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DISPLAYED EQUATIONS FOR GALOIS REPRESENTATIONS

EIKE LAU

ABSTRACT. The Galois representation associated to a p-divisible group over
a noetherian complete local domain with perfect residue field is described in
terms of its Dieudonné display. As a corollary we deduce in arbitrary charac-
teristic Kisin’s description of the Galois representation associated to a commu-
tative finite flat p-group scheme over a p-adic discrete valuation ring in terms
of its Breuil-Kisin module. This was obtained earlier by W. Kim by a different
method.

INTRODUCTION

Let R be a noetherian complete local domain with perfect residue field k of
positive characteristic p and with fraction field K of characteristic zero. For a p-
divisible group G over R, the Tate module T,,(G) is a free Z,-module of finite rank
with a continuous action of the absolute Galois group Gx. We want to describe the
Tate module in terms of the Dieudonné display & = (P, Q, F, Fy) associated to G
in and [La3], and relate this to other descriptions of the Tate module when R
is a discrete valuation ring.

Let us recall that the Zink ring W(R) is a subring of the ring of Witt vectors
W (R) which is stable under the Frobenius endomorphism f of W(R). The compo-
nents of & are a finite free W(R)-module P, a submodule @ such that P/Q is a
free R-module, and f-linear maps F' : P — P and F} : @ — P, such that the image
of Fy generates P, and F(v(upa)r) = aF(x) for x € P and a € W(R), where v is
the Verschiebung of W(R), and wg is the unit of W(R) defined by up = 1 if p is
odd and by v(ug) = p — [p] if p = 2. The twist by ug is necessary since v does not
stabilise W(R) when p = 2.

To state the general result we need some notation. Let R™ be the completion of
the strict henselisation of R, let K be an algebraic closure of its fraction field K™,

let R C K be the integral closure of Rm, and let R be its p-adic completion. Let

W(R) = lig W(Rp)
E

where F runs through the finite extensions of K™ contained in K and where R E C
E is the integral closure of R™. Let W(R) be the p-adic completion of W(R) We
define: X o
Pp = W(R) @wr) P
Q= Ker(P; - Ror P/Q)
Let K C K be the algebraic closure of K and let Gk be the group of automorphisms
of K whose restriction to K K™ is induced by an element of Gx. The natural
map Gx — Gx is surjective, and bijective when R is one-dimensional since then
K = KK™.
Our description of T},(G) is an exact sequence of Gr-modules

(1) OATP(G)%QRE)PR%O.
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If G is connected, a similar description of T},(G) in terms of the nilpotent display
of G is part of Zink’s theory of displays. In this case k need not be perfect; see
[Mel Proposition 4.4]. The proof is recalled in Proposition [[LT] below. The exact
sequence () is proved in Proposition Bl using the formula for the p-divisible group
associated to a Dieudonné display given in [Lad].

Assume now in addition that R is a discrete valuation ring. Then the exact
sequence () can be related with the descriptions of T),(G) in terms of p-adic Hodge
theory and in terms of Breuil-Kisin modules as follows.

First, let M,is be the value of the covariant Dieudonné crystal of G over Ae,is(R).

It carries a filtration and a Frobenius, and by [Fal there is a period homomorphism
T,(G) — Fil MSP

which is bijective if p is odd, and injective with cokernel annihilated by p if p = 2.
The v-stabilised Zink ring W*(R) = W(R)[v(1)] induces an extension WT(R) of
the ring W(R) defined above; the extension is trivial if p is odd. Since the v-
stabilised Zink ring carries divided powers, the universal property of A..s gives a
homomorphism

Heris © Acris (R) — W+ (R)
Using the relation between Dieudonné displays and Dieudonné crystals, s,is in-
duces a map

M eris Wt (R) ®W(R) PR
compatible with Frobenius and filtration. We will show that 7 induces the identity
on T,(G), viewed as a submodule of Fil M5 by the period homomorphism and as
a submodule of QR C PR by (I); see Proposition [B.11

Let us turn to Breuil-Kisin modules. Choose a generator 7 of the maximal ideal
of R. Let & = W(k)[[t]] and let 0 : & — & extend the Frobenius automorphism
of W (k) by t — tP; the case of more general Frobenius lifts is discussed below. We
consider pairs M = (M, ¢) where M is a finite G-module and where ¢ : M — M ()
is an G-linear map with cokernel annihilated by the kernel of the map & — R given
by t — 7. Following [VZ], M is called a Breuil window if M is free over &, and M
is called a Breuil module if M is a p-torsion G-module of projective dimension at
most one.

