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Additive groups and semigroups of matrices on which

the exponential is a homomorphism

Clément de Seguins Pazzis∗†

December 21, 2010

Abstract

Let G be a subgroup of (Mn(C),+). We show that M 7→ exp(M)
is a group homomorphism from G to (GLn(C),×) if and only if G con-
sists of commuting matrices. We also prove that if S is a sub-semigroup
of (Mn(C),+) such that M 7→ exp(M) is a homomorphism from S to
(GLn(C),×), then the linear subspace Span(S) has property L of Motzkin
and Taussky.
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1 Introduction

We denote by Mn(C) the algebra of square matrices of order n with entries in
the field of complex numbers. For M ∈ Mn(C), we denote by eM or exp(M)
its exponential. It is folklore that exp is not a group homomorphism from
(Mn(C),+) from (GLn(C),×) if n ≥ 2. However, when A and B are commuting
matrices of Mn(C), then

eA+B = eAeB = eBeA.
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The converse does not hold, moreover it is not necessary for A and B to be
simultaneously triangularizable for this condition to hold. If however

∀t ∈ R, etAetB = etBetA, (1)

then a power series expansion at t = 0 shows that AB = BA. In the 1950’s,
pairs of matrices (A,B) of small size such that eA+B = eAeB have been under
extensive scrutiny [3, 4, 6, 7, 9, 10]. More recently, E. Wermuth [16, 17] and
Schmoeger [14, 15] have studied the problem of adding extra conditions on the
matrices A and B for the commutation eAeB = eBeA to imply the commutation
of A with B. A few years ago [1] G. Bourgeois investigated, for small n, the
pairs (A,B) ∈ Mn(C)

2 which satisfy:

∀k ∈ N, ekA+B = ekAeB = eBekA. (2)

The main interest in this condition lies in the fact that, contra (1), it is not
possible to use it to obtain information on A and B based on the sole local
behavior of exp around 0. Bourgeois showed that (2) implies that A and B
are simultaneously triangularizable when n = 2, and produced a proof that
this also holds when n = 3. This last result is however false, as the following
counterexample - communicated to us by Jean-Louis Tu - shows: consider the
matrices

A1 := 2iπ





1 0 0
0 2 0
0 0 0



 and B1 := 2iπ





2 1 1
1 3 −2
1 1 0



 .

Notice that A1 and B1 are not simultaneously triangularizable since they share
no eigenvector (indeed, the eigenspaces of A1 are the lines generated by the three
vectors of the canonical basis, none of which is stabilized by B1). However,
for every t ∈ C, a straightforward computation shows that the characteristic
polynomial of tA+B is

X
(

X − 2iπ(t + 2)
)(

X − 2iπ(2t + 3)
)

.

Then for every t ∈ N, the matrix tA+B has three distinct eigenvalues in 2iπZ,
hence is diagonalisable with etA+B = I3. In particular eB = I3, and on the other
hand eA = I3 which shows that condition (2) holds.

It then appears that one should strengthen Bourgeois’ condition as follows
in order to obtain at least the simultaneous triangularizability of A and B:

∀(k, l) ∈ Z2, ekA+lB = ekAelB . (3)
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Notice immediately that this condition implies that eA and eB commute. If
indeed it holds, then

eBeA =
(

e−Ae−B
)−1

=
(

e−A−B
)−1

= eA+B = eAeB .

Therefore (3) is equivalent to

∀(k, l) ∈ Z2, ekA+lB = ekAelB = elBekA. (4)

Here is our main result:

Theorem 1. Let (A,B) ∈ Mn(C)
2 satisfying (3). Then AB = BA.

Note that the converse is trivial. The following corollary is straightforward:

Theorem 2. Let G be a subgroup of (Mn(C),+) and assume that M 7→ exp(M)
is a homomorphism from (G,+) to (GLn(C),×). Then ∀(A,B) ∈ G2, AB =
BA.

