DISPLAYED EQUATIONS FOR GALOIS REPRESENTATIONS

EIKE LAU

Abstract

The Galois representation associated to a p-divisible group over a noetherian complete local domain with perfect residue field is described in terms of its Dieudonné display. As a corollary we deduce in arbitrary characteristic Kisin's description of the Galois representation associated to a commutative finite flat p-group scheme over a p-adic discrete valuation ring in terms of its Breuil-Kisin module. This was obtained earlier by W. Kim by a different method.

Introduction

Let R be a noetherian complete local domain with perfect residue field k of positive characteristic p and with fraction field K of characteristic zero. For a p divisible group G over R, the Tate module $T_{p}(G)$ is a free \mathbb{Z}_{p}-module of finite rank with a continuous action of the absolute Galois group \mathcal{G}_{K}. We want to describe the Tate module in terms of the Dieudonné display $\mathscr{P}=\left(P, Q, F, F_{1}\right)$ associated to G in [Zi2] and [La3], and relate this to other descriptions of the Tate module when R is a discrete valuation ring.

Let us recall that the Zink ring $\mathbb{W}(R)$ is a subring of the ring of Witt vectors $W(R)$ which is stable under the Frobenius endomorphism f of $W(R)$. The components of \mathscr{P} are a finite free $\mathbb{W}(R)$-module P, a submodule Q such that P / Q is a free R-module, and f-linear maps $F: P \rightarrow P$ and $F_{1}: Q \rightarrow P$, such that the image of F_{1} generates P, and $F_{1}\left(v\left(u_{0} a\right) x\right)=a F(x)$ for $x \in P$ and $a \in \mathbb{W}(R)$, where v is the Verschiebung of $W(R)$, and u_{0} is the unit of $W(R)$ defined by $u_{0}=1$ if p is odd and by $v\left(u_{0}\right)=p-[p]$ if $p=2$. The twist by u_{0} is necessary since v does not stabilise $\mathbb{W}(R)$ when $p=2$.

To state the general result we need some notation. Let \hat{R}^{nr} be the completion of the strict henselisation of R, let \tilde{K} be an algebraic closure of its fraction field \hat{K}^{nr}, let $\tilde{R} \subset \tilde{K}$ be the integral closure of \hat{R}^{nr}, and let $\hat{\tilde{R}}$ be its p-adic completion. Let

$$
\mathbb{W}(\tilde{R})=\underset{E}{\lim } \mathbb{W}\left(R_{E}\right)
$$

where E runs through the finite extensions of \hat{K}^{nr} contained in \tilde{K} and where $R_{E} \subset$ E is the integral closure of \hat{R}^{nr}. Let $\mathbb{W}(\tilde{R})$ be the p-adic completion of $\mathbb{W}(\tilde{R})$. We define:

$$
\begin{gathered}
\hat{P}_{\tilde{R}}=\hat{\mathbb{W}}(\tilde{R}) \otimes_{\mathbb{W}(R)} P \\
\hat{Q}_{\tilde{R}}=\operatorname{Ker}\left(\hat{P}_{\tilde{R}} \rightarrow \hat{\tilde{R}} \otimes_{R} P / Q\right)
\end{gathered}
$$

Let $\bar{K} \subset \tilde{K}$ be the algebraic closure of K and let $\tilde{\mathcal{G}}_{K}$ be the group of automorphisms of \tilde{K} whose restriction to $\bar{K} \hat{K}^{\mathrm{nr}}$ is induced by an element of \mathcal{G}_{K}. The natural $\operatorname{map} \tilde{\mathcal{G}}_{K} \rightarrow \mathcal{G}_{K}$ is surjective, and bijective when R is one-dimensional since then $\tilde{K}=\bar{K} \hat{K}^{\mathrm{nr}}$.

Our description of $T_{p}(G)$ is an exact sequence of $\tilde{\mathcal{G}}_{K^{-}}$-modules

$$
\begin{equation*}
0 \rightarrow T_{p}(G) \rightarrow \hat{Q}_{\tilde{R}} \xrightarrow{F_{1}-1} \hat{P}_{\tilde{R}} \rightarrow 0 . \tag{1}
\end{equation*}
$$

Date: December 21, 2010.

If G is connected, a similar description of $T_{p}(G)$ in terms of the nilpotent display of G is part of Zink's theory of displays. In this case k need not be perfect; see [Me, Proposition 4.4]. The proof is recalled in Proposition 1.1 below. The exact sequence (11) is proved in Proposition 3.1 using the formula for the p-divisible group associated to a Dieudonné display given in La3.

Assume now in addition that R is a discrete valuation ring. Then the exact sequence (11) can be related with the descriptions of $T_{p}(G)$ in terms of p-adic Hodge theory and in terms of Breuil-Kisin modules as follows.

First, let $M_{\text {cris }}$ be the value of the covariant Dieudonné crystal of G over $A_{\text {cris }}(R)$. It carries a filtration and a Frobenius, and by [Fa] there is a period homomorphism

$$
T_{p}(G) \rightarrow \operatorname{Fil} M_{\text {cris }}^{F=p}
$$

which is bijective if p is odd, and injective with cokernel annihilated by p if $p=2$. The v-stabilised Zink ring $\mathbb{W}^{+}(R)=\mathbb{W}(R)[v(1)]$ induces an extension $\mathbb{W}^{+}(\tilde{R})$ of the ring $\hat{\mathbb{W}}(\tilde{R})$ defined above; the extension is trivial if p is odd. Since the v stabilised Zink ring carries divided powers, the universal property of $A_{\text {cris }}$ gives a homomorphism

$$
\varkappa_{\text {cris }}: A_{\text {cris }}(R) \rightarrow \hat{\mathbb{W}}^{+}(\tilde{R}) .
$$

Using the relation between Dieudonné displays and Dieudonné crystals, $\varkappa_{\text {cris }}$ induces a map

$$
M_{\text {cris }} \xrightarrow{\tau} \hat{\mathbb{W}}^{+}(\tilde{R}) \otimes_{\hat{\mathbb{W}}(\tilde{R})} \hat{P}_{\tilde{R}}
$$

compatible with Frobenius and filtration. We will show that τ induces the identity on $T_{p}(G)$, viewed as a submodule of Fil $M_{\text {cris }}$ by the period homomorphism and as a submodule of $\hat{Q}_{\tilde{R}} \subset \hat{P}_{\tilde{R}}$ by (11); see Proposition 5.1.

Let us turn to Breuil-Kisin modules. Choose a generator π of the maximal ideal of R. Let $\mathfrak{S}=W(k)[[t]]$ and let $\sigma: \mathfrak{S} \rightarrow \mathfrak{S}$ extend the Frobenius automorphism of $W(k)$ by $t \mapsto t^{p}$; the case of more general Frobenius lifts is discussed below. We consider pairs $M=(M, \phi)$ where M is a finite \mathfrak{S}-module and where $\phi: M \rightarrow M^{(\sigma)}$ is an \mathfrak{S}-linear map with cokernel annihilated by the kernel of the map $\mathfrak{S} \rightarrow R$ given by $t \mapsto \pi$. Following [VZ], M is called a Breuil window if M is free over \mathfrak{S}, and M is called a Breuil module if M is a p-torsion \mathfrak{S}-module of projective dimension at most one.

It is known that p-divisible groups over R are equivalent to Breuil windows. This was conjectured by Breuil [Br] and proved by Kisin [Ki1, [Ki2] if p is odd, and for connected groups if $p=2$. The general case is proved in La3 by showing that Breuil windows are equivalent to Dieudonné displays; here R can be regular of arbitrary dimension. (For odd p the last equivalence is already proved in VZ for some regular rings, including all discrete valuation rings.) As a corollary, commutative finite flat p-group schemes over R are equivalent to Breuil modules. Another proof for $p=2$, related more closely to Kisin's methods, was obtained independently by W. Kim [K .

Let K_{∞} be the extension of K generated by a chosen system of successive p-th roots of π. For a p-divisible group G over R let $T(G)$ be its Tate module, and for a commutative finite flat p-group scheme G over R let $T(G)=G(\bar{K})$. Kisin's and Kim's results include a description of $T(G)$ as a $\mathcal{G}_{K_{\infty}}$-representation in terms of the Breuil window or Breuil module (M, ϕ) associated to G. In the covariant theory it takes the following form:

$$
\begin{equation*}
T(G)=\left\{x \in M^{\mathrm{nr}} \mid \phi(x)=1 \otimes x \text { in } \mathfrak{S}^{\mathrm{nr}} \otimes_{\sigma, \mathfrak{S}^{\mathrm{nr}}} M^{\mathrm{nr}}\right\} \tag{2}
\end{equation*}
$$

Here $M^{\mathrm{nr}}=\mathfrak{S}^{\mathrm{nr}} \otimes_{\mathfrak{S}} M$, and the ring $\mathfrak{S}^{\mathrm{nr}}$ is recalled in section 6 below.

We will show how (2) can be deduced from (11). It suffices to consider the case where G is a p-divisible group. The equivalence between Breuil windows and Dieudonné displays over R is induced by a homomorphism $\varkappa: \mathfrak{S} \rightarrow \mathbb{W}(R)$. It can be extended to

$$
\varkappa^{\mathrm{nr}}: \mathfrak{S}^{\mathrm{nr}} \rightarrow \hat{\mathbb{W}}(\tilde{R})
$$

which allows to define a map of $\mathcal{G}_{K_{\infty}}$-modules

$$
\left\{x \in M^{\mathrm{nr}} \mid \phi(x)=1 \otimes x\right\} \xrightarrow{\tau}\left\{x \in \hat{Q}_{\tilde{R}} \mid F_{1}(x)=x\right\} .
$$

Since the target is isomorphic to $T(G)$ by (11), the proof of (2) is reduced to showing that τ is bijective; see Proposition 7.2, The verification is easy if G is étale; the general case follows quite formally using a duality argument.