It is known that p-divisible groups over R are equivalent to Breuil windows. This
was conjectured by Breuil [Br] and proved by Kisin [Kill [Ki2] if p is odd, and for
connected groups if p = 2. The general case is proved in [La3|] by showing that Breuil
windows are equivalent to Dieudonné displays; here R can be regular of arbitrary
dimension. (For odd p the last equivalence is already proved in [VZ] for some
regular rings, including all discrete valuation rings.) As a corollary, commutative
finite flat p-group schemes over R are equivalent to Breuil modules. Another proof
for p = 2, related more closely to Kisin’s methods, was obtained independently by
W. Kim [K].

Let K be the extension of K generated by a chosen system of successive p-th
roots of w. For a p-divisible group G over R let T(G) be its Tate module, and for
a commutative finite flat p-group scheme G over R let T(G) = G(K). Kisin’s and
Kim’s results include a description of T'(G) as a Gx__-representation in terms of the
Breuil window or Breuil module (M, ¢) associated to G. In the covariant theory it
takes the following form:

(2) TG)={ze M | ¢(z) =1®@x in 6" Qe M™}
Here M™ = 6™ ®s M, and the ring G™ is recalled in section [(] below.
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We will show how (@) can be deduced from (). It suffices to consider the
case where G is a p-divisible group. The equivalence between Breuil windows and
Dieudonné displays over R is induced by a homomorphism s : & — W(R). It can
be extended to

LS W (R),
which allows to define a map of Gx_ -modules
{reM™|dz)=10z} 5 {xc QR | Fi(z) =a}.

Since the target is isomorphic to T'(G) by (), the proof of (@) is reduced to showing
that 7 is bijective; see Proposition The verification is easy if G is étale; the
general case follows quite formally using a duality argument.

Finally we recall that the equivalence between Breuil windows and p-divisible
groups requires only a Frobenius lift o : & — & which stabilises the ideal t& such
that p? divides the linear term of the power series o(t). Let Ko, be the extension of
K generated by a chosen system of successive o(t)-roots of m. If the linear term of
o(t) is zero, which guarantees that ™" is well-defined, we obtain an isomorphism
@) of Gk -modules as before.

The author thanks Th. Zink for helpful discussions.

1. THE CASE OF CONNECTED p-DIVISIBLE GROUPS

Let R be a complete noetherian local domain with residue field k of characteristic
p, with fraction field K of characteristic zero, and with maximal ideal m. In this
section we recall how the Tate module of a connected p-divisible group over R is
expressed in terms of its nilpotent display.

Fix an algebraic closure K of K and let Gx = Gal(K/K). Let R C K be the
integral closure of R and let m C R be the maximal ideal. For a finite extension F
of K contained in K let R = RN E, which is a complete noetherian local ring,
and let mg C Rg be the maximal ideal. We write

W(mg) :@W(mp;/m%); W(m) :ligVAV(mE).
n E

Let W (m) be the p-adic completion of W () and let m be the p-adic completion of
m. For a display & = (P,Q, F, F1) over R we set

pﬁl = W (m) Qw (R) P; Qﬁ‘ = Ker(Pﬁl — I‘T‘t@R P/Q).

The functor BT of [Zil] induces an equivalence of categories between nilpotent
displays over R and connected p-divisible groups over R; here & is called nilpo-
tent if & Qg k is V-nilpotent in the usual sense. The following is stated in [Mel
Proposition 4.4].

Proposition 1.1 (Zink). Let & be a nilpotent display over R and let G be the
associated connected p-divisible group over R. There is a natural exact sequence of
G -modules

0= Tp(G) = Qm =% Py — 0.
Here T,,(G) = Hom(Q,/Z,, G(K)) is the Tate module of G.

The proof of Proposition [T uses the following well-known facts.

Lemma 1.2. Let A be an abelian group.
(i) If A has no p-torsion then Ext'(Q,/Z,, A) = @A/p"A.
(i) If pA = A then Ext'(Q,/Z,, A) is zero.
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Proof. The group Hom(Q,,/Z,, A) is isomorphic to lim Hom(Z/p™Z, A) with transi-
tion maps induced by p : Z/p"Z — Z/p" 1 Z. The corresponding system Ext'(Z/p"Z, A)
is isomorphic to A/p™ A with transition maps induced by id 4. Thus there is an exact
sequence

0— 1'£11A[p"] — Ext'(Qy,/Zy, A) — lim A/p" A — 0.
Both assertions of the lemma follow easily. (I

For a p-divisible group G over R and for E as above we write

G(Rp) =limG(Rg/mp);  G(R) = lim G(Rg).

Lemma 1.3. Multiplication by p is surjective on G’(R)

Proof. Let x € G (Rg) be given. The inverse image of x under p is a compatible
system of G|p|-torsors Y;, over Rg/m’%. They define a G[p]-torsor Y over Rg. For
some finite extension F' of E the set Y(F) = Y(Rp) is non-empty, and = becomes
divisible by p in G(Rp). O

Proof of Proposition [l Let E be a finite Galois extension of K in K. Let
Ppn=W(mp/m}) @wm P; Qen = Ker(Pp, — mp/mp @ P/Q).

