DISPLAYED EQUATIONS FOR GALOIS REPRESENTATIONS

EIKE LAU

ABSTRACT. The Galois representation associated to a p-divisible group over a noetherian complete local domain with perfect residue field is described in terms of its Dieudonné display. As a corollary we deduce in arbitrary characteristic Kisin's description of the Galois representation associated to a commutative finite flat p-group scheme over a p-adic discrete valuation ring in terms of its Breuil-Kisin module. This was obtained earlier by W. Kim by a different method.

INTRODUCTION

Let R be a noetherian complete local domain with perfect residue field k of positive characteristic p and with fraction field K of characteristic zero. For a pdivisible group G over R, the Tate module $T_p(G)$ is a free \mathbb{Z}_p -module of finite rank with a continuous action of the absolute Galois group \mathcal{G}_K . We want to describe the Tate module in terms of the Dieudonné display $\mathscr{P} = (P, Q, F, F_1)$ associated to Gin [Zi2] and [La3], and relate this to other descriptions of the Tate module when Ris a discrete valuation ring.

Let us recall that the Zink ring W(R) is a subring of the ring of Witt vectors W(R) which is stable under the Frobenius endomorphism f of W(R). The components of \mathscr{P} are a finite free W(R)-module P, a submodule Q such that P/Q is a free R-module, and f-linear maps $F: P \to P$ and $F_1: Q \to P$, such that the image of F_1 generates P, and $F_1(v(u_0a)x) = aF(x)$ for $x \in P$ and $a \in W(R)$, where v is the Verschiebung of W(R), and u_0 is the unit of W(R) defined by $u_0 = 1$ if p is odd and by $v(u_0) = p - [p]$ if p = 2. The twist by u_0 is necessary since v does not stabilise W(R) when p = 2.

To state the general result we need some notation. Let \hat{R}^{nr} be the completion of the strict henselisation of R, let \tilde{K} be an algebraic closure of its fraction field \hat{K}^{nr} , let $\tilde{R} \subset \tilde{K}$ be the integral closure of \hat{R}^{nr} , and let $\hat{\tilde{R}}$ be its *p*-adic completion. Let

$$\mathbb{W}(\tilde{R}) = \varinjlim_E \mathbb{W}(R_E)$$

where E runs through the finite extensions of \hat{K}^{nr} contained in \tilde{K} and where $R_E \subset E$ is the integral closure of \hat{R}^{nr} . Let $\hat{\mathbb{W}}(\tilde{R})$ be the *p*-adic completion of $\mathbb{W}(\tilde{R})$. We define:

$$P_{\tilde{R}} = \mathbb{W}(R) \otimes_{\mathbb{W}(R)} P$$
$$\tilde{R} = \operatorname{Ker}(\hat{P}_{\tilde{R}} \to \hat{\tilde{R}} \otimes_{R} P/Q)$$

 $\hat{Q}_{\tilde{R}} = \operatorname{Ker}(\hat{P}_{\tilde{R}} \to \hat{\tilde{R}} \otimes_{R} P/Q)$ Let $\bar{K} \subset \tilde{K}$ be the algebraic closure of K and let $\tilde{\mathcal{G}}_{K}$ be the group of automorphisms of \tilde{K} whose restriction to $\bar{K}\hat{K}^{\operatorname{nr}}$ is induced by an element of \mathcal{G}_{K} . The natural map $\tilde{\mathcal{G}}_{K} \to \mathcal{G}_{K}$ is surjective, and bijective when R is one-dimensional since then $\tilde{K} = \bar{K}\hat{K}^{\operatorname{nr}}$.

Our description of $T_p(G)$ is an exact sequence of $\tilde{\mathcal{G}}_K$ -modules

(1)
$$0 \to T_p(G) \to \hat{Q}_{\tilde{R}} \xrightarrow{F_1 - 1} \hat{P}_{\tilde{R}} \to 0.$$

Date: December 21, 2010.

If G is connected, a similar description of $T_p(G)$ in terms of the nilpotent display of G is part of Zink's theory of displays. In this case k need not be perfect; see [Me, Proposition 4.4]. The proof is recalled in Proposition 1.1 below. The exact sequence (1) is proved in Proposition 3.1 using the formula for the p-divisible group associated to a Dieudonné display given in [La3].

