TESTING HOLOMORPHY ON CURVES

BUMA L. FRIDMAN AND DAOWEI MA

Abstract

For a domain $D \subset \mathbb{C}^{n}$ we construct a continuous foliation of D into one real dimensional curves such that any function $f \in C^{1}(D)$ which can be extended holomorphically into some neighborhood of each curve in the foliation will be holomorphic on D.

This paper complements the study of the following general question. Let f be a function on a domain D in complex n-dimensional space, and its restrictions on each element of a given family of subsets of D is holomorphic. When can one claim that f has to be holomorphic in D ?

This is a natural question arising from the fundamental Hartogs theorem stating that a function f in $\mathbb{C}^{n}, n>1$, is holomorphic if it is holomorphic in each variable separately, that is, f is holomorphic in \mathbb{C}^{n} if it is holomorphic on every complex line parallel to an axis. The complex lines parallel to an axis form a continuous foliation of \mathbb{C}^{n} into two real dimensional planes. So if a function is holomorphic along each component of these n foliations, then it is holomorphic on \mathbb{C}^{n}. We are interested in finding a one family of one real dimensional curves forming a foliation such that a similar theorem will hold. There is a body of interesting work on testing the holomorphy property on curves: see [A1-A3, AG, E, G1-G3, T1, T2] and references in those articles. Some of these results assume a holomorphic extension into the inside of each closed curve in a given family, others a "Morera-type" property.

Below we use the following definition. Let $S \subset \mathbb{C}^{n}$. We say that $f: S \rightarrow \mathbb{C}$ is holomorphic if f is a restriction on S of a function holomorphic in some open neighborhood of S. We prove the following

Theorem 1.1. Let $D \subset \mathbb{C}^{n}$ be a domain. Then there exists a continuous foliation E of D into one (real) dimensional curves, such that any C^{1} function on D which is holomorphic on each of the curves of E, is holomorphic on D.

[^0]The needed foliation will be constructed as a homeomorphic image of the natural continuous foliation of \bar{D} by segments parallel to the axis $R e z_{1}$.

First we need the following notion (see $[\mathrm{FM}]$). Let $S \subset \mathbb{C}, p \in S$. A point t in $T:=\{z \in \mathbb{C}:|z|=1\}$ is said to be a limit direction of S at p if there exists a sequence $\left(q_{j}\right)$ in S such that $\lim _{j} q_{j}=p$ and $\lim _{j} \tau\left(p, q_{j}\right)=t$, where $\tau\left(p, q_{j}\right):=\left(q_{j}-p\right) /\left|q_{j}-p\right|$.

Lemma 1.2. Let $U \subset \mathbb{C}$ be an open set, $p \in U \cap S$ and there are at least two limit directions t_{1}, t_{2} of S at p. Suppose a function $f \in C^{1}(U)$ is holomorphic on $S \cap U$. If $t_{1} \neq \pm t_{2}$ then $\frac{\partial f}{\partial \bar{z}}=0$ at p.

Proof. The derivatives of f along linearly independent directions t_{1} and t_{2} coincide with derivatives of a holomorphic function in the neighborhood of p. The statement now follows from the Cauchy-Riemann equations.

Example 1.3. Consider a set $\gamma \subset \mathbb{C}$, which is an angle $(\gamma=\angle)$ in a neighborhood of a point $p \in \gamma$ formed by two linear segments. If this angle θ satisfies $0<\theta<\pi$, then at the tip of the angle $p \in \gamma$, γ has two linearly independent directions.

In general if in a neighborhood of a point $p \in \gamma$ the curve $\gamma \subset \mathbb{R}^{m}$ lies in a two real dimensional plane M and forms an angle $0<\theta<\pi$ there, we will say that γ has an angular point at p.

For the construction of the continuous foliation in the Theorem 1.1 we also need the following general statement.

Lemma 1.4. Let M be a two-dimensional plane in \mathbb{R}^{m} with $m \geq 2$, let p be a point in M, let U be a neighborhood of p in \mathbb{R}^{m}, and let γ be a C^{∞} curve passing through p and relatively closed in U. Then there is a homeomorphism $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that (a) the function Φ is a $\left(C^{\infty}\right)$ diffeomorphism on $\mathbb{R}^{m}-\{p\}$, (b) the restriction of Φ to $\mathbb{R}^{m}-U$ is the identity map, (c) a neighborhood of $\Phi(p)$ in $\Phi(\gamma)$ lies in M, and (d) the curve $\Phi(\gamma)$ has an angular point at $\Phi(p)$.

