its many extensions and ap-
plications, we refer the reader to [1]. In this note we adapt the methods of [2]
to non-symmetric Lévy processes. The resulting multipliers are given in Theo-
rem1.1below. We remark that forµ = 0 and symmetricV the result was proved
in [2, Theorem 1]. The present Theorem1.1 is a generalization, but the symbols
(1.4) are very similar to those given in [2].

Given a Borel measureV ≥ 0 onRd such thatV ({0}) = 0 and
∫

Rd

min(|z|2, 1)V (dz) <∞ (1.3)

(that is, a Lévy measure), a finite Borel measureµ ≥ 0 on the unit sphereS in
Rd, and Borel measurable complex-valued functionsφ onRd andϕ onS such that
‖ϕ‖∞ ≤ 1 and‖φ‖∞ ≤ 1, we define

M (ξ) =
1
2

∫
S
(ξ, θ)2 ϕ (θ)µ (dθ) +

∫
Rd [1− cos(ξ, z)]φ (z) V (dz)

1
2

∫
S
(ξ, θ)2 µ (dθ) +

∫
Rd [1− cos(ξ, z)]V (dz)

, (1.4)

where we letM(ξ) = 0 if the denominator equals zero. Clearly,‖M‖∞ ≤ 1.
Here and for the rest of this paper, the pairing between vectors,

(ξ, η) =

d∑

n=1

ξnηn , if ξ, η ∈ Rd orCd , (1.5)

is without complex conjugation. We also denote|ξ|2 =
∑d

n=1 |ξn|2 = (ξ, ξ). If
M vanishes on a set of positive Lebesgue measure, thenV = 0, µ = 0 and hence
M ≡ 0. This was proved in [2].

Theorem 1.1. If 1 < p <∞ andM is defined by(1.1) and(1.4) then

‖Mf‖p ≤ (p∗ − 1)‖f‖p , f ∈ Lp(Rd) . (1.6)

In particular, lettingV = 0 in (1.4) yields the symbol

M (ξ) =

∫
S
(ξ, θ)2 ϕ (θ)µ (dθ)∫
S
(ξ, θ)2 µ (dθ)

, (1.7)
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or

M(ξ) =
(Aξ, ξ)

(Bξ, ξ)
, (1.8)

whereA = [Ak,l]k,l=1,...,d andB = [Bk,l]k,l=1,...,d are given by

Ak,l =

∫

S

θkθl ϕ (θ)µ(dθ) , Bk,l =

∫

S

θkθl µ(dθ) . (1.9)

These matrices are symmetric, andB is nonnegative definite. We have

Aξ =

∫

S

θ(ξ, θ)φ(θ)µ(θ) , ξ ∈ Rd ,

and(Bξ, ξ) =
∫
S
(ξ, θ)2µ(dθ), hence

|(Aξ, ξ)| ≤ (Bξ, ξ) , ξ ∈ Rd . (1.10)

For instance, the approach yields the boundp∗ − 1 for the multiplier with the
symbol−2ξ1ξ2/|ξ|2 via

A =




0 −1 0 · · · 0
−1 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


 ,

andB = I, the identity matrix. We thus obtain2R1R2, the second order Riesz
transform multiplied by two. It is known that the norm of thisoperator indeed
equalsp∗ − 1 [12, Corollary 3.2], so the constant in (1.6) cannot be improved in
general. On the other hand, our method will only give the upper bound2(p∗ − 1)
for the norm of the operator resulting from

A =

[
1 −i
−i −1

]
(1.11)

andB = I. Namely, we will show in Lemma4.2 below that in this case the
representation (1.9) may only hold with‖φ‖∞ ≥ 2. We should remark that|Aξ| =
|ξ| for ξ ∈ R2 (|Aξ| ≤ 2|ξ| for ξ ∈ C2), and it is known that the estimate2(p∗−1)
is not optimal; see [1] and the discussion in Section4.

The paper is organized as follows. Section2 has a didactic purpose. We
namely considerB = I in (1.9). This case can be resolved by means of the
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standard Itô calculus for the Brownian motion. A similar argument was first given
in [4], and has since appeared in many different places and settings, but we believe
it is worth repeating here with notation emphasizing analogies with Section3.
In this way we hope to make the rest of the paper more readable for those less
familiar with the stochastic calculus of Lévy processes. In Section3 we give the
proof and a discussion of Theorem1.1. First of all, by using a simple algebra we
reduce the symbols (1.4) to those of [2, Theorem 1]. This gives a proof but not
much insight, since [2] only concerns symmetric Lévy processes. Therefore in the
remainder of Section3 we present the stochastic calculus leading to the symbols
(1.4). Our main purpose is to explain why the non-symmetry of the process is not
reflected in the symbol. For instance we will see in (3.28) that the drift of the Lévy
process does not contribute toM . Examples and further discussion are given in
Section4.

Throughout the paper we only consider Borel functions, measures and sets in
Rd. For 1 ≤ p < ∞ we letLp = Lp(Rd, dx) be the class of complex-valued

functionsf on Rd with finite ‖f‖p =
[∫

Rd |f(x)|pdx
]1/p

. L∞ = L∞(Rd) are
those functionsf for which ‖f‖∞ = supx∈Rd |f(x)| < ∞, C1

b = {f ∈ L∞ :
‖∇f‖∞ < ∞}, andC1

c consists of those functions inC1
b which have compact

support. Similarly,L∞
c are compactly supported functions inL∞. We recall that

C1
c is dense inLp for eachp ∈ [1,∞). Our convention for the Fourier transform

will be

f̂(ξ) =

∫

Rd

ei(ξ,z)f(z)dz , ξ ∈ Rd .