Finally we recall that the equivalence between Breuil windows and p-divisible groups requires only a Frobenius lift $\sigma: \mathfrak{S} \rightarrow \mathfrak{S}$ which stabilises the ideal $t \mathfrak{S}$ such that p^{2} divides the linear term of the power series $\sigma(t)$. Let K_{∞} be the extension of K generated by a chosen system of successive $\sigma(t)$-roots of π. If the linear term of $\sigma(t)$ is zero, which guarantees that \varkappa^{nr} is well-defined, we obtain an isomorphism (2) of $\mathcal{G}_{K_{\infty}}$-modules as before.

The author thanks Th. Zink for helpful discussions.

1. The case of connected p-divisible groups

Let R be a complete noetherian local domain with residue field k of characteristic p, with fraction field K of characteristic zero, and with maximal ideal \mathfrak{m}. In this section we recall how the Tate module of a connected p-divisible group over R is expressed in terms of its nilpotent display.

Fix an algebraic closure \bar{K} of K and let $\mathcal{G}_{K}=\operatorname{Gal}(\bar{K} / K)$. Let $\bar{R} \subset \bar{K}$ be the integral closure of R and let $\overline{\mathfrak{m}} \subset \bar{R}$ be the maximal ideal. For a finite extension E of K contained in \bar{K} let $R_{E}=\bar{R} \cap E$, which is a complete noetherian local ring, and let $\mathfrak{m}_{E} \subset R_{E}$ be the maximal ideal. We write

Let $\bar{W}(\overline{\mathfrak{m}})$ be the p-adic completion of $\hat{W}(\overline{\mathfrak{m}})$ and let $\hat{\overline{\mathfrak{m}}}$ be the p-adic completion of $\overline{\mathfrak{m}}$. For a display $\mathscr{P}=\left(P, Q, F, F_{1}\right)$ over R we set

$$
\bar{P}_{\overline{\mathfrak{m}}}=\bar{W}(\overline{\mathfrak{m}}) \otimes_{W(R)} P ; \quad \bar{Q}_{\overline{\mathfrak{m}}}=\operatorname{Ker}\left(\bar{P}_{\overline{\mathfrak{m}}} \rightarrow \hat{\overline{\mathfrak{m}}} \otimes_{R} P / Q\right)
$$

The functor BT of [Zi1] induces an equivalence of categories between nilpotent displays over R and connected p-divisible groups over R; here \mathscr{P} is called nilpotent if $\mathscr{P} \otimes_{R} k$ is V-nilpotent in the usual sense. The following is stated in Me , Proposition 4.4].

Proposition 1.1 (Zink). Let \mathscr{P} be a nilpotent display over R and let G be the associated connected p-divisible group over R. There is a natural exact sequence of \mathcal{G}_{K}-modules

$$
0 \rightarrow T_{p}(G) \rightarrow \bar{Q}_{\overline{\mathfrak{m}}} \xrightarrow{F_{1}-1} \bar{P}_{\overline{\mathfrak{m}}} \rightarrow 0 .
$$

Here $T_{p}(G)=\operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, G(\bar{K})\right)$ is the Tate module of G.
The proof of Proposition 1.1 uses the following well-known facts.
Lemma 1.2. Let A be an abelian group.
(i) If A has no p-torsion then $\operatorname{Ext}^{1}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\right)=\underset{\longleftarrow}{\lim } A / p^{n} A$.
(ii) If $p A=A$ then $\operatorname{Ext}^{1}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\right)$ is zero.

Proof. The group $\operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\right)$ is isomorphic to $\lim \operatorname{Hom}\left(\mathbb{Z} / p^{n} \mathbb{Z}, A\right)$ with transition maps induced by $p: \mathbb{Z} / p^{n} \mathbb{Z} \rightarrow \mathbb{Z} / p^{n+1} \mathbb{Z}$. The corresponding system $\operatorname{Ext}^{1}\left(\mathbb{Z} / p^{n} \mathbb{Z}, A\right)$ is isomorphic to $A / p^{n} A$ with transition maps induced by id_{A}. Thus there is an exact sequence

$$
0 \rightarrow \lim _{幺}{ }^{1} A\left[p^{n}\right] \rightarrow \operatorname{Ext}^{1}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, A\right) \rightarrow \lim _{幺} A / p^{n} A \rightarrow 0
$$

Both assertions of the lemma follow easily.
For a p-divisible group G over R and for E as above we write

Lemma 1.3. Multiplication by p is surjective on $\hat{G}(\bar{R})$.
Proof. Let $x \in \hat{G}\left(R_{E}\right)$ be given. The inverse image of x under p is a compatible system of $G[p]$-torsors Y_{n} over $R_{E} / \mathfrak{m}_{E}^{n}$. They define a $G[p]$-torsor Y over R_{E}. For some finite extension F of E the set $Y(F)=Y\left(R_{F}\right)$ is non-empty, and x becomes divisible by p in $\hat{G}\left(R_{F}\right)$.
Proof of Proposition 1.1. Let E be a finite Galois extension of K in \bar{K}. Let

$$
\hat{P}_{E, n}=\hat{W}\left(\mathfrak{m}_{E} / \mathfrak{m}_{E}^{n}\right) \otimes_{W(R)} P ; \quad \hat{Q}_{E, n}=\operatorname{Ker}\left(\hat{P}_{E, n} \rightarrow \mathfrak{m}_{E} / \mathfrak{m}_{E}^{n} \otimes_{R} P / Q\right)
$$

Recall that P is a finite free $W(R)$-module, and P / Q is a finite free R-module. The definition of the functor BT in [Zi1, Thm. 81] gives an exact sequence of \mathcal{G}_{K}-modules

$$
0 \rightarrow \hat{Q}_{E, n} \xrightarrow{F_{1}-1} \hat{P}_{E, n} \rightarrow G\left(R_{E} / \mathfrak{m}_{E}^{n}\right) \rightarrow 0
$$

Since the modules $\hat{Q}_{E, n}$ form a surjective system with respect to n, applying $\underset{\longrightarrow}{\lim _{~}} \lim _{n}$ gives an exact sequence of \mathcal{G}_{K}-modules

$$
\begin{equation*}
0 \rightarrow \hat{Q}_{\overline{\mathfrak{m}}} \xrightarrow{F_{1}-1} \hat{P}_{\overline{\mathfrak{m}}} \rightarrow \hat{G}(\bar{R}) \rightarrow 0 \tag{1.1}
\end{equation*}
$$

with $\hat{P}_{\overline{\mathfrak{m}}}=\hat{W}(\overline{\mathfrak{m}}) \otimes_{W(R)} P$ and $\hat{Q}_{\overline{\mathfrak{m}}}=\operatorname{Ker}\left(\hat{P}_{\overline{\mathfrak{m}}} \rightarrow \overline{\mathfrak{m}} \otimes_{R} P / Q\right)$. The p-adic completions of $\hat{P}_{\overline{\mathfrak{m}}}$ and $\hat{Q}_{\overline{\mathrm{m}}}$ are $\bar{P}_{\overline{\mathrm{m}}}$ and $\bar{Q}_{\overline{\bar{m}}}$; here we use that $\overline{\mathfrak{m}} \otimes_{R} P / Q$ has no p-torsion. Moreover $\hat{P}_{\overline{\mathfrak{m}}}$ has no p-torsion since $\hat{W}(\overline{\mathfrak{m}})$ is contained in the \mathbb{Q}-algebra $W(\bar{K})$. Using Lemmas 1.3 and 1.2 , the Ext-sequence of $\mathbb{Q}_{p} / \mathbb{Z}_{p}$ with (1.1) reduces to the short exact sequence

$$
0 \rightarrow \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \hat{G}(\bar{R})\right) \rightarrow \bar{Q}_{\overline{\mathfrak{m}}} \xrightarrow{F_{1}-1} \bar{P}_{\overline{\mathfrak{m}}} \rightarrow 0
$$

The proposition follows since the p^{n}-torsion of $\hat{G}(\bar{R})$ and $G(\bar{K})$ coincide.

2. Some frame formalism

Before we proceed we introduce a formal definition. Let $\mathcal{F}=\left(S, R, I, \sigma, \sigma_{1}\right)$ be a frame in the sense of La2] such that S is a \mathbb{Z}_{p}-algebra and σ is \mathbb{Z}_{p}-linear. For an \mathcal{F}-window $\mathscr{P}=\left(P, Q, F, F_{1}\right)$ we consider the module of invariants

$$
T(\mathscr{P})=\left\{x \in Q \mid F_{1}(x)=x\right\} ;
$$

this is a \mathbb{Z}_{p}-module. Let us list some of its formal properties.
Functoriality in \mathcal{F} : Let $\alpha: \mathcal{F} \rightarrow \mathcal{F}^{\prime}=\left(S^{\prime}, I^{\prime}, R^{\prime}, \sigma^{\prime}, \sigma_{1}^{\prime}\right)$ be a u-homomorphism of frames, thus $u \in S^{\prime}$ is a unit, and we have $\sigma_{1}^{\prime} \alpha=u \cdot \alpha \sigma_{1}$ on I. Assume that a unit $c \in S^{\prime}$ with $c \sigma^{\prime}(c)^{-1}=u$ is given. For an \mathcal{F}-window \mathscr{P} as above, the S-linear map $P \rightarrow S^{\prime} \otimes_{S} P, x \mapsto c \otimes x$ induces a \mathbb{Z}_{p}-linear map

$$
\tau(\mathscr{P})=\tau_{c}(\mathscr{P}): T(\mathscr{P}) \rightarrow T\left(\alpha_{*} \mathscr{P}\right)
$$

Duality: Recall that a bilinear form of \mathcal{F}-windows $\gamma: \mathscr{P} \times \mathscr{P}^{\prime} \rightarrow \mathscr{P}^{\prime \prime}$ is an S bilinear map $\gamma: P \times P^{\prime} \rightarrow P^{\prime \prime}$ with $Q \times Q^{\prime} \rightarrow Q^{\prime \prime}$ such that for $x \in Q$ and $x^{\prime} \in Q^{\prime}$ we have $\gamma\left(F_{1} x, F_{1}^{\prime} x^{\prime}\right)=F_{1}^{\prime \prime}\left(\gamma\left(x, x^{\prime}\right)\right)$. It induces a bilinear map of \mathbb{Z}_{p}-modules
$T(\mathscr{P}) \times T\left(\mathscr{P}^{\prime}\right) \rightarrow T\left(\mathscr{P}^{\prime \prime}\right)$. Let us denote the \mathcal{F}-window $\left(S, I, \sigma, \sigma_{1}\right)$ by \mathcal{F} again. For each \mathcal{F}-window \mathscr{P} there is a well-defined dual \mathcal{F}-window \mathscr{P}^{t} together with a perfect bilinear form $\mathscr{P} \times \mathscr{P}^{t} \rightarrow \mathcal{F}$. It gives a bilinear map $T(\mathscr{P}) \times T\left(\mathscr{P}^{t}\right) \rightarrow T(\mathcal{F})$. In our applications, $T(\mathcal{F})$ will be free of rank one, and the bilinear map will turn out to be perfect.

