Additive groups and semigroups of matrices on which the exponential is a homomorphism

Clément de Seguins Pazzis* ${ }^{*}$

December 21, 2010

Abstract

Let G be a subgroup of $\left(\mathrm{M}_{n}(\mathbb{C}),+\right)$. We show that $M \mapsto \exp (M)$ is a group homomorphism from G to $\left(\mathrm{GL}_{n}(\mathbb{C}), \times\right)$ if and only if G consists of commuting matrices. We also prove that if S is a sub-semigroup of $\left(\mathrm{M}_{n}(\mathbb{C}),+\right)$ such that $M \mapsto \exp (M)$ is a homomorphism from S to $\left(\mathrm{GL}_{n}(\mathbb{C}), \times\right)$, then the linear subspace $\operatorname{Span}(S)$ has property L of Motzkin and Taussky.

AMS Classification: 15A16; 15A22
Keywords: matrix pencils, commuting exponentials, property L.

1 Introduction

We denote by $\mathrm{M}_{n}(\mathbb{C})$ the algebra of square matrices of order n with entries in the field of complex numbers. For $M \in \mathrm{M}_{n}(\mathbb{C})$, we denote by e^{M} or $\exp (M)$ its exponential. It is folklore that exp is not a group homomorphism from $\left(\mathrm{M}_{n}(\mathbb{C}),+\right)$ from $\left(\mathrm{GL}_{n}(\mathbb{C}), \times\right)$ if $n \geq 2$. However, when A and B are commuting matrices of $\mathrm{M}_{n}(\mathbb{C})$, then

$$
e^{A+B}=e^{A} e^{B}=e^{B} e^{A} .
$$

[^0]The converse does not hold, moreover it is not necessary for A and B to be simultaneously triangularizable for this condition to hold. If however

$$
\begin{equation*}
\forall t \in \mathbb{R}, e^{t A} e^{t B}=e^{t B} e^{t A} \tag{1}
\end{equation*}
$$

then a power series expansion at $t=0$ shows that $A B=B A$. In the 1950's, pairs of matrices (A, B) of small size such that $e^{A+B}=e^{A} e^{B}$ have been under extensive scrutiny [3, 4, 6, 7, 9, 10]. More recently, E. Wermuth [16, 17] and Schmoeger [14, 15] have studied the problem of adding extra conditions on the matrices A and B for the commutation $e^{A} e^{B}=e^{B} e^{A}$ to imply the commutation of A with B. A few years ago [1] G. Bourgeois investigated, for small n, the pairs $(A, B) \in \mathrm{M}_{n}(\mathbb{C})^{2}$ which satisfy:

$$
\begin{equation*}
\forall k \in \mathbb{N}, \quad e^{k A+B}=e^{k A} e^{B}=e^{B} e^{k A} \tag{2}
\end{equation*}
$$

The main interest in this condition lies in the fact that, contra (11), it is not possible to use it to obtain information on A and B based on the sole local behavior of exp around 0. Bourgeois showed that (2) implies that A and B are simultaneously triangularizable when $n=2$, and produced a proof that this also holds when $n=3$. This last result is however false, as the following counterexample - communicated to us by Jean-Louis Tu - shows: consider the matrices

$$
A_{1}:=2 i \pi\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad B_{1}:=2 i \pi\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 3 & -2 \\
1 & 1 & 0
\end{array}\right]
$$

Notice that A_{1} and B_{1} are not simultaneously triangularizable since they share no eigenvector (indeed, the eigenspaces of A_{1} are the lines generated by the three vectors of the canonical basis, none of which is stabilized by B_{1}). However, for every $t \in \mathbb{C}$, a straightforward computation shows that the characteristic polynomial of $t A+B$ is

$$
X(X-2 i \pi(t+2))(X-2 i \pi(2 t+3))
$$

Then for every $t \in \mathbb{N}$, the matrix $t A+B$ has three distinct eigenvalues in $2 i \pi \mathbb{Z}$, hence is diagonalisable with $e^{t A+B}=I_{3}$. In particular $e^{B}=I_{3}$, and on the other hand $e^{A}=I_{3}$ which shows that condition (2) holds.

It then appears that one should strengthen Bourgeois' condition as follows in order to obtain at least the simultaneous triangularizability of A and B :

$$
\begin{equation*}
\forall(k, l) \in \mathbb{Z}^{2}, \quad e^{k A+l B}=e^{k A} e^{l B} \tag{3}
\end{equation*}
$$

Notice immediately that this condition implies that e^{A} and e^{B} commute. If indeed it holds, then

$$
e^{B} e^{A}=\left(e^{-A} e^{-B}\right)^{-1}=\left(e^{-A-B}\right)^{-1}=e^{A+B}=e^{A} e^{B}
$$

Therefore (3) is equivalent to

$$
\begin{equation*}
\forall(k, l) \in \mathbb{Z}^{2}, \quad e^{k A+l B}=e^{k A} e^{l B}=e^{l B} e^{k A} \tag{4}
\end{equation*}
$$

Here is our main result:
Theorem 1. Let $(A, B) \in M_{n}(\mathbb{C})^{2}$ satisfying (3). Then $A B=B A$.
Note that the converse is trivial. The following corollary is straightforward:
Theorem 2. Let G be a subgroup of $\left(M_{n}(\mathbb{C}),+\right)$ and assume that $M \mapsto \exp (M)$ is a homomorphism from $(G,+)$ to $\left(G L_{n}(\mathbb{C}), \times\right)$. Then $\forall(A, B) \in G^{2}, A B=$ $B A$.