Proof. Let $e_{1}, e_{2}, \ldots, e_{m}$ be the standard basis of \mathbb{R}^{m}, i.e., $e_{1}=(1,0, \ldots, 0)$, $e_{2}=(0,1,0, \ldots, 0)$, etc. Choose a vector v parallel to M such that v and the tangent vector of γ at p are linearly independent. Without loss of generality, we assume that $p=0, v=e_{2}$, and M is spanned by e_{1} and e_{2}. Let $S=\mathbb{R} e_{2}=\left\{t e_{2} \in \mathbb{R}^{m}: t \in \mathbb{R}\right\}$. For $r>0$ let B_{r} denote the open ball in \mathbb{R}^{m} of center 0 and radius r. There is a neighborhood V of 0 , a $\delta>0$, and a diffeomorphism $G: V \rightarrow B_{3 \delta}$ such that $V \subset \subset U$, $G(\gamma \cap V)=\mathbb{R} e_{1} \cap B_{3 \delta}$, and $G(S \cap V)=\mathbb{R} e_{2} \cap B_{3 \delta}$.

Let $\omega: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{∞} function such that $0 \leq \omega(t) \leq 1$ for all t, $\omega(t)=0$ for $|t| \geq 2$, and $\omega(t)=1$ for $|t| \leq 1$. Define a vector field X on \mathbb{R}^{m} by $X(y)=\omega(|y| / \delta)\left(y_{1}+y_{2}\right)\left(e_{2}-e_{1}\right)$, where $y=\sum_{j=1}^{m} y_{j} e_{j}$. Let $\theta: \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be the associated action. Define $\lambda: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ by $\lambda(y)=\theta(1, y)$. Then λ is a diffeomorphism, and the restriction of λ to $\mathbb{R}^{m}-B_{2 \delta}$ is the identity map, since $X=0$ there. We claim that for $-\delta<s<\delta, \lambda\left(s e_{1}\right)=s e_{2}$. Indeed, it is straightforward to verify that the curve $\tau(t)=s(1-t) e_{1}+s t e_{2}$ satisfies $\tau(0)=s e_{1}, \tau(1)=s e_{2}$, and $\tau^{\prime}(t)=X(\tau(t))$ for $0 \leq t \leq 1$, and hence $\left.\tau\right|_{[0,1]}$ is a segment of an integral curve of X.

Define a diffeomorphism $g: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ by

$$
g(x)= \begin{cases}G^{-1} \circ \lambda \circ G(x), & \text { if } x \in G^{-1}\left(B_{2 \delta}\right), \\ x, & \text { if } x \notin G^{-1}\left(B_{2 \delta}\right) .\end{cases}
$$

Then $g(0)=0$, and $V_{1} \cap g(\gamma) \subset S \subset M$, where $V_{1}:=G^{-1}\left(B_{\delta}\right)$.
Choose a $K>0$ so that the function $\psi(t):=K \omega(2 t)(1-|t|)$ satisfies the Lipschitz condition $\left|\psi\left(t_{1}\right)-\psi\left(t_{2}\right)\right| \leq\left|t_{1}-t_{2}\right| / 2$. It is clear that for each $\eta>0$ the function $\psi_{\eta}(t):=\eta \psi(t / \eta)$ satisfies the same Lipschitz condition.

Choose an $\eta>0$ such that $B_{\eta} \subset \subset V_{1}$. Define $h: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ by $h(x)=x+\psi_{\eta}(|x|) e_{1}$. Then h is a homeomorphism, and it is a diffeomorphism away from the origin. For $x \in \mathbb{R}^{m}-B_{\eta}, h(x)=x$. The set $h\left(g(\gamma) \cap B_{\eta / 2}\right)$ lies in M and equals $\left\{K(\eta-|t|) e_{1}+t e_{2}:-\eta / 2<\right.$ $t<\eta / 2\}$, which is the union of two line segments forming an angle $2 \tan ^{-1}(1 / K)$ at the point $K \eta e_{1}$.

Let $\Phi=h \circ g$. Then Φ has all the prescribed properties.
We now proceed with the construction of E and proof of the Theorem 1.1.

