Additive groups and semigroups of matrices on which the exponential is a homomorphism

Clément de Seguins Pazzis^{*†}

December 21, 2010

Abstract

Let G be a subgroup of $(M_n(\mathbb{C}), +)$. We show that $M \mapsto \exp(M)$ is a group homomorphism from G to $(\operatorname{GL}_n(\mathbb{C}), \times)$ if and only if G consists of commuting matrices. We also prove that if S is a sub-semigroup of $(M_n(\mathbb{C}), +)$ such that $M \mapsto \exp(M)$ is a homomorphism from S to $(\operatorname{GL}_n(\mathbb{C}), \times)$, then the linear subspace $\operatorname{Span}(S)$ has property L of Motzkin and Taussky.

AMS Classification: 15A16; 15A22

Keywords: matrix pencils, commuting exponentials, property L.

1 Introduction

We denote by $M_n(\mathbb{C})$ the algebra of square matrices of order n with entries in the field of complex numbers. For $M \in M_n(\mathbb{C})$, we denote by e^M or $\exp(M)$ its exponential. It is folklore that exp is not a group homomorphism from $(M_n(\mathbb{C}), +)$ from $(\operatorname{GL}_n(\mathbb{C}), \times)$ if $n \geq 2$. However, when A and B are commuting matrices of $M_n(\mathbb{C})$, then

$$e^{A+B} = e^A e^B = e^B e^A$$

^{*}Professor of Mathematics at Lycée Privé Sainte-Geneviève, 2, rue de l'École des Postes, 78029 Versailles Cedex, FRANCE.

[†]e-mail: dsp.prof@gmail.com

The converse does not hold, moreover it is not necessary for A and B to be simultaneously triangularizable for this condition to hold. If however

$$\forall t \in \mathbb{R}, \ e^{tA}e^{tB} = e^{tB}e^{tA},\tag{1}$$

then a power series expansion at t = 0 shows that AB = BA. In the 1950's, pairs of matrices (A, B) of small size such that $e^{A+B} = e^A e^B$ have been under extensive scrutiny [3, 4, 6, 7, 9, 10]. More recently, E. Wermuth [16, 17] and Schmoeger [14, 15] have studied the problem of adding extra conditions on the matrices A and B for the commutation $e^A e^B = e^B e^A$ to imply the commutation of A with B. A few years ago [1] G. Bourgeois investigated, for small n, the pairs $(A, B) \in M_n(\mathbb{C})^2$ which satisfy:

$$\forall k \in \mathbb{N}, \quad e^{kA+B} = e^{kA}e^B = e^B e^{kA}. \tag{2}$$

The main interest in this condition lies in the fact that, *contra* (1), it is not possible to use it to obtain information on A and B based on the sole local behavior of exp around 0. Bourgeois showed that (2) implies that A and B are simultaneously triangularizable when n = 2, and produced a proof that this also holds when n = 3. This last result is however false, as the following counterexample - communicated to us by Jean-Louis Tu - shows: consider the matrices

$$A_1 := 2i\pi \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B_1 := 2i\pi \begin{bmatrix} 2 & 1 & 1 \\ 1 & 3 & -2 \\ 1 & 1 & 0 \end{bmatrix}.$$

Notice that A_1 and B_1 are not simultaneously triangularizable since they share no eigenvector (indeed, the eigenspaces of A_1 are the lines generated by the three vectors of the canonical basis, none of which is stabilized by B_1). However, for every $t \in \mathbb{C}$, a straightforward computation shows that the characteristic polynomial of tA + B is

$$X(X - 2i\pi(t+2))(X - 2i\pi(2t+3)).$$

Then for every $t \in \mathbb{N}$, the matrix tA + B has three distinct eigenvalues in $2i\pi\mathbb{Z}$, hence is diagonalisable with $e^{tA+B} = I_3$. In particular $e^B = I_3$, and on the other hand $e^A = I_3$ which shows that condition (2) holds.

It then appears that one should strengthen Bourgeois' condition as follows in order to obtain at least the simultaneous triangularizability of A and B:

$$\forall (k,l) \in \mathbb{Z}^2, \quad e^{kA+lB} = e^{kA}e^{lB}.$$
(3)

Notice immediately that this condition implies that e^A and e^B commute. If indeed it holds, then

$$e^{B}e^{A} = (e^{-A}e^{-B})^{-1} = (e^{-A-B})^{-1} = e^{A+B} = e^{A}e^{B}$$

Therefore (3) is equivalent to

$$\forall (k,l) \in \mathbb{Z}^2, \quad e^{kA+lB} = e^{kA}e^{lB} = e^{lB}e^{kA}. \tag{4}$$

Here is our main result:

Theorem 1. Let $(A, B) \in M_n(\mathbb{C})^2$ satisfying (3). Then AB = BA.