Recall that P is a finite free W (R)-module, and P/Q is a finite free R-module. The
definition of the functor BT in [Zill Thm. 81] gives an exact sequence of Gx-modules

Since the modules QEn form a surjective system with respect to n, applying
h_r>n 5 mn gives an exact sequence of Gx-modules

(1.1) 0 Qa =5 Py = G(R) - 0

with Py = W(tﬁ) ®w(r) P and Q,ﬁ = Ker(ﬁﬁl — m®pg P/Q). The p-adic comple-
tions of Ps and Q,ﬁ are Py and Qg; here we use that m ®z P/Q has no p-torsion.
Moreover Pg has no p-torsion since W (m) is contained in the Q-algebra W (K).
Using Lemmas [[.3] and [[.2 the Ext-sequence of Q,/Z, with (LI]) reduces to the
short exact sequence

0 — Hom(Q,/Zp, G(R)) — Qu —— Py — 0.
The proposition follows since the p"-torsion of G(R) and G(K) coincide. O

2. SOME FRAME FORMALISM

Before we proceed we introduce a formal definition. Let F = (S, R, I,0,01) be
a frame in the sense of [La2] such that S is a Z,-algebra and ¢ is Z,-linear. For an
F-window & = (P,Q, F, F1) we consider the module of invariants

T(2)={z€ Q| Fi(z) =z}
this is a Zp-module. Let us list some of its formal properties.

Functoriality in F: Let o : F — F' = (8',I',R',0’,0}) be a u-homomorphism
of frames, thus v € S’ is a unit, and we have ojaw = u - aoq on I. Assume that a
unit ¢ € S’ with co’(¢)™! = u is given. For an F-window & as above, the S-linear
map P — S’ ®g P, x — ¢ ® x induces a Z,-linear map

T(P) =7.(P) : T(P) = T(. D).
Duality: Recall that a bilinear form of F-windows v : & x @' — 2" is an S-

bilinear map v : P x P’ — P" with Q x Q' — Q" such that for x € Q and 2’ € Q'
we have y(Fiz, Fiz') = F{'(y(z,2')). It induces a bilinear map of Z,-modules
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T(P) x T(P') — T(2"). Let us denote the F-window (S,1,0,01) by F again.
For each F-window &2 there is a well-defined dual F-window 2! together with a
perfect bilinear form &2 x ' — F. It gives a bilinear map T'(2) xT'(2") — T(F).
In our applications, T'(F) will be free of rank one, and the bilinear map will turn
out to be perfect.

Functoriality of duality: For a u-homomorphism of frames « : F — F’ with ¢ as
above and for a bilinear form of F-windows v : &2 x &' — %" the base change
of v multiplied by ¢! is a bilinear form of F'-windows o, & x a, P — a, 2",
which we denote by a..(7); see [La2l Lemma 2.14]. By passing to the modules of
invariants we obtain a commutative diagram

T(P) x T(P') ——— T(P")

T(Q)XT(QI)\[ l‘r(@”)

T(0n?) x T(a. ) —2 (. 27).
This will be applied to the bilinear form £ x &t — F.

3. THE CASE OF PERFECT RESIDUE FIELDS

Let R, K, k,m be as in section[Il Assume that the residue field k is perfect. As

in [La3dl Sections 2.3 and 2.8] we consider the frame

@R = @@R/m” = (W(R), ]IR, R, f, fl)
Windows over Zg, called Dieudonné displays over R, are equivalent to p-divisible
groups G over R by [Zi2] if p is odd and by [La3l, Proposition 5.7] in general. The
Tate module T,,(G) can be expressed in terms of the associated Dieudonné display
by a variant of Proposition [[.1] as follows.

Let R™ be the strict henselisation of R. This is an excellent normal domain
by [Gre] or [Sel, so its completion R™ is a normal domain again. Let K™ C K™
be the fraction fields of R™ C R™, let K be an algebraic closure of K™ and let
R C K be the integral closure of R™. We define a frame

T = iy T o, = (V) L .61
E n

where E runs through the finite extensions of K™ in K and where Ry C E is
the integral closure of R". Since R has no p-torsion, the component-wise p-adic
completion of &, is a frame again, which we denote by

D5 = (W(R), 15, R, f,1).

Let K C K be the algebraic closure of K and let Gx = Gal(K/K). The tensor
product K ® gur K™ is a subfield of K , with equality if R is one-dimensional; here
we use that in any case the etale coverings of the complements of the maximal ideals
in Spec R™ and Spec R™ coincide by [EL Th. 5] or by [Axl II 2.1]. Let Gx be the
group of automorphisms of K whose restriction to K K™ is induced by an element
of Gi. This group acts naturally on Z5 and on -@R' The projection Gx — Gk is
surjective, and bijective if R is one-dimensional.