Functoriality of duality: For a u-homomorphism of frames $\alpha: \mathcal{F} \rightarrow \mathcal{F}^{\prime}$ with c as above and for a bilinear form of \mathcal{F}-windows $\gamma: \mathscr{P} \times \mathscr{P}^{\prime} \rightarrow \mathscr{P}^{\prime \prime}$, the base change of γ multiplied by c^{-1} is a bilinear form of \mathcal{F}^{\prime}-windows $\alpha_{*} \mathscr{P} \times \alpha_{*} \mathscr{P}^{\prime} \rightarrow \alpha_{*} \mathscr{P}^{\prime \prime}$, which we denote by $\alpha_{*}(\gamma)$; see La2, Lemma 2.14]. By passing to the modules of invariants we obtain a commutative diagram

This will be applied to the bilinear form $\mathscr{P} \times \mathscr{P}^{t} \rightarrow \mathcal{F}$.

3. The case of perfect residue fields

Let R, K, k, \mathfrak{m} be as in section 1 Assume that the residue field k is perfect. As in [L33, Sections 2.3 and 2.8] we consider the frame

Windows over \mathscr{D}_{R}, called Dieudonné displays over R, are equivalent to p-divisible groups G over R by [Zi2] if p is odd and by [La3, Proposition 5.7] in general. The Tate module $T_{p}(G)$ can be expressed in terms of the associated Dieudonné display by a variant of Proposition 1.1 as follows.

Let R^{nr} be the strict henselisation of R. This is an excellent normal domain by Gre or [Se, so its completion \hat{R}^{nr} is a normal domain again. Let $K^{\mathrm{nr}} \subset \hat{K}^{\mathrm{nr}}$ be the fraction fields of $R^{\mathrm{nr}} \subset \hat{R}^{\mathrm{nr}}$, let \tilde{K} be an algebraic closure of \hat{K}^{nr}, and let $\tilde{R} \subset \tilde{K}$ be the integral closure of \hat{R}^{nr}. We define a frame

$$
\mathscr{D}_{\tilde{R}}=\underset{E}{\lim } \lim _{\underset{n}{ }} \mathscr{D}_{R_{E} / \mathfrak{m}_{E}^{n}}=\left(\mathbb{W}(\tilde{R}), \mathbb{I}_{\tilde{R}}, \tilde{R}, f, \mathbb{f}_{1}\right)
$$

where E runs through the finite extensions of \hat{K}^{nr} in \tilde{K} and where $R_{E} \subset E$ is the integral closure of \hat{R}^{nr}. Since \tilde{R} has no p-torsion, the component-wise p-adic completion of $\mathscr{D}_{\tilde{R}}$ is a frame again, which we denote by

$$
\hat{\mathscr{D}}_{\tilde{R}}=\left(\hat{\mathbb{W}}(\tilde{R}), \hat{\mathbb{I}}_{\tilde{R}}, \hat{\tilde{R}}, f, \mathbb{f}_{1}\right) .
$$

Let $\bar{K} \subset \tilde{K}$ be the algebraic closure of K and let $\mathcal{G}_{K}=\operatorname{Gal}(\bar{K} / K)$. The tensor product $\bar{K} \otimes_{K^{\mathrm{nr}}} \hat{K}^{\mathrm{nr}}$ is a subfield of \tilde{K}, with equality if R is one-dimensional; here we use that in any case the etale coverings of the complements of the maximal ideals in $\operatorname{Spec} R^{\mathrm{nr}}$ and $\operatorname{Spec} \hat{R}^{\mathrm{nr}}$ coincide by [El, Th. 5] or by [Ar, II 2.1]. Let $\tilde{\mathcal{G}}_{K}$ be the group of automorphisms of \tilde{K} whose restriction to $\bar{K} \hat{K}^{\mathrm{nr}}$ is induced by an element of \mathcal{G}_{K}. This group acts naturally on $\mathscr{D}_{\tilde{R}}$ and on $\hat{\mathscr{D}}_{\tilde{R}}$. The projection $\tilde{\mathcal{G}}_{K} \rightarrow \mathcal{G}_{K}$ is surjective, and bijective if R is one-dimensional.

Proposition 3.1. Let \mathscr{P} be a Dieudonné display over R and let G be the associated p-divisible group over R. Let $\hat{\mathscr{P}}_{\tilde{R}}=\left(\hat{P}_{\tilde{R}}, \hat{Q}_{\tilde{R}}, F, F_{1}\right)$ be the base change of \mathscr{P} to $\hat{\mathscr{D}}_{\tilde{R}}$. There is a natural exact sequence of $\tilde{\mathcal{G}}_{K}$-modules

$$
0 \rightarrow T_{p}(G) \rightarrow \hat{Q}_{\tilde{R}} \xrightarrow{F_{1}-1} \hat{P}_{\tilde{R}} \rightarrow 0 .
$$

In particular we have an isomorphism of \mathcal{G}_{K}-modules

$$
\text { per : } T_{p}(G) \xrightarrow{\sim} T\left(\hat{\mathscr{P}}_{\tilde{R}}\right)
$$

which we call the period isomorphism is display theory.
Proof of Proposition 3.1. For a p-divisible group G over R and for finite extensions E of \hat{K}^{nr} in \tilde{K} we set

$$
\hat{G}\left(\hat{R}_{E}\right)=\underset{n}{\lim } G\left(R_{E} / \mathfrak{m}_{E}^{n}\right) ; \quad \hat{G}(\tilde{R})=\underset{E}{\lim } \hat{G}\left(\hat{R}_{E}\right) .
$$

Multiplication by p is surjective on $\hat{G}(\tilde{R})$ by Lemma 1.3 applied over \hat{R}^{nr}. Suppose E is a normal extension of \hat{K}^{nr} and thus stable under $\tilde{\mathcal{G}}_{K}$. The rings $R_{E, n}=R_{E} / \mathfrak{m}_{E}^{n}$ are local Artin rings with residue field \bar{k}. Thus $R_{E, n}$ lies in the category $\mathcal{J}_{R / \mathfrak{m}^{n}}$ used in La3, Section 5]. Let $\mathscr{P}_{E, n}=\left(P_{E, n}, Q_{E, n}, F, F_{1}\right)$ be the base change of \mathscr{P} to $R_{E, n}$. Since every ind-étale covering of $\operatorname{Spec} R_{E, n}$ has a section, the definition of the functor BT in [La3, Proposition 5.4] as an ind-étale cohomology sheaf shows that $G\left(R_{E, n}\right)=\mathrm{BT}\left(\mathscr{P}_{E, n}\right)$ is quasi-isomorphic to the complex of $\tilde{\mathcal{G}}_{K}$-modules in degrees $-1,0,1$

$$
C_{E, n}=\left[Q_{E, n} \xrightarrow{F_{1}-1} P_{E, n}\right] \otimes[\mathbb{Z} \rightarrow \mathbb{Z}[1 / p]] .
$$

Let

$$
C_{E}=\underset{\underset{n}{\lim }}{\lim _{E, n} ; \quad C=\underset{E}{\lim } C_{E}}
$$

where E runs through the finite extensions of K^{nr} in \bar{K}, or equivalently the finite normal extensions. Since $G\left(R_{E, n}\right)$ and the components of $C_{E, n}$ form surjective systems with respect to n, the complex C is quasi-isomorphic to $\hat{G}(\tilde{R})$. We will verify the following chain of isomorphisms (denoted \cong) and quasi-isomorphisms (denoted \simeq) of complexes of $\tilde{\mathcal{G}}_{K}$-modules, which proves the proposition. Here Ext ${ }^{1}$ is taken component-wise in the second argument.

$$
\begin{aligned}
& T_{p}(G) \stackrel{(1)}{\cong} \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \hat{G}(\tilde{R})\right) \stackrel{(2)}{\simeq} R \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \hat{G}(\tilde{R})\right) \\
& \stackrel{(3)}{\sim} R \operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, C\right) \stackrel{(4)}{\simeq} \operatorname{Ext}^{1}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, C[-1] \stackrel{(5)}{\cong}\left[\hat{Q}_{\tilde{R}} \xrightarrow{F_{1}-1} \hat{P}_{\tilde{R}}\right] .\right.
\end{aligned}
$$

Since the torsion subgroups of $G(\bar{K})$ and of $\hat{G}(\tilde{R})$ coincide, we have (1). For (2) we need that $\operatorname{Ext}^{1}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \hat{G}(\tilde{R})\right)$ vanishes, which is true since p is surjective on $\hat{G}(\tilde{R})$; see Lemma 1.2. The quasi-isomorphism between $\hat{G}(\tilde{R})$ and C gives (3). Let $\left(P_{\tilde{R}}, Q_{\tilde{R}}, F, F_{1}\right)$ be the base change of \mathscr{P} to $\mathscr{D}_{\tilde{R}}$ and let $P_{\bar{k}}=W(\bar{k}) \otimes_{W}(R) P$. The complex C can be identified with the cone of the map of complexes

$$
\left[Q_{\tilde{R}} \xrightarrow{F_{1}-1} P_{\tilde{R}}\right] \rightarrow\left[P_{\bar{k}}[1 / p] \xrightarrow{F_{1}-1} P_{\bar{k}}[1 / p]\right] .
$$

Since \tilde{R} is a domain of characteristic zero, the rings $\mathbb{W}(\tilde{R}) \subset W(\tilde{R})$ have no p torsion, and thus the components of C have no p-torsion either. In particular, $\operatorname{Hom}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, C\right)$ vanishes, which proves (4). The p-adic completions of $P_{\tilde{R}}$ and $Q_{\tilde{R}}$ are $\hat{P}_{\tilde{R}}$ and $\hat{Q}_{\tilde{R}}$. Thus Lemma 1.2 gives (5).