Assume now in addition that R is a discrete valuation ring. Then the exact sequence (1) can be related with the descriptions of $T_p(G)$ in terms of p-adic Hodge theory and in terms of Breuil-Kisin modules as follows.

First, let M_{cris} be the value of the covariant Dieudonné crystal of G over $A_{\text{cris}}(R)$. It carries a filtration and a Frobenius, and by [Fa] there is a period homomorphism

$$T_p(G) \to \operatorname{Fil} M^{F=p}_{\operatorname{cris}}$$

which is bijective if p is odd, and injective with cokernel annihilated by p if p = 2. The v-stabilised Zink ring $\mathbb{W}^+(R) = \mathbb{W}(R)[v(1)]$ induces an extension $\hat{\mathbb{W}}^+(\tilde{R})$ of the ring $\hat{\mathbb{W}}(\tilde{R})$ defined above; the extension is trivial if p is odd. Since the v-stabilised Zink ring carries divided powers, the universal property of A_{cris} gives a homomorphism

$$\varkappa_{\operatorname{cris}}: A_{\operatorname{cris}}(R) \to \widehat{\mathbb{W}}^+(\widetilde{R}).$$

Using the relation between Dieudonné displays and Dieudonné crystals, $\varkappa_{\rm cris}$ induces a map

$$M_{\operatorname{cris}} \xrightarrow{\tau} \widehat{\mathbb{W}}^+(\widetilde{R}) \otimes_{\widehat{\mathbb{W}}(\widetilde{R})} \hat{P}_{\widetilde{R}}$$

compatible with Frobenius and filtration. We will show that τ induces the identity on $T_p(G)$, viewed as a submodule of Fil $M_{\rm cris}$ by the period homomorphism and as a submodule of $\hat{Q}_{\tilde{R}} \subset \hat{P}_{\tilde{R}}$ by (1); see Proposition 5.1.

Let us turn to Breuil-Kisin modules. Choose a generator π of the maximal ideal of R. Let $\mathfrak{S} = W(k)[[t]]$ and let $\sigma : \mathfrak{S} \to \mathfrak{S}$ extend the Frobenius automorphism of W(k) by $t \mapsto t^p$; the case of more general Frobenius lifts is discussed below. We consider pairs $M = (M, \phi)$ where M is a finite \mathfrak{S} -module and where $\phi : M \to M^{(\sigma)}$ is an \mathfrak{S} -linear map with cokernel annihilated by the kernel of the map $\mathfrak{S} \to R$ given by $t \mapsto \pi$. Following [VZ], M is called a Breuil window if M is free over \mathfrak{S} , and Mis called a Breuil module if M is a p-torsion \mathfrak{S} -module of projective dimension at most one.

It is known that p-divisible groups over R are equivalent to Breuil windows. This was conjectured by Breuil [Br] and proved by Kisin [Ki1, Ki2] if p is odd, and for connected groups if p = 2. The general case is proved in [La3] by showing that Breuil windows are equivalent to Dieudonné displays; here R can be regular of arbitrary dimension. (For odd p the last equivalence is already proved in [VZ] for some regular rings, including all discrete valuation rings.) As a corollary, commutative finite flat p-group schemes over R are equivalent to Breuil modules. Another proof for p = 2, related more closely to Kisin's methods, was obtained independently by W. Kim [K].

Let K_{∞} be the extension of K generated by a chosen system of successive p-th roots of π . For a p-divisible group G over R let T(G) be its Tate module, and for a commutative finite flat p-group scheme G over R let $T(G) = G(\bar{K})$. Kisin's and Kim's results include a description of T(G) as a $\mathcal{G}_{K_{\infty}}$ -representation in terms of the Breuil window or Breuil module (M, ϕ) associated to G. In the covariant theory it takes the following form:

(2)
$$T(G) = \{ x \in M^{\operatorname{nr}} \mid \phi(x) = 1 \otimes x \text{ in } \mathfrak{S}^{\operatorname{nr}} \otimes_{\sigma, \mathfrak{S}^{\operatorname{nr}}} M^{\operatorname{nr}} \}$$

Here $M^{nr} = \mathfrak{S}^{nr} \otimes_{\mathfrak{S}} M$, and the ring \mathfrak{S}^{nr} is recalled in section 6 below.