Proposition 3.1. Let & be a Dieudonné display over R and let G be the associated
p-divisible group over R. Let P; = (Py,Qp, F, F1) be the base change of & to Zp.
There is a natural exact sequence of G -modules

~ Fi—1 ~
0—T,(G) = Qr —— Pz —0.
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In particular we have an isomorphism of Gx-modules
per : T,(G) = T(gjfz)
which we call the period isomorphism is display theory.

Proof of Proposition [Z1l For a p-divisible group G over R and for finite extensions
E of K™ in K we set

G(ftw) =l G(Rp/mp);  G(R) = lim G(Rp).
n E

Multiplication by p is surjective on G (R) by Lemma [[3 applied over R™. Suppose
E is a normal extension of K™ and thus stable under QK. Therings Rg », = Rg/m’
are local Artin rings with residue field k. Thus Rp,, lies in the category Jr Jmn
used in [La3l Section 5]. Let Zg . = (Pg.n, QEn, F, F1) be the base change of &
to Rg,,. Since every ind-étale covering of Spec Rg , has a section, the definition
of the functor BT in [La3l Proposition 5.4] as an ind-étale cohomology sheaf shows
that G(REg.n) = BT(ZEg,») is quasi-isomorphic to the complex of Gr-modules in
degrees —1,0, 1
CE,n = [QE,n E} PE,n] & [Z - Z[l/p]]

Let

Cp = lim Cp,n; ¢ =1lmCg
n E

where E runs through the finite extensions of K™ in K, or equivalently the finite
normal extensions. Since G(Rg,) and the components of Cg , form surjective
systems with respect to n, the complex C' is quasi-isomorphic to G (R). We will
verify the following chain of isomorphisms (denoted =) and quasi-isomorphisms
(denoted ~) of complexes of Gx-modules, which proves the proposition. Here Ext!
is taken component-wise in the second argument.

T(G) = Hom(Qy/Zy, G(R)) 2 RHom(Q,/Zy. C(R))

(3)

(4) 1 (5)
~ RHom(Q,/Z,,C) ~ Ext (Qp/Z,,C[—1]) = |

Qn —— Pg).
Since the torsion subgroups of G(K) and of G(R) coincide, we have (1). For (2)
we need that Ext'(Q,/Z,, G(R)) vanishes, which is true since p is surjective on
G(R); see Lemma [[2l The quasi-isomorphism between G(R) and C' gives (3). Let
(Pg,Qp, F, F1) be the base change of & to Z5 and let Py = W (k) ®y(g) P. The
complex C' can be identified with the cone of the map of complexes

Fi—1 Fi—1

[Qr —— Pl — [P[1/p] —— Py[1/p]]-
Since R is a domain of characteristic zero, the rings W(R) C W(R) have no p-
torsion, and thus the components of C' have no p-torsion either. In particular,
Hom(Q,/Z,, C) vanishes, which proves (4). The p-adic completions of Pz and Qp
are PR and QR- Thus Lemma [[2] gives (5). O

4. A VARIANT FOR THE PRIME 2

We keep the notation of section 3 and assume that p = 2. One may ask what the
preceding constructions give if W and 2 are replaced by their v-stabilised variants
Wt and 1. Recall that WH(R) = W(R)[v(1)] as a subring of W(R), and we
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have a frame @;{ = (W*(R),]IE, R, f, f1) where f; is the inverse of v. The W(R)-
module W*(R)/W(R) is a one-dimensional k-vector space generated by v(1); see
[La3l Sections 1.4 and 2.5]. We put

9t = (728

F=limim gy = WHRLIELR £ )

with E as in section [3 and denote the p-adic completion of .@;5: by

Tt = (WHR).EL R, ).

For a p-divisible group G over R let G™ be the multiplicative part of G and define
G™ by the following homomorphism of exact sequences.

0 —— Gm » G el > 0
S
00— Gm > Gt ek > 0

Proposition 4.1. Let & be a Dieudonné display over R and let G be the associated
p-divisible group over R. Let @}%‘ = (P}"{, E,F, F;") be the base change of 2 to

@g. There is a natural exact sequence of G -modules
0— T,(G") — Q; oy P;g — 0.

In particular we have an isomorphism of Gx-modules

pert : T,(GY) = T(F7).

Proof. Let P, =k ®@w(r) P. We will construct the following commutative diagram
with exact rows, where F is induced by F.