Again, the converse is trivial. A special case will be an important step in our proof: recall (see e.g. Theorem 1.27 [5]) that the solutions of the equation $e^{M}=I_{n}$ are the diagonalisable matrices M such that $\operatorname{Sp}(M) \subset 2 i \pi \mathbb{Z}$ (where $\operatorname{Sp}(M)$ denotes the set of eigenvalues of $M)$. The case $e^{A}=e^{B}=I_{n}$ in Theorem 1 is thus obviously equivalent to the following result:

Proposition 3. Let $(A, B) \in M_{n}(\mathbb{C})^{2}$. Assume that, for every $(k, l) \in \mathbb{Z}^{2}$, the matrix $k A+l B$ is diagonalisable and $\operatorname{Sp}(k A+l B) \subset \mathbb{Z}$. Then $A B=B A$.

For sub-semigroups of $\left(M_{n}(\mathbb{C}),+\right)$, the above results surely fail. A very simple counterexample is indeed given by the semigroup generated by

$$
A:=\left[\begin{array}{cc}
0 & 0 \\
0 & 2 i \pi
\end{array}\right] \quad \text { and } \quad B:=\left[\begin{array}{cc}
0 & 1 \\
0 & 2 i \pi
\end{array}\right]
$$

One may however wonder if a sub-semigroup S on which exp is a homomorphism must be simultaneously triangularizable. Alas the additive semigroup generated by the matrices A_{1} and B_{1} above is a counterexample. Nevertheless, we will prove a weaker property. Before stating it, we need a few notations and definitions.

We denote by Σ_{n} the group of permutations of $\{1, \ldots, n\}$, make it act on \mathbb{C}^{n} by $\sigma \cdot\left(z_{1}, \ldots, z_{n}\right):=\left(z_{\sigma(1)}, \ldots, z_{\sigma(n)}\right)$, and consider the quotient set $\mathbb{C}^{n} / \Sigma_{n}$.

The class of a list $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ in this quotient space will be denoted by $\left[z_{1}, \ldots, z_{n}\right]$. For $M \in \mathrm{M}_{n}(\mathbb{C})$, denote by $\chi_{M}(X)$ its characteristic polynomial,

$$
\operatorname{OSp}(M):=\left[z_{1}, \ldots, z_{n}\right], \quad \text { where } \chi_{M}(X)=\prod_{k=1}^{n}\left(X-z_{k}\right)
$$

Definition 1. A pair $(A, B) \in \mathrm{M}_{n}(\mathbb{C})^{2}$ has property \mathbf{L} when there are n linear forms f_{1}, \ldots, f_{n} on \mathbb{C}^{2} such that

$$
\forall(x, y) \in \mathbb{C}^{2}, \operatorname{OSp}(x A+y B)=\left[f_{k}(x, y)\right]_{1 \leq k \leq n}
$$

A linear subspace V of $\mathrm{M}_{n}(\mathbb{C})$ has property L when there are n linear forms f_{1}, \ldots, f_{n} on V such that

$$
\forall M \in V, \operatorname{OSp}(M)=\left[f_{k}(M)\right]_{1 \leq k \leq n}
$$

Theorem 4. Let S be a sub-semigroup of $\left(M_{n}(\mathbb{C}),+\right)$ and assume that $M \mapsto$ $\exp (M)$ is a homomorphism from $(S,+)$ to $\left(G L_{n}(\mathbb{C}), \times\right)$. Then $\operatorname{Span}(S)$ has property L.

Note that the converse is obviously false. We shall derive this last theorem from a more precise result on pairs satisfying condition (2):

Proposition 5. Let $(A, B) \in M_{n}(\mathbb{C})^{2}$ satisfying (2). Then (A, B) has property L.

Structure of the paper: The proofs of Theorem 1 and of Proposition 5 have largely similar parts, so they will be tackled simultaneously. There are three main steps:

- We will prove Proposition 5 in the special case where $\operatorname{Sp}(A) \subset 2 i \pi \mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2 i \pi \mathbb{Z}$. This will involve a study of the matrix pencil $A+z B$. We will then easily derive Proposition 3 using a refinement of the MotzkinTaussky theorem.
- We will tackle the more general case $\operatorname{Sp}(A) \subset 2 i \pi \mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2 i \pi \mathbb{Z}$ in Theorem 1 by using the Dunford decompositions of A and B together with Proposition 3 ,
- In the general case, we use an induction on n to reduce the situation to the previous one, both for Theorem 1 and Proposition 5.

In the last section, we derive Theorem 4 from Proposition 5,

2 Additive groups or semigroups of matrices with an integral spectrum

2.1 Property L for pairs of matrices with an integral spectrum

Our aim here is to prove the following proposition:
Proposition 6. Let $(A, B) \in M_{n}(\mathbb{C})^{2}$. Assume that $\operatorname{Sp}(k A+B) \subset \mathbb{Z}$ for every $k \in \mathbb{N}$. Then (A, B) has property L.