Again, the converse is trivial. A special case will be an important step in
our proof: recall (see e.g. Theorem 1.27 [5]) that the solutions of the equation
eM = In are the diagonalisable matrices M such that Sp(M) ⊂ 2iπZ (where
Sp(M) denotes the set of eigenvalues of M). The case eA = eB = In in Theorem
1 is thus obviously equivalent to the following result:

Proposition 3. Let (A,B) ∈ Mn(C)
2. Assume that, for every (k, l) ∈ Z2, the

matrix kA+ lB is diagonalisable and Sp(kA+ lB) ⊂ Z. Then AB = BA.

For sub-semigroups of (Mn(C),+), the above results surely fail. A very
simple counterexample is indeed given by the semigroup generated by

A :=

[

0 0
0 2iπ

]

and B :=

[

0 1
0 2iπ

]

.

One may however wonder if a sub-semigroup S on which exp is a homomor-
phism must be simultaneously triangularizable. Alas the additive semigroup
generated by the matrices A1 and B1 above is a counterexample. Nevertheless,
we will prove a weaker property. Before stating it, we need a few notations and
definitions.

We denote by Σn the group of permutations of {1, . . . , n}, make it act on
Cn by σ.(z1, . . . , zn) := (zσ(1), . . . , zσ(n)), and consider the quotient set Cn/Σn.
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The class of a list (z1, . . . , zn) ∈ Cn in this quotient space will be denoted by
[z1, . . . , zn]. For M ∈ Mn(C), denote by χM (X) its characteristic polynomial,

OSp(M) := [z1, . . . , zn], where χM (X) =

n
∏

k=1

(X − zk).

Definition 1. A pair (A,B) ∈ Mn(C)
2 has property L when there are n linear

forms f1, . . . , fn on C2 such that

∀(x, y) ∈ C2, OSp(xA+ yB) =
[

fk(x, y)
]

1≤k≤n.

A linear subspace V of Mn(C) has property L when there are n linear forms
f1, . . . , fn on V such that

∀M ∈ V, OSp(M) =
[

fk(M)
]

1≤k≤n.

Theorem 4. Let S be a sub-semigroup of (Mn(C),+) and assume that M 7→
exp(M) is a homomorphism from (S,+) to (GLn(C),×). Then Span(S) has

property L.

Note that the converse is obviously false. We shall derive this last theorem
from a more precise result on pairs satisfying condition (2):

Proposition 5. Let (A,B) ∈ Mn(C)
2 satisfying (2). Then (A,B) has prop-

erty L.

Structure of the paper: The proofs of Theorem 1 and of Proposition 5 have
largely similar parts, so they will be tackled simultaneously. There are three
main steps:

• We will prove Proposition 5 in the special case where Sp(A) ⊂ 2iπZ and
Sp(B) ⊂ 2iπZ. This will involve a study of the matrix pencil A+ zB. We
will then easily derive Proposition 3 using a refinement of the Motzkin-
Taussky theorem.

• We will tackle the more general case Sp(A) ⊂ 2iπZ and Sp(B) ⊂ 2iπZ
in Theorem 1 by using the Dunford decompositions of A and B together
with Proposition 3.

• In the general case, we use an induction on n to reduce the situation to
the previous one, both for Theorem 1 and Proposition 5.

In the last section, we derive Theorem 4 from Proposition 5.
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2 Additive groups or semigroups of matrices with an

integral spectrum

2.1 Property L for pairs of matrices with an integral spectrum

Our aim here is to prove the following proposition:

Proposition 6. Let (A,B) ∈ Mn(C)
2. Assume that Sp(kA+B) ⊂ Z for every

k ∈ N. Then (A,B) has property L.

Notice that a pair (A,B) has property L if and only if there are affine maps
f1, . . . , fn from C to C such that

∀z ∈ C, OSp(A+ zB) =
[

fk(z)
]

1≤k≤n.