Proof. Consider E_{0} a natural continuous foliation of D by segments parallel to the axis $R e z_{1}$.

1. Pick a sequence $\left\{w_{k}\right\} \subset D$, such that ${\overline{\left\{w_{m}\right\}}}_{m \equiv l(\bmod n)}=\bar{D}$ for every $l=1, \ldots, n$. We also can choose the sequence in such a way that no two points lie on the same line segment of E_{0}, so we assume that each of these points w_{k} lies on a unique segment L_{k}.
2. We now proceed by induction on k.
(1). For $k=1$ pick $\varepsilon_{1}>0$ so small that the ball $\bar{B}\left(w_{1}, \varepsilon_{1}\right) \subset D$. Use Lemma 1.4 to create a homeomorphism $\Phi_{1}: \bar{D} \rightarrow \bar{D}$ which is a diffeomorphism on $D \backslash\left\{w_{1}\right\}$ with the following properties. At the point $\Phi_{1}\left(w_{1}\right)$ the image $\Phi_{1}\left(L_{1}\right)$ has an angle $0<\alpha_{1}<\pi$, and that angle (as a portion of $\Phi_{1}\left(L_{1}\right)$) lies in the plane parallel to z_{1}. Let
$d_{1}=\min _{d(z, w) \geq 1 / 2} d\left(\Phi_{1}(z), \Phi_{1}(w)\right)$, where d is the Euclidean distance between two points in \mathbb{C}^{n}.
(2). Consider now step $k=s+1$. By now we have constructed a homeomorphism $\Phi_{j}: \bar{D} \rightarrow \bar{D}$ which is diffeomorphic on $D \backslash\left\{w_{1}, \ldots, w_{j}\right\}$, $\varepsilon_{j}>0$, and $d_{j}=\min _{d(z, w) \geq 1 /(j+1)} d\left(\Phi_{j}(z), \Phi_{j}(w)\right)$ for all $j \leq s$. Also for all $j \leq s$ we assume that $\Phi_{s}\left(L_{j}\right)=\Phi_{j}\left(L_{j}\right)$, and that $\Phi_{j}\left(L_{j}\right)$ has an angular point at $\Phi_{j}\left(w_{j}\right)$ in the plane parallel to z_{l}, axis, where $l \equiv j$ $(\bmod n)$.

Pick now $\varepsilon_{s+1}>0$ such that the following four conditions hold:
(a) $\varepsilon_{s+1}<\frac{1}{2} \varepsilon_{s}$.
(b) $B\left(\Phi_{s}\left(w_{s+1}\right), \varepsilon_{s+1}\right) \subset D \backslash\left\{\cup_{j \leq s} \Phi_{s}\left(L_{j}\right)\right\}$.
(c) $\varepsilon_{s+1}<\frac{1}{16} d_{s}$.
(d) ε_{s+1} is so small that one can use Lemma 1.4 to create the specific perturbation $\widetilde{\Phi}_{s+1}: \bar{D} \rightarrow \bar{D}$ inside $B\left(\Phi_{s}\left(w_{s+1}\right), \varepsilon_{s+1}\right)$ that makes an angle $0<\alpha_{s+1}<\pi$ at the point $\widetilde{\Phi}_{s+1}\left(\Phi_{s}\left(w_{s+1}\right)\right)$ in the plane parallel to z_{l} axis, where $l \equiv s+1(\bmod n)$, and is the identity map outside $B\left(\Phi_{s}\left(w_{s+1}\right), \varepsilon_{s+1}\right)$.

Consider now $\Phi_{s+1}: \bar{D} \rightarrow \bar{D}$, which is defined the following way: $\Phi_{s+1}=\widetilde{\Phi}_{s+1} \circ \Phi_{s}$.

One can see that $\Phi_{s+1}(z)$ is a well defined homeomorphism which is diffeomorphic on $D \backslash\left\{w_{1}, w_{2}, \ldots, w_{s+1}\right\}$. Also for all $j \leq s+1, \Phi_{s+1}\left(L_{j}\right)=$ $\Phi_{j}\left(L_{j}\right)$. Let $d_{s+1}=\min _{d(z, w) \geq 1 /(s+2)} d\left(\Phi_{s+1}(z), \Phi_{s+1}(w)\right)$.