Notice that a pair (A, B) has property L if and only if there are affine maps f_{1}, \ldots, f_{n} from \mathbb{C} to \mathbb{C} such that

$$
\forall z \in \mathbb{C}, \operatorname{OSp}(A+z B)=\left[f_{k}(z)\right]_{1 \leq k \leq n} .
$$

Before proving Proposition 6, let us first recall a few well-known facts on matrix pencils with complex entries. Denote by $\mathcal{K}(\mathbb{C})$ the quotient field of the integral domain $H(\mathbb{C})$ of entire functions (i.e. analytic functions from \mathbb{C} to \mathbb{C}). Let $(A, B) \in \mathrm{M}_{n}(\mathbb{C})^{2}$. The generic number p of eigenvalues of the pencil $z \mapsto A+z B$ is defined as the number of the roots of $\chi_{A+\mathrm{id}_{C} B}(X)$ in an algebraic closure of $\mathcal{K}(\mathbb{C})$. A complex z is called regular when $A+z B$ has exactly p eigenvalues, and exceptional otherwise. In a neighborhood of 0 , the spectrum of $A+z B$ may be classically described with Puiseux series as follows (see chapter 7 of [2]): there exists a radius $r>0$, an integer $q \in\{1, \ldots, n\}$, positive integers d_{1}, \ldots, d_{q}, and analytic functions f_{1}, \ldots, f_{q} defined on a neighborhood of 0 such that,

$$
\forall z \in \mathbb{C} \backslash\{0\}, \quad|z|<r \Rightarrow \chi_{A+z B}(X)=\prod_{k=1}^{q} \prod_{\zeta \in \mathbb{U}_{d_{k}}(z)}\left(X-f_{k}(\zeta)\right),
$$

where, for $N \geq 1$, we write $\mathbb{U}_{N}(z):=\left\{\zeta \in \mathbb{C}: \zeta^{N}=z\right\}$.
Assume now that $\operatorname{Sp}(k A+B) \subset \mathbb{Z}$ for every non-negative integer k. We then prove that f_{1}, \ldots, f_{q} are polynomial functions. Consider f_{1} for example, and its power series expansion

$$
f_{1}(z)=\sum_{k=0}^{+\infty} a_{k} z^{k} .
$$

Set $N:=p_{1}$ for convenience. Let k_{0} be a positive integer such that $\frac{1}{k_{0}}<r$. For any integer $k \geq k_{0}$, notice that $k f_{1}\left(k^{-1 / N}\right)$ is an eigenvalue of $k A+B$ and is
therefore an integer. It follows that

$$
\forall k \in \mathbb{Z}, k \geq k_{0} \Rightarrow(k+1) f_{1}\left((k+1)^{-1 / N}\right)-k f_{1}\left(k^{-1 / N}\right) \in \mathbb{Z}
$$

Notice that

$$
\forall x \in \mathbb{R}_{+}^{*}, x>\frac{1}{r} \Rightarrow x f_{1}\left(x^{-1 / N}\right)=a_{0} x+\sum_{k=1}^{+\infty} a_{k} x^{1-k / N}
$$

Hence, for any integer $k \geq k_{0}$,
$(k+1) f_{1}\left((k+1)^{-1 / N}\right)-k f_{1}\left(k^{-1 / N}\right)=a_{0}+\sum_{j \in \mathbb{N} \backslash\{0, N\}}^{+\infty} a_{j}\left((k+1)^{1-j / N}-k^{1-j / N}\right)$.
If $a_{j} \neq 0$ for some $j \geq 1$ with $j \neq N$, define r as the smallest such j, and notice that

$$
\sum_{j \in \mathbb{N} \backslash\{0, N\}} a_{j}\left((k+1)^{1-j / N}-k^{1-j / N}\right) \underset{k \rightarrow+\infty}{\sim} a_{r}(1-r / N) k^{-r / N}
$$

The sequence $\left((k+1) f_{1}\left((k+1)^{1 / N}\right)-k f_{1}\left(k^{1 / N}\right)-a_{0}\right)_{k \geq k_{0}}$ must then both converge to 0 , be integral-valued, on non-zero for large k. This is a contradiction therefore $\forall j \in \mathbb{N} \backslash\{0, N\}, a_{j}=0$. The same line of reasoning shows that, for any $k \in\{1, \ldots, q\}$, there exists $b_{k} \in \mathbb{C}$ such that $f_{k}(z)=f_{k}(0)+b_{k} z^{p_{k}}$ in a neighborhood of 0 . It follows that, in a neighborhood of 0 ,

$$
\chi_{A+z B}(X)=\prod_{k=1}^{q}\left(X-f_{k}(0)-b_{k} z\right)^{p_{k}}
$$

Therefore we have found affine maps g_{1}, \ldots, g_{n} from \mathbb{C} to \mathbb{C} such that, in a neighborhood of 0 ,

$$
\chi_{A+z B}(X)=\prod_{k=1}^{n}\left(X-g_{k}(z)\right)
$$

By analytic continuation 1 , we deduce that

$$
\forall z \in \mathbb{C}, \chi_{A+z B}(X)=\prod_{k=1}^{n}\left(X-g_{k}(z)\right)
$$

Hence (A, B) has property L , and Proposition 6 is proven.