 $\mathbf{2}$

We will show how (2) can be deduced from (1). It suffices to consider the case where G is a p-divisible group. The equivalence between Breuil windows and Dieudonné displays over R is induced by a homomorphism $\varkappa : \mathfrak{S} \to W(R)$. It can be extended to

$$\varkappa^{\mathrm{nr}}:\mathfrak{S}^{\mathrm{nr}}\to\hat{\mathbb{W}}(\tilde{R})$$

which allows to define a map of $\mathcal{G}_{K_{\infty}}$ -modules

$$\{x \in M^{\operatorname{nr}} \mid \phi(x) = 1 \otimes x\} \xrightarrow{\tau} \{x \in Q_{\tilde{R}} \mid F_1(x) = x\}$$

Since the target is isomorphic to T(G) by (1), the proof of (2) is reduced to showing that τ is bijective; see Proposition 7.2. The verification is easy if G is étale; the general case follows quite formally using a duality argument.

Finally we recall that the equivalence between Breuil windows and p-divisible groups requires only a Frobenius lift $\sigma : \mathfrak{S} \to \mathfrak{S}$ which stabilises the ideal $t\mathfrak{S}$ such that p^2 divides the linear term of the power series $\sigma(t)$. Let K_{∞} be the extension of K generated by a chosen system of successive $\sigma(t)$ -roots of π . If the linear term of $\sigma(t)$ is zero, which guarantees that \varkappa^{nr} is well-defined, we obtain an isomorphism (2) of $\mathcal{G}_{K_{\infty}}$ -modules as before.

The author thanks Th. Zink for helpful discussions.

1. The case of connected p-divisible groups

Let R be a complete noetherian local domain with residue field k of characteristic p, with fraction field K of characteristic zero, and with maximal ideal \mathfrak{m} . In this section we recall how the Tate module of a connected p-divisible group over R is expressed in terms of its nilpotent display.

Fix an algebraic closure \bar{K} of K and let $\mathcal{G}_K = \operatorname{Gal}(\bar{K}/K)$. Let $\bar{R} \subset \bar{K}$ be the integral closure of R and let $\bar{\mathfrak{m}} \subset \bar{R}$ be the maximal ideal. For a finite extension E of K contained in \bar{K} let $R_E = \bar{R} \cap E$, which is a complete noetherian local ring, and let $\mathfrak{m}_E \subset R_E$ be the maximal ideal. We write

$$\hat{W}(\mathfrak{m}_E) = \varprojlim_n \hat{W}(\mathfrak{m}_E/\mathfrak{m}_E^n); \qquad \hat{W}(\bar{\mathfrak{m}}) = \varinjlim_E \hat{W}(\mathfrak{m}_E).$$

Let $\overline{W}(\overline{\mathfrak{m}})$ be the *p*-adic completion of $\widehat{W}(\overline{\mathfrak{m}})$ and let $\widehat{\mathfrak{m}}$ be the *p*-adic completion of $\overline{\mathfrak{m}}$. For a display $\mathscr{P} = (P, Q, F, F_1)$ over R we set

$$\bar{P}_{\bar{\mathfrak{m}}} = \bar{W}(\bar{\mathfrak{m}}) \otimes_{W(R)} P; \qquad \bar{Q}_{\bar{\mathfrak{m}}} = \operatorname{Ker}(\bar{P}_{\bar{\mathfrak{m}}} \to \hat{\mathfrak{m}} \otimes_R P/Q).$$

The functor BT of [Zi1] induces an equivalence of categories between nilpotent displays over R and connected p-divisible groups over R; here \mathscr{P} is called nilpotent if $\mathscr{P} \otimes_R k$ is V-nilpotent in the usual sense. The following is stated in [Me, Proposition 4.4].

Proposition 1.1 (Zink). Let \mathscr{P} be a nilpotent display over R and let G be the associated connected p-divisible group over R. There is a natural exact sequence of \mathcal{G}_K -modules

$$0 \to T_p(G) \to \bar{Q}_{\bar{\mathfrak{m}}} \xrightarrow{F_1 - 1} \bar{P}_{\bar{\mathfrak{m}}} \to 0.$$

Here $T_p(G) = \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, G(\bar{K}))$ is the Tate module of G. The proof of Proposition 1.1 uses the following well-known facts.