4. A variant for the prime 2

We keep the notation of section 3 and assume that $p=2$. One may ask what the preceding constructions give if \mathbb{W} and \mathscr{D} are replaced by their v-stabilised variants \mathbb{W}^{+}and \mathscr{D}^{+}. Recall that $\mathbb{W}^{+}(R)=\mathbb{W}(R)[v(1)]$ as a subring of $W(R)$, and we
have a frame $\mathscr{D}_{R}^{+}=\left(\mathbb{W}^{+}(R), \mathbb{I}_{R}^{+}, R, f, f_{1}\right)$ where f_{1} is the inverse of v. The $\mathbb{W}(R)-$ module $\mathbb{W}^{+}(R) / \mathbb{W}(R)$ is a one-dimensional k-vector space generated by $v(1)$; see La3, Sections 1.4 and 2.5]. We put
with E as in section 3, and denote the p-adic completion of $\mathscr{D}_{\tilde{R}}^{+}$by

$$
\hat{\mathscr{D}}_{\tilde{R}}^{+}=\left(\hat{\mathbb{W}}^{+}(\tilde{R}), \hat{\mathbb{I}}_{\tilde{R}}^{+}, \hat{\tilde{R}}, f, f_{1}\right) .
$$

For a p-divisible group G over R let G^{m} be the multiplicative part of G and define G^{+}by the following homomorphism of exact sequences.

Proposition 4.1. Let \mathscr{P} be a Dieudonné display over R and let G be the associated p-divisible group over R. Let $\hat{\mathscr{P}}_{\tilde{R}}^{+}=\left(\hat{P}_{\tilde{R}}^{+}, \hat{Q}_{\tilde{R}}^{+}, F, F_{1}^{+}\right)$be the base change of \mathscr{P} to $\hat{\mathscr{D}}_{\tilde{R}}^{+}$. There is a natural exact sequence of $\tilde{\mathcal{G}}_{K}$-modules

$$
0 \rightarrow T_{p}\left(G^{+}\right) \rightarrow \hat{Q}_{\tilde{R}}^{+} \xrightarrow{F_{1}^{+}-1} \hat{P}_{\tilde{R}}^{+} \rightarrow 0 .
$$

In particular we have an isomorphism of \mathcal{G}_{K}-modules

$$
\operatorname{per}^{+}: T_{p}\left(G^{+}\right) \xrightarrow{\sim} T\left(\hat{\mathscr{P}}_{\tilde{R}}^{+}\right) .
$$

Proof. Let $\bar{P}_{\bar{k}}=\bar{k} \otimes_{\mathbb{W}(R)} P$. We will construct the following commutative diagram with exact rows, where \bar{F} is induced by F.

Here the Frobenius linear endomorphism \bar{F} is nilpotent if G is unipotent, and is given by an invertible matrix if G is of multiplicative type. Thus $\bar{F}-1$ is surjective with kernel an \mathbb{F}_{p}-vector space of dimension equal to the height of G^{m}, and Proposition 4.1 follows from Proposition 3.1.

The natural homomorphism $\widehat{\mathbb{W}}(\tilde{R}) \rightarrow \widehat{\mathbb{W}}^{+}(\tilde{R})$ is injective and defines a $u_{0}{ }^{-}$ homomorphism of frames $\iota: \hat{\mathscr{D}}_{\tilde{R}} \rightarrow \hat{\mathscr{D}}_{\tilde{R}}^{+}$where the unit $u_{0} \in \mathbb{W}^{+}\left(\mathbb{Z}_{2}\right)$ is defined by $v\left(u_{0}\right)=p-[p]$; see [La3, Section 2.5]. Since u_{0} maps to 1 in $W\left(\mathbb{F}_{2}\right)$ there is a unique unit c_{0} of $\mathbb{W}^{+}\left(\mathbb{Z}_{2}\right)$ which maps to 1 in $W\left(\mathbb{F}_{2}\right)$ such that $c_{0} f\left(c_{0}^{-1}\right)=u_{0}$, namely $c_{0}=u_{0} f\left(u_{0}\right) f^{2}\left(u_{0}\right) \cdots$; see the proof of La2, Proposition 8.7].

The cokernel of ι is given by

$$
\begin{equation*}
\hat{\mathbb{I}}_{\tilde{R}}^{+} / \hat{\mathbb{I}}_{\tilde{R}}=\hat{\mathbb{W}}^{+}(\tilde{R}) / \hat{\mathbb{W}}(\tilde{R})=\bar{k} \cdot v(1) ; \tag{4.1}
\end{equation*}
$$

see [La3, Le. 1.10]. We extend the operator \mathfrak{f}_{1} of $\hat{\mathscr{D}}_{\tilde{R}}$ to $\hat{\mathscr{D}}_{\tilde{R}}^{+}$by $\mathfrak{f}_{1}=u_{0}^{-1} f_{1}$. Then \mathbb{f}_{1} induces an f-linear endomorphism $\overline{\mathbb{f}}_{1}$ of $\bar{k} \cdot v(1)$. We claim that $\overline{\mathbb{f}}_{1}(v(1))=v(1)$. It suffices to prove this formula in $\mathbb{W}+\left(\mathbb{Z}_{2}\right) / \mathbb{W}\left(\mathbb{Z}_{2}\right) \cong \mathbb{F}_{2}$, and thus it suffices to show that $\mathbb{f}_{1}(v(1))$ does not lie in $\mathbb{W}\left(\mathbb{Z}_{2}\right)$. But $\mathbb{W}\left(\mathbb{Z}_{2}\right)$ is stable under the operator $x \mapsto \mathbb{V}(x)=v\left(u_{0} x\right)$, and $\mathbb{V}\left(\mathbb{f}_{1}(v(1))=v(1)\right.$ does not lie in $\mathbb{W}\left(\mathbb{Z}_{2}\right)$. This proves the claim.

Let us extend the operator F_{1} of $\hat{\mathscr{P}}_{\tilde{R}}$ to $\hat{\mathscr{P}}_{\tilde{R}}^{+}$by $F_{1}=u_{0}^{-1} F_{1}^{+}$. Since we have $c_{0}\left(F_{1}-1\right)=\left(F_{1}^{+}-1\right) c_{0}$ as a homomorphism $\hat{Q}_{\tilde{R}}^{+} \rightarrow \hat{P}_{\tilde{R}}^{+}$, it suffices to construct the above diagram with F_{1} in place of F_{1}^{+}. Now (4.1) implies that $\hat{Q}_{\tilde{R}}^{+} / \hat{Q}_{\tilde{R}}=\hat{P}_{\tilde{R}}^{+} / \hat{P}_{\tilde{R}}=$ $\bar{P}_{\bar{k}} \cdot v(1)$, which gives the exact rows. Clearly the left hand square commutes. The relation $F_{1}(a x)=\mathbb{f}_{1}(a) F(x)$ for $x \in \hat{P}_{\tilde{R}}^{+}$and $a \in \hat{\mathbb{I}}_{\tilde{R}}^{+}$applied with $a=v(1)$ shows that the right hand square commutes.
Remark 4.2. The period isomorphisms per and per ${ }^{+}$satisfy per ${ }^{+}=\tau_{c_{0}}$ per, where $\tau_{c_{0}}: T\left(\hat{\mathscr{P}}_{\tilde{R}}\right) \rightarrow T\left(\hat{\mathscr{P}}_{\tilde{R}}^{+}\right)$is the homomorphism defined in section 2,

5. The relation with $A_{\text {cris }}$

Let R be a complete discrete valuation ring with perfect residue field k of characteristic p and fraction field K of characteristic zero. In this case our ring $\hat{\tilde{R}}$ is equal to $\hat{\bar{R}}$, the p-adic completion of the integral closure of R in \bar{K}. Let $A_{\text {cris }}=A_{\text {cris }}(R)$ and consider the frame

$$
\mathcal{A}_{\text {cris }}=\left(A_{\text {cris }}, \text { Fil } A_{\text {cris }}, \hat{\bar{R}}, \sigma, \sigma_{1}\right)
$$

with $\sigma_{1}=p^{-1} \sigma$. For a p-divisible group G over R let $\mathbb{D}(G)$ be its covariant Dieudonné crystal. The free $A_{\text {cris }}$-module $M=\mathbb{D}\left(G_{\hat{R}}\right)_{A_{\text {cris }}}$ carries a filtration Fil M and a σ-linear endomorphism F. The operator $F_{1}=p^{-1} F$ is well-defined on Fil M, and we get an $\mathcal{A}_{\text {cris }}$-window $\mathcal{M}=\left(M\right.$, Fil $\left.M, F, F_{1}\right)$; see [Ki1, A.2] or LLa3, Proposition 3.15]. Faltings [Fa] constructs a period homomorphism

$$
\operatorname{per}_{\text {cris }}: T_{p}(G) \rightarrow \operatorname{Fil} M^{F=p}=T(\mathcal{M})
$$

which is bijective if p is odd; for $p=2$ the homomorphism is injective with cokernel annihilated by p. More precisely, for $p=2$ the cokernel is zero if G is unipotent by [Ki2, Proposition 1.1.10], while the cokernel is non-zero if G is non-zero and of multiplicative type; thus the period homomorphism extends to an isomorphism $T_{p}\left(G^{+}\right) \cong T(\mathcal{M})$ with G^{+}as in section (4).