[^1]
2.2 Commutativity for subgroups of diagonalisable matrices with an integral spectrum

Here, we derive Proposition 3 from Proposition 6. The key point is that Kato's proof of the Motzkin-Taussky theorem (8$]$ p. 85 Theorem 2.6) entails that Theorem 4 of [12] may be slightly refined as follows:
Theorem 7 (Refined Motzkin-Taussky theorem). Let $(A, B) \in M_{n}(\mathbb{C})^{2}$ be a pair of matrices which satisfies property L. Assume B is diagonalisable. If $A+z_{0} B$ is diagonalisable for every exceptional point z_{0} of the matrix pencil $z \mapsto A+z B$, then $A B=B A$.
Proof of Proposition 圆 Let then $(A, B) \in \mathrm{M}_{n}(\mathbb{C})^{2}$ be a pair of diagonalisable matrices such that $k A+l B$ is diagonalisable with $\operatorname{Sp}(k A+l B) \subset \mathbb{Z}$ for every $(k, l) \in \mathbb{Z}^{2}$. Then Proposition 6 shows that (A, B) has property L. For $k \in \llbracket 1, n \rrbracket$, choose $f_{k}: z \mapsto \alpha_{k} z+\beta_{k}$ so that

$$
\forall z \in \mathbb{C}, \operatorname{OSp}(A+z B)=\left[f_{k}(z)\right]_{1 \leq k \leq n .}
$$

Notice that $\operatorname{Sp}(A)=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $\operatorname{Sp}(B)=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$, hence the α_{k} 's and the β_{k} 's are integers. It follows that the exceptional points of the matrix pencil $z \mapsto A+z B$ are rational numbers. However, the assumptions shows that $A+\frac{l}{k} B=\frac{1}{k}(k A+l B)$ is diagonalisable for every $(k, l) \in(\mathbb{Z} \backslash\{0\}) \times \mathbb{Z}$. The refined Motzkin-Taussky theorem thus shows that $A B=B A$.

3 The case $\operatorname{Sp}(A) \subset 2 i \pi \mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2 i \pi \mathbb{Z}$ in Theorem 1

Let A and B be matrices in $\mathrm{M}_{n}(\mathbb{C}$) satisfying (3) and such that $\operatorname{Sp}(A) \subset 2 i \pi \mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2 i \pi \mathbb{Z}$. We consider the Dunford decompositions $A=D+N$ and $B=D^{\prime}+N^{\prime}$, where D and D^{\prime} are diagonalisable, N and N^{\prime} are nilpotent and $D N=N D$ and $D^{\prime} N^{\prime}=N^{\prime} D^{\prime}$. For every integer k, note that $k A=k D+k N$ (resp. $k B=k D^{\prime}+k N^{\prime}$) is the Dunford decomposition of $k A$ (resp. of $k B$), and $\operatorname{Sp}(k D)=\operatorname{Sp}(k A)=k \operatorname{Sp}(A) \subset 2 i \pi \mathbb{Z}\left(\right.$ resp. $\operatorname{Sp}\left(k D^{\prime}\right)=\operatorname{Sp}(k B)=k \operatorname{Sp}(B) \subset$ $2 i \pi \mathbb{Z}$) which shows that

$$
e^{k A}=e^{k N} \quad \text { and } \quad e^{k B}=e^{k N^{\prime}}
$$

Condition (4) thus translates into:

$$
\forall(k, l) \in \mathbb{Z}^{2}, \quad e^{k A+l B}=e^{k N} e^{l N^{\prime}}=e^{l N^{\prime}} e^{k N}
$$

Note in particular that e^{N} and $e^{N^{\prime}}$ commute. However, N is nilpotent hence $N=$ $\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k}\left(e^{N}-I_{n}\right)^{k}$ which shows that N is a polynomial of e^{N}. Similarly N^{\prime} is a polynomial of $e^{N^{\prime}}$ therefore:

$$
N N^{\prime}=N^{\prime} N
$$

With that in mind, the above condition yields:

$$
\forall(k, l) \in \mathbb{Z}^{2}, e^{k A+l B}=e^{k N+l N^{\prime}}
$$

Fix $(k, l) \in \mathbb{Z}^{2}$. Then $k N+l N^{\prime}$ is nilpotent since N and N^{\prime} are commuting nilpotent matrices, hence $k N+l N^{\prime}$ is a polynomial of $e^{k N+l N^{\prime}}$. Since $k A+l B$ commutes with $e^{k A+l B}$, it thus commutes with $k N+l N^{\prime}$. However

$$
k A+l B=\left(k D+l D^{\prime}\right)+\left(k N+l N^{\prime}\right)
$$

hence

$$
e^{k D+l D^{\prime}}=e^{k A+l B} e^{-k N-l N^{\prime}}=I_{n} .
$$

In particular, this yields that $k D+l D^{\prime}$ is diagonalisable with $\operatorname{Sp}\left(k D+l D^{\prime}\right) \subset$ $2 i \pi \mathbb{Z}$, and the Dunford decomposition of $k A+l B$ is therefore $k A+l B=(k D+$ $\left.l D^{\prime}\right)+\left(k N+l N^{\prime}\right)$ since $k N+l N^{\prime}$ commutes with $k A+l B$.

