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TESTING HOLOMORPHY ON CURVES
BUMA L. FRIDMAN AND DAOWEI MA

ABSTRACT. For a domain D C C™ we construct a continuous fo-
liation of D into one real dimensional curves such that any func-
tion f € C*(D) which can be extended holomorphically into some
neighborhood of each curve in the foliation will be holomorphic on
D.

This paper complements the study of the following general question.
Let f be a function on a domain D in complex n-dimensional space,
and its restrictions on each element of a given family of subsets of D is
holomorphic. When can one claim that f has to be holomorphic in D?

This is a natural question arising from the fundamental Hartogs the-
orem stating that a function f in C", n > 1, is holomorphic if it is
holomorphic in each variable separately, that is, f is holomorphic in
C™ if it is holomorphic on every complex line parallel to an axis. The
complex lines parallel to an axis form a continuous foliation of C" into
two real dimensional planes. So if a function is holomorphic along each
component of these n foliations, then it is holomorphic on C". We are
interested in finding a one family of one real dimensional curves form-
ing a foliation such that a similar theorem will hold. There is a body
of interesting work on testing the holomorphy property on curves: see
[A1-A3, AG, E, G1-G3, T1, T2] and references in those articles. Some
of these results assume a holomorphic extension into the inside of each
closed curve in a given family, others a “Morera-type” property.

Below we use the following definition. Let S C C". We say that
f S — C is holomorphic if f is a restriction on S of a function
holomorphic in some open neighborhood of S. We prove the following

Theorem 1.1. Let D C C" be a domain. Then there exists a continu-
ous foliation E of D into one (real) dimensional curves, such that any
C* function on D which is holomorphic on each of the curves of E, is
holomorphic on D.
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The needed foliation will be constructed as a homeomorphic image
of the natural continuous foliation of D by segments parallel to the
axis Rez;.

First we need the following notion (see [FM]). Let S € C, p € S.
A point tin T := {z € C : |z] = 1} is said to be a limit direction of
S at p if there exists a sequence (g;) in S such that lim;¢; = p and
lim; 7(p, g;) = t, where 7(p, q;) := (¢; —p)/lg; — pl-

Lemma 1.2. Let U C C be an open set, p € U NS and there are at
least two limit directions t1,ty of S at p. Suppose a function f € C*(U)
s holomorphic on S NU. If ty # +ty then % =0 at p.

Proof. The derivatives of f along linearly independent directions ¢; and
ty coincide with derivatives of a holomorphic function in the neigh-
borhood of p. The statement now follows from the Cauchy-Riemann
equations. O

Ezample 1.3. Consider a set v C C, which is an angle (y = £) in a
neighborhood of a point p € v formed by two linear segments. If this
angle 6 satisfies 0 < # < 7, then at the tip of the angle p € v, v has
two linearly independent directions.

In general if in a neighborhood of a point p € v the curve v C R™ lies
in a two real dimensional plane M and forms an angle 0 < 6 < 7 there,
we will say that v has an angular point at p.

For the construction of the continuous foliation in the Theorem 1.1
we also need the following general statement.

Lemma 1.4. Let M be a two-dimensional plane in R™ with m > 2,
let p be a point in M, let U be a neighborhood of p in R™, and let v be
a C™ curve passing through p and relatively closed in U. Then there
is a homeomorphism ® : R™ — R™ such that (a) the function ® is a
(C>) diffeomorphism on R™ —{p}, (b) the restriction of ® to R™ —U
is the identity map, (c) a neighborhood of ®(p) in ®(v) lies in M, and
(d) the curve ®(v) has an angular point at ®(p).

Proof. Let ey, ey, ..., e, be the standard basis of R™ i.e., e; = (1,0,...,0),
es = (0,1,0,...,0), etc. Choose a vector v parallel to M such that v
and the tangent vector of v at p are linearly independent. Without loss

of generality, we assume that p = 0, v = ey, and M is spanned by e;
and ey. Let S = Rey = {tes € R™ : t € R}. For r > 0 let B, denote the
open ball in R™ of center 0 and radius r. There is a neighborhood V

of 0, a > 0, and a diffeomorphism G : V' — Bss such that V CC U,
G(yNnV)=Re; N Bss, and G(SNV) =Rey N Bas.
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Let w : R — R be a C* function such that 0 < w(t) <1 for all ¢,
w(t) = 0 for |t|] > 2, and w(t) = 1 for |[t| < 1. Define a vector field
X on R™ by X(y) = w(|y|/0)(y1 + y2)(e2 — 1), where y = 77, yje;.
Let 6 : R x R™ — R™ be the associated action. Define A : R™ — R™
by A(y) = 0(1,y). Then X is a diffeomorphism, and the restriction of
A to R™ — Bys is the identity map, since X = 0 there. We claim that
for =6 < s < J, A(se1) = seq. Indeed, it is straightforward to verify
that the curve 7(t) = s(1 — t)e; + steq satisfies 7(0) = sey, 7(1) = seq,
and 7(t) = X(7(t)) for 0 <t <1, and hence 7| ] is a segment of an
integral curve of X.