Consider now $\Phi_{0}=\lim _{j} \Phi_{j}$. The limit exists since $\left\|\Phi_{s+1}-\Phi_{s}\right\|<$ $\frac{1}{2^{s-1}} \varepsilon_{1}$ for all s. We shall prove that Φ_{0} is a homeomorphism from \bar{D} onto \bar{D}. All we need to check is that for two points $z \neq w$ in D, $\Phi_{0}(z) \neq \Phi_{0}(w)$. Indeed, find the smallest s, such that $d(z, w) \geq \frac{1}{s+1}$. By the construction $d\left(\Phi_{s}(z), \Phi_{s}(w)\right) \geq d_{s},\left\|\Phi_{j+1}-\Phi_{j}\right\| \leq 2 \varepsilon_{j+1}$ for all j; considering the last inequality for $j \geq s$, we have $d\left(\Phi_{s}(z), \Phi_{0}(z)\right) \leq$ $2 \sum_{j \geq s+1} \varepsilon_{j}<\sum_{j \geq 0} \frac{1}{2^{j-1}} \varepsilon_{s+1}=4 \varepsilon_{s+1}<\frac{1}{4} d_{s}$. Same inequality holds for the point w. So, $d\left(\Phi_{0}(z), \Phi_{0}(w)\right)>\frac{1}{2} d_{s}>0$, and therefore $\Phi_{0}(z) \neq$ $\Phi_{0}(w)$.

We now check that the continuous foliation $E=\Phi_{0}\left(E_{0}\right)$ satisfies the theorem. First we notice that for all j by construction $\Phi_{0}\left(L_{j}\right)=$ $\Phi_{j}\left(L_{j}\right)$, and therefore $\Phi_{0}\left(L_{j}\right)$ has an angular point at $\Phi_{0}\left(w_{j}\right)$ in the plane parallel to z_{l} axis, where $l \equiv j(\bmod n)$.

If a function $f \in C^{1}(D)$ is holomorphic on each of the curves in E, then by Lemma $1.2, \frac{\partial f}{\partial \bar{z}_{l}}=0$ at an everywhere dense set in D, and therefore on all of D, and for each l. By Hartogs theorem, f is holomorphic on D.

References

[A1] M. L. Agranovsky, Propagation of CR foliations and Morera type theorems for manifolds with attached analytic discs, Advances in Math., 211 (2007), no.1, 284-326.
[A2] M. L. Agranovsky, An analog of Forelli theorem for boundary values of holomorphic functions in the unit ball of \mathbb{C}^{n}, Journal D'Analyse Mathematique, 2010, to appear.
[A3] M. L. Agranovsky, Characterization of polynalytic functions by meromorphic extensions from chains of circles, Journal D'Analyse Mathematique, 2010, to appear.
[AG] M. L. Agranovsky and J. Globevnik, Analyticity on circles for rational and real analytic functions of two real variables, J. d'Analyse Math. 91 (2003) 31-65.
[E] L. Ehrenpreis, Three problems at Mount Holyoke, Contemp. Math. 278 (2001) 123-130.
[FM] B. Fridman, D. Ma, Holomorphic functions on subsets of \mathbb{C}, preprint, arXiv:1006.3105v3.
[G1] J. Globevnik, Analyticity on families of circles. Israel J. Math. 142 (2004), 29-45.
[G2] J. Globevnik, Analyticity on translates of a Jordan curve, Trans. Amer. Math. Soc. 359 (2007), 5555-5565.
[G3] J. Globevnik, Analyticity of functions analytic on circles. J. Math. Anal. Appl. 360 (2009), no. 2, 363-368.
[T1] A. Tumanov, A Morera type theorem in the strip, Math. Res. Lett. 11 (2004) 23-29.
[T2] A. Tumanov, Testing analyticity on circles, Amer. J. Math. 129 (2007), no. 3, 785-790.
buma.fridman@wichita.edu, Department of Mathematics, Wichita State University, Wichita, KS 67260-0033, USA
dma@math.Wichita.edu, Department of Mathematics, Wichita State University, Wichita, KS 67260-0033, USA

[^0]: 2000 Mathematics Subject Classification. Primary: 32A10, 32A99.
 Key words and phrases. analytic functions, continuous foliation, Hartogs theorem.