Applying Proposition 3 to the pair $\left(\frac{1}{2 i \pi} D, \frac{1}{2 i \pi} D^{\prime}\right)$, we then find that D and D^{\prime} commute. In particular $\left(D, D^{\prime}\right)$ has property L , which yields affine maps f_{1}, \ldots, f_{n} from \mathbb{C} to \mathbb{C} such that

$$
\forall z \in \mathbb{C}, \operatorname{OSp}\left(D+z D^{\prime}\right)=\left[f_{k}(z)\right]_{1 \leq k \leq n}
$$

The set $E:=\left\{k \in \mathbb{Z}: \exists(i, j) \in\{1, \ldots, n\}^{2}: \quad f_{i} \neq f_{j}\right.$ and $\left.f_{i}(k)=f_{j}(k)\right\}$ is clearly finite. We may then choose two distinct elements a and b in $\mathbb{Z} \backslash E$. Notice then that

$$
\forall(i, j) \in \llbracket 1, n \rrbracket^{2}, f_{i}(a)=f_{j}(a) \Leftrightarrow f_{i}=f_{j} \Leftrightarrow f_{i}(b)=f_{j}(b) .
$$

Since D and D^{\prime} are simultaneously diagonalisable, it easily follows that $D+a D^{\prime}$ is a polynomial of $D+b D^{\prime}$ and vice versa. Hence $N+a N^{\prime}$ and $N+b N^{\prime}$ both commute with $D+a D^{\prime}$ and $D+b D^{\prime}$. Since $N+a N^{\prime}$ and $N+b N^{\prime}$ both commute with one another, we deduce that $A+a B=\left(D+a D^{\prime}\right)+\left(N+a N^{\prime}\right)$ commutes with $A+b B=\left(D+b D^{\prime}\right)+\left(N+b N^{\prime}\right)$. Finally both A and B belong to $\operatorname{Span}(A+a B, A+b B)$ since $a \neq b$, therefore $A B=B A$.

4 Reduction to the situation where $\operatorname{Sp}(A) \subset 2 i \pi \mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2 i \pi \mathbb{Z}$

Here, we use an induction on n to prove Theorems 1 and 5 in the general case. Both theorems are obviously true for $n=1$, so we fix $n \geq 2$ and assume that they hold for any pair $(A, B) \in \mathrm{M}_{k}(\mathbb{C})^{2}$ with $k \in\{1, \ldots, n-1\}$. Let $(A, B) \in \mathrm{M}_{n}(\mathbb{C})^{2}$ satisfying (3) (respectively (2)).

Assume first that (A, B) is not irreducible, i.e. that there exists a non-trivial decomposition $\mathbb{C}^{n}=F \oplus G$ such that F and G are invariant linear subspaces for both A and B. Then there exists $p \in\{1, \ldots, n-1\}$, a non-singular matrix $P \in \mathrm{GL}_{n}(\mathbb{C})$ and square matrices $A_{1}, B_{1}, A_{2}, B_{2}$ respectively in $\mathrm{M}_{p}(\mathbb{C}), \mathrm{M}_{p}(\mathbb{C})$, $\mathrm{M}_{n-p}(\mathbb{C})$ and $\mathrm{M}_{n-p}(\mathbb{C})$ such that

$$
A=P\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right] P^{-1} \quad \text { and } \quad B=P\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right] P^{-1}
$$

Since the pair (A, B) satisfies (3) (resp. (22)), it easily follows that this is also the case of $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$, hence the induction hypothesis yields that $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ are commuting pairs (resp. satisfy property L$)$, hence (A, B) is also a commuting pair (resp. satisfies property L).

Assume, for the rest of the section, that (A, B) is irreducible. Note that we lose no generality assuming furthermore that A satisfies:

$$
\begin{equation*}
\forall(\lambda, \mu) \in \operatorname{Sp}(A)^{2}, \lambda-\mu \in 2 i \pi \mathbb{Q} \Rightarrow \lambda-\mu \in 2 i \pi \mathbb{Z} . \tag{5}
\end{equation*}
$$

Indeed, consider in general the finite set $\mathcal{E}:=\mathbb{Q} \cap \frac{1}{2 i \pi}\left\{\lambda-\mu \mid(\lambda, \mu) \in \operatorname{Sp}(A)^{2}\right\}$. Since it consists entirely of rational numbers, we may find some integer $p>0$ such that $p \mathcal{E} \subset \mathbb{Z}$. Replacing A with $p A$, we notice that $(p A, B)$ still satisfies (3) (resp. (2)) and is a commuting pair (resp. satisfies property L) if and only if (A, B) is a commuting pair (resp. satisfies property L).

Assume now that A satisfies (5) on top of all the previous assumptions, i.e. (A, B) is irreducible and satisfies (3) (resp. (22)). Let now $k \in \mathbb{N}$. Notice that e^{A} and e^{B} commute hence are simultaneously triangularizable (see Theorem 1.1.5 of [13]), which shows that the range of the map

$$
\gamma_{k}: \begin{cases}\operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right) & \longrightarrow \mathbb{C} \\ (\lambda, \mu) & \longmapsto \lambda^{k} \mu\end{cases}
$$

contains $\operatorname{Sp}\left(e^{k A} e^{B}\right)$.
Claim 1. With the above assumptions, there exists $k \in \mathbb{N} \backslash\{0\}$ such that γ_{k} is one-to-one.