0 Qr Qf Py 0
J{Fll JFﬁ—l J/F—l
O P" 7 A}-{ 7 p]; 0

Here the Frobenius linear endomorphism F is nilpotent if G is unipotent, and
is given by an invertible matrix if G is of multiplicative type. Thus F — 1 is
surjective with kernel an Fp-vector space of dimension equal to the height of G™,
and Proposition 1] follows from Proposition 311

The natural homomorphism W(R) — W*(R) is injective and defines a uo-
homomorphism of frames ¢ : @ﬁt — 92;{ where the unit ug € W+t (Z3) is defined
by v(ug) = p — [p]; see [La3dl Section 2.5]. Since ug maps to 1 in W(Fz) there is
a unique unit ¢y of W¥(Zy) which maps to 1 in W (Fz) such that cof(co ') = uo,
namely co = uof(uo)f2(ug) - - - ; see the proof of [La2, Proposition 8.7].

The cokernel of ¢ is given by

(4.1) i /i = W (R)/W(R) = - v(1);

see [La3l Le. 1.10]. We extend the operator f; of 92[2 to @Ifg by f; = ualfl. Then
f1 induces an f-linear endomorphism f; of k- v(1). We claim that f;(v(1)) = v(1).
It suffices to prove this formula in W+ (Zy)/W(Z3) = Fa, and thus it suffices to
show that f1(v(1)) does not lie in W(Zz). But W(Zz) is stable under the operator
x — v(z) = v(ugz), and v(fy (v(1)) = v(1) does not lie in W(Zy). This proves the
claim.
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Let us extend the operator Fj of 3%:2 to 35]; by F} = ualFfr. Since we have
co(Fy — 1) = (Fj" —1)cp as a homomorphism Q;% — P}{, it suffices to construct the
above diagram with F in place of Fit. Now () implies that QE/QR = P;:/PR =
P;. - v(1), which gives the exact rows. Clearly the left hand square commutes. The
relation Fy(ax) = f1(a)F(z) for = € PIJ{ and a € ]I;% applied with a = v(1) shows
that the right hand square commutes. (|

Remark 4.2. The period isomorphisms per and pert satisfy per™ = 7., per, where
Teo + T (Pg) — T(QZE{r ) is the homomorphism defined in section 21

5. THE RELATION WITH Acris

Let R be a complete discrete valuation ring with perfect residue field k of charac-
teristic p and fraction field K of characteristic zero. In this case our ring R is equal
to R, the p-adic completion of the integral closure of R in K. Let Agpis = Acris(R)
and consider the frame

Acris = (Acri57 Fil Acri87 éa g, Ul)
with oy = p~lo. [ For a p-divisible group G over R let D(G) be its covariant
Dieudonné crystal. The free Aciis-module M = D(G 3) 4., carries a filtration Fil M
and a o-linear endomorphism F. The operator F; = p~'F is well-defined on
Fil M, and we get an Agis-window M = (M, Fil M, F, F1); see [Kill, A.2] or [La3]
Proposition 3.15]. Faltings [Fa|] constructs a period homomorphism
perg;s : Tp(G) — FilMP=P = T(M)

which is bijective if p is odd; for p = 2 the homomorphism is injective with cokernel
annihilated by p. More precisely, for p = 2 the cokernel is zero if G is unipotent
by [Ki2l Proposition 1.1.10], while the cokernel is non-zero if G is non-zero and
of multiplicative type; thus the period homomorphism extends to an isomorphism
T,(GT) 2 T(M) with G as in section [

Let us relate this with the period isomorphisms of sectionsBland @l For the sakse
of uniformity, in the following we write W+ = W etc. if p is odd. Then W+ (R) — R
is a divided power extension of p-adic rings for all p. By the universal property of
Acris there is a unique ring homomorphism

Heris © Acris — W+ (R)

which commutes with the projections to R. The proof of this universal property
shows that s © 0 = f 0 s2ris. Since W(R) has no p-torsion, it follows that s
is a Gg-equivariant strict frame homomorphism

Heris + Aeris — 92;{
Let & be the Dieudonné display associated to G so that G = BT(Z). The
Dieudonné crystal D(G) gives rise to a Z5;-window ®%(G) by [La3l Section 3].
Its base change to .@;g is isomorphic to scyis « (M) by the functoriality of D(G). Let

L1 9r — I3 be the inclusion. We have an isomorphism ¢,(2) = ®£(G) by [La3]
Proposition 5.7] if p is odd and by [La3| Corollary 6.12] if p = 2. Thus we get an
isomorphism e@g 2 s¢eris« (M), which induces a homomorphism of Gx-modules

T:T(M)— T(f@g)
as explained in section

IHere we need that o1 (Fil Acyis) generates Acpis. But € = p — [p] lies in Fil A¢yis, and 01(€) =

1 —[p]?/p is a unit because [p] lies in the divided power ideal Fil Acyis + pAcris-
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Proposition 5.1. The following diagram of Gx-modules commutes up to multipli-
cation by a p-adic unit which is independent of G.

PeTcris

Tp(G) ——— T(M)

T

T(P5) —— T(Z]).