Note that the converse is trivial. The following corollary is straightforward:

Theorem 2. Let G be a subgroup of $(M_n(\mathbb{C}), +)$ and assume that $M \mapsto \exp(M)$ is a homomorphism from (G, +) to $(GL_n(\mathbb{C}), \times)$. Then $\forall (A, B) \in G^2$, AB = BA.

Again, the converse is trivial. A special case will be an important step in our proof: recall (see e.g. Theorem 1.27 [5]) that the solutions of the equation $e^M = I_n$ are the diagonalisable matrices M such that $\operatorname{Sp}(M) \subset 2i\pi\mathbb{Z}$ (where $\operatorname{Sp}(M)$ denotes the set of eigenvalues of M). The case $e^A = e^B = I_n$ in Theorem 1 is thus obviously equivalent to the following result:

Proposition 3. Let $(A, B) \in M_n(\mathbb{C})^2$. Assume that, for every $(k, l) \in \mathbb{Z}^2$, the matrix kA + lB is diagonalisable and $\operatorname{Sp}(kA + lB) \subset \mathbb{Z}$. Then AB = BA.

For sub-semigroups of $(M_n(\mathbb{C}), +)$, the above results surely fail. A very simple counterexample is indeed given by the semigroup generated by

$$A := \begin{bmatrix} 0 & 0 \\ 0 & 2i\pi \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} 0 & 1 \\ 0 & 2i\pi \end{bmatrix}.$$

One may however wonder if a sub-semigroup S on which exp is a homomorphism must be simultaneously triangularizable. Alas the additive semigroup generated by the matrices A_1 and B_1 above is a counterexample. Nevertheless, we will prove a weaker property. Before stating it, we need a few notations and definitions.

We denote by Σ_n the group of permutations of $\{1, \ldots, n\}$, make it act on \mathbb{C}^n by $\sigma(z_1, \ldots, z_n) := (z_{\sigma(1)}, \ldots, z_{\sigma(n)})$, and consider the quotient set \mathbb{C}^n / Σ_n .

The class of a list $(z_1, \ldots, z_n) \in \mathbb{C}^n$ in this quotient space will be denoted by $[z_1, \ldots, z_n]$. For $M \in M_n(\mathbb{C})$, denote by $\chi_M(X)$ its characteristic polynomial,

OSp(M) :=
$$[z_1, ..., z_n]$$
, where $\chi_M(X) = \prod_{k=1}^n (X - z_k)$.

Definition 1. A pair $(A, B) \in M_n(\mathbb{C})^2$ has **property L** when there are *n* linear forms f_1, \ldots, f_n on \mathbb{C}^2 such that

$$\forall (x,y) \in \mathbb{C}^2, \ \operatorname{OSp}(xA+yB) = \left[f_k(x,y)\right]_{1 \le k \le n}$$

A linear subspace V of $M_n(\mathbb{C})$ has property L when there are n linear forms f_1, \ldots, f_n on V such that

$$\forall M \in V, \text{ OSp}(M) = [f_k(M)]_{1 \le k \le n}.$$

Theorem 4. Let S be a sub-semigroup of $(M_n(\mathbb{C}), +)$ and assume that $M \mapsto \exp(M)$ is a homomorphism from (S, +) to $(GL_n(\mathbb{C}), \times)$. Then $\operatorname{Span}(S)$ has property L.

Note that the converse is obviously false. We shall derive this last theorem from a more precise result on pairs satisfying condition (2):

Proposition 5. Let $(A, B) \in M_n(\mathbb{C})^2$ satisfying (2). Then (A, B) has property L.

Structure of the paper: The proofs of Theorem 1 and of Proposition 5 have largely similar parts, so they will be tackled simultaneously. There are three main steps:

- We will prove Proposition 5 in the special case where $\operatorname{Sp}(A) \subset 2i\pi\mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2i\pi\mathbb{Z}$. This will involve a study of the matrix pencil A + zB. We will then easily derive Proposition 3 using a refinement of the Motzkin-Taussky theorem.
- We will tackle the more general case $\operatorname{Sp}(A) \subset 2i\pi\mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2i\pi\mathbb{Z}$ in Theorem 1 by using the Dunford decompositions of A and B together with Proposition 3.
- In the general case, we use an induction on n to reduce the situation to the previous one, both for Theorem 1 and Proposition 5.

In the last section, we derive Theorem 4 from Proposition 5.

2 Additive groups or semigroups of matrices with an integral spectrum

2.1 Property L for pairs of matrices with an integral spectrum

Our aim here is to prove the following proposition:

Proposition 6. Let $(A, B) \in M_n(\mathbb{C})^2$. Assume that $\operatorname{Sp}(kA + B) \subset \mathbb{Z}$ for every $k \in \mathbb{N}$. Then (A, B) has property L.