Lemma 1.2. Let A be an abelian group.

- (i) If A has no p-torsion then $\operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, A) = \lim_{n \to \infty} A/p^n A$.
- (ii) If pA = A then $\operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, A)$ is zero.

Proof. The group $\operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, A)$ is isomorphic to $\varprojlim \operatorname{Hom}(\mathbb{Z}/p^n\mathbb{Z}, A)$ with transition maps induced by $p: \mathbb{Z}/p^n\mathbb{Z} \to \mathbb{Z}/p^{n+1}\mathbb{Z}$. The corresponding system $\operatorname{Ext}^1(\mathbb{Z}/p^n\mathbb{Z}, A)$ is isomorphic to A/p^nA with transition maps induced by id_A . Thus there is an exact sequence

$$0 \to \varprojlim^{1} A[p^{n}] \to \operatorname{Ext}^{1}(\mathbb{Q}_{p}/\mathbb{Z}_{p}, A) \to \varprojlim^{n} A/p^{n}A \to 0.$$
assertions of the lemma follow easily.

For a p-divisible group G over R and for E as above we write

$$\hat{G}(R_E) = \varprojlim_n G(R_E/\mathfrak{m}_E^n); \qquad \hat{G}(\bar{R}) = \varinjlim_E \hat{G}(R_E).$$

Lemma 1.3. Multiplication by p is surjective on $\hat{G}(\bar{R})$.

Proof. Let $x \in \hat{G}(R_E)$ be given. The inverse image of x under p is a compatible system of G[p]-torsors Y_n over R_E/\mathfrak{m}_E^n . They define a G[p]-torsor Y over R_E . For some finite extension F of E the set $Y(F) = Y(R_F)$ is non-empty, and x becomes divisible by p in $\hat{G}(R_F)$.

Proof of Proposition 1.1. Let E be a finite Galois extension of K in \overline{K} . Let

$$\hat{P}_{E,n} = \hat{W}(\mathfrak{m}_E/\mathfrak{m}_E^n) \otimes_{W(R)} P; \quad \hat{Q}_{E,n} = \operatorname{Ker}(\hat{P}_{E,n} \to \mathfrak{m}_E/\mathfrak{m}_E^n \otimes_R P/Q).$$

Recall that P is a finite free W(R)-module, and P/Q is a finite free R-module. The definition of the functor BT in [Zi1, Thm. 81] gives an exact sequence of \mathcal{G}_K -modules

$$0 \to \hat{Q}_{E,n} \xrightarrow{F_1 - 1} \hat{P}_{E,n} \to G(R_E/\mathfrak{m}_E^n) \to 0.$$

Since the modules $Q_{E,n}$ form a surjective system with respect to n, applying $\lim_{E \to E} \lim_{K \to R} n$ gives an exact sequence of \mathcal{G}_K -modules

(1.1)
$$0 \to \hat{Q}_{\bar{\mathfrak{m}}} \xrightarrow{F_1 - 1} \hat{P}_{\bar{\mathfrak{m}}} \to \hat{G}(\bar{R}) \to 0$$

with $\hat{P}_{\bar{\mathfrak{m}}} = \hat{W}(\bar{\mathfrak{m}}) \otimes_{W(R)} P$ and $\hat{Q}_{\bar{\mathfrak{m}}} = \operatorname{Ker}(\hat{P}_{\bar{\mathfrak{m}}} \to \bar{\mathfrak{m}} \otimes_R P/Q)$. The *p*-adic completions of $\hat{P}_{\bar{\mathfrak{m}}}$ and $\hat{Q}_{\bar{\mathfrak{m}}}$ are $\bar{P}_{\bar{\mathfrak{m}}}$ and $\bar{Q}_{\bar{\mathfrak{m}}}$; here we use that $\bar{\mathfrak{m}} \otimes_R P/Q$ has no *p*-torsion. Moreover $\hat{P}_{\bar{\mathfrak{m}}}$ has no *p*-torsion since $\hat{W}(\bar{\mathfrak{m}})$ is contained in the Q-algebra $W(\bar{K})$. Using Lemmas 1.3 and 1.2, the Ext-sequence of $\mathbb{Q}_p/\mathbb{Z}_p$ with (1.1) reduces to the short exact sequence

$$0 \to \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\bar{R})) \to \bar{Q}_{\bar{\mathfrak{m}}} \xrightarrow{F_1 - 1} \bar{P}_{\bar{\mathfrak{m}}} \to 0.$$

The proposition follows since the p^n -torsion of $\hat{G}(\bar{R})$ and $G(\bar{K})$ coincide.