Before proving Proposition 6, let us first recall a few well-known facts on
matrix pencils with complex entries. Denote by K(C) the quotient field of the
integral domain H(C) of entire functions (i.e. analytic functions from C to C).
Let (A,B) ∈ Mn(C)

2. The generic number p of eigenvalues of the pencil
z 7→ A+ zB is defined as the number of the roots of χA+idCB(X) in an algebraic
closure of K(C). A complex z is called regular when A + zB has exactly p
eigenvalues, and exceptional otherwise. In a neighborhood of 0, the spectrum
of A+zB may be classically described with Puiseux series as follows (see chapter
7 of [2]): there exists a radius r > 0, an integer q ∈ {1, . . . , n}, positive integers
d1, . . . , dq, and analytic functions f1, . . . , fq defined on a neighborhood of 0 such
that,

∀z ∈ Cr {0}, |z| < r ⇒ χA+zB(X) =

q
∏

k=1

∏

ζ∈Udk
(z)

(

X − fk(ζ)
)

,

where, for N ≥ 1, we write UN (z) :=
{

ζ ∈ C : ζN = z
}

.

Assume now that Sp(kA+B) ⊂ Z for every non-negative integer k. We then
prove that f1, . . . , fq are polynomial functions. Consider f1 for example, and its
power series expansion

f1(z) =

+∞
∑

k=0

akz
k.

Set N := p1 for convenience. Let k0 be a positive integer such that 1
k0

< r. For

any integer k ≥ k0, notice that kf1(k
−1/N ) is an eigenvalue of kA + B and is
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therefore an integer. It follows that

∀k ∈ Z, k ≥ k0 ⇒ (k + 1)f1
(

(k + 1)−1/N
)

− kf1
(

k−1/N
)

∈ Z.

Notice that

∀x ∈ R∗
+, x >

1

r
⇒ xf1(x

−1/N ) = a0x+

+∞
∑

k=1

akx
1−k/N .

Hence, for any integer k ≥ k0,

(k+1)f1
(

(k+1)−1/N
)

−kf1
(

k−1/N
)

= a0+

+∞
∑

j∈Nr{0,N}

aj
(

(k+1)1−j/N −k1−j/N
)

.

If aj 6= 0 for some j ≥ 1 with j 6= N , define r as the smallest such j, and notice
that

∑

j∈Nr{0,N}

aj
(

(k + 1)1−j/N − k1−j/N
)

∼
k→+∞

ar (1− r/N) k−r/N .

The sequence
(

(k + 1)f1
(

(k + 1)1/N
)

− kf1
(

k1/N
)

− a0

)

k≥k0
must then both

converge to 0, be integral-valued, on non-zero for large k. This is a contradiction
therefore ∀j ∈ N r {0, N}, aj = 0. The same line of reasoning shows that, for
any k ∈ {1, . . . , q}, there exists bk ∈ C such that fk(z) = fk(0) + bkz

pk in a
neighborhood of 0. It follows that, in a neighborhood of 0,

χA+zB(X) =

q
∏

k=1

(X − fk(0) − bkz)
pk .

Therefore we have found affine maps g1, . . . , gn from C to C such that, in a
neighborhood of 0,

χA+zB(X) =
n
∏

k=1

(

X − gk(z)
)

.

By analytic continuation1, we deduce that

∀z ∈ C, χA+zB(X) =
n
∏

k=1

(

X − gk(z)
)

Hence (A,B) has property L, and Proposition 6 is proven.

1Note that the coefficients of these polynomials are polynomial functions of z which coincide

on a neighborhood of 0.
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2.2 Commutativity for subgroups of diagonalisable matrices with

an integral spectrum

Here, we derive Proposition 3 from Proposition 6. The key point is that Kato’s
proof of the Motzkin-Taussky theorem ([8] p.85 Theorem 2.6) entails that The-
orem 4 of [12] may be slightly refined as follows:

Theorem 7 (Refined Motzkin-Taussky theorem). Let (A,B) ∈ Mn(C)
2 be a pair

of matrices which satisfies property L. Assume B is diagonalisable. If A+ z0B
is diagonalisable for every exceptional point z0 of the matrix pencil z 7→ A+ zB,

then AB = BA.