Let us relate this with the period isomorphisms of sections 3and 4. For the sake of uniformity, in the following we write $\mathbb{W}^{+}=\mathbb{W}$ etc. if p is odd. Then $\hat{\mathbb{W}}^{+}(\tilde{R}) \rightarrow \hat{\bar{R}}$ is a divided power extension of p-adic rings for all p. By the universal property of $A_{\text {cris }}$ there is a unique ring homomorphism

$$
\varkappa_{\text {cris }}: A_{\text {cris }} \rightarrow \hat{\mathbb{W}}^{+}(\tilde{R})
$$

which commutes with the projections to $\hat{\bar{R}}$. The proof of this universal property shows that $\varkappa_{\text {cris }} \circ \sigma=f \circ \varkappa_{\text {cris }}$. Since $\hat{\mathbb{W}}(\tilde{R})$ has no p-torsion, it follows that $\varkappa_{\text {cris }}$ is a \mathcal{G}_{K}-equivariant strict frame homomorphism

$$
\varkappa_{\text {cris }}: \mathcal{A}_{\text {cris }} \rightarrow \hat{\mathscr{D}}_{\tilde{R}}^{+}
$$

Let \mathscr{P} be the Dieudonné display associated to G so that $G=\mathrm{BT}(\mathscr{P})$. The Dieudonné crystal $\mathbb{D}(G)$ gives rise to a \mathscr{D}_{R}^{+}-window $\Phi_{R}^{+}(G)$ by [La3, Section 3]. Its base change to $\hat{\mathscr{D}}_{\tilde{R}}^{+}$is isomorphic to $\varkappa_{\text {cris * }}(\mathcal{M})$ by the functoriality of $\mathbb{D}(G)$. Let $\iota: \mathscr{D}_{R} \rightarrow \mathscr{D}_{R}^{+}$be the inclusion. We have an isomorphism $\iota_{*}(\mathscr{P}) \cong \Phi_{R}^{+}(G)$ by La3, Proposition 5.7] if p is odd and by [La3, Corollary 6.12] if $p=2$. Thus we get an isomorphism $\hat{\mathscr{P}}_{\tilde{R}}^{+} \cong \varkappa_{\text {cris } *}(\mathcal{M})$, which induces a homomorphism of \mathcal{G}_{K}-modules

$$
\tau: T(\mathcal{M}) \rightarrow T\left(\hat{\mathscr{P}}_{\tilde{R}}^{+}\right)
$$

as explained in section 2,

[^0]Proposition 5.1. The following diagram of \mathcal{G}_{K}-modules commutes up to multiplication by a p-adic unit which is independent of G.

Remark 5.2. The p-adic unit in the statement of the proposition remains indetermined because only the existence of an isomorphism $\iota_{*}(\mathscr{P}) \cong \Phi_{R}^{+}(G)$ is proved in [La3], but a priori this isomorphism and the related homomorphism τ are defined only up to multiplication by a p-adic unit; cf. [La3, Lemma 4.6]. By a suitable choice one can arrange that the diagram commutes.

Remark 5.3. Since per is bijective by Proposition 3.1 the Propositions 3.1 and 4.1 together with Remark 4.2 imply that τ is an isomorphism. In fact, for this conclusion one needs only that the \mathbb{Q}_{p}-dimension of $T(\mathcal{M}) \otimes \mathbb{Q}$ is \leq the height of G and that per $_{\text {cris }}$ is not bijective if $p=2$ and G is non-zero of multiplicative type. Thus we recover the isomorphism $T_{p}\left(G^{+}\right) \cong T(\mathcal{M})$.

Proof of Proposition 5.1. We first consider the case $G=\mathbb{Q}_{p} / \mathbb{Z}_{p}$. Then per and $\tau_{c_{0}}$ are isomorphisms by Propositions 3.1 and 4.1. We have $T_{p}(G)=\mathbb{Z}_{p}$, and $M=\operatorname{Fil} M=A_{\text {cris }}$ with Frobenius $p \sigma$, which implies that $\hat{Q}_{\tilde{R}}^{+}=\hat{P}_{\tilde{R}}^{+}=\hat{\mathbb{W}}_{\tilde{R}}^{+}$with $F_{1}=f$. Thus τ can be identified with the homomorphism $A_{\text {cris }}^{\sigma=1} \rightarrow \widehat{\mathbb{W}}^{+}(\tilde{R})^{f=1}$. Since the target is a \mathbb{Z}_{p}-algebra isomorphic to \mathbb{Z}_{p} as a module, τ is bijective. Thus $\tau_{c_{0}} \circ \operatorname{per}=\rho \cdot \tau \circ \operatorname{per}_{\text {cris }}$ for a well defined $\rho \in \mathbb{Z}_{p}^{*}$.

Let now G be arbitrary. Since the map $\tau_{c_{0}} \circ$ per $=$ per $^{+}$is injective with cokernel annihilated by p, the composition $\gamma=p \rho \cdot\left(\operatorname{per}^{+}\right)^{-1} \circ \tau \circ \operatorname{per}_{\text {cris }}$ is a well-defined functorial endomorphism of $T_{p} G$. We have to show that $\gamma=p$. By [Ta, 4.2], γ comes from an endomorphism γ_{G} of G; moreover γ_{G} is functorial in G and compatible with finite extensions of the base ring R inside \bar{K}. The endomorphisms γ_{G} induce a functorial endomorphism γ_{H} of each commutative finite flat p-group scheme H over a finite extension R^{\prime} of R inside \bar{K} because H can be embedded into a p-divisible group by Raynaud [BBM, 3.1.1]; cf. [Ki1, 2.3.5] or La3, Proposition 4.1]. Assume that H is annihilated by p^{r} and let $H_{0}=\mathbb{Z} / p^{r} \mathbb{Z}$. There is a finite extension $R^{\prime \prime}$ of R^{\prime} inside \bar{K} such that $H(\bar{K})=H\left(R^{\prime \prime}\right)=\operatorname{Hom}_{R^{\prime \prime}}\left(H_{0}, H\right)$. Since $\gamma_{H_{0}}=p$ it follows that $\gamma_{H}=p$, and thus $\gamma_{G}=p$ for all G.

6. The Ring $\mathfrak{S}^{n r}$

Let us recall the ring $\mathfrak{S}^{n r}$ of Ki1, which is denoted A_{S}^{+}in [Fo, and some of this properties. One starts with a two-dimensional complete regular local ring \mathfrak{S} of characteristic zero with perfect residue field k of characteristic p equipped with a Frobenius lift $\sigma: \mathfrak{S} \rightarrow \mathfrak{S}$. Let $\delta: \mathfrak{S} \rightarrow W(\mathfrak{S})$ be the unique ring homomorphism with $\delta \sigma=f \delta$ and $w_{0} \delta=\mathrm{id}$. Let t be a generator of the kernel of $\mathfrak{S} \rightarrow W(\mathfrak{S}) \rightarrow$ $W(k)$. Then $\mathfrak{S}=W(k)[[t]]$ and $\sigma(t) \in t \mathfrak{S}$.

Let $\mathcal{O}_{\mathcal{E}}$ be the p-adic completion of $\mathfrak{S}\left[t^{-1}\right]$ and let $\mathbb{E}=k((t))$ be its residue field. Fix a maximal unramified extension $\mathcal{O}_{\mathcal{E}^{\text {nr }}}$ of $\mathcal{O}_{\mathcal{E}}$ and let $\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}$ be its p-adic completion. Let $\mathbb{E}^{\text {sep }}$ be the residue field of $\mathcal{E}^{\text {nr }}$, let $\overline{\mathbb{E}}$ be an algebraic closure of $\mathbb{E}^{\text {sep }}$, let $\mathcal{O}_{\mathbb{E}}=\mathfrak{S} / p \mathfrak{S}=k[[t]]$, and let $\mathcal{O}_{\overline{\mathbb{E}}} \subset \overline{\mathbb{E}}$ be its integral closure. The Frobenius lift σ on \mathfrak{S} extends uniquely to $\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}$ and induces an embedding

$$
\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}{ }^{\delta} W\left(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}\right) \rightarrow W(\overline{\mathbb{E}})
$$

with δ as above. Let $\mathfrak{S}^{\mathrm{nr}}=\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \cap W\left(\mathcal{O}_{\overline{\mathbb{E}}}\right)$ and $\mathfrak{S}^{(\mathrm{nr})}=\mathcal{O}_{\mathcal{E}^{\mathrm{nr}}} \cap W\left(\mathcal{O}_{\overline{\mathbb{E}}}\right)$ and $\mathfrak{S}_{n}^{\mathrm{nr}}=$ $\mathcal{O}_{\mathcal{E}^{\mathrm{nr}}} / p^{n} \mathcal{O}_{\mathcal{E}^{\mathrm{nr}}} \cap W_{n}\left(\mathcal{O}_{\overline{\mathbb{E}}}\right)$. These rings are stabilised by σ.