If ρ is a probability measure onRd andk ∈ L1, then Fubini’s theorem yields
∫

Rd

∫

Rd

k(x+ y)ρ(dy)dx =

∫
k(x)dx . (1.12)

2 Brownian martingales and Itô calculus

In this section we present a simple approach to Fourier multipliers with symbols of
the form (1.8). We will use the familiar Itô calculus for the Brownian motion, for
which we refer the reader to [17], [18] or [19]. The main ideas will be similar to
those in Section3 below, but the calculations are shorter and simpler. As already
mentioned, we hope that this will be easier to read for those familiar with the
basics of the Itô calculus but perhaps not as familiar with the stochastic calculus
of jump processes used in Section3.
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We letP andE be the probability and expectation for a family ofBrownian
incrementsBs,t. Namely, letB(1)

t , B(2)
t , t ≥ 0, be independent Brownian motions

in Rd starting at the origin, letBu = −B(1)
−u if u < 0 andBu = B

(2)
u if u ≥ 0. For

−∞ < s < t < ∞ we letBs,t = Bt − Bs. These increments are independent for
disjoint time intervals. They are also Gaussian and centered, with variancet− s.
We will consider the filtration

Ft = σ{Bs,t ; s ≤ t} , t ∈ R ,

and the Gaussian convolution semigroup

pt(x) = (2πt)−d/2 exp(−|x|2/2t) , t > 0, x ∈ Rd . (2.1)

It is well-known that
p̂t(ξ) = e−t|ξ|2/2 , ξ ∈ Rd , (2.2)

and that the heat equation holds forpt(x),

∂

∂t
pt(x) =

1

2
∆xpt(x) . (2.3)

We also have thatpt−s(x)dx is the distribution ofBs,t, for s < t. Let g ∈ C1
b . For

x ∈ Rd and finitet < u, we define

Pt,ug(x) = Eg(x+Bt,u) = pu−t ∗ g(x) , (2.4)

andPu,ug(x) = g(x). Fors ≤ t ≤ u we define the following Brownian parabolic
martingale

Gt = Gt(x; s, u; g) = Pt,ug(x+Bs,t) . (2.5)

Indeed,t 7→ Gt is an{Ft}-martingale on[s, u]. This follows from the Markov
property of the Brownian motion; see [2, Lemma 2]. Note that regardless oft, the
entire time interval[s, u] is involved inGt as the ”evolution” froms to t proceeds
via the Brownian motion, while that fromt to u goes by its expectations. In fact,
the martingale equals an Itô integral plus a constant. Thisfollows from (2.4) and
(2.3) by simply applying the Itô formula to the processt 7→ (u− t, Bt − Bs),

Gt −Gs =

∫ t

s

(
∂

∂v
Pv,ug

)
(x+Bs,v)dv +

∫ t

s

∇xPv,ug(x+Bs,v)dBv

+

∫ t

s

1

2
∆xPv,ug(x+Bs,v)dv =

∫ t

s

∇xPv,ug(x+Bs,v)dBv . (2.6)
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G is bounded, hence square integrable. The quadratic variation ofG is

[G,G]t = |Gs|2 +
∫ t

s

|∇xPv,ug(x+Bs,v)|2 dv . (2.7)

LetA be a real or complexd× d matrix such that

|Az| ≤ |z| , z ∈ Cd . (2.8)

Let f ∈ C1
c . Fors ≤ t ≤ u we consider the martingale

Ft = Ft(x; s, u; f,A) =

∫ t

s

A∇xPv,uf(x+Bs,v)dBv. (2.9)

The quadratic variation ofF is

[F, F ]t =

∫ t

s

|A∇xPv,uf(x+Bs,v)|2 dv . (2.10)

By (2.8), F = F (x; s, u; f,A) is differentially subordinatetoG = G(x; s, u; f),
in the following sense introduced in [5]:

0 ≤ [G,G]t − [F, F ]t is non-decreasing fort ∈ [s, u] . (2.11)

Let p ∈ (1,∞). By [5, Theorem 2],

E|Ft(x; s, u; f,A)|p ≤ (p∗ − 1)pE|Gt(x; s, u; f)|p , s ≤ t ≤ u , (2.12)

providedp ∈ (1,∞). By (2.12), (1.12) and (2.1),
∫

Rd

E|Fu(x; s, u; f,A)|pdx ≤ (p∗ − 1)p
∫

Rd

E|Gu(x; s, u; f)|pdx

= (p∗ − 1)p‖f‖pp . (2.13)

Let q = p/(p− 1). By Hölder’s inequality forP⊗ dx, (2.13) and (1.12),
∫

Rd

E|Fu(x; s, u; f,A)g(x+Bs,u)|dx ≤ (p∗ − 1)‖f‖p‖g‖q . (2.14)

Therefore there is a unique functionh ∈ Lp such that

Λ(g) :=

∫

Rd

EFu(x; s, u; f,A)g(x+Bs,u)dx =

∫

Rd

h(x)g(x)dx , (2.15)
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if g ∈ Lq, and we have
‖h‖p ≤ (p∗ − 1)‖f‖p . (2.16)

For a deeper understanding ofΛ we will use the classical Burkholder-Gundy in-
equalities (see for example, [10, p. 155] or the original paper [8]). Namely, for
eachr ∈ (0,∞) there is constant0 < cr <∞ depending only onr such that

c−1
r E(F ∗

u )
r ≤ E[F, F ]r/2u ≤ crE(F

∗
u)

r (2.17)

whereF ∗
u = sups≤v≤u |Fv| is the maximal function of the martingaleFt. Applying

(2.17) for r = 1 yields the following integrability ofFu,
∫

Rd

E|Fu(x; s, u; f,A)|dx ≤ c1

∫

Rd

E

(∫ u

s

|∇xPv,uf(x+Bs,v)|2dv
)1/2

dx

≤ c1‖∇f‖1/2∞

∫

Rd

E

(∫ u

s

|∇xPv,uf(x+Bs,v)|dv
)1/2

dx

≤ c1‖∇f‖1/2∞

∫

Rd

(
E

∫ u

s

|∇xPv,uf(x+Bs,v)|dv
)1/2

dx

≤ c1‖∇f‖1/2∞ (u− s)1/2
∫

Rd

(Ps,u|∇f |(x))1/2 dx <∞ , (2.18)

becausePs,u|∇f |(x) decays exponentially as|x| → ∞. It follows that |Λ(g)| ≤
c‖g‖∞. By considerg approximatingh/|h| we see thath ∈ L1. We will now give
an alternative representation ofΛ. We have

ab = (|a+ b|2 − |a− b|2 + i|a+ ib|2 − i|a− ib|2)/4 , a, b ∈ C . (2.19)

By this, (2.7) and (2.10),

EFuGu = EFu(Gu −Gs)