Proof. Assume that for every $k \in \mathbb{N} \backslash\{0\}$, there are distinct pairs (λ, μ) and $\left(\lambda^{\prime}, \mu^{\prime}\right)$ in $\operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right)$ such that $\lambda^{k} \mu=\left(\lambda^{\prime}\right)^{k} \mu^{\prime}$. Since $\operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right)$ is finite and $\mathbb{N} \backslash\{0\}$ is infinite, we may then find distinct pairs (λ, μ) and $\left(\lambda^{\prime}, \mu^{\prime}\right)$ in $\operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right)$ and distinct non-zero integers a and b such that

$$
\lambda^{a} \mu=\left(\lambda^{\prime}\right)^{a} \mu^{\prime} \quad \text { and } \quad \lambda^{b} \mu=\left(\lambda^{\prime}\right)^{b} \mu^{\prime}
$$

All those eigenvalues are non-zero hence $\left(\lambda / \lambda^{\prime}\right)^{a-b}=1$ with $a \neq b$. It follows that $\frac{\lambda}{\lambda^{\prime}}$ is a root of unity. However $\lambda=e^{\alpha}$ and $\lambda^{\prime}=e^{\beta}$ for some $(\alpha, \beta) \in \operatorname{Sp}(A)^{2}$, which shows that $(a-b)(\alpha-\beta) \in 2 i \pi \mathbb{Z}$. Condition (5) then yields $\alpha-\beta \in 2 i \pi \mathbb{Z}$, hence $\lambda=\lambda^{\prime}$. It then follows that $\mu=\mu^{\prime}$, contradicting $(\lambda, \mu) \neq\left(\lambda^{\prime}, \mu^{\prime}\right)$.

Choose finally $k \in \mathbb{N} \backslash\{0\}$ such that γ_{k} is one-to-one. Notice that we lose no generality replacing A with $k A$, so we may assume, on top of the previous assumptions, that the map

$$
\begin{cases}\operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right) & \longrightarrow \mathbb{C} \\ (\lambda, \mu) & \longmapsto \lambda \mu\end{cases}
$$

is one-to-one. For $M \in \mathrm{M}_{n}(\mathbb{C})$ and $\lambda \in \mathbb{C}$, denote by $C_{\lambda}(M)$ the characteristic subspace of M with respect to M, i.e. $C_{\lambda}(M)=\operatorname{Ker}\left(M-\lambda I_{n}\right)^{n}$. We now prove:

Claim 2. The characteristic subspaces of e^{A} and e^{B} are all stabilized by A and B.
Proof. Notice that $A+B$ commutes with e^{A+B} hence with $e^{A} e^{B}$. It thus stabilizes the characteristic subspaces of $e^{A} e^{B}$. Let us show that:

$$
\begin{equation*}
\forall \mu \in \operatorname{Sp}\left(e^{B}\right), C_{\mu}\left(e^{B}\right)=\bigoplus_{\lambda \in \operatorname{Sp}\left(e^{A}\right)} C_{\lambda \mu}\left(e^{A} e^{B}\right) \tag{6}
\end{equation*}
$$

- Since e^{B} and e^{A} commute, they both stabilize the characteristic subspaces of e^{B} which shows that

$$
\forall \mu \in \operatorname{Sp}\left(e^{B}\right), C_{\mu}\left(e^{B}\right)=\bigoplus_{\lambda \in \operatorname{Sp}\left(e^{A}\right)} C_{\lambda}\left(e^{A}\right) \cap C_{\mu}\left(e^{B}\right)
$$

- Let $(\lambda, \mu) \in \operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right)$. Since e^{A} and e^{B} commute, they both stabilize $C_{\lambda}\left(e^{A}\right) \cap C_{\mu}\left(e^{B}\right)$ and induce simultaneously triangularizable endomorphisms of $C_{\lambda}\left(e^{A}\right) \cap C_{\mu}\left(e^{B}\right)$ each with a sole eigenvalue, respectively λ and μ : it follows that

$$
C_{\lambda}\left(e^{A}\right) \cap C_{\mu}\left(e^{B}\right) \subset C_{\lambda \mu}\left(e^{A} e^{B}\right) .
$$

- Finally, that $(\lambda, \mu) \mapsto \lambda \mu$ is one-to-one on $\operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right)$ yields that $C_{\lambda \mu}\left(e^{A} e^{B}\right) \cap C_{\lambda^{\prime} \mu^{\prime}}\left(e^{A} e^{B}\right)=\{0\}$ for all distinct pairs (λ, μ) and $\left(\lambda^{\prime}, \mu^{\prime}\right)$ in $\operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right)$. However

$$
\mathbb{C}^{n}=\bigoplus_{\mu \in \operatorname{Sp}\left(e^{B}\right)} C_{\mu}\left(e^{B}\right)=\bigoplus_{\mu \in \operatorname{Sp}\left(e^{B}\right)} \bigoplus_{\lambda \in \operatorname{Sp}\left(e^{A}\right)} C_{\lambda}\left(e^{A}\right) \cap C_{\mu}\left(e^{B}\right)
$$

and \mathbb{C}^{n} is the sum of all the characteristic subspaces of $\exp (A) \exp (B)$. We deduce that

$$
\forall(\lambda, \mu) \in \operatorname{Sp}\left(e^{A}\right) \times \operatorname{Sp}\left(e^{B}\right), C_{\lambda \mu}\left(e^{A} e^{B}\right)=C_{\lambda}\left(e^{A}\right) \cap C_{\mu}\left(e^{B}\right) .
$$

This yields (6).
We deduce that $A+B$ stabilizes every characteristic subspace of e^{B}, however this is also true of B since B commutes with e^{B}, hence A and B both stabilizes the characteristic subspaces of e^{B}. Symmetrically, every characteristic subspace of e^{A} is stabilized by both A and B.