Proof of Proposition 3. Let then (A,B) ∈ Mn(C)
2 be a pair of diagonalisable

matrices such that kA + lB is diagonalisable with Sp(kA + lB) ⊂ Z for every
(k, l) ∈ Z2. Then Proposition 6 shows that (A,B) has property L. For k ∈ [[1, n]],
choose fk : z 7→ αkz + βk so that

∀z ∈ C, OSp(A+ zB) =
[

fk(z)
]

1≤k≤n.

Notice that Sp(A) = {α1, . . . , αn} and Sp(B) = {β1, . . . , βn}, hence the αk’s
and the βk’s are integers. It follows that the exceptional points of the matrix
pencil z 7→ A+ zB are rational numbers. However, the assumptions shows that
A + l

k B = 1
k (k A + l B) is diagonalisable for every (k, l) ∈ (Z r {0}) × Z. The

refined Motzkin-Taussky theorem thus shows that AB = BA.

3 The case Sp(A) ⊂ 2iπZ and Sp(B) ⊂ 2iπZ in Theo-

rem 1

Let A and B be matrices in Mn(C) satisfying (3) and such that Sp(A) ⊂ 2iπZ
and Sp(B) ⊂ 2iπZ. We consider the Dunford decompositions A = D + N and
B = D′ +N ′, where D and D′ are diagonalisable, N and N ′ are nilpotent and
DN = ND and D′N ′ = N ′D′. For every integer k, note that kA = kD + kN
(resp. kB = kD′ + kN ′) is the Dunford decomposition of kA (resp. of kB), and
Sp(kD) = Sp(kA) = k Sp(A) ⊂ 2iπZ (resp. Sp(kD′) = Sp(kB) = k Sp(B) ⊂
2iπZ) which shows that

ekA = ekN and ekB = ekN
′

.

Condition (4) thus translates into:

∀(k, l) ∈ Z2, ekA+lB = ekNelN
′

= elN
′

ekN .
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Note in particular that eN and eN
′
commute. However, N is nilpotent henceN =

∑n−1
k=1

(−1)k+1

k

(

eN − In
)k

which shows that N is a polynomial of eN . Similarly

N ′ is a polynomial of eN
′
therefore:

NN ′ = N ′N.

With that in mind, the above condition yields:

∀(k, l) ∈ Z2, ekA+lB = ekN+lN ′

.

Fix (k, l) ∈ Z2. Then kN + lN ′ is nilpotent since N and N ′ are commuting
nilpotent matrices, hence kN + lN ′ is a polynomial of ekN+lN ′

. Since kA + lB
commutes with ekA+lB, it thus commutes with kN + lN ′. However

kA+ lB = (kD + lD′) + (kN + lN ′)

hence
ekD+lD′

= ekA+lBe−kN−lN ′

= In.

In particular, this yields that kD + lD′ is diagonalisable with Sp(kD + lD′) ⊂
2iπZ, and the Dunford decomposition of kA+ lB is therefore kA+ lB = (kD+
lD′) + (kN + lN ′) since kN + lN ′ commutes with kA+ lB.

Applying Proposition 3 to the pair
(

1
2iπD, 1

2iπD
′
)

, we then find that D and

D′ commute. In particular (D,D′) has property L, which yields affine maps
f1, . . . , fn from C to C such that

∀z ∈ C, OSp(D + zD′) =
[

fk(z)
]

1≤k≤n.

The set E :=
{

k ∈ Z : ∃(i, j) ∈ {1, . . . , n}2 : fi 6= fj and fi(k) = fj(k)
}

is clearly finite. We may then choose two distinct elements a and b in Z r E.
Notice then that

∀(i, j) ∈ [[1, n]]2, fi(a) = fj(a) ⇔ fi = fj ⇔ fi(b) = fj(b).