Define a diffeomorphism g : R™ — R by

(z) = G 'o)XoG(x), if z € G™'(Bys),
A if 2 & G1(Bys).

Then g(0) =0, and Vi Ng(y) C S C M, where V; := G~(Bs).

Choose a K > 0 so that the function ¥ (t) := Kw(2t)(1 — |t|) satisfies
the Lipschitz condition [¢(t1) — ¥(t2)| < [t1 — t2|/2. It is clear that for
each 7 > 0 the function ¢, (t) := n(t/n) satisfies the same Lipschitz
condition.

Choose an n > 0 such that B, CC V;. Define h : R™ — R™
by h(xz) = = + ¥,(|z|)es. Then h is a homeomorphism, and it is a
diffeomorphism away from the origin. For z € R™ — B, , h(xz) = . The
set h(g(y) N By2) lies in M and equals {K(n — [t])e; +tey : —1/2 <
t < n/2}, which is the union of two line segments forming an angle
2tan~'(1/K) at the point Kne;.

Let ® = hog. Then ® has all the prescribed properties. U

We now proceed with the construction of E and proof of the Theo-
rem 1.1.

Proof. Consider Ej a natural continuous foliation of D by segments
parallel to the axis Rez;.

1. Pick a sequence {wy} C D, such that {wm},,—; med n) = D for
every [ = 1,...,n. We also can choose the sequence in such a way that
no two points lie on the same line segment of Ej, so we assume that
each of these points wy lies on a unique segment Ly.

2. We now proceed by induction on k.

(1). For k = 1 pick £; > 0 so small that the ball B(w;, &) C D.
Use Lemma 1.4 to create a homeomorphism ®, : D — D which is
a diffeomorphism on D\{w;} with the following properties. At the
point ®;(w;) the image ®;(L;) has an angle 0 < a3 < m, and that

angle (as a portion of ®1(L;)) lies in the plane parallel to z;. Let
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di = ming(; u)>1/2d(P1(2), 1(w)), where d is the Euclidean distance
between two points in C".

(2). Consider now step k = s + 1. By now we have constructed a
homeomorphism ®; : D — D which is diffeomorphic on D\ {wy, ..., w;},
g; > 0, and d; = ming. v)>1/(+1)d(P;(2), ®;(w)) for all 7 < 5. Also
for all j < s we assume that ®,(L;) = ®;(L;), and that ®;(L;) has an
angular point at ®;(w;) in the plane parallel to z;, axis, where | = j
(mod n).

Pick now 4,1 > 0 such that the following four conditions hold:

(a) €51 < 3Es-

(b) B(®,(wy11), £011) © D\{Ujes(L)},

(¢) €541 < 75ds.

(d) £411 is so small that one can use Lemma 1.4 to create the specific
perturbation ®,,; : D — D inside B(®,(wy;1),cs41) that makes an
angle 0 < a1 < m at the point 5s+1(®s(ws+1)) in the plane parallel
to z; axis, where [ = s+ 1 (mod n), and is the identity map outside
B(®s(wsy1),E541)- o o

Consider now ®4,1 : D — D | which is defined the following way:
q>s+1 = 684—1 o ,.

One can see that ®4,1(2) is a well defined homeomorphism which is
diffeomorphic on D\{wy, wa, ..., ws1}. Alsoforall j < s+1, ®,44(L;) =
QJ(L]) Let d8+1 = mind(z,w)21/(s+2)d(q)s+1(Z), (I>5+1(w)).

Consider now ®; = lim;®;. The limit exists since ||[®,41 — @4 <
23%151 for all s. We shall prove that ®, is a homeomorphism from
D onto D. All we need to check is that for two points z # w in D,
®y(z) # Po(w). Indeed, find the smallest s, such that d(z,w) > SJ%l
By the construction d(®,(z), ®s(w)) > ds , ||Pj+1 — @] < 2¢j44 for all
Jj; considering the last inequality for j > s, we have d(®4(z), Po(2)) <
2 2j28+1€j < ijo Qj%lésﬂ =4,y < ids. Same inequality holds for
the point w. So, d(®y(z), Po(w)) > 3d, > 0, and therefore Po(z) #
éo(w)

We now check that the continuous foliation F = ®y(Fy) satisfies
the theorem. First we notice that for all j by construction ®o(L;) =
®;(L;), and therefore ®y(L;) has an angular point at ®o(w;) in the
plane parallel to z; axis, where [ = j (mod n).

If a function f € C'(D) is holomorphic on each of the curves in

E, then by Lemma 1.2, g—% = (0 at an everywhere dense set in D,
and therefore on all of D, and for each [. By Hartogs theorem, f is
holomorphic on D. O
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