Notice that a pair (A, B) has property L if and only if there are affine maps f_1, \ldots, f_n from \mathbb{C} to \mathbb{C} such that

$$\forall z \in \mathbb{C}, \text{ OSp}(A + zB) = \left[f_k(z)\right]_{1 \le k \le n}$$

Before proving Proposition 6, let us first recall a few well-known facts on matrix pencils with complex entries. Denote by $\mathcal{K}(\mathbb{C})$ the quotient field of the integral domain $H(\mathbb{C})$ of entire functions (i.e. analytic functions from \mathbb{C} to \mathbb{C}). Let $(A, B) \in M_n(\mathbb{C})^2$. The **generic number** p of eigenvalues of the pencil $z \mapsto A + zB$ is defined as the number of the roots of $\chi_{A+\mathrm{id}_{\mathbb{C}}B}(X)$ in an algebraic closure of $\mathcal{K}(\mathbb{C})$. A complex z is called **regular** when A + zB has exactly peigenvalues, and **exceptional** otherwise. In a neighborhood of 0, the spectrum of A+zB may be classically described with Puiseux series as follows (see chapter 7 of [2]): there exists a radius r > 0, an integer $q \in \{1, \ldots, n\}$, positive integers d_1, \ldots, d_q , and analytic functions f_1, \ldots, f_q defined on a neighborhood of 0 such that,

$$\forall z \in \mathbb{C} \smallsetminus \{0\}, \quad |z| < r \Rightarrow \chi_{A+zB}(X) = \prod_{k=1}^{q} \prod_{\zeta \in \mathbb{U}_{d_k}(z)} \left(X - f_k(\zeta)\right),$$

where, for $N \ge 1$, we write $\mathbb{U}_N(z) := \{\zeta \in \mathbb{C} : \zeta^N = z\}.$

Assume now that $\text{Sp}(kA+B) \subset \mathbb{Z}$ for every non-negative integer k. We then prove that f_1, \ldots, f_q are polynomial functions. Consider f_1 for example, and its power series expansion

$$f_1(z) = \sum_{k=0}^{+\infty} a_k z^k.$$

Set $N := p_1$ for convenience. Let k_0 be a positive integer such that $\frac{1}{k_0} < r$. For any integer $k \ge k_0$, notice that $kf_1(k^{-1/N})$ is an eigenvalue of kA + B and is

therefore an integer. It follows that

$$\forall k \in \mathbb{Z}, \ k \ge k_0 \Rightarrow (k+1)f_1((k+1)^{-1/N}) - kf_1(k^{-1/N}) \in \mathbb{Z}.$$

Notice that

$$\forall x \in \mathbb{R}^*_+, \ x > \frac{1}{r} \Rightarrow x f_1(x^{-1/N}) = a_0 x + \sum_{k=1}^{+\infty} a_k x^{1-k/N}.$$

Hence, for any integer $k \ge k_0$,

$$(k+1)f_1((k+1)^{-1/N}) - kf_1(k^{-1/N}) = a_0 + \sum_{j \in \mathbb{N} \setminus \{0,N\}}^{+\infty} a_j((k+1)^{1-j/N} - k^{1-j/N}).$$

If $a_j \neq 0$ for some $j \geq 1$ with $j \neq N$, define r as the smallest such j, and notice that

$$\sum_{j \in \mathbb{N} \setminus \{0,N\}} a_j \left((k+1)^{1-j/N} - k^{1-j/N} \right) \underset{k \to +\infty}{\sim} a_r \left(1 - r/N \right) k^{-r/N}.$$

The sequence $((k+1)f_1((k+1)^{1/N}) - kf_1(k^{1/N}) - a_0)_{k \ge k_0}$ must then both converge to 0, be integral-valued, on non-zero for large k. This is a contradiction therefore $\forall j \in \mathbb{N} \setminus \{0, N\}, a_j = 0$. The same line of reasoning shows that, for any $k \in \{1, \ldots, q\}$, there exists $b_k \in \mathbb{C}$ such that $f_k(z) = f_k(0) + b_k z^{p_k}$ in a neighborhood of 0. It follows that, in a neighborhood of 0,

$$\chi_{A+zB}(X) = \prod_{k=1}^{q} (X - f_k(0) - b_k z)^{p_k}.$$

Therefore we have found affine maps g_1, \ldots, g_n from \mathbb{C} to \mathbb{C} such that, in a neighborhood of 0,

$$\chi_{A+zB}(X) = \prod_{k=1}^{n} (X - g_k(z)).$$

By analytic continuation¹, we deduce that

$$\forall z \in \mathbb{C}, \ \chi_{A+zB}(X) = \prod_{k=1}^{n} (X - g_k(z))$$

Hence (A, B) has property L, and Proposition 6 is proven.