Since D and D′ are simultaneously diagonalisable, it easily follows that D+aD′

is a polynomial of D + bD′ and vice versa. Hence N + aN ′ and N + bN ′ both
commute with D+aD′ and D+bD′. Since N+aN ′ and N+bN ′ both commute
with one another, we deduce that A+ aB = (D + aD′) + (N + aN ′) commutes
with A + bB = (D + bD′) + (N + bN ′). Finally both A and B belong to
Span(A+ aB,A+ bB) since a 6= b, therefore AB = BA.
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4 Reduction to the situation where Sp(A) ⊂ 2iπZ and

Sp(B) ⊂ 2iπZ

Here, we use an induction on n to prove Theorems 1 and 5 in the general case.
Both theorems are obviously true for n = 1, so we fix n ≥ 2 and assume that they
hold for any pair (A,B) ∈ Mk(C)

2 with k ∈ {1, . . . , n−1}. Let (A,B) ∈ Mn(C)
2

satisfying (3) (respectively (2)).

Assume first that (A,B) is not irreducible, i.e. that there exists a non-trivial
decomposition Cn = F ⊕ G such that F and G are invariant linear subspaces
for both A and B. Then there exists p ∈ {1, . . . , n − 1}, a non-singular matrix
P ∈ GLn(C) and square matrices A1, B1, A2, B2 respectively in Mp(C), Mp(C),
Mn−p(C) and Mn−p(C) such that

A = P

[

A1 0
0 A2

]

P−1 and B = P

[

B1 0
0 B2

]

P−1.

Since the pair (A,B) satisfies (3) (resp. (2)), it easily follows that this is also the
case of (A1, B1) and (A2, B2), hence the induction hypothesis yields that (A1, B1)
and (A2, B2) are commuting pairs (resp. satisfy property L), hence (A,B) is also
a commuting pair (resp. satisfies property L).

Assume, for the rest of the section, that (A,B) is irreducible. Note that we
lose no generality assuming furthermore that A satisfies:

∀(λ, µ) ∈ Sp(A)2, λ− µ ∈ 2iπQ ⇒ λ− µ ∈ 2iπZ. (5)

Indeed, consider in general the finite set E := Q∩ 1
2iπ

{

λ− µ | (λ, µ) ∈ Sp(A)2
}

.
Since it consists entirely of rational numbers, we may find some integer p > 0
such that pE ⊂ Z. Replacing A with pA, we notice that (pA,B) still satisfies
(3) (resp. (2)) and is a commuting pair (resp. satisfies property L) if and only if
(A,B) is a commuting pair (resp. satisfies property L).

Assume now that A satisfies (5) on top of all the previous assumptions, i.e.
(A,B) is irreducible and satisfies (3) (resp. (2)). Let now k ∈ N. Notice that eA

and eB commute hence are simultaneously triangularizable (see Theorem 1.1.5
of [13]), which shows that the range of the map

γk :

{

Sp(eA)× Sp(eB) −→ C

(λ, µ) 7−→ λkµ

9



contains Sp(ekAeB).

Claim 1. With the above assumptions, there exists k ∈ Nr {0} such that γk is

one-to-one.

Proof. Assume that for every k ∈ N r {0}, there are distinct pairs (λ, µ) and
(λ′, µ′) in Sp(eA) × Sp(eB) such that λkµ = (λ′)kµ′. Since Sp(eA) × Sp(eB) is
finite and Nr {0} is infinite, we may then find distinct pairs (λ, µ) and (λ′, µ′)
in Sp(eA)× Sp(eB) and distinct non-zero integers a and b such that

λaµ = (λ′)aµ′ and λbµ = (λ′)bµ′.

All those eigenvalues are non-zero hence (λ/λ′)a−b = 1 with a 6= b. It follows
that λ

λ′ is a root of unity. However λ = eα and λ′ = eβ for some (α, β) ∈ Sp(A)2,
which shows that (a−b)(α−β) ∈ 2iπZ. Condition (5) then yields α−β ∈ 2iπZ,
hence λ = λ′. It then follows that µ = µ′, contradicting (λ, µ) 6= (λ′, µ′).