= E

∫ u

s

(
A∇xPv,uf(x+Bs,v),∇xPv,ug(x+Bs,v)

)
dv. (2.20)

We claim that

Λ(g) =

∫

Rd

∫ u

s

∫

Rd

(
A∇xPv,uf(x+y),∇xPv,ug(x+y)

)
pv−s(dy)dvdx . (2.21)

Indeed, (2.21) follows from Fubini’s theorem, since
∫

Rd

∫ u

s

∫

Rd

|Pv,u∇f(x+ y)| |Pv,u∇g(x+ y)| pv−s(dy)dvdx

≤ ‖∇g‖∞‖∇f‖1(u− s) <∞ .
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Arguing as in (2.18) the reader may also verify that
∫

Rd

∫ u

s

∫

Rd

|∇xPv,uf(x+ y)| |Pv,ug(x+ y)| pv−s(dy)dvdx ≤cpcq‖f‖p‖g‖q ,

but this will not be used in the sequel, and (2.12) gives a better constant.
Let ξ ∈ Rd, eξ(x) = ei(ξ,x) ∈ C1

b , Et(x; s, u; ξ) = Gt(x; s, u; eξ). We have

Pv,ueξ(x) =

∫

Rd

ei(ξ,x+y)pu−v(dy) = e−(u−v)|ξ|2/2eξ(x) ,

and
∇xPv,ueξ(x) = e−(u−v)|ξ|2/2eξ(x)iξ .

By (2.15), (2.21) and (1.12) we obtain

ĥ(ξ) =

∫

Rd

h(x)eξ(x)dx = Λ(eξ) (2.22)

=

∫

Rd

∫

Rd

∫ u

s

(
A∇xPv,uf(x+ y), iξ

)
e−(u−v)|ξ|2/2eξ(x+ y)dvpv−s(y)dydx

=

∫ u

s

∫

Rd

(
A∇xPv,uf(x), iξ

)
e−(u−v)|ξ|2/2eξ(x)dxdv

=

∫ u

s

(
− iAξe−(u−v)|ξ|2/2f̂(ξ), iξ

)
e−(u−v)|ξ|2/2dv

= f̂(ξ)
(Aξ, ξ)

|ξ|2 [1− e−(u−s)|ξ|2] if ξ 6= 0,

andĥ(0) = 0. Thus the mapf 7→ h is a Fourier multiplier with the symbol

(Aξ, ξ)|ξ|−2[1− e−(u−s)|ξ|2].

The reader puzzled by the fact thath ∈ L1 may find comfort in noticing that this
symbol is continuous at the origin. We letu = 0 ands → −∞. The symbol
converges to(Aξ, ξ)/|ξ|2 and the functionh converges inL2 by Plancherel’s the-
orem. A subsequence converges almost everywhere, and by Fatou’s lemma and
(2.16) the limit hasLp norm bounded by(p∗ − 1)‖f‖p. SinceC1

c is dense inLp,
the Fourier multiplier with the symbol(Aξ, ξ)/|ξ|2 extends toLp, with the norm
not exceedingp∗ − 1.

If A is a general square real or complexd × d matrix, thenA/‖A‖ satisfies
(2.8), hence the Fourier multiplier with the symbol(Aξ, ξ)/|ξ|2 has the norm at
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most‖A‖(p∗ − 1) onLp. Here‖A‖ is the (spectral) operator norm ofA, induced
by the Euclidean norm onCd. On occasions, ifPv,uf(x) has a restricted range of
values, (2.9) need only to hold in this range. In particular, the multiplier given by
(1.8) and (1.11) has the norm at most2(p∗ − 1) when acting on complex-valued
functions, and at most

√
2(p∗ − 1) when restricted to real-valued functions.

As already mentioned in the Introduction, the symbols (1.8) and theirLp esti-
mates are not new. We refer the reader to [1] for a detailed discussion of further
symbols that can be obtained by transformations of more general Itô integrals, and
for their applications. We also like to note that our calculations of the symbol may
be considered a probabilistic counterpart of the identity

(Aξ, ξ)

|ξ|2 =
1

2
(Aξ, ξ)

∫ ∞

0

e−t|ξ|2/2dt . (2.23)

A semigroup counterpart of (2.23) is mentioned in [2].

3 Lévy-Itô calculus and Fourier multipliers

Proof of Theorem1.1. We will first considerµ = 0 in (1.4), i.e. we will prove the
theorem for symbols of the form

∫
[1− cos(ξ, z)]φ (z) V (dz)∫

[1− cos(ξ, z)]V (dz)
. (3.1)

For A ⊂ Rd we let V̆ (A) = [V (A) + V (−A)]/2 (the symmetrization ofV ),
Ṽ (A) = [V (A)−V (−A)]/2 (the antisymmetric part ofV ). We also definĕφ(z) =
[φ(z) + φ(−z)]/2, φ̃(z) = [φ(z) − φ(−z)]/2 for z ∈ Rd. The functionz 7→
cos(ξ, z) is symmetric, hence

∫
Rd[1− cos(ξ, z)]V (dz) =

∫
Rd[1− cos(ξ, z)]V̆ (dz).

We note that

φV = (φ̆+ φ̃)(V̆ + Ṽ ) =
(
φ̆V̆ + φ̃Ṽ

)
+
(
φ̆Ṽ + φ̃V̆

)

as measures, and so for everyξ ∈ Rd we have
∫
Rd[1− cos(ξ, z)]φ(z)V (dz)∫

Rd[1− cos(ξ, z)]V (dz)
=

∫
Rd[1− cos(ξ, z)]

(
φ̆V̆ + φ̃Ṽ

)
(dz)

∫
Rd[1− cos(ξ, z)]V̆ (dz)

. (3.2)

SinceV̆ +Ṽ = V ≥ 0, we have that̃V = kV̆ , with an antisymmetric real function
k such that|k| ≤ 1. Thus, in the numerator of (3.2) we eventually integrate against
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φ∗V̆ , whereφ∗ = φ̆ + kφ̃ = 1+k
2
(φ̆ + φ̃) + 1−k

2
(φ̆ − φ̃), a convex combination.