2. Some frame formalism

Before we proceed we introduce a formal definition. Let $\mathcal{F} = (S, R, I, \sigma, \sigma_1)$ be a frame in the sense of [La2] such that S is a \mathbb{Z}_p -algebra and σ is \mathbb{Z}_p -linear. For an \mathcal{F} -window $\mathscr{P} = (P, Q, F, F_1)$ we consider the module of invariants

$$T(\mathscr{P}) = \{ x \in Q \mid F_1(x) = x \};$$

this is a \mathbb{Z}_p -module. Let us list some of its formal properties.

Functoriality in \mathcal{F} : Let $\alpha : \mathcal{F} \to \mathcal{F}' = (S', I', R', \sigma', \sigma'_1)$ be a *u*-homomorphism of frames, thus $u \in S'$ is a unit, and we have $\sigma'_1 \alpha = u \cdot \alpha \sigma_1$ on *I*. Assume that a unit $c \in S'$ with $c\sigma'(c)^{-1} = u$ is given. For an \mathcal{F} -window \mathscr{P} as above, the *S*-linear map $P \to S' \otimes_S P$, $x \mapsto c \otimes x$ induces a \mathbb{Z}_p -linear map

$$\tau(\mathscr{P}) = \tau_c(\mathscr{P}) : T(\mathscr{P}) \to T(\alpha_*\mathscr{P}).$$

Duality: Recall that a bilinear form of \mathcal{F} -windows $\gamma : \mathscr{P} \times \mathscr{P}' \to \mathscr{P}''$ is an Sbilinear map $\gamma : P \times P' \to P''$ with $Q \times Q' \to Q''$ such that for $x \in Q$ and $x' \in Q'$ we have $\gamma(F_1x, F_1'x') = F_1''(\gamma(x, x'))$. It induces a bilinear map of \mathbb{Z}_p -modules

Both

 $T(\mathscr{P}) \times T(\mathscr{P}') \to T(\mathscr{P}'')$. Let us denote the \mathcal{F} -window (S, I, σ, σ_1) by \mathcal{F} again. For each \mathcal{F} -window \mathscr{P} there is a well-defined dual \mathcal{F} -window \mathscr{P}^t together with a perfect bilinear form $\mathscr{P} \times \mathscr{P}^t \to \mathcal{F}$. It gives a bilinear map $T(\mathscr{P}) \times T(\mathscr{P}^t) \to T(\mathcal{F})$. In our applications, $T(\mathcal{F})$ will be free of rank one, and the bilinear map will turn out to be perfect.

Functoriality of duality: For a *u*-homomorphism of frames $\alpha : \mathcal{F} \to \mathcal{F}'$ with *c* as above and for a bilinear form of \mathcal{F} -windows $\gamma : \mathscr{P} \times \mathscr{P}' \to \mathscr{P}''$, the base change of γ multiplied by c^{-1} is a bilinear form of \mathcal{F}' -windows $\alpha_* \mathscr{P} \times \alpha_* \mathscr{P}' \to \alpha_* \mathscr{P}''$, which we denote by $\alpha_*(\gamma)$; see [La2, Lemma 2.14]. By passing to the modules of invariants we obtain a commutative diagram

This will be applied to the bilinear form $\mathscr{P} \times \mathscr{P}^t \to \mathcal{F}$.