¹Note that the coefficients of these polynomials are polynomial functions of z which coincide on a neighborhood of 0.

⁶

2.2 Commutativity for subgroups of diagonalisable matrices with an integral spectrum

Here, we derive Proposition 3 from Proposition 6. The key point is that Kato's proof of the Motzkin-Taussky theorem ([8] p.85 Theorem 2.6) entails that Theorem 4 of [12] may be slightly refined as follows:

Theorem 7 (Refined Motzkin-Taussky theorem). Let $(A, B) \in M_n(\mathbb{C})^2$ be a pair of matrices which satisfies property L. Assume B is diagonalisable. If $A + z_0B$ is diagonalisable for every exceptional point z_0 of the matrix pencil $z \mapsto A + zB$, then AB = BA.

Proof of Proposition 3. Let then $(A, B) \in M_n(\mathbb{C})^2$ be a pair of diagonalisable matrices such that kA + lB is diagonalisable with $\operatorname{Sp}(kA + lB) \subset \mathbb{Z}$ for every $(k, l) \in \mathbb{Z}^2$. Then Proposition 6 shows that (A, B) has property L. For $k \in [\![1, n]\!]$, choose $f_k : z \mapsto \alpha_k z + \beta_k$ so that

$$\forall z \in \mathbb{C}, \ \operatorname{OSp}(A + zB) = \left[f_k(z)\right]_{1 \le k \le n.}$$

Notice that $\operatorname{Sp}(A) = \{\alpha_1, \ldots, \alpha_n\}$ and $\operatorname{Sp}(B) = \{\beta_1, \ldots, \beta_n\}$, hence the α_k 's and the β_k 's are integers. It follows that the exceptional points of the matrix pencil $z \mapsto A + zB$ are rational numbers. However, the assumptions shows that $A + \frac{l}{k}B = \frac{1}{k}(kA + lB)$ is diagonalisable for every $(k, l) \in (\mathbb{Z} \setminus \{0\}) \times \mathbb{Z}$. The refined Motzkin-Taussky theorem thus shows that AB = BA.

3 The case $Sp(A) \subset 2i\pi\mathbb{Z}$ and $Sp(B) \subset 2i\pi\mathbb{Z}$ in Theorem 1

Let A and B be matrices in $M_n(\mathbb{C})$ satisfying (3) and such that $\operatorname{Sp}(A) \subset 2i\pi\mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2i\pi\mathbb{Z}$. We consider the Dunford decompositions A = D + N and B = D' + N', where D and D' are diagonalisable, N and N' are nilpotent and DN = ND and D'N' = N'D'. For every integer k, note that kA = kD + kN(resp. kB = kD' + kN') is the Dunford decomposition of kA (resp. of kB), and $\operatorname{Sp}(kD) = \operatorname{Sp}(kA) = k \operatorname{Sp}(A) \subset 2i\pi\mathbb{Z}$ (resp. $\operatorname{Sp}(kD') = \operatorname{Sp}(kB) = k \operatorname{Sp}(B) \subset$ $2i\pi\mathbb{Z}$) which shows that

$$e^{kA} = e^{kN}$$
 and $e^{kB} = e^{kN'}$.

Condition (4) thus translates into:

$$\forall (k,l) \in \mathbb{Z}^2, \quad e^{kA+lB} = e^{kN}e^{lN'} = e^{lN'}e^{kN}$$

Note in particular that e^N and $e^{N'}$ commute. However, N is nilpotent hence $N = \sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} (e^N - I_n)^k$ which shows that N is a polynomial of e^N . Similarly N' is a polynomial of $e^{N'}$ therefore:

$$NN' = N'N.$$

With that in mind, the above condition yields:

$$\forall (k,l) \in \mathbb{Z}^2, \ e^{kA+lB} = e^{kN+lN'}.$$

Fix $(k, l) \in \mathbb{Z}^2$. Then kN + lN' is nilpotent since N and N' are commuting nilpotent matrices, hence kN + lN' is a polynomial of $e^{kN+lN'}$. Since kA + lB commutes with e^{kA+lB} , it thus commutes with kN + lN'. However

$$kA + lB = (kD + lD') + (kN + lN')$$

hence

$$e^{kD+lD'} = e^{kA+lB}e^{-kN-lN'} = I_n$$

In particular, this yields that kD + lD' is diagonalisable with $\operatorname{Sp}(kD + lD') \subset 2i\pi\mathbb{Z}$, and the Dunford decomposition of kA + lB is therefore kA + lB = (kD + lD') + (kN + lN') since kN + lN' commutes with kA + lB.