If |φ| ≤ 1 on Rd then |φ̆ ± φ̃| ≤ 1 on Rd. By convexity we see that|φ∗| ≤ 1.
Application of [2, Theorem 1] toV̆ andφ∗ gives theLp estimate (1.6) for the
Fourier multiplier with the symbol (3.1).

We will now prove the general result. ConsiderM given by (1.4) and letε > 0.
In polar coordinates(r, θ) ∈ (0,∞)× S we define Lévy measure

νε(drdθ) = ε−2δε(dr)µ(dθ) .

Here δε is the probability measure concentrated on{ε}. We consider multi-
plier Mε on L2(Rd) with symbolMε defined by (3.1) where the Lévy mea-
sure is replaced by1{|z|>ε}V + νε and the jump modulator is replaced by
1{|z|>ε}φ(z) + 1{|z|=ε}ϕ(z/|z|). We letε → 0 and note that
∫

Rd

[1− cos(ξ, z)]ϕ(z/|z|)νε (dz) =

∫

S

(ξ, θ)2ϕ(θ)
[1− cos(ξ, εθ)]

(ξ, εθ)2
µ(dθ)

→ 1

2

∫

S

(ξ, θ)2ϕ(θ)µ(dθ) . (3.3)

If f ∈ L2(Rd), thenMεf → Mf in L2(Rd) by Plancherel’s theorem and
bounded pointwise convergence of the symbols. A sequence,Mεnf , converges
to Mf almost everywhere, asεn → 0. If f ∈ L2(Rd) ∩ Lp(Rd) then by
Fatou’s lemma and the first part of the proof applied toMεn we have that
‖Mf‖p ≤ (p∗ − 1)‖f‖p. This proves the general case becauseM extends
uniquely to the whole ofLp(Rd) without increasing the norm.

In the remainder of this section we will show how the symbolM in (3.1) is
obtained from transforming parabolic martingales relatedto non-symmetric Lévy
processes. Our main purpose is to elucidate as clearly as possible at which point
the drift and asymmetry of the Lévy measure disappear from the picture, so that
only symmetric symbols remain. The phenomenon was quite a surprise to the
authors and it may be important in extending the methods of this paper. We will
closely follow the development of [2]. The reader may also consult [17] or [19]
for general information about the stochastic calculus of jump processes.

For a measureµ, setA, function f , and pointa, we define the quantities
µ̌(A) = µ(−A), µ(f) =

∫
f(x)µ(dx), (fµ)(A) =

∫
A
f(x)µ(dx), fa(x) =

f(x+ a), and(µ)a(f) =
∫
f(x+ a)µ(dx) = µ(fa).

Let ν ≥ 0 be an arbitraryfinitenonzero measure onRd not charging the origin.
Let |ν| = ν(Rd) andν̃ = ν/|ν|. Let P andE be the probability and expectation
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for a family of independent random variablesTi andZi, i = ±1,±2, . . ., where
eachTi is exponentially distributed withETi = 1/|ν|, and eachZi hasν̃ as its
distribution. We letSi = T1 + . . . + Ti, for i = 1, 2, . . ., andSi = −(T−1 +
. . .+ Ti), for i = −1,−2, . . .. For−∞ < s < t < ∞ we letXs,t =

∑
s<Si≤t Zi,

Xs,t− =
∑

s<Si<t Zi and∆Xs,t = Xs,t − Xs,t−. We note thatN (B) = #{i :
(Si, Zi) ∈ B} is a Poisson random measure onR × Rd with intensity measure
dv ν(dx), andXs,t =

∫
s<v≤t

xN (dvdx) is the Lévy-Itô decomposition ofX; see
[21]. Alternatively, we may also considerN as the initial datum, and then(Si, Zi)
may be defined as the atoms ofN . The number ofsignalsSi such thats < Si ≤ t
equalsN(s, t) = N ((s, t] × Rd). We consider the generic compound Poisson
process with the drift,

Xb
s,t = Xs,t + (t− s)b . (3.4)

Hereb ∈ Rd. It is well-known that every Lévy process onRd can be obtained
as a limit of such processes. Again, we refer the reader to [21]. As we will see,
the study of{Xb

s,t} easily reduces to that of{Xs,t}, or to the case ofb = 0. For
instance, our notation gives

Ef(Xb
s,t) = Ef (t−s)b(Xs,t) . (3.5)

Lemma 3.1. For boundedF : R× Rd × Rd → C, and finites ≤ t,

E

∑

s<Si≤t

F (Si, X
b
s,Si−

, Xb
s,Si

) = E

∫ t

s

∫

Rd

F (v,Xb
s,v−, X

b
s,v−+ z)ν(dz)dv . (3.6)

Proof. By consideringF ∗(v, x, y) = F (v, x + (v − s)b, y + (v − s)b) we can
assume thatb = 0 in (3.6). In this case the proof of [2, Lemma 1] applies (the
symmetry ofν was not used in that proof). For clarity we note thatN(s, t) is
exponentially integrable, and so is the sum in (3.6).

In particular, for finites ≤ t and boundedF we have

E

∑

s<Si≤t

[
F (Si, X

b
s,Si−

, Xb
s,Si

)− F (Si, X
b
s,Si−

, Xb
s,Si−

)
]

= E

∫ t

s

∫

Rd

[
F (v,Xb

s,v−, X
b
s,v− + z)− F (v,Xb

s,v−, X
b
s,v−)

]
ν(dz)dv . (3.7)

In what follows we will consider the filtration

Ft = σ{Xs,t ; s ≤ t} = σ{Xb
s,t ; s ≤ t} , t ∈ R .