Choose finally k ∈ N r {0} such that γk is one-to-one. Notice that we lose
no generality replacing A with kA, so we may assume, on top of the previous
assumptions, that the map

{

Sp(eA)× Sp(eB) −→ C

(λ, µ) 7−→ λµ

is one-to-one. For M ∈ Mn(C) and λ ∈ C, denote by Cλ(M) the characteristic
subspace of M with respect to M , i.e. Cλ(M) = Ker(M −λIn)

n. We now prove:

Claim 2. The characteristic subspaces of eA and eB are all stabilized by A and

B.

Proof. Notice that A+B commutes with eA+B hence with eAeB . It thus stabi-
lizes the characteristic subspaces of eAeB . Let us show that:

∀µ ∈ Sp(eB), Cµ(e
B) =

⊕

λ∈Sp(eA)

Cλµ(e
AeB). (6)

• Since eB and eA commute, they both stabilize the characteristic subspaces
of eB which shows that

∀µ ∈ Sp(eB), Cµ(e
B) =

⊕

λ∈Sp(eA)

Cλ(e
A) ∩ Cµ(e

B).

10



• Let (λ, µ) ∈ Sp(eA) × Sp(eB). Since eA and eB commute, they both sta-
bilize Cλ(e

A) ∩ Cµ(e
B) and induce simultaneously triangularizable endo-

morphisms of Cλ(e
A) ∩Cµ(e

B) each with a sole eigenvalue, respectively λ
and µ: it follows that

Cλ(e
A) ∩ Cµ(e

B) ⊂ Cλµ(e
AeB).

• Finally, that (λ, µ) 7→ λµ is one-to-one on Sp(eA) × Sp(eB) yields that
Cλµ(e

AeB) ∩ Cλ′µ′(eAeB) = {0} for all distinct pairs (λ, µ) and (λ′, µ′) in
Sp(eA)× Sp(eB). However

Cn =
⊕

µ∈Sp(eB)

Cµ(e
B) =

⊕

µ∈Sp(eB)

⊕

λ∈Sp(eA)

Cλ(e
A) ∩ Cµ(e

B)

and Cn is the sum of all the characteristic subspaces of exp(A) exp(B). We
deduce that

∀(λ, µ) ∈ Sp(eA)× Sp(eB), Cλµ(e
AeB) = Cλ(e

A) ∩ Cµ(e
B).

This yields (6).

We deduce that A + B stabilizes every characteristic subspace of eB , however
this is also true of B since B commutes with eB , hence A and B both stabilizes
the characteristic subspaces of eB. Symmetrically, every characteristic subspace
of eA is stabilized by both A and B.

We may now conclude: if eB has several eigenvalues, then the above claim
contradicts the assumption that (A,B) is irreducible. It follows that eB has a sole
eigenvalue, and for the same reason this is also true of eA. Choosing (α, β) ∈ C2

such that Sp(eA) = {eα} and Sp(eB) = {eβ}, we find that exp(A − α In) and
exp(B − β In) both have 1 as sole eigenvalue, hence Sp(A − α In) ⊂ 2iπZ and
Sp(B − β In) ⊂ 2iπZ. Set A′ := A−α In and B′ := B − β In. We now conclude
the proofs of Theorems 1 and 5 by considering the two cases separately:

• The case (A,B) satisfies (3): then the pair (A′, B′) clearly satisfies (3) so
the proof from Section 3 yields that A′ commutes withB′, hence AB = BA.

• The case (A,B) only satisfies (2): then (A′, B′) obviously satisfies (2),
hence eA

′
and eB

′
commute, hence are simultaneously triangularizable,

and have 1 as sole eigenvalue. Therefore ekA
′+B′

= (eA
′
)keB

′
has 1 as sole

eigenvalue for every k ∈ N. Proposition 6 then shows that
(

A′

2iπ ,
B′

2iπ

)

has
property L, which clearly entails that (A,B) has property L.