Applying Proposition 3 to the pair $\left(\frac{1}{2i\pi}D, \frac{1}{2i\pi}D'\right)$, we then find that D and D' commute. In particular (D, D') has property L, which yields affine maps f_1, \ldots, f_n from \mathbb{C} to \mathbb{C} such that

$$\forall z \in \mathbb{C}, \ \operatorname{OSp}(D + zD') = \left[f_k(z)\right]_{1 \le k \le n}$$

The set $E := \{k \in \mathbb{Z} : \exists (i,j) \in \{1,\ldots,n\}^2 : f_i \neq f_j \text{ and } f_i(k) = f_j(k)\}$ is clearly finite. We may then choose two distinct elements a and b in $\mathbb{Z} \setminus E$. Notice then that

$$\forall (i,j) \in \llbracket 1,n \rrbracket^2, \ f_i(a) = f_j(a) \Leftrightarrow f_i = f_j \Leftrightarrow f_i(b) = f_j(b).$$

Since D and D' are simultaneously diagonalisable, it easily follows that D + aD' is a polynomial of D + bD' and vice versa. Hence N + aN' and N + bN' both commute with D + aD' and D + bD'. Since N + aN' and N + bN' both commute with one another, we deduce that A + aB = (D + aD') + (N + aN') commutes with A + bB = (D + bD') + (N + bN'). Finally both A and B belong to Span(A + aB, A + bB) since $a \neq b$, therefore AB = BA.

4 Reduction to the situation where $\operatorname{Sp}(A) \subset 2i\pi\mathbb{Z}$ and $\operatorname{Sp}(B) \subset 2i\pi\mathbb{Z}$

Here, we use an induction on n to prove Theorems 1 and 5 in the general case. Both theorems are obviously true for n = 1, so we fix $n \ge 2$ and assume that they hold for any pair $(A, B) \in M_k(\mathbb{C})^2$ with $k \in \{1, \ldots, n-1\}$. Let $(A, B) \in M_n(\mathbb{C})^2$ satisfying (3) (respectively (2)).

Assume first that (A, B) is not irreducible, i.e. that there exists a non-trivial decomposition $\mathbb{C}^n = F \oplus G$ such that F and G are invariant linear subspaces for both A and B. Then there exists $p \in \{1, \ldots, n-1\}$, a non-singular matrix $P \in \operatorname{GL}_n(\mathbb{C})$ and square matrices A_1, B_1, A_2, B_2 respectively in $\operatorname{M}_p(\mathbb{C}), \operatorname{M}_p(\mathbb{C}),$ $\operatorname{M}_{n-p}(\mathbb{C})$ and $\operatorname{M}_{n-p}(\mathbb{C})$ such that

$$A = P \begin{bmatrix} A_1 & 0\\ 0 & A_2 \end{bmatrix} P^{-1} \text{ and } B = P \begin{bmatrix} B_1 & 0\\ 0 & B_2 \end{bmatrix} P^{-1}.$$

Since the pair (A, B) satisfies (3) (resp. (2)), it easily follows that this is also the case of (A_1, B_1) and (A_2, B_2) , hence the induction hypothesis yields that (A_1, B_1) and (A_2, B_2) are commuting pairs (resp. satisfy property L), hence (A, B) is also a commuting pair (resp. satisfies property L).

Assume, for the rest of the section, that (A, B) is irreducible. Note that we lose no generality assuming furthermore that A satisfies:

$$\forall (\lambda, \mu) \in \operatorname{Sp}(A)^2, \ \lambda - \mu \in 2i\pi \mathbb{Q} \Rightarrow \lambda - \mu \in 2i\pi \mathbb{Z}.$$
 (5)

Indeed, consider in general the finite set $\mathcal{E} := \mathbb{Q} \cap \frac{1}{2i\pi} \{\lambda - \mu \mid (\lambda, \mu) \in \operatorname{Sp}(A)^2\}$. Since it consists entirely of rational numbers, we may find some integer p > 0 such that $p\mathcal{E} \subset \mathbb{Z}$. Replacing A with pA, we notice that (pA, B) still satisfies (3) (resp. (2)) and is a commuting pair (resp. satisfies property L) if and only if (A, B) is a commuting pair (resp. satisfies property L).

Assume now that A satisfies (5) on top of all the previous assumptions, i.e. (A, B) is irreducible and satisfies (3) (resp. (2)). Let now $k \in \mathbb{N}$. Notice that e^A and e^B commute hence are simultaneously triangularizable (see Theorem 1.1.5 of [13]), which shows that the range of the map

$$\gamma_k : \begin{cases} \operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B) & \longrightarrow \mathbb{C} \\ (\lambda, \mu) & \longmapsto \lambda^k \mu \end{cases}$$

contains $\operatorname{Sp}(e^{kA}e^B)$.