Suppose a finite extension \mathbb{E}^{\prime} of \mathbb{E} contained in $\mathbb{E}^{\text {sep }}$ is given. Let $\mathcal{O}_{\mathcal{E}^{\prime}}$ be the étale extension of $\mathcal{O}_{\mathcal{E}}$ contained in $\mathcal{O}_{\mathcal{E}^{\text {nr }}}$ with residue field \mathbb{E}^{\prime}. We write $\mathfrak{S}^{\prime}=\mathcal{O}_{\mathcal{E}^{\prime}} \cap W\left(\mathcal{O}_{\overline{\mathbb{E}}}\right)$ and $\mathfrak{S}_{n}^{\prime}=\mathcal{O}_{\mathcal{E}^{\prime}} / p^{n} \mathcal{O}_{\mathcal{E}^{\prime}} \cap W_{n}\left(\mathcal{O}_{\overline{\mathbb{E}}}\right)$; these are the invariants under $\mathcal{G}_{\mathbb{E}^{\prime}}=\operatorname{Gal}\left(\mathbb{E}^{\text {sep }} / \mathbb{E}^{\prime}\right)$ in $\mathfrak{S}^{\mathrm{nr}}$ and in $\mathfrak{S}_{n}^{\mathrm{nr}}$. Let us recall the following well-known consequence of [Fo, B 1.8.4].

Lemma 6.1. We have $\mathfrak{S}^{n \mathrm{r}} / p^{n} \mathfrak{S}^{\mathrm{nr}}=\mathfrak{S}^{(\mathrm{nr})} / p^{n} \mathfrak{S}^{(\mathrm{nr})}=\mathfrak{S}_{n}^{\mathrm{nr}}$, and $\mathfrak{S}^{\mathrm{nr}}$ is the p-adic completion of $\mathfrak{S}^{(\mathrm{nr})}$. The ring \mathfrak{S}^{\prime} is p-adic with $\mathfrak{S}^{\prime} / p^{n} \mathfrak{S}^{\prime}=\mathfrak{S}_{n}^{\prime}$.
Proof. It is easy to see that $\mathfrak{S}^{\mathrm{nr}}=\lim _{\check{ }} \mathfrak{S}_{n}^{\mathrm{nr}}$ and that $\mathfrak{S}^{\mathrm{nr}} / p^{n} \rightarrow \mathfrak{S}_{n}^{\mathrm{nr}}$ is injective. The projection $\mathfrak{S}_{n+1}^{\mathrm{nr}} \rightarrow \mathfrak{S}_{n}^{\mathrm{nr}}$ is surjective by [Fo, B 1.8.4]. It follows that $\mathfrak{S}^{\mathrm{nr}} / p^{n}=\mathfrak{S}_{n}^{\mathrm{nr}}$, and $\mathfrak{S}^{n r}$ is p-adic. The projection $\mathfrak{S}_{n+1}^{\prime} \rightarrow \mathfrak{S}_{n}^{\prime}$ is surjective too since $H^{1}\left(\mathcal{G}_{\mathbb{E}^{\prime}}, \mathcal{O}_{\mathbb{E}^{\text {sep }}}\right)$ is zero. Again it follows that $\mathfrak{S}^{\prime} / p^{n}=\mathfrak{S}_{n}^{\prime}$, and \mathfrak{S}^{\prime} is p-adic. Since $\mathfrak{S}^{(\mathrm{nr})}$ is the union over \mathbb{E}^{\prime} of \mathfrak{S}^{\prime}, we get $\mathfrak{S}^{\mathrm{nr}} / p^{n}=\mathfrak{S}^{(\mathrm{nr})} / p^{n}$, and thus $\mathfrak{S}^{\mathrm{nr}}$ is the p-adic completion of $\mathfrak{S}^{(\mathrm{nr})}$.

Since $\mathfrak{S}^{\prime} / p \mathfrak{S}^{\prime}=\mathcal{O}_{\mathbb{E}^{\prime}}$ is a finite free $\mathcal{O}_{\mathbb{E}}$-module and a complete discrete valuation ring, \mathfrak{S}^{\prime} is a finite free \mathfrak{S}-module and a complete regular local ring of dimension two. Let k^{\prime} be its residue field and let t^{\prime} generate the kernel of $\mathfrak{S}^{\prime} \rightarrow W\left(\mathfrak{S}^{\prime}\right) \rightarrow W\left(k^{\prime}\right)$. Then $\mathfrak{S}^{\prime}=W\left(k^{\prime}\right)\left[\left[t^{\prime}\right]\right]$ and $\sigma\left(t^{\prime}\right) \in t^{\prime} \mathfrak{S}^{\prime}$.

Lemma 6.2. Let r be minimal with $\sigma(t) \in t^{r} \mathfrak{S}$ and let r^{\prime} be minimal with $\sigma\left(t^{\prime}\right) \in$ $t^{\prime r^{\prime}} \mathfrak{S}^{\prime}$. Then $r=r^{\prime}$.

Proof. We have $t \in t^{\prime} \mathfrak{S}^{\prime}$. Let $t \equiv b t^{\prime s}$ modulo $t^{\prime s+1} \mathfrak{S}^{\prime}$ with non-zero $b \in W\left(k^{\prime}\right)$ and $s \geq 1$. If $\sigma(t) \equiv a t^{r}$ modulo $t^{r+1} \mathfrak{S}$ and $\sigma\left(t^{\prime}\right) \equiv a^{\prime} t^{\prime r^{\prime}}$ modulo $t^{\prime r^{\prime}+1} \mathfrak{S}^{\prime}$ with non-zero $a \in W(k)$ and non-zero $a^{\prime} \in W\left(k^{\prime}\right)$, then

$$
\begin{aligned}
\sigma(t) \equiv a t^{r} \equiv a b^{r} t^{\prime r s} & \bmod t^{\prime r s+1} \mathfrak{S}^{\prime} \\
\sigma(t) \equiv \sigma(b) a^{\prime s} t^{\prime r^{\prime} s} & \bmod t^{\prime r^{\prime} s+1} \mathfrak{S}^{\prime}
\end{aligned}
$$

It follows that $r^{\prime} s=r s$ and hence $r=r^{\prime}$.

7. Breuil-Kisin modules

Let R be a complete discrete valuation ring with perfect residue field k of characteristic p and fraction field K of characteristic zero. Let $\mathfrak{S}=W(k)[[t]]$ and let $\sigma: \mathfrak{S} \rightarrow \mathfrak{S}$ be a Frobenius lift that stabilises the ideal $t \mathfrak{S}$. We choose a representation $R=\mathfrak{S} / E \subseteq$ where E has constant term p. Let $\pi \in R$ be the image of t, so π generates the maximal ideal of R.

For an \mathfrak{S}-module M let $M^{(\sigma)}=\mathfrak{S} \otimes_{\sigma, \mathfrak{S}} M$. We consider pairs (M, ϕ) where M is a finite \mathfrak{S}-module and where $\phi: M \rightarrow M^{(\sigma)}$ is an \mathfrak{S}-linear map with cokernel annihilated by E. Following the VZ terminology, (M, ϕ) is called a Breuil window (resp. a Breuil module) relative to $\mathfrak{S} \rightarrow R$ if the \mathfrak{S}-module M is free (resp. annihilated by a power of p and of projective dimension at most one). We have a frame in the sense of La2

$$
\mathscr{B}=\left(\mathfrak{S}, E \mathfrak{S}, R, \sigma, \sigma_{1}\right)
$$

with $\sigma_{1}(E x)=\sigma(x)$ for $x \in \mathfrak{S}$. Windows $\mathscr{P}=\left(P, Q, F, F_{1}\right)$ over \mathscr{B} are equivalent to Breuil windows relative to $\mathfrak{S} \rightarrow R$ by the functor $\mathscr{P} \mapsto(Q, \phi)$ where $\phi: Q \rightarrow$ $Q^{(\sigma)}$ is the composition of the inclusion $Q \rightarrow P$ with the inverse of the isomorphism $Q^{(\sigma)} \cong P$ defined by $a \otimes x \mapsto a F_{1}(x)$.

Let \varkappa be the ring homomorphism

$$
\varkappa: \mathfrak{S} \xrightarrow{\delta} W(\mathfrak{S}) \rightarrow W(R) .
$$

It image lies in $\mathbb{W}(R)$ if and only if the endomorphism of $t \mathfrak{S} / t^{2} \mathfrak{S}$ induced by σ is divisible by p^{2}. In this case, $\varkappa: \mathfrak{S} \rightarrow \mathbb{W}(R)$ is a $\mathbb{1}$-homomorphism of frames $\mathscr{B} \rightarrow \mathscr{D}_{R}$ for a well-defined unit \mathfrak{u} of $\mathbb{W}(R)$, and \varkappa induces an equivalence between \mathscr{B}-windows and \mathscr{D}_{R}-windows, which are equivalent to p-divisible groups over R; see [La3, Section 7]. As a corollary, Breuil modules relative to $\mathfrak{S} \rightarrow R$ are equivalent to commutative finite flat p-group schemes over R. Since u maps to 1 under $\mathbb{W}(R) \rightarrow$ $W(k)$, there is a unique unit $\mathbb{C} \in \mathbb{W}(R)$ which maps to 1 in $W(k)$ with $\mathbb{C} \sigma\left(\mathbb{C}^{-1}\right)=\mathbb{u}$. It is given by $\mathbb{C}=\mathfrak{u} \sigma(\mathfrak{u}) \sigma^{2}(\mathfrak{u}) \cdots$; see the proof of La2, Proposition 8.7].
7.1. Modules of invariants. For a Breuil module or Breuil window (M, ϕ) relative to $\mathfrak{S} \rightarrow R$ we write $M^{\mathrm{nr}}=\mathfrak{S}^{\mathrm{nr}} \otimes_{\mathfrak{S}} M$ and $M_{\mathcal{E}}^{\mathrm{nr}}=\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \otimes_{\mathfrak{S}} M$. Consider the $\mathbb{Z}_{p^{-}}$ modules:

$$
\begin{gathered}
T^{\mathrm{nr}}(M, \phi)=\left\{x \in M^{\mathrm{nr}} \mid \phi(x)=1 \otimes x \text { in } \mathfrak{S}^{\mathrm{nr}} \otimes_{\sigma, \mathfrak{S}^{\mathrm{nr}}} M^{\mathrm{nr}}\right\} \\
T_{\mathcal{E}}^{\mathrm{nr}}(M, \phi)=\left\{x \in M_{\mathcal{E}}^{\mathrm{nr}} \mid \phi(x)=1 \otimes x \text { in } \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \otimes_{\sigma, \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}} M_{\mathcal{E}}^{\mathrm{nr}}\right\}
\end{gathered}
$$