We may now conclude: if e^{B} has several eigenvalues, then the above claim contradicts the assumption that (A, B) is irreducible. It follows that e^{B} has a sole eigenvalue, and for the same reason this is also true of e^{A}. Choosing $(\alpha, \beta) \in \mathbb{C}^{2}$ such that $\operatorname{Sp}\left(e^{A}\right)=\left\{e^{\alpha}\right\}$ and $\operatorname{Sp}\left(e^{B}\right)=\left\{e^{\beta}\right\}$, we find that $\exp \left(A-\alpha I_{n}\right)$ and $\exp \left(B-\beta I_{n}\right)$ both have 1 as sole eigenvalue, hence $\operatorname{Sp}\left(A-\alpha I_{n}\right) \subset 2 i \pi \mathbb{Z}$ and $\operatorname{Sp}\left(B-\beta I_{n}\right) \subset 2 i \pi \mathbb{Z}$. Set $A^{\prime}:=A-\alpha I_{n}$ and $B^{\prime}:=B-\beta I_{n}$. We now conclude the proofs of Theorems 1 and 5 by considering the two cases separately:

- The case (A, B) satisfies (3): then the pair $\left(A^{\prime}, B^{\prime}\right)$ clearly satisfies (3) so the proof from Section 3 yields that A^{\prime} commutes with B^{\prime}, hence $A B=B A$.
- The case (A, B) only satisfies (22): then $\left(A^{\prime}, B^{\prime}\right)$ obviously satisfies (2), hence $e^{A^{\prime}}$ and $e^{B^{\prime}}$ commute, hence are simultaneously triangularizable, and have 1 as sole eigenvalue. Therefore $e^{k A^{\prime}+B^{\prime}}=\left(e^{A^{\prime}}\right)^{k} e^{B^{\prime}}$ has 1 as sole eigenvalue for every $k \in \mathbb{N}$. Proposition 6 then shows that $\left(\frac{A^{\prime}}{2 i \pi}, \frac{B^{\prime}}{2 i \pi}\right)$ has property L , which clearly entails that (A, B) has property L .
Thus Theorem 1 and Theorem 5 are proven.

5 Additive semigroups on which the exponential is a homomorphism

In this short section, we derive Theorem 4 from Proposition 5. It obviously suffices to prove the following lemma:

Lemma 8. Let S be a sub-semigroup of $\left(M_{n}(\mathbb{C}),+\right)$. Assume that every pair $(A, B) \in S^{2}$ has property L. Then the linear subspace $\operatorname{Span}(S)$ has property L.

Proof. We extract from S a basis $\left(A_{1}, \ldots, A_{r}\right)$ of $\operatorname{Span}(S)$.
For every $j \in\{1, \ldots, r\}$, we choose a list $\left(a_{1}^{(j)}, \ldots, a_{n}^{(j)}\right) \in \mathbb{C}^{n}$ such that

$$
\operatorname{OSp}\left(A_{j}\right)=\left[a_{k}^{(j)}\right]_{1 \leq k \leq n}
$$

Then, for every list $\left(p_{1}, \ldots, p_{r}\right)$ of non-negative integers, we find a list $\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in$ Σ_{n}^{r} such that

$$
\operatorname{OSp}\left(\sum_{j=1}^{r} p_{j} A_{j}\right)=\left[\sum_{j=1}^{r} p_{j} a_{\sigma_{j}(k)}^{(j)}\right]_{1 \leq k \leq n}:
$$

this follows indeed from a trivial induction, using the fact that $\left(\sum_{k=1}^{j-1} p_{k} A_{k}, A_{j}\right)$ has property L for every $j \in\{2, \ldots, r\}$.
Multiplying by inverses of positive integers, we readily generalize this as follows: for every $\left(z_{1}, \ldots, z_{r}\right) \in \mathbb{Q}_{+}^{r}$ (where \mathbb{Q}_{+}denotes the set of non-negative rationals), there exists a list $\left(\sigma_{1}, \ldots, \sigma_{r}\right) \in \Sigma_{n}^{r}$ such that

$$
\operatorname{OSp}\left(\sum_{j=1}^{r} z_{j} A_{j}\right)=\left[\sum_{j=1}^{r} z_{j} a_{\sigma_{j}(k)}^{(j)}\right]_{1 \leq k \leq n}
$$

Now, we prove the following property, depending on $l \in\{0, \ldots, r\}$, by downward induction:
$\mathcal{P}(l)$: There exists a list $\left(\sigma_{l+1}, \ldots, \sigma_{r}\right) \in \Sigma_{n}^{r-l}$ such that, for every $\left(z_{1}, \ldots, z_{l}\right) \in \mathbb{Q}_{+}^{l}$, there exists a list $\left(\sigma_{1}, \ldots, \sigma_{l}\right) \in \Sigma_{n}^{l}$ satisfying:

$$
\forall\left(z_{l+1}, \ldots, z_{r}\right) \in \mathbb{C}^{r-l}, \operatorname{OSp}\left(\sum_{j=1}^{r} z_{j} A_{j}\right)=\left[\sum_{j=1}^{r} z_{j} a_{\sigma_{j}(k)}^{(j)}\right]_{1 \leq k \leq n}
$$