Remark 5.2. The p-adic unit in the statement of the proposition remains indeter-
mined because only the existence of an isomorphism ¢,(2) = ®%(G) is proved in
[La3], but a priori this isomorphism and the related homomorphism 7 are defined
only up to multiplication by a p-adic unit; cf. [La3l Lemma 4.6]. By a suitable
choice one can arrange that the diagram commutes.

Remark 5.3. Since per is bijective by Proposition B.I] the Propositions Bl and
[41] together with Remark imply that 7 is an isomorphism. In fact, for this
conclusion one needs only that the Q,-dimension of T(M) ® Q is < the height of
G and that per,,;, is not bijective if p = 2 and G is non-zero of multiplicative type.
Thus we recover the isomorphism 7,,(G*) = T'(M).

Proof of Proposition [51l. We first consider the case G = Q,/Z,. Then per and
Te, are isomorphisms by Propositions Bl and Il We have T,(G) = Z,, and
M = FilM = A.;s with Frobenius po, which implies that ng = PE = ng with
Fy = f. Thus 7 can be identified with the homomorphism AZT} — W+ (R)/=1.

Cris
Since the target is a Z,-algebra isomorphic to Z, as a module, 7 is bijective. Thus
Tep © PET = p - T 0 perg,;s for a well defined p € Z;.

Let now G be arbitrary. Since the map 7, oper = per™ is injective with cokernel
annihilated by p, the composition v = pp - (per™)~! o 7 o per.;, is a well-defined
functorial endomorphism of T,,G. We have to show that v = p. By [Ta] 4.2], v comes
from an endomorphism v of GG; moreover ~g is functorial in G and compatible
with finite extensions of the base ring R inside K. The endomorphisms ¢ induce a
functorial endomorphism ~g of each commutative finite flat p-group scheme H over
a finite extension R’ of R inside K because H can be embedded into a p-divisible
group by Raynaud [BBM| 3.1.1]; cf. [Kill 2.3.5] or [La3l Proposition 4.1]. Assume
that H is annihilated by p” and let Hy = Z/p"Z. There is a finite extension R" of
R’ inside K such that H(K) = H(R") = Hompg~ (Hy, H). Since vy, = p it follows
that vz = p, and thus vg = p for all G. (|

6. THE RING &™

Let us recall the ring &™ of [Kil], which is denoted A% in [Fol, and some of
this properties. One starts with a two-dimensional complete regular local ring &
of characteristic zero with perfect residue field k£ of characteristic p equipped with
a Frobenius lift 0 : & — &. Let 6 : & — W(&) be the unique ring homomorphism
with do = f§ and wod = id. Let ¢t be a generator of the kernel of & — W (&) —
W (k). Then & = W(k)][[t]] and o(t) € t&.

Let Og¢ be the p-adic completion of &[t7!] and let E = k((¢)) be its residue
field. Fix a maximal unramified extension Ogn: of Og and let Og5 be its p-adic
completion. Let E*P be the residue field of £, let E be an algebraic closure of
Es°P, let O = &/p& = k[[t]], and let Oy C E be its integral closure. The Frobenius

lift o on & extends uniquely to Oz and induces an embedding

o
Ogr; — W(Ogr;) — W(E)
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with § as above. Let 6™ = Ogz NW(Og) and 60 = Ogn N W (Og) and &Y =
Ognr [p"Ognr N W, (Og). These rings are stabilised by o.

Suppose a finite extension E’ of [E contained in E*°P is given. Let Og: be the étale
extension of Og contained in Ognr with residue field E'. We write &' = Og. "W (Of)
and &, = Oz /p"Og NW,,(Og); these are the invariants under Gg: = Gal(IEs°P /E’)
in 6™ and in &2'. Let us recall the following well-known consequence of [Fo, B
1.8.4].

Lemma 6.1. We have & /p"&™ = &) /pr&(0) = &1 and &™ is the p-adic
completion of &™), The ring &' is p-adic with &' /p"&' = &',.

Proof. Tt is easy to see that 6™ = ]gl G2 and that 6™ /p™ — G2' is injective. The
projection &', | — &1" is surjective by [Fol B 1.8.4]. It follows that &™ /p" = &},
and G™ is p-adic. The projection &/, ; — &/, is surjective too since H'(Gg/, Opser )
is zero. Again it follows that & /p" = &/, and & is p-adic. Since &™) is the union
over E/ of &, we get &™ /p" = &™) /p™ and thus G"" is the p-adic completion of
&), 0

Since &’ /p&’ = O is a finite free Og-module and a complete discrete valuation
ring, &’ is a finite free §-module and a complete regular local ring of dimension two.
Let k&’ be its residue field and let ¢ generate the kernel of & — W (&') — W (k).
Then &' = W (K')[[t']] and o(t') € '&'.