Claim 1. With the above assumptions, there exists $k \in \mathbb{N} \setminus \{0\}$ such that γ_k is one-to-one.

Proof. Assume that for every $k \in \mathbb{N} \setminus \{0\}$, there are distinct pairs (λ, μ) and (λ', μ') in $\operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B)$ such that $\lambda^k \mu = (\lambda')^k \mu'$. Since $\operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B)$ is finite and $\mathbb{N} \setminus \{0\}$ is infinite, we may then find distinct pairs (λ, μ) and (λ', μ') in $\operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B)$ and distinct non-zero integers a and b such that

$$\lambda^a \mu = (\lambda')^a \mu' \text{ and } \lambda^b \mu = (\lambda')^b \mu'.$$

All those eigenvalues are non-zero hence $(\lambda/\lambda')^{a-b} = 1$ with $a \neq b$. It follows that $\frac{\lambda}{\lambda'}$ is a root of unity. However $\lambda = e^{\alpha}$ and $\lambda' = e^{\beta}$ for some $(\alpha, \beta) \in \operatorname{Sp}(A)^2$, which shows that $(a-b)(\alpha-\beta) \in 2i\pi\mathbb{Z}$. Condition (5) then yields $\alpha-\beta \in 2i\pi\mathbb{Z}$, hence $\lambda = \lambda'$. It then follows that $\mu = \mu'$, contradicting $(\lambda, \mu) \neq (\lambda', \mu')$.

Choose finally $k \in \mathbb{N} \setminus \{0\}$ such that γ_k is one-to-one. Notice that we lose no generality replacing A with kA, so we may assume, on top of the previous assumptions, that the map

$$\begin{cases} \operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B) & \longrightarrow \mathbb{C} \\ (\lambda, \mu) & \longmapsto \lambda \mu \end{cases}$$

is one-to-one. For $M \in M_n(\mathbb{C})$ and $\lambda \in \mathbb{C}$, denote by $C_{\lambda}(M)$ the characteristic subspace of M with respect to M, i.e. $C_{\lambda}(M) = \text{Ker}(M - \lambda I_n)^n$. We now prove:

Claim 2. The characteristic subspaces of e^A and e^B are all stabilized by A and B.

Proof. Notice that A + B commutes with e^{A+B} hence with $e^A e^B$. It thus stabilizes the characteristic subspaces of $e^A e^B$. Let us show that:

$$\forall \mu \in \operatorname{Sp}(e^B), \ C_{\mu}(e^B) = \bigoplus_{\lambda \in \operatorname{Sp}(e^A)} C_{\lambda\mu}(e^A e^B).$$
(6)

• Since e^B and e^A commute, they both stabilize the characteristic subspaces of e^B which shows that

$$\forall \mu \in \operatorname{Sp}(e^B), \ C_{\mu}(e^B) = \bigoplus_{\lambda \in \operatorname{Sp}(e^A)} C_{\lambda}(e^A) \cap C_{\mu}(e^B).$$

• Let $(\lambda, \mu) \in \operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B)$. Since e^A and e^B commute, they both stabilize $C_{\lambda}(e^A) \cap C_{\mu}(e^B)$ and induce simultaneously triangularizable endomorphisms of $C_{\lambda}(e^A) \cap C_{\mu}(e^B)$ each with a sole eigenvalue, respectively λ and μ : it follows that

$$C_{\lambda}(e^A) \cap C_{\mu}(e^B) \subset C_{\lambda\mu}(e^A e^B).$$

• Finally, that $(\lambda, \mu) \mapsto \lambda \mu$ is one-to-one on $\operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B)$ yields that $C_{\lambda\mu}(e^A e^B) \cap C_{\lambda'\mu'}(e^A e^B) = \{0\}$ for all distinct pairs (λ, μ) and (λ', μ') in $\operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B)$. However

$$\mathbb{C}^n = \bigoplus_{\mu \in \operatorname{Sp}(e^B)} C_{\mu}(e^B) = \bigoplus_{\mu \in \operatorname{Sp}(e^B)} \bigoplus_{\lambda \in \operatorname{Sp}(e^A)} C_{\lambda}(e^A) \cap C_{\mu}(e^B)$$

and \mathbb{C}^n is the sum of all the characteristic subspaces of $\exp(A) \exp(B)$. We deduce that

$$\forall (\lambda, \mu) \in \operatorname{Sp}(e^A) \times \operatorname{Sp}(e^B), \ C_{\lambda\mu}(e^A e^B) = C_{\lambda}(e^A) \cap C_{\mu}(e^B).$$

This yields (6).

We deduce that A + B stabilizes every characteristic subspace of e^B , however this is also true of B since B commutes with e^B , hence A and B both stabilizes the characteristic subspaces of e^B . Symmetrically, every characteristic subspace of e^A is stabilized by both A and B.