11



For t ∈ R we define

pt = e∗t(ν−|ν|δ0) =

∞∑

n=0

tn

n!
(ν − |ν|δ0)∗n = e−t|ν|

∞∑

n=0

tn

n!
ν∗n . (3.8)

The series converges in the norm of absolute variation of measures. Clearly,

∂

∂t
pt = (ν − |ν|δ0) ∗ pt , t ∈ R , (3.9)

andpt1 ∗ pt2 = pt1+t2 for t1, t2 ∈ R. By (3.8) we havept ≥ 0 for t ≥ 0. In fact,
pv−s is the distribution ofXs,v, as well as ofXs,v−, whenevers ≤ v. In particular,
if b = 0 then the sides of (3.6) equal

∫ t

s

∫

Rd

∫

Rd

F (v, y, y + z)ν(dz)pv−s(dy)dv , (3.10)

and the extension tob 6= 0 is straightforward, see, e.g., (3.25). Let

Ψ(ξ) =

∫

Rd

[
ei(ξ,z) − 1

]
ν(dz) , ξ ∈ Rd . (3.11)

We directly verify thatΨ is bounded and continuous onRd, Ψ(−ξ) = Ψ(ξ),
ℜψ(ξ) =

∫
Rd [cos(ξ, z)− 1]ν(dz) (compare the denominator in (3.1)), and

p̂t(ξ) =

∫

Rd

ei(ξ,x)pt(dx) = etΨ(ξ) , ξ ∈ Rd . (3.12)

Ψ is the Lévy-Khinchine exponent and (3.12) is the Lévy-Khinchin formula. We
also consider the convolution semigroup with the drift of speedb,

pbt = (pt)
tb , t ≥ 0 ,

that ispbt(f) = pt(f
tb). We have

p̂bt(ξ) =

∫

Rd

ei(ξ,x+tb)pt(dx) = eit(ξ,b)+tΨ(ξ) , ξ ∈ Rd . (3.13)

In what followsf ∈ L∞
c andg ∈ L∞. Forx ∈ Rd and finitet ≤ u we define

P b
t,ug(x) = Eg(x+Xb

t,u) =

∫

Rd

g(x+ y)pbu−t(dy) . (3.14)

12



This is the convolution with the reflection ofpbu−t, and we have

P̂ b
t,uf(ξ) = f̂(ξ)p̂bu−t(−ξ) = f̂(ξ)e−i(u−t)(ξ,b)+(u−t)Ψ(−ξ) , ξ ∈ Rd . (3.15)

We denotePt,u = P 0
t,u. By (3.14) we getP b

t,ug = Pt,u(g
(u−t)b).

Fors ≤ t ≤ u we define the followingparabolic martingale

Gb
t = Gb

t(x; s, u; g) = P b
t,ug(x+Xb

s,t) = Pt,ug
(u−s)b(x+Xs,t) . (3.16)

We will also writeGt = G0
t . By [2, Lemma 2] and (3.16), t 7→ Gb

t is indeed a
(bounded){Ft}-martingale on[s, u] (see also the discussion below).

Let φ be complex-valued and let|φ(z)| ≤ 1 for z ∈ Rd.
Forx ∈ Rd ands ≤ t ≤ u, we defineF b

t = F b
t (x; s, u; g, φ) as

∑

s<Si≤t

[
P b
Si,u

g(x+Xb
s,Si

)− P b
Si,u

g(x+Xb
s,Si−

)
]
φ(Xb

s,Si
−Xb

s,Si−
)

−
∫ t

s

∫

Rd

[
P b
v,ug(x+Xb

s,v− + z)− P b
v,ug(x+Xb

s,v−)
]
φ(z)ν(dz)dv .(3.17)

We letFt = F 0
t , and note thatF b

t (x; s, u; g, φ) = Ft(x; s, u; f
(u−s)b, φ). It now

follows from [2, Lemma 3 and Lemma 4] thatF b
t is an{Ft}-martingale int ∈

[s, u], andE|Ft|p <∞ for everyp > 0. We have

Gb
t(x; s, u; g) = Gt(x; s, u; g

(u−s)b) = Ft(x; s, u; g
(u−s)b, 1) + Ps,u(g

(u−s)b)(x)

= F b
t (x; s, u; g, 1) +Gb

s(x; s, u; g) , (3.18)

where we have used [2, Lemma 5]. The equality (3.18) may also be considered a
consequence of Itô formula for the space-time processt 7→ (u − t, Xs,t). In fact,
this is very simple becauseXs,t is piecewise constant. We have

Gt(x; s, u; g) − Gs(x; s, u; g) =

∫ t

s

(
∂

∂v
Pv,u

)
g(x+Xs,v−)dv

+
∑

s<v≤t

[Pv,ug(x+Xs,v)− Pv,ug(x+Xs,v−)] , (3.19)

where the sum is taken overv such thatXs,v 6= Xs,v− (or see [17, Theorem II.31],
[11, p. 140]). Using (3.9) and Lemma3.1we now obtain that the expression has
zero expectation and, moreover, it is a martingale. Lettkn = s+k(t−s)/n, where
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k = 0, . . . , n, andn → ∞. SinceF b
t is square integrable (in fact, exponentially

integrable), by orthogonality of increments we have

E
∣∣F b

t

∣∣2 = E

n∑

k=1

∣∣∣F b
s,tn

k

− F b
s,tn

k−1

∣∣∣
2

→ E

∑

s<Si≤t

∣∣P b
Si,u

g(x+Xb
s,Si

)− P b
Si,u

g(x+Xb
s,Si−

)
∣∣2 ∣∣φ(∆Xb

s,Si
)
∣∣2 ,

The convergence follows from the fact that the integral in (3.17) is Lipschitz
continuous int. Hence the quadratic variation ([17], [9]) of F b is

[F b, F b]t =
∑

s<Si≤t

∣∣P b
Si,u

g(x+Xb
s,Si

)− P b
Si,u

g(x+Xb
s,Si−

)
∣∣2 |φ(∆Xs,Si

)|2 .

(3.20)
By (3.18), the quadratic variation ofGb is

[Gb, Gb]t = |P b
s,ug(x)|2 +

∑

s<Si≤t

∣∣P b
Si,u

g(x+Xb
s,Si

)− P b
Si,u

g(x+Xb
s,Si−

)
∣∣2 .

Thus,F b(x; s, u; g, φ) is differentially subordinate toGb(x; s, u; g), see (2.11).
This time we appeal to the result of Wang [25, Theorem 1] for general martingales
with jumps, to conclude that forp ∈ (1,∞),

E|F b
t (x; s, u; f, φ)|p ≤ (p∗ − 1)pE|Gb

t(x; s, u; f)|p , s ≤ t ≤ u . (3.21)

We haveGb
u(x; s, u; f) = f(x+Xb

s,u), and using (3.21) and (1.12) we obtain
∫

Rd

E|F b
u(x; s, u; f, φ)|pdx ≤ (p∗ − 1)p

∫

Rd

E|f(x+Xb
s,u)|pdx = (p∗ − 1)p‖f‖pp .