Thus Theorem 1 and Theorem 5 are proven.
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5 Additive semigroups on which the exponential is a

homomorphism

In this short section, we derive Theorem 4 from Proposition 5. It obviously
suffices to prove the following lemma:

Lemma 8. Let S be a sub-semigroup of (Mn(C),+). Assume that every pair

(A,B) ∈ S2 has property L. Then the linear subspace Span(S) has property L.

Proof. We extract from S a basis (A1, . . . , Ar) of Span(S).

For every j ∈ {1, . . . , r}, we choose a list (a
(j)
1 , . . . , a

(j)
n ) ∈ Cn such that

OSp(Aj) =
[

a
(j)
k

]

1≤k≤n.

Then, for every list (p1, . . . , pr) of non-negative integers, we find a list (σ1, . . . , σr) ∈
Σr
n such that

OSp

( r
∑

j=1

pjAj

)

=

[ r
∑

j=1

pj a
(j)
σj(k)

]

1≤k≤n

:

this follows indeed from a trivial induction, using the fact that
(j−1
∑

k=1

pkAk, Aj

)

has property L for every j ∈ {2, . . . , r}.
Multiplying by inverses of positive integers, we readily generalize this as follows:
for every (z1, . . . , zr) ∈ Qr

+ (where Q+ denotes the set of non-negative rationals),
there exists a list (σ1, . . . , σr) ∈ Σr

n such that

OSp

( r
∑

j=1

zjAj

)

=

[ r
∑

j=1

zj a
(j)
σj(k)

]

1≤k≤n.

Now, we prove the following property, depending on l ∈ {0, . . . , r}, by downward
induction:

P(l) : There exists a list (σl+1, . . . , σr) ∈ Σr−l
n such that, for every

(z1, . . . , zl) ∈ Ql
+, there exists a list (σ1, . . . , σl) ∈ Σl

n satisfying:

∀(zl+1, . . . , zr) ∈ Cr−l, OSp

( r
∑

j=1

zjAj

)

=

[ r
∑

j=1

zj a
(j)
σj(k)

]

1≤k≤n.
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We already know that P(r) holds, whilst P(0) implies property L for Span(S).
Let l ∈ {1, . . . , r} such that P(l) holds, and choose a corresponding list (σl+1, . . . , σr) ∈
Σr−l
n . Fix (z1, . . . , zl−1) ∈ Ql−1

+ . For every rl ∈ Q+, we may then choose permu-
tations σ1, . . . , σl such that:

∀(zl+1, . . . , zr) ∈ Cr−l, OSp

( r
∑

j=1

zjAj

)

=

[ r
∑

j=1

zj a
(j)
σj(k)

]

1≤k≤n.

Denote by (σzl
1 , . . . , σ

zl
l ) the chosen list. Since Σl

n is finite and Q+ ∩ (0, 1) is
infinite, we may find some list (σ1, . . . , σl) ∈ Σl

n which equals (σzl
1 , . . . , σ

zl
l ) for

infinitely many zl’s in Q+ ∩ (0, 1). Fixing (zl+1, . . . , zr) ∈ Cn−l, an analytic
continuation argument2 then shows that

∀zl ∈ C, χ∑r
j=1

zjAj
(X) =

n
∏

k=1

(

X −

r
∑

j=1

zja
(j)
σj(k)

)

,

hence

∀(zl, . . . , zr) ∈ Cr−l+1, OSp

( r
∑

j=1

zjAj

)

=

[ r
∑

j=1

zj a
(j)
σj(k)

]

1≤k≤n.

This proves that P(l − 1) holds, QED.

References

[1] G. Bourgeois, On commuting exponentials in low dimensions, Lin. Alg.

Appl., 423 (2007) 277-286.

[2] G. Fischer. Plane Algebraic Curves, Student Mathematical Library, Volume
15, AMS 2001.
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