Lemma 6.2. Let r be minimal with o(t) € t*S and let v’ be minimal with o(t') €
"' &' Thenr =1

Proof. We have t € '&’. Let t = bt’* modulo #'**1&’ with non-zero b € W (k') and
s> 1. If o(t) = at” modulo t"1& and o (t') = o/t modulo ¢"”'+1&’ with non-zero
a € W(k) and non-zero o’ € W(k'), then

o(t) =at” = ab™t"* mod t"* &,
o(t) = o(b)a’*t""* mod t"" TS

It follows that 7's = rs and hence r = 7'. O

7. BREUIL-KISIN MODULES

Let R be a complete discrete valuation ring with perfect residue field k£ of char-
acteristic p and fraction field K of characteristic zero. Let & = W (k)[[t]] and let
0 : G — 6 be a Frobenius lift that stabilises the ideal t&. We choose a represen-
tation R = 6/EG where E has constant term p. Let 7 € R be the image of ¢, so
7 generates the maximal ideal of R.

For an &-module M let M(?) =& ®q,6 M. We consider pairs (M, ¢) where M
is a finite G-module and where ¢ : M — M) is an G-linear map with cokernel
annihilated by E. Following the [VZ] terminology, (M, ¢) is called a Breuil window
(resp. a Breuil module) relative to & — R if the &-module M is free (resp. annihi-
lated by a power of p and of projective dimension at most one). We have a frame
in the sense of [LaZ2]

#=(6,E6,R,0,01)
with 01(Ez) = o(z) for x € 6. Windows & = (P, Q, F, F}) over £ are equivalent
to Breuil windows relative to & — R by the functor & — (Q, ¢) where ¢ : Q —
Q') is the composition of the inclusion Q — P with the inverse of the isomorphism
Q') = P defined by a ® z — aF(z).
Let s« be the ring homomorphism

#:6 S W(S) - W(R).
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It image lies in W(R) if and only if the endomorphism of ¢t&/t*G induced by o
is divisible by p?. In this case, » : & — W(R) is a u-homomorphism of frames
B — Dp for a well-defined unit u of W(R), and s induces an equivalence between
HB-windows and Zr-windows, which are equivalent to p-divisible groups over R; see
[La3l Section 7]. As a corollary, Breuil modules relative to & — R are equivalent to
commutative finite flat p-group schemes over R. Since u maps to 1 under W(R) —
W (k), there is a unique unit ¢ € W(R) which maps to 1 in W (k) with co(c™!) = u.
It is given by ¢ = uo(u)o?(u)- - -; see the proof of [La2, Proposition 8.7].

7.1. Modules of invariants. For a Breuil module or Breuil window (M, ¢) relative
to & = R we write M™ = 6™ ®g M and Mg" = Ogz ®s M. Consider the Z,-
modules:

TH(M,¢)={z e M™|é(x) =10z in 6™ @, gn M}
T2 (M.0) = {x € MY | 6(2) =1 © 2 in Ogss ©0,,, ME)

By [Fol A 1.2], T2"(M, ¢) is finitely generated, and the natural map

(7.1) Ogr; Rz, Tgr(M, d)) — Ogr; ®e M
is bijective. It is pointed out in [Kill [Ki2] that the natural map
(7.2) TY(M, ¢) — T (M, ¢)

is bijective as well. If (M, @) is a Breuil window, this follows from the proof of
[Fo, 1.8.4]. If (M, ¢) is a Breuil module, the map (2)) is injective since the group
X = Oz /6" has no p-torsion and thus Tor$’ (X, M) is zero. One can find a Breuil
window (M’,¢’) and a surjective map (M’,¢') — (M,$). Then T™(M', ¢') =
T (M',¢") — TE" (M, ¢) is surjective, thus (Z2) is surjective.

7.2. The choice of K. Let m be the maximal ideal of R. The power series o (t)
defines a map o(t) : m — m. This map is surjective, and the inverse images of
algebraic elements are algebraic by the Weierstrass preparation theorem. Choose a
system of elements (7(™),>1 of K with 7(®) = 7 and o(t)(7(»*V) = 7(™) and let
Ko be the extension of K generated by all 7("). The system (ﬂ'(")) corresponds to
an element 7 € R = @1 R/pR, the limit taken with respect to Frobenius.

We embed Og = kl[[t]] into R by t + x, and identify E**P and E with subfields of

FracR; thus W(E) C W(FracR). Then 6" = Og: N W(R), and the unique ring

homomorphism # : W(R) — R which lifts the projection W(R) — R/pR induces

a homomorphism
anr . Gnr N R
Let us verify that its restriction to & is the given projection & — R.

Lemma 7.1. We have pr™(t) = 7.

Proof. The lemma is evident if o(¢) = t? since then §(¢) = [t] in W (&), which maps
to [x] in W(R), and 0([z]) = 7. In general let §(¢) = (g0, g1, - .. ) with g; € &; these
power series are determined by the relations

1

g +pgl A+ D"gn = 0" (1)
for n > 0. Let x = (x9,21,...) € W(R) be the image of ¢, thus z; = g;(x). Let
Tr; = (SCiyo, Ti1y-- ) with Li,j S R/pR If :Ei,j € R lifts T;5 We have
pri () = 0x) = Tim [(Fo ) +p(F )+ P Enn].