By Hölder’s inequality and (1.12) we get
∫

Rd

E|F b
u(x; s, u; f, φ)g(x+Xb

s,u)|dx ≤ (p∗ − 1)‖f‖p‖g‖q . (3.22)

Therefore there is a unique functionh ∈ Lp such that
∫

Rd

EF b
u(x; s, u; f, φ)g(x+Xb

s,u)dx =

∫

Rd

h(x)g(x)dx, (3.23)

if g ∈ Lq, and we have
‖h‖p ≤ (p∗ − 1)‖f‖p . (3.24)
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We will identify h. By (3.20), (2.19) and Lemma3.1,

EF b
uG

b
u = EF b

u(x; s, u; f, φ)[G
b
u(x; s, u; g)− P b

s,ug(x)]

= E

∑

s<Si≤u

[
P b
Si,u

f(x+Xb
s,Si

)− P b
Si,u

f(x+Xb
s,Si−

)
]

[P b
Si,u

g(x+Xb
s,Si

)− P b
Si,u

g(x+Xb
s,Si−

)]φ(∆Xs,Si
)

= E

∫ u

s

∫

Rd

[
P b
v,uf(x+Xb

s,v− + z)− P b
v,uf(x+Xb

s,v−)
]

[P b
v,ug(x+Xb

s,v− + z)− P b
v,ug(x+Xb

s,v−)]φ(z)ν(dz)dv

=

∫ u

s

∫

Rd

∫

Rd

[
P b
v,uf(x+ y + z)− P b

v,uf(x+ y)
]

(3.25)

[P b
v,ug(x+ y + z)− P b

v,ug(x+ y)]φ(z)ν(dz)pbv−s(dy)dv .

To justify applications of Fubini’s theorem in what follows, we note that (1.12)
and the finiteness ofν imply

∫

Rd

∫ u

s

∫

Rd

∫

Rd

∣∣P b
v,uf(x+ y + z)− P b

v,uf(x+ y)
∣∣

∣∣P b
v,ug(x+ y + z)− P b

v,ug(x+ y)
∣∣φ(z)ν(dz)pbv−s(dy)dvdx

≤ 4‖g‖∞|ν|
∫ u

s

‖P b
v,uf‖1dv ≤ 4|ν|(u− s)‖g‖∞‖f‖1 <∞ . (3.26)

In particular, h ∈ L1, see (3.23). Considerξ ∈ Rd, eξ(x) = ei(ξ,x), and
E b
t (x; s, u; ξ) = Gb

t(x; s, u; eξ), s ≤ t ≤ u. We have

P b
v,ueξ(x) =

∫

Rd

ei(ξ,x+y)pbu−v(dy) = eξ(x)e
(u−v)[i(ξ,b)+Ψ(ξ)] , v ≤ u ,

thus

EF b
uE b

u =

∫ u

s

∫

Rd

∫

Rd

[
P b
v,uf(x+ y + z)− P b

v,uf(x+ y)
]

(3.27)

ei(ξ,x+y)[ei(ξ,z) − 1]e(u−v)[i(ξ,b)+Ψ(ξ)]φ(z)ν(dz)pbv−s(dy)dv .

We recall (3.23), (3.25), (3.26) and (3.27), and conclude that

ĥ(ξ) =

∫

Rd

∫ u

s

∫

Rd

∫

Rd

[
P b
v,uf(x+ y + z)− P b

v,uf(x+ y)
]

ei(ξ,x+y)[ei(ξ,z) − 1]e(u−v)[i(ξ,b)+Ψ(ξ)]φ(z)ν(dz)pbv−s(dy)dvdx .
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Using (1.12) and (3.15) we obtain

ĥ(ξ) =

∫ u

s

∫

Rd

∫

Rd

[
P b
v,uf(x+ z)− P b

v,uf(x)
]

ei(ξ,x)dx [ei(ξ,z) − 1]e(u−v)[i(ξ,b)+Ψ(ξ)]φ(z)ν(dz)dv

=

∫ u

s

∫

Rd

[e−i(ξ,z) − 1]f̂(ξ)e(u−v)[−i(ξ,b)+Ψ(−ξ)]

[ei(ξ,z) − 1]e(u−v)[i(ξ,b)+Ψ(ξ)]φ(z)ν(dz)dv

= f̂(ξ)

∫ u

s

e2(u−v)ℜΨ(ξ)dv

∫

Rd

|ei(ξ,z) − 1|2φ(z)ν(dz) (3.28)

= f̂(ξ)
[
1− e2(u−s)ℜΨ(ξ)

] ∫

Rd

[cos(ξ, z)− 1]φ(z)ν(dz)/ℜΨ(ξ) ,

if ℜΨ(ξ) =
∫
[cos(ξ, z)−1]ν(dz) < 0, andĥ(ξ) = 0 if ℜΨ(ξ) = 0. This identifies

the functionh in (3.23). We conclude thatf 7→ h is a Fourier multiplier with the
symbol ∫

Rd[cos(ξ, z)− 1]φ(z)ν(dz)∫
Rd [cos(ξ, z)− 1]ν(dz)

[
1− e2(u−s)ℜΨ(ξ)

]
. (3.29)

By (3.24) and the density ofC1
b in Lp, the operator norm of the multiplier does not

exceedp∗−1 onLp. The above readily yields the symbols (3.1) with the sameLp

boundp∗− 1 for the corresponding operators. Indeed, ifV is an arbitrary (i.e. not
necessarily finite or symmetric) Lévy measure, then we considerε > 0 and define
ν as the restriction ofV to {z : |z| > ε}. We then letu = 0, ε ↓ 0, s → −∞ in
(3.29), and employ a limiting argument similar to the one following (3.3).

Here we should note that the asymmetry of the Lévy measure and the drift
given byb have disappeared from our formulas in (3.28).

4 Further discussion and examples

We will comment on the relation between (1.7) and (1.8).