We may now conclude: if e^B has several eigenvalues, then the above claim contradicts the assumption that (A, B) is irreducible. It follows that e^B has a sole eigenvalue, and for the same reason this is also true of e^A . Choosing $(\alpha, \beta) \in \mathbb{C}^2$ such that $\operatorname{Sp}(e^A) = \{e^{\alpha}\}$ and $\operatorname{Sp}(e^B) = \{e^{\beta}\}$, we find that $\exp(A - \alpha I_n)$ and $\exp(B - \beta I_n)$ both have 1 as sole eigenvalue, hence $\operatorname{Sp}(A - \alpha I_n) \subset 2i\pi\mathbb{Z}$ and $\operatorname{Sp}(B - \beta I_n) \subset 2i\pi\mathbb{Z}$. Set $A' := A - \alpha I_n$ and $B' := B - \beta I_n$. We now conclude the proofs of Theorems 1 and 5 by considering the two cases separately:

- The case (A, B) satisfies (3): then the pair (A', B') clearly satisfies (3) so the proof from Section 3 yields that A' commutes with B', hence AB = BA.
- The case (A, B) only satisfies (2): then (A', B') obviously satisfies (2), hence $e^{A'}$ and $e^{B'}$ commute, hence are simultaneously triangularizable, and have 1 as sole eigenvalue. Therefore $e^{kA'+B'} = (e^{A'})^k e^{B'}$ has 1 as sole eigenvalue for every $k \in \mathbb{N}$. Proposition 6 then shows that $\left(\frac{A'}{2i\pi}, \frac{B'}{2i\pi}\right)$ has property L, which clearly entails that (A, B) has property L.

Thus Theorem 1 and Theorem 5 are proven.

5 Additive semigroups on which the exponential is a homomorphism

In this short section, we derive Theorem 4 from Proposition 5. It obviously suffices to prove the following lemma:

Lemma 8. Let S be a sub-semigroup of $(M_n(\mathbb{C}), +)$. Assume that every pair $(A, B) \in S^2$ has property L. Then the linear subspace Span(S) has property L.

Proof. We extract from S a basis (A_1, \ldots, A_r) of Span(S). For every $j \in \{1, \ldots, r\}$, we choose a list $(a_1^{(j)}, \ldots, a_n^{(j)}) \in \mathbb{C}^n$ such that

$$OSp(A_j) = \left[a_k^{(j)}\right]_{1 \le k \le n.}$$

Then, for every list (p_1, \ldots, p_r) of non-negative integers, we find a list $(\sigma_1, \ldots, \sigma_r) \in \Sigma_n^r$ such that

$$\operatorname{OSp}\left(\sum_{j=1}^{r} p_j A_j\right) = \left[\sum_{j=1}^{r} p_j a_{\sigma_j(k)}^{(j)}\right]_{1 \le k \le n} :$$

this follows indeed from a trivial induction, using the fact that $\left(\sum_{k=1}^{j-1} p_k A_k, A_j\right)$ has property L for every $j \in \{2, \ldots, r\}$.

Multiplying by inverses of positive integers, we readily generalize this as follows: for every $(z_1, \ldots, z_r) \in \mathbb{Q}^r_+$ (where \mathbb{Q}_+ denotes the set of non-negative rationals), there exists a list $(\sigma_1, \ldots, \sigma_r) \in \Sigma^r_n$ such that

$$OSp\left(\sum_{j=1}^{r} z_j A_j\right) = \left[\sum_{j=1}^{r} z_j a_{\sigma_j(k)}^{(j)}\right]_{1 \le k \le n}$$

Now, we prove the following property, depending on $l \in \{0, ..., r\}$, by downward induction:

$$\mathcal{P}(l)$$
: There exists a list $(\sigma_{l+1}, \ldots, \sigma_r) \in \Sigma_n^{r-l}$ such that, for every $(z_1, \ldots, z_l) \in \mathbb{Q}_+^l$, there exists a list $(\sigma_1, \ldots, \sigma_l) \in \Sigma_n^l$ satisfying:

$$\forall (z_{l+1}, \dots, z_r) \in \mathbb{C}^{r-l}, \operatorname{OSp}\left(\sum_{j=1}^r z_j A_j\right) = \left[\sum_{j=1}^r z_j a_{\sigma_j(k)}^{(j)}\right]_{1 \le k \le n}$$