By [Fo, A 1.2], $T_{\mathcal{E}}^{\mathrm{nr}}(M, \phi)$ is finitely generated, and the natural map

$$
\begin{equation*}
\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \otimes_{\mathbb{Z}_{p}} T_{\mathcal{E}}^{\mathrm{nr}}(M, \phi) \rightarrow \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \otimes_{\mathfrak{S}} M \tag{7.1}
\end{equation*}
$$

is bijective. It is pointed out in Ki1, Ki2] that the natural map

$$
\begin{equation*}
T^{\mathrm{nr}}(M, \phi) \rightarrow T_{\mathcal{E}}^{\mathrm{nr}}(M, \phi) \tag{7.2}
\end{equation*}
$$

is bijective as well. If (M, ϕ) is a Breuil window, this follows from the proof of [F0, 1.8.4]. If (M, ϕ) is a Breuil module, the map (7.2) is injective since the group $X=\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} / \mathfrak{S}^{\mathrm{nr}}$ has no p-torsion and thus $\operatorname{Tor}_{1}^{\mathfrak{S}}(X, M)$ is zero. One can find a Breuil window $\left(M^{\prime}, \phi^{\prime}\right)$ and a surjective map $\left(M^{\prime}, \phi^{\prime}\right) \rightarrow(M, \phi)$. Then $T^{\mathrm{nr}}\left(M^{\prime}, \phi^{\prime}\right) \cong$ $T_{\mathcal{E}}^{\mathrm{nr}}\left(M^{\prime}, \phi^{\prime}\right) \rightarrow T_{\mathcal{E}}^{\mathrm{nr}}(M, \phi)$ is surjective, thus (7.2) is surjective.
7.2. The choice of K_{∞}. Let $\hat{\overline{\mathfrak{m}}}$ be the maximal ideal of $\hat{\bar{R}}$. The power series $\sigma(t)$ defines a map $\sigma(t): \hat{\overline{\mathfrak{m}}} \rightarrow \hat{\overline{\mathfrak{m}}}$. This map is surjective, and the inverse images of algebraic elements are algebraic by the Weierstrass preparation theorem. Choose a system of elements $\left(\pi^{(n)}\right)_{n \geq 1}$ of \bar{K} with $\pi^{(0)}=\pi$ and $\sigma(t)\left(\pi^{(n+1)}\right)=\pi^{(n)}$, and let K_{∞} be the extension of K generated by all $\pi^{(n)}$. The system $\left(\pi^{(n)}\right)$ corresponds to an element $\underline{\pi} \in \mathcal{R}=\lim \bar{R} / p \bar{R}$, the limit taken with respect to Frobenius.

We embed $\mathcal{O}_{\mathbb{E}}=k[[t]]$ into \mathcal{R} by $t \mapsto \underline{\pi}$, and identify $\mathbb{E}^{\text {sep }}$ and $\overline{\mathbb{E}}$ with subfields of $\operatorname{Frac} \mathcal{R}$; thus $W(\overline{\mathbb{E}}) \subset W(\operatorname{Frac} \mathcal{R})$. Then $\mathfrak{S}^{\mathrm{nr}}=\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \cap W(\mathcal{R})$, and the unique ring homomorphism $\theta: W(\mathcal{R}) \rightarrow \hat{\bar{R}}$ which lifts the projection $W(\mathcal{R}) \rightarrow \bar{R} / p \bar{R}$ induces a homomorphism

$$
p r^{\mathrm{nr}}: \mathfrak{S}^{\mathrm{nr}} \rightarrow \hat{\bar{R}}
$$

Let us verify that its restriction to \mathfrak{S} is the given projection $\mathfrak{S} \rightarrow R$.
Lemma 7.1. We have $p r^{\mathrm{nr}}(t)=\pi$.
Proof. The lemma is evident if $\sigma(t)=t^{p}$ since then $\delta(t)=[t]$ in $W(\mathfrak{S})$, which maps to $[\underline{\pi}]$ in $W(\mathcal{R})$, and $\theta([\underline{\pi}])=\pi$. In general let $\delta(t)=\left(g_{0}, g_{1}, \ldots\right)$ with $g_{i} \in \mathfrak{S}$; these power series are determined by the relations

$$
g_{0}^{p^{n}}+p g_{1}^{p^{n-1}}+\cdots+p^{n} g_{n}=\sigma^{n}(t)
$$

for $n \geq 0$. Let $x=\left(x_{0}, x_{1}, \ldots\right) \in W(\mathcal{R})$ be the image of t, thus $x_{i}=g_{i}(\underline{\pi})$. Let $x_{i}=\left(x_{i, 0}, x_{i, 1}, \ldots\right)$ with $x_{i, j} \in \bar{R} / p \bar{R}$. If $\tilde{x}_{i, j} \in \hat{\bar{R}}$ lifts $x_{i, j}$ we have

$$
p r^{\mathrm{nr}}(t)=\theta(x)=\lim _{n \rightarrow \infty}\left[\left(\tilde{x}_{0, n}\right)^{p^{n}}+p\left(\tilde{x}_{1, n}^{p^{n-1}}\right)+\ldots+p^{n} \tilde{x}_{n, n}\right]
$$

For $\tilde{x}_{i, n}=g_{i}\left(\pi^{(n)}\right)$ the sum in the limit becomes $\sigma^{n}(t)\left(\pi^{(n)}\right)=\pi$, and the lemma is proved.

Since the natural action of $\mathcal{G}_{K_{\infty}}=\operatorname{Gal}\left(\bar{K} / K_{\infty}\right)$ on $W(\operatorname{Frac} \mathcal{R})$ is trivial on $\mathcal{O}_{\mathcal{E}}$ it stabilises $\mathcal{O}_{\hat{\mathcal{E}}^{\mathrm{nr}}}$ and $\mathfrak{S}^{\mathrm{nr}}$ with trivial action on \mathfrak{S}. Thus $\mathcal{G}_{K_{\infty}}$ acts on $T^{\mathrm{nr}}(M, \phi)$ for each Breuil window or Breuil module (M, ϕ).
7.3. From $\mathfrak{S}^{\text {nr }}$ to Zink rings. We assume now that $\sigma(t) \in t^{2} \mathfrak{S}$. For each finite extension \mathbb{E}^{\prime} of \mathbb{E} in $\mathbb{E}^{\text {sep }}$ the associated ring $\mathfrak{S}^{\prime}=\mathcal{O}_{\mathcal{E}^{\prime}} \cap W\left(\mathcal{O}_{\overline{\mathbb{E}}}\right)$ is a finite \mathfrak{S}-module, so its image in $\hat{\bar{R}}$ is contained in a finite extension R^{\prime} of R. Since $\mathfrak{S}^{\prime}=W\left(k^{\prime}\right)\left[\left[t^{\prime}\right]\right]$ with $\sigma\left(t^{\prime}\right) \in t^{\prime 2} \mathfrak{S}^{\prime}$ by Lemma 6.2, the image of

$$
\varkappa^{\prime}: \mathfrak{S}^{\prime} \xrightarrow{\delta} W\left(\mathfrak{S}^{\prime}\right) \rightarrow W\left(R^{\prime}\right)
$$

lies in $\mathbb{W}\left(R^{\prime}\right)$ by [La3, Pr. 7.2]. Let us compose \varkappa^{\prime} with $\mathbb{W}\left(R^{\prime}\right) \rightarrow \mathbb{W}(\tilde{R})$, where $\mathbb{W}(\tilde{R})$ was defined in section 3, and pass to the direct limit over \mathbb{E}^{\prime}. This gives a homomorphism $\varkappa^{(\mathrm{nr})}: \mathfrak{S}^{(\mathrm{nr})} \rightarrow \mathbb{W}(\tilde{R})$. Let

$$
\varkappa^{\mathrm{nr}}: \mathfrak{S}^{\mathrm{nr}} \rightarrow \hat{\mathbb{W}}(\tilde{R})
$$

be its p-adic completion. This map can be viewed as a frame homomorphism as follows. Let $\mathscr{B}^{\mathrm{nr}}=\left(\mathfrak{S}^{\mathrm{nr}}, E \mathfrak{S}^{\mathrm{nr}}, \mathfrak{S}^{\mathrm{nr}} / E \mathfrak{S}^{\mathrm{nr}}, \sigma, \sigma_{1}\right)$ with $\sigma_{1}(E x)=\sigma(x)$ for $x \in \mathfrak{S}^{\mathrm{nr}}$. Then there is a commutative square of frames, where the horizontal arrows are u-homomorphisms and the vertical arrows are strict:

Here \mathcal{G}_{K} acts on $\hat{\mathscr{D}}_{\tilde{R}}$ and $\mathcal{G}_{K_{\infty}}$ acts on $\mathscr{B}^{\mathrm{nr}}$ and \varkappa^{nr} is $\mathcal{G}_{K_{\infty}}$-equivariant.
Let (M, ϕ) be a Breuil window relative to $\mathfrak{S} \rightarrow R$ with associated \mathscr{B}-window \mathscr{P} and let $\mathscr{P}^{\mathrm{nr}}$ be the base change of \mathscr{P} to $\mathscr{B}^{\mathrm{nr}}$. By definition we have $T^{\mathrm{nr}}(M, \phi)=$ $T\left(\mathscr{P}^{\mathrm{nr}}\right)$ as $\mathcal{G}_{K_{\infty}}$-modules. Let $\mathscr{P}_{\mathscr{D}}$ be the base change of \mathscr{P} to \mathscr{D}_{R} and let $\hat{\mathscr{P}}_{\hat{\mathscr{D}}}$ be the common base change of $\mathscr{P}^{\mathrm{nr}}$ and $\mathscr{P}_{\mathscr{D}}$ to $\hat{\mathscr{D}}_{\tilde{R}}$. As in section 2 multiplication by \mathbb{C} induces a $\mathcal{G}_{K_{\infty}}$-invariant homomorphism

$$
\tau\left(\mathscr{P}^{\mathrm{nr}}\right): T\left(\mathscr{P}^{\mathrm{nr}}\right) \rightarrow T\left(\hat{\mathscr{P}}_{\hat{\mathscr{D}}}\right)
$$

We recall that the \mathcal{G}_{K}-module $T\left(\hat{\mathscr{P}}_{\hat{\mathscr{D}}}\right)$ is isomorphic to the Tate module of the p-divisible group associated to (M, ϕ); see Proposition 3.1.
Proposition 7.2. The homomorphism $\tau\left(\mathscr{P}^{\mathrm{nr}}\right)$ is bijective.
Note that we assume $\sigma(t) \in t^{2} \mathfrak{S}$; otherwise $\tau\left(\mathscr{P}^{\mathrm{nr}}\right)$ has not been defined.
Proof. Let h be the \mathfrak{S}-rank of M. The source and target of $\tau\left(\mathscr{P}^{\mathrm{nr}}\right)$ are free $\mathbb{Z}_{p^{-}}$ modules of rank h which are exact functors of \mathscr{P}; this is true for $T\left(\mathscr{P}^{\mathrm{nr}}\right)$ since (7.2) and (7.1) are bijective, and for $T\left(\hat{\mathscr{D}}_{\tilde{R}}\right)$ by Proposition 3.1.

Consider first the case where the p-divisible group associated to \mathscr{P} is étale, which means that $\mathscr{P}=\left(P, Q, F, F_{1}\right)$ has $P=Q$, and $F_{1}: Q \rightarrow P$ is a σ-linear isomorphism. Then a \mathbb{Z}_{p}-basis of $T\left(\mathscr{P}^{\mathrm{nr}}\right)$ is an $\mathfrak{S}^{\mathrm{nr}}$-basis of P^{nr}, and a \mathbb{Z}_{p}-basis of $T\left(\hat{\mathscr{P}}_{\hat{\mathscr{D}}}\right)$ is a $\hat{\mathbb{W}}(\tilde{R})$-basis of $\hat{P}_{\tilde{R}}$. Since $\mathbb{Z}_{p} \rightarrow \hat{\mathbb{W}}(\tilde{R})$ is a local homomorphism it follows that $\tau\left(\mathscr{P}^{\mathrm{nr}}\right)$ is bijective.

Consider next the case $\mathscr{P}=\mathscr{B}$, which corresponds to the p-divisible group $\mu_{p^{\infty}}$. Assume that the proposition does not hold for \mathscr{B}, i.e. that $\tau\left(\mathscr{B}^{\mathrm{nr}}\right)$ is divisible by p. We may replace k be an arbitrary perfect extension since this does not change $\tau(\mathscr{B})$; in particular we may assume that k is uncountable. Let \mathscr{P}_{0} be the etale \mathscr{B}-window that corresponds to $\mathbb{Q}_{p} / \mathbb{Z}_{p}$. We consider extensions of \mathscr{B}-windows $0 \rightarrow \mathscr{B} \rightarrow \mathscr{P}_{1} \rightarrow \mathscr{P}_{0} \rightarrow 0$, which correspond to extensions in $\operatorname{Ext}^{1}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \mu_{p}\right)$.

The image of $\tau\left(\mathscr{P}_{1}^{\mathrm{nr}}\right)$ provides a splitting of the reduction modulo p of the exact sequence

$$
0 \rightarrow T\left(\hat{\mathscr{D}}_{\tilde{R}}\right) \rightarrow T\left(\left(\hat{\mathscr{P}}_{1}\right)_{\hat{\mathscr{D}}}\right) \rightarrow T\left(\left(\hat{\mathscr{P}}_{0}\right)_{\hat{\mathscr{D}}}\right) \rightarrow 0
$$

and thus the natural homomorphism

$$
\begin{equation*}
\operatorname{Ext}_{R}^{1}\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}, \mu_{p \infty}\right) \rightarrow \operatorname{Ext}_{K}^{1}\left(\mathbb{Z} / p \mathbb{Z}, \mu_{p}\right) \rightarrow \operatorname{Ext}_{K_{\infty}}^{1}\left(\mathbb{Z} / p \mathbb{Z}, \mu_{p}\right) \tag{7.3}
\end{equation*}
$$

is zero. Now the first arrow in (7.3) can be identified with the obvious homomorphism of multiplicative groups $1+\mathfrak{m}_{R} \rightarrow K^{*} /\left(K^{*}\right)^{p}$; see La1, Lemma 7.2] and its proof. By our assumption on k its image is uncountable. Since for a finite extension K^{\prime} / K the homomorphism $H^{1}\left(K, \mu_{p}\right) \rightarrow H^{1}\left(K^{\prime}, \mu_{p}\right)$ has finite kernel, the kernel of the second map in (7.3) is countable. Thus the composition (7.3) cannot be zero, and the proposition is proved for $\mathscr{P}=\mathscr{B}$.

Finally let \mathscr{P} be arbitrary. Duality gives the following commutative diagram; see section 2 ,

Since (7.2) and (7.1) are bijective, the upper line of the diagram is a perfect bilinear form of free \mathbb{Z}_{p}-modules of rank h. Proposition 3.1 implies that the lower line is a bilinear form of free \mathbb{Z}_{p}-modules of rank h. We have seen that $\tau\left(\mathscr{B}^{\mathrm{nr}}\right)$ is bijective. These properties imply that $\tau\left(\mathscr{P}^{\mathrm{nr}}\right)$ is bijective.

References

[Ar] M. Artin: Etale coverings of schemes over Hensel rings. Amer. J. Math. 88 (1966), 915-934
[BBM] P. Berthelot, L. Breen, W. Messing: Théorie de Dieudonné cristalline II. Lecture Notes in Math. 930, Springer Verlag, 1982
[Br] C. Breuil: Schemas en groupes et corps des normes, unpublished manuscript (1998)
[El] R. Elkik: Solutions d'équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4) 6 (1973), 553-603
[Fa] G. Faltings: Integral crystalline cohomology over very ramified valuation rings. JAMS 12 (1999) 117-144
[Fo] J.-M. Fontaine: Représentations p-adiques des corps locaux. Grothendieck Festschrift II, 249-309, Prog. Math. 87, Birkhäuser, Boston, 1990
[Gre] S. Greco: Two theorems on excellent rings. Nagoya Math. J. 60 (1976), 139-149
$[\mathrm{K}] \quad$ W. Kim: The classification of p-divisible groups over 2 -adic discrete valuation rings. arXiv:1007.1904
[Ki1] M. Kisin: Crystalline representations and F-crystals, Algebraic geometry and number theory, 459-496, Progr. Math., Vol. 253, Birkhäuser, 2006
[Ki2] M. Kisin: Modularity of 2-adic Barsotti-Tate representations. Invent. Math. 178 (2009), 587-634
[La1] E. Lau: Tate modules of universal p-divisible groups. Compos. Math. 146 (2010), 220-232
[La2] E. Lau: Frames and finite group schemes over complete regular local rings. Doc. Math. 15 (2010), 545-569
[La3] E. Lau: A relation between crystalline Dieudonné theory and Dieudonné displays. arXiv:1006.2720
[Me] W. Messing: Travaux de Zink. Séminaire Bourbaki 2005/2006, exp. 964, Astérisque 311 (2007), 341-364
[Se] H. Seydi: Sur la théorie des anneaux de Weierstrass I. Bull. Sci. Math. (2) 95 (1971), 227-235
[Ta] J. Tate: p-divisible groups. Proceedings of a conference on local fields, Dribergen (1966), 158-183, Springer Verlag, 1976
[VZ] A. Vasiu, Th. Zink: Breuil's classification of p-divisible groups over regular local rings of arbitrary dimension. arXiv:0808.2792 To appear in: Advanced Studies in Pure Mathematics, Proceeding of Algebraic and Arithmetic Structures of Moduli Spaces, Hokkaido University, Sapporo, Japan, September 2007
[Zi1] Th. Zink: The display of a formal p-divisible group. Astérisque 278 (2002), 127-248
[Zi2] Th. Zink: A Dieudonné theory for p-divisible groups. Class field theory-its centenary and prospect, 139-160, Adv. Stud. Pure Math. 30, Math. Soc. Japan 2001

Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld
E-mail address: lau@math.uni-bielefeld.de

[^0]: ${ }^{1}$ Here we need that $\sigma_{1}\left(\right.$ Fil $\left.A_{\text {cris }}\right)$ generates $A_{\text {cris }}$. But $\xi=p-[\underline{p}]$ lies in Fil $A_{\text {cris }}$, and $\sigma_{1}(\xi)=$ $1-[\underline{p}]^{p} / p$ is a unit because $[\underline{p}]$ lies in the divided power ideal Fil ${\overline{A_{\text {cris }}}}+p A_{\text {cris }}$.