Lemma 4.1. If A is a complex symmetricd×dmatrix, and|Aξ| ≤ |ξ| for ξ ∈ Rd,
thenµ ≥ 0 andϕ exist such that‖ϕ‖∞ ≤ 2, and

(Aξ, ξ) =

∫

S

(ξ, θ)2 ϕ (θ)µ (dθ) and
∫

S

(ξ, θ)2 µ (dθ) = (ξ, ξ) , ξ ∈ Rd .

If ℜA andℑA commute, then we may select‖ϕ‖∞ ≤ 1.
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Proof. Recall thatA is symmetric but not necessarily Hermitian. Assume first that
A is normal, that isℜA andℑA commute. Then they have common eigenvectors
ak ∈ Rd, andAak = λkak, whereλk ∈ C, and|λk| ≤ 1 for k = 1, . . . , d. For
ξ ∈ Rd,

d∑

k=1

(ξ, ak)
2 = |ξ|2 ,

and

(Aξ, ξ) =

(
d∑

k=1

(ξ, ak)Aak,
d∑

k=1

(ξ, ak)ak

)
=

d∑

k=1

λk(ξ, ak)
2 .

Let µ =
∑d

k=1 δak andϕ(ak) = λk, so that‖ϕ‖∞ ≤ 1. Hereδa is the Dirac
measure ata.

If ℜA and iℑA do not commute then we consider each of them separately
as in the first part of the proof, and we add the respective measuresµ, and the
measuresϕµ. We see that the resultingϕ is bounded by1 but we only obtain a
representation of(Aξ, ξ)/[2(ξ, ξ)].

We consider the Beurling-Ahlfors operator. It is the singular integral on the
complex planeC (identified withR2), defined for smooth compactly supported
functionsf as follows

Bf(z) = −1

π
p.v.

∫

C

f(w)

(z − w)2
dm(w) , z ∈ C . (4.1)

Herem is the planar Lebesgue measure. It is well known thatB is a Fourier
multiplier with the symbol

M(ξ) =
ξ
2

|ξ|2
= e−2i arg ξ , (4.2)

whereξ = (ξ1, ξ2) ∈ R2 is identified withξ1 + iξ2 ∈ C. For a detailed discussion
of B, its numerous connections and applications in analysis, partial differential
equations and quasiconformal mappings, we refer to [1] and the many references
given there.

The above symbolM is precisely the one given by (1.8) and (1.11). In partic-
ular, Lemma4.1and Theorem1.1apply, and the operator norm ofB onLp does
not exceed2(p∗ − 1). In fact, µ uniform on{1, i, eiπ/4, e−iπ/4}, andφ(1) = 2,
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φ(i) = −2, φ(eiπ/4) = −2i, φ(e−iπ/4) = 2i, give a representation (1.7) of (4.2).
We note that the bound2(p∗ − 1) was first obtained in [24] using certain Bell-
man function constructed from Burkholder’s discrete martingale inequalities. The
Itô calculus approach was presented in [4] to get this bound, as in our Section2.
The best bound to date for the operator norm ofB on Lp is given in [3]. We
refer the reader to [1] for a thorough discussion of T. Iwaniec’s conjecture that
‖B‖ = p∗ − 1, and further references.

As it stands, our approach cannot improve the bound2(p∗ − 1) for (4.2) be-
cause of the following fact, which should be compared with (1.7).

Lemma 4.2. If ϕ and nonzeroµ ≥ 0 onS ⊂ R2 are such that
∫

S

(ξ, θ)2 ϕ(θ)µ(dθ) = e−2i arg ξ

∫

S

(ξ, θ)2 µ(dθ) , ξ ∈ R2 , (4.3)

then‖ϕ‖∞ ≥ 2.

Proof. We can assume thatϕ is bounded. We denotet = arg ξ, s = arg θ, and
identifyϕ(θ) andµ(dθ) with ϕ(s) andµ(ds), correspondingly. We have

(ξ, θ)2 = cos2(t− s) =
1

2

(
cos[2(t− s)] + 1

)
=

1

2
+

1

4
e2ite−2is +

1

4
e−2ite2is ,

and hence the left-hand side of (4.3) is

1

2

∫

S

ϕ(s)µ(ds) +
1

4
e2it
∫

S

e−2isϕ(s)µ(ds) +
1

4
e−2it

∫

S

e2isϕ(s)µ(ds).

However, the right-hand side equals

1

2
e−2it

∫

S

µ(ds) +
1

4

∫

S

e−2isµ(ds) +
1

4
e−4it

∫

S

e2isµ(ds) .

In particular,
1

4

∫

S

e2isϕ(s)µ(ds) =
1

2

∫

S

µ(ds) ,

which is impossible if‖ϕ‖∞ < 2.

Let µ(ds) = ds. In view of the above proof,ϕ(s) = eiks with integerk 6=
−2, 0, 2, yields the zero symbol. Ifϕ(s) = e±2is then we arrive ate±2i arg ξ/2, in
particular we obtain an elegant representation of (4.2).
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Let V be the Lévy measure of a non-zero symmetricα-stable Lévy process in
Rd, with α ∈ (0, 2). In polar coordinates we have (see, e.g., [21], [6])

V (drdθ) = r−1−αdrσ(dθ) , r > 0 , θ ∈ S , (4.4)

where the so-called spectral measureσ is finite and non-zero onS. Let φ be
complex-valued onRd and such that|φ(z)| ≤ 1 andφ(z) = φ (z/ |z|) for z 6= 0.
Let cα =

∫∞

0
[1− cos s]s−1−αds. By a change of variable,

∫

Rd

[1− cos(ξ, z)]φ(z)V (dz) =

∫

S

∫ ∞

0

[1− cos(ξ, rθ)]φ(rθ)r−1−αdr σ(dθ)

= cα

∫

S

|(ξ, θ)|α φ(θ)σ(dθ) . (4.5)

Theorem1.1yields a multiplier bounded inLp by p∗ − 1, with the symbol

M(ξ) =

∫
S
|(ξ, θ)|α φ(θ)σ(dθ)∫
S
|(ξ, θ)|α σ(dθ) . (4.6)

In particular, forj = 1, . . . , d, we obtain

M(ξ) =
|ξj|α

|ξ1|α + · · ·+ |ξd|α
, ξ = (ξ1, . . . , ξd) ∈ Rd . (4.7)

These are Marcinkiewicz-type multipliers, as in [22, p. 110].
In the next example we will specialize toR2. Let σ be a Lebesgue measure

on the circle, andφ(θ) = e−2i arg θ, as in the comment following Lemma4.2. Let
ξ ∈ R2 andt = arg ξ. In view of (4.5), the numerator of the symbol is

cα |ξ|α
∫

S

|cos(t− s)|α e−2isds = cα |ξ|α e−2it

∫

S

|cos(v)|α e2ivdv

= cα |ξ|α e−2it

∫

S

|cos(v)|α cos(2v)dv .