We already know that $\mathcal{P}(r)$ holds, whilst $\mathcal{P}(0)$ implies property L for Span(S). Let $l \in \{1, \ldots, r\}$ such that $\mathcal{P}(l)$ holds, and choose a corresponding list $(\sigma_{l+1}, \ldots, \sigma_r) \in \Sigma_n^{r-l}$. Fix $(z_1, \ldots, z_{l-1}) \in \mathbb{Q}_+^{l-1}$. For every $r_l \in \mathbb{Q}_+$, we may then choose permutations $\sigma_1, \ldots, \sigma_l$ such that:

$$\forall (z_{l+1}, \dots, z_r) \in \mathbb{C}^{r-l}, \operatorname{OSp}\left(\sum_{j=1}^r z_j A_j\right) = \left[\sum_{j=1}^r z_j a_{\sigma_j(k)}^{(j)}\right]_{1 \le k \le n}$$

Denote by $(\sigma_1^{z_l}, \ldots, \sigma_l^{z_l})$ the chosen list. Since Σ_n^l is finite and $\mathbb{Q}_+ \cap (0, 1)$ is infinite, we may find some list $(\sigma_1, \ldots, \sigma_l) \in \Sigma_n^l$ which equals $(\sigma_1^{z_l}, \ldots, \sigma_l^{z_l})$ for infinitely many z_l 's in $\mathbb{Q}_+ \cap (0, 1)$. Fixing $(z_{l+1}, \ldots, z_r) \in \mathbb{C}^{n-l}$, an analytic continuation argument² then shows that

$$\forall z_l \in \mathbb{C}, \quad \chi_{\sum_{j=1}^r z_j A_j}(X) = \prod_{k=1}^n \left(X - \sum_{j=1}^r z_j a_{\sigma_j(k)}^{(j)} \right),$$

hence

$$\forall (z_l, \dots, z_r) \in \mathbb{C}^{r-l+1}, \operatorname{OSp}\left(\sum_{j=1}^r z_j A_j\right) = \left[\sum_{j=1}^r z_j a_{\sigma_j(k)}^{(j)}\right]_{1 \le k \le n}.$$

This proves that $\mathcal{P}(l-1)$ holds, QED.

References

- G. Bourgeois, On commuting exponentials in low dimensions, *Lin. Alg. Appl.*, **423** (2007) 277-286.
- [2] G. Fischer. *Plane Algebraic Curves*, Student Mathematical Library, Volume 15, AMS 2001.
- [3] M. Fréchet, Les solutions non-commutables de l'équation matricielle $e^{x+y} = e^x e^y$, Rend. Circ. Math. Palermo, **2** (1953) 11-27.
- [4] M. Fréchet, Les solutions non-commutables de l'équation matricielle $e^{x+y} = e^x e^y$, Rectification, *Rend. Circ. Math. Palermo*, **2** (1953) 71-72.
- [5] N.J. Higham. Functions of Matrices. Theory and Computation, SIAM 2008.

 $^{^2}$ On both sides, the coefficients of the polynomials are analytic functions of $z_l.$

- [6] C.W. Huff, On pairs of matrices (of order two) A, B satisfying the condition $e^{A+B} = e^A e^B \neq e^B e^A$, Rend. Circ. Math. Palermo, **2** (1953) 326-330.
- [7] A.G. Kakar, Non-commuting solutions of the matrix equation $\exp(X+Y) = \exp(X)\exp(Y)$, Rend. Circ. Math. Palermo, **2** (1953) 331-345.
- [8] T. Kato. *Perturbation Theory for Linear Operators*, Grundlehren der mathematischen Wissenschaften, Springer-Verlag 1980.
- [9] K. Morinaga, T.Nono, On the non-commutative solutions of the exponential equation $e^x e^y = e^{x+y}$. J. Sci. Hiroshima Univ., (A)17 (1954) 345-358.
- [10] K. Morinaga, T.Nono, On the non-commutative solutions of the exponential equation $e^x e^y = e^{x+y}$. II J. Sci. Hiroshima Univ., (A)18 (1954) 137-178.
- [11] T.S. Motzkin, O. Taussky, Pairs of matrices with property L, Trans. Amer. Math. Soc., 73 (1952) 108-114.
- [12] T.S. Motzkin, O. Taussky, Pairs of matrices with property L (II), Trans. Amer. Math. Soc., 80 (1955) 387-401.
- [13] H. Radjavi, P. Rosenthal. Simultaneous Triangularization, Universitext, Springer-Verlag 2000.
- [14] C. Schmoeger, Remarks on commuting exponentials in Banach algebras, Proc. Amer. Math. Soc., 127 (5) (1999) 1337-1338.
- [15] C. Schmoeger, Remarks on commuting exponentials in Banach algebras II, Proc. Amer. Math. Soc., 128 (11) (2000) 3405-3409.
- [16] E.M.E. Wermuth, Two remarks on matrix exponentials, *Linear Algebra Appl.*, **117** (1989) 127-132.
- [17] E.M.E. Wermuth, A remark on commuting operator exponentials, Proc. Amer. Math. Soc., 125 (6) (1997) 1685-1688.