For #;, = gi(m(™) the sum in the limit becomes ¢™(¢)(7(™)) = &, and the lemma
is proved. ([
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Since the natural action of G = Gal(K/Ks) on W(FracR) is trivial on Og
it stabilises Og,,, and G&"" with trivial action on &. Thus Gk acts on T (M, ¢)
for each Breuil window or Breuil module (M, ¢).

7.3. From &™ to Zink rings. We assume now that o(t) € t2&. For each finite

extension E' of E in E%P the associated ring &’ = Og/ "W (Of) is a finite S-module,

so its image in R is contained in a finite extension R’ of R. Since &' = W (K)H[[t']]
with o(t') € t?6&’ by Lemma 6.2 the image of

&S W) - W(R)
lies in W(R') by [La3l Pr. 7.2]. Let us compose 5’ with W(R') — W(R), where

W(R) was defined in section B} and pass to the direct limit over E’. This gives a
homomorphism (™) : &™) — W(R). Let

7 G — W(R)
be its p-adic completion. This map can be viewed as a frame homomorphism as
follows. Let " = (6™, EG"",6™ /EG™, 0,01) with 01(Ez) = o(z) for z € G™.
Then there is a commutative square of frames, where the horizontal arrows are
1-homomorphisms and the vertical arrows are strict:

B —=— Dp

| |

B s ‘@R

Here G acts on ‘@R and Gg_, acts on " and »™ is Gk _ -equivariant.

Let (M, ¢) be a Breuil window relative to & — R with associated #-window &
and let ™" be the base change of & to #"". By definition we have T (M, ¢) =
T (™) as Gk -modules. Let &4 be the base change of & to Zr and let 32@ be

the common base change of 2™ and P4 to -@R' As in section 2] multiplication
by ¢ induces a Gx__-invariant homomorphism
T(P™)  T(P™) — T(Py).

We recall that the Grx-module T'(Z;) is isomorphic to the Tate module of the
p-divisible group associated to (M, ¢); see Proposition Bl

Proposition 7.2. The homomorphism (™) is bijective.
Note that we assume o(t) € t26; otherwise 7(2™) has not been defined.

Proof. Let h be the G-rank of M. The source and target of 7(Z"") are free Z,-
modules of rank h which are exact functors of &; this is true for T (™) since
([T2) and (1) are bijective, and for T(@R) by Proposition 311

Consider first the case where the p-divisible group associated to &7 is étale,
which means that & = (P,Q, F,F;) has P = Q, and F; : Q — P is a o-linear
isomorphism. Then a Zp-basis of T'(#™") is an &""-basis of P"", and a Z,-basis
of T(@@) is a W(R)-basis of PR- Since Z, — W(R) is a local homomorphism it
follows that 7(£"") is bijective.

Consider next the case & = %, which corresponds to the p-divisible group
Upoo. Assume that the proposition does not hold for £, i.e. that 7(#"") is divisible
by p. We may replace k be an arbitrary perfect extension since this does not
change 7(4); in particular we may assume that k is uncountable. Let £ be the
etale #-window that corresponds to Q,/Z,. We consider extensions of Z-windows

0= B — P — Py — 0, which correspond to extensions in Ext'(Q,/Zy, iy ).
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The image of 7(Z]") provides a splitting of the reduction modulo p of the exact
sequence

0—T(Z) = T(),) — T((L@O)@) —0
and thus the natural homomorphism

(7.3) Extz(Qp/Zp, pip=) — Extic(Z/pZ, pp) = Extye_(Z/pZ, 1)
is zero. Now the first arrow in (Z3) can be identified with the obvious homomor-
phism of multiplicative groups 1 +mp — K*/(K*)P; see [Lall Lemma 7.2] and its
proof. By our assumption on k its image is uncountable. Since for a finite extension
K'/K the homomorphism H' (K, u,) — H'(K’, ju,) has finite kernel, the kernel of
the second map in (Z3) is countable. Thus the composition (73] cannot be zero,
and the proposition is proved for & = .

Finally let & be arbitrary. Duality gives the following commutative diagram;
see section

T(P™) x T(P'™) —— T(B™)

T(@“r)xr(ﬂt"r)l }(%M)

T(Py) x T(PL) —— T(I3)

Since (T2 and () are bijective, the upper line of the diagram is a perfect bilinear
form of free Z,-modules of rank h. Proposition Bl implies that the lower line is a
bilinear form of free Z,-modules of rank h. We have seen that 7(%"") is bijective.
These properties imply that 7(£"") is bijective. O
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