Fora, b > −1 we have
∫ π

2

0

sina v cosb v dv =
1

2
B
(
a+ 1

2
,
b+ 1

2

)
=

1

2

Γ
(
a+1
2

)
Γ
(
b+1
2

)

Γ
(
a+b+2

2

) ,

see, e.g., [15, Chapter I]. Therefore
∫ 2π

0

|cos(v)|α cos(2v)dv =
∫ 2π

0

|cos(v)|α (2 cos2(v)− 1)dv

= 4B
(
α + 3

2
,
1

2

)
− 2B

(
α + 1

2
,
1

2

)
=

2α

α + 2
B
(
α + 1

2
,
1

2

)
,
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where we usedΓ(x+ 1) = xΓ(x). Since
∫ 2π

0

|cos(v)|α dv = 2B
(
α + 1

2
,
1

2

)
,

we obtain the symbol

M(ξ) =
α

α + 2
e−2i arg ξ .

Forα→ 2 we recover the bound2(p∗ − 1) for the Beurling-Ahlfors transform.
We will consider more general Lévy measures inRd of product form in polar

coordinates,
V (drdθ) = ρ(dr)σ(dθ) , r > 0 , θ ∈ S . (4.8)

Hereσ is finite onS and
∫∞

0
r2 ∧ 1 ρ(dr) <∞. An interesting class of such mea-

sures are the so-called tempered stable Lévy processes ([20], [23]). The following
example is on the borderline of the tempered stable processes. Let

ρ(dr) = e−r dr

r
.

In view of the calculations following (4.8) we like to note that
∫ ∞

0

[1− cos(ξ, rη)]ρ(dr) =

∫ ∞

0

[1− cosx]e−x/|(ξ,θ)|dx

x
.

The Laplace transform of(1 − cosx)/x equals0.5 ln (1 + s−2). Theorem1.1
yields a multiplier bounded inLp by p∗ − 1, with the symbol

M(ξ) =

∫
S
ln [1 + (ξ, θ)−2]φ(θ)σ(dθ)∫
S
ln [1 + (ξ, θ)−2] σ(dθ)

. (4.9)

For instance, forj = 1, . . . , d, we obtain

M(ξ) =
ln
(
1 + ξ−2

j

)

ln
(
1 + ξ−2

1

)
+ · · ·+ ln

(
1 + ξ−2

d

) , ξ ∈ Rd . (4.10)

We conclude with a few general remarks. It is well known that the stochastic
calculus of the Brownian motion can be used to obtain non-symmetric Fourier
symbols via harmonic (rather than parabolic) martingales.This goes back to the
pioneering paper of Gundy and Varopoulos [13] for Riesz transform, and we again
refer the reader to the survey paper [1] for further discussion. Surprisingly, non-
symmetric Lévy processes do not bring about non-symmetricsymbols. We owe
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to Mateusz Kwaśnicki yet another explanation of this phenomenon, using time re-
versal of Lévy processes (private communication). Our present discussion leaves
wide open the problem of modifying the jumps of Lévy processes in such a way
as to obtain non-symmetric multipliers.

We also note that McConnell studied in [16] extensions of the Hörmander
multiplier theorem. He used the Cauchy process composed with harmonic func-
tions on the upper half-space inRd+1. This may be considered a special case of
our parabolic martingales; see [16, Lemma 2.1]. However, the Cauchy process is
obtained by optional stopping of the(d+1)-dimensional Brownian motion on the
half-space, and so [16] is more related to the work of Gundy and Varopoulos [13]
than to the parabolic martingales of Bañuelos and Méndez-Hernandéz [4].

The relationship between (1.10), (2.8) and the condition in Lemma4.1calls for
further study. We also wonder if the bound‖ϕ‖∞ ≤ 2 in the proof of Lemma4.1
may be improved for non-normalA.

If Lévy measures satisfyν1 ≤ ν2, then

M (ξ) =

∫
Rd [1− cos(ξ, z)] ν1(dz)∫
Rd [1− cos(ξ, z)] ν2(dz)

, (4.11)

defines anLp multiplier with the norm not exceedingp∗ − 1, which follows from
Theorem1.1with V = ν2, φ = 1 ∧ dν1/dν2 andµ = 0. The observation allows
to study inclusions between anisotropic Sobolev spaces ([14]).

An interesting problem, indirectly touched upon by Lemma4.1, is the follow-
ing: Can we handle a class of Fourier multipliers bounded onLp by specifying
the denominator and some boundedness and differentiability properties of the ra-
tio (1.4), so to recover boundedϕ andφ from these?
Acknowledgement: We thank Mateusz Kwaśnicki for discussions on sym-
metrization and Stanisław Kwapień for comments on [16].
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1979.

22



[14] N. Jacob and R. L. Schilling. Towards anLp potential theory for sub-
Markovian semigroups: kernels and capacities.Acta Math. Sin. (Engl. Ser.),
22(4):1227–1250, 2006.

[15] N. Lebedev.Special Functions and their Applications. Dover Publications,
Inc., New York, 1972.

[16] T. R. McConnell. On Fourier multiplier transformations of Banach-valued
functions.Trans. Amer. Math. Soc., 285(2):739–757, 1984.

[17] P. E. Protter.Stochastic integration and differential equations, volume 21 of
Applications of Mathematics (New York). Springer-Verlag, Berlin, second
edition, 2004. Stochastic Modelling and Applied Probability.

[18] D. Revuz and M. Yor.Continuous martingales and Brownian motion, vol-
ume 293 ofGrundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edi-
tion, 1994.

[19] L. C. G. Rogers and D. Williams.Diffusions, Markov processes, and mar-
tingales. Vol. 2. Cambridge Mathematical Library. Cambridge University
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