We already know that $\mathcal{P}(r)$ holds, whilst $\mathcal{P}(0)$ implies property L for $\operatorname{Span}(S)$. Let $l \in\{1, \ldots, r\}$ such that $\mathcal{P}(l)$ holds, and choose a corresponding list $\left(\sigma_{l+1}, \ldots, \sigma_{r}\right) \in$ Σ_{n}^{r-l}. Fix $\left(z_{1}, \ldots, z_{l-1}\right) \in \mathbb{Q}_{+}^{l-1}$. For every $r_{l} \in \mathbb{Q}_{+}$, we may then choose permutations $\sigma_{1}, \ldots, \sigma_{l}$ such that:

$$
\forall\left(z_{l+1}, \ldots, z_{r}\right) \in \mathbb{C}^{r-l}, \operatorname{OSp}\left(\sum_{j=1}^{r} z_{j} A_{j}\right)=\left[\sum_{j=1}^{r} z_{j} a_{\sigma_{j}(k)}^{(j)}\right]_{1 \leq k \leq n}
$$

Denote by $\left(\sigma_{1}^{z_{l}}, \ldots, \sigma_{l}^{z_{l}}\right)$ the chosen list. Since Σ_{n}^{l} is finite and $\mathbb{Q}_{+} \cap(0,1)$ is infinite, we may find some list $\left(\sigma_{1}, \ldots, \sigma_{l}\right) \in \Sigma_{n}^{l}$ which equals $\left(\sigma_{1}^{z_{l}}, \ldots, \sigma_{l}^{z_{l}}\right)$ for infinitely many z_{l} 's in $\mathbb{Q}_{+} \cap(0,1)$. Fixing $\left(z_{l+1}, \ldots, z_{r}\right) \in \mathbb{C}^{n-l}$, an analytic continuation argument $\sqrt{2}^{2}$ then shows that

$$
\forall z_{l} \in \mathbb{C}, \quad \chi \sum_{j=1}^{r} z_{j} A_{j}(X)=\prod_{k=1}^{n}\left(X-\sum_{j=1}^{r} z_{j} a_{\sigma_{j}(k)}^{(j)}\right)
$$

hence

$$
\forall\left(z_{l}, \ldots, z_{r}\right) \in \mathbb{C}^{r-l+1}, \operatorname{OSp}\left(\sum_{j=1}^{r} z_{j} A_{j}\right)=\left[\sum_{j=1}^{r} z_{j} a_{\sigma_{j}(k)}^{(j)}\right]_{1 \leq k \leq n .}
$$

This proves that $\mathcal{P}(l-1)$ holds, QED.

References

[1] G. Bourgeois, On commuting exponentials in low dimensions, Lin. Alg. Appl., 423 (2007) 277-286.
[2] G. Fischer. Plane Algebraic Curves, Student Mathematical Library, Volume 15, AMS 2001.
[3] M. Fréchet, Les solutions non-commutables de l'équation matricielle $e^{x+y}=$ $e^{x} e^{y}$, Rend. Circ. Math. Palermo, 2 (1953) 11-27.
[4] M. Fréchet, Les solutions non-commutables de l'équation matricielle $e^{x+y}=$ $e^{x} e^{y}$, Rectification, Rend. Circ. Math. Palermo, 2 (1953) 71-72.
[5] N.J. Higham. Functions of Matrices. Theory and Computation, SIAM 2008.

[^2][6] C.W. Huff, On pairs of matrices (of order two) A, B satisfying the condition $e^{A+B}=e^{A} e^{B} \neq e^{B} e^{A}$, Rend. Circ. Math. Palermo, 2 (1953) 326-330.
[7] A.G. Kakar, Non-commuting solutions of the matrix equation $\exp (X+Y)=$ $\exp (X) \exp (Y)$, Rend. Circ. Math. Palermo, 2 (1953) 331-345.
[8] T. Kato. Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, Springer-Verlag 1980.
[9] K. Morinaga, T.Nono, On the non-commutative solutions of the exponential equation $e^{x} e^{y}=e^{x+y}$. J. Sci. Hiroshima Univ., (A)17 (1954) 345-358.
[10] K. Morinaga, T.Nono, On the non-commutative solutions of the exponential equation $e^{x} e^{y}=e^{x+y}$. II J. Sci. Hiroshima Univ., (A)18 (1954) 137-178.
[11] T.S. Motzkin, O. Taussky, Pairs of matrices with property L, Trans. Amer. Math. Soc., 73 (1952) 108-114.
[12] T.S. Motzkin, O. Taussky, Pairs of matrices with property L (II), Trans. Amer. Math. Soc., 80 (1955) 387-401.
[13] H. Radjavi, P. Rosenthal. Simultaneous Triangularization, Universitext, Springer-Verlag 2000.
[14] C. Schmoeger, Remarks on commuting exponentials in Banach algebras, Proc. Amer. Math. Soc., 127 (5) (1999) 1337-1338.
[15] C. Schmoeger, Remarks on commuting exponentials in Banach algebras II, Proc. Amer. Math. Soc., 128 (11) (2000) 3405-3409.
[16] E.M.E. Wermuth, Two remarks on matrix exponentials, Linear Algebra Appl., 117 (1989) 127-132.
[17] E.M.E. Wermuth, A remark on commuting operator exponentials, Proc. Amer. Math. Soc., 125 (6) (1997) 1685-1688.

[^0]: *Professor of Mathematics at Lycée Privé Sainte-Geneviève, 2, rue de l'École des Postes, 78029 Versailles Cedex, FRANCE.
 ${ }^{\dagger}$ e-mail: dsp.prof@gmail.com

[^1]: ${ }^{1}$ Note that the coefficients of these polynomials are polynomial functions of z which coincide on a neighborhood of 0 .

[^2]: ${ }^{2}$ On both sides, the coefficients of the polynomials are analytic functions of z_{l}.