3. The case of perfect residue fields

Let R, K, k, \mathfrak{m} be as in section 1. Assume that the residue field k is perfect. As in [La3, Sections 2.3 and 2.8] we consider the frame

$$\mathscr{D}_R = \varprojlim_n \mathscr{D}_{R/\mathfrak{m}^n} = (\mathbb{W}(R), \mathbb{I}_R, R, f, \mathbb{f}_1).$$

Windows over \mathscr{D}_R , called Dieudonné displays over R, are equivalent to p-divisible groups G over R by [Zi2] if p is odd and by [La3, Proposition 5.7] in general. The Tate module $T_p(G)$ can be expressed in terms of the associated Dieudonné display by a variant of Proposition 1.1 as follows.

Let R^{nr} be the strict henselisation of R. This is an excellent normal domain by [Gre] or [Se], so its completion \hat{R}^{nr} is a normal domain again. Let $K^{nr} \subset \hat{K}^{nr}$ be the fraction fields of $R^{nr} \subset \hat{R}^{nr}$, let \tilde{K} be an algebraic closure of \hat{K}^{nr} , and let $\tilde{R} \subset \tilde{K}$ be the integral closure of \hat{R}^{nr} . We define a frame

$$\mathscr{D}_{\tilde{R}} = \varinjlim_{E} \varprojlim_{n} \mathscr{D}_{R_{E}}/\mathfrak{m}_{E}^{n} = (\mathbb{W}(\tilde{R}), \mathbb{I}_{\tilde{R}}, \tilde{R}, f, \mathbb{f}_{1})$$

where E runs through the finite extensions of \hat{K}^{nr} in \tilde{K} and where $R_E \subset E$ is the integral closure of \hat{R}^{nr} . Since \tilde{R} has no *p*-torsion, the component-wise *p*-adic completion of $\mathscr{D}_{\tilde{R}}$ is a frame again, which we denote by

$$\hat{\mathscr{D}}_{\tilde{R}} = (\hat{\mathbb{W}}(\tilde{R}), \hat{\mathbb{I}}_{\tilde{R}}, \tilde{R}, f, \mathbb{f}_1).$$

Let $\bar{K} \subset \tilde{K}$ be the algebraic closure of K and let $\mathcal{G}_K = \operatorname{Gal}(\bar{K}/K)$. The tensor product $\bar{K} \otimes_{K^{\operatorname{nr}}} \hat{K}^{\operatorname{nr}}$ is a subfield of \tilde{K} , with equality if R is one-dimensional; here we use that in any case the etale coverings of the complements of the maximal ideals in Spec R^{nr} and Spec $\hat{R}^{\operatorname{nr}}$ coincide by [El, Th. 5] or by [Ar, II 2.1]. Let $\tilde{\mathcal{G}}_K$ be the group of automorphisms of \tilde{K} whose restriction to $\bar{K}\hat{K}^{\operatorname{nr}}$ is induced by an element of \mathcal{G}_K . This group acts naturally on $\mathscr{D}_{\tilde{R}}$ and on $\hat{\mathscr{D}}_{\tilde{R}}$. The projection $\tilde{\mathcal{G}}_K \to \mathcal{G}_K$ is surjective, and bijective if R is one-dimensional.

Proposition 3.1. Let \mathscr{P} be a Dieudonné display over R and let G be the associated p-divisible group over R. Let $\hat{\mathscr{P}}_{\tilde{R}} = (\hat{P}_{\tilde{R}}, \hat{Q}_{\tilde{R}}, F, F_1)$ be the base change of \mathscr{P} to $\hat{\mathscr{D}}_{\tilde{R}}$. There is a natural exact sequence of $\tilde{\mathcal{G}}_K$ -modules

$$0 \to T_p(G) \to \hat{Q}_{\tilde{R}} \xrightarrow{F_1 - 1} \hat{P}_{\tilde{R}} \to 0$$

In particular we have an isomorphism of \mathcal{G}_K -modules

$$\operatorname{er}: T_p(G) \xrightarrow{\sim} T(\hat{\mathscr{P}}_{\tilde{R}})$$

which we call the period isomorphism is display theory.

Proof of Proposition 3.1. For a p-divisible group G over R and for finite extensions E of \hat{K}^{nr} in \tilde{K} we set

$$\hat{G}(\hat{R}_E) = \varprojlim_n G(R_E/\mathfrak{m}_E^n); \qquad \hat{G}(\tilde{R}) = \varinjlim_E \hat{G}(\hat{R}_E).$$

Multiplication by p is surjective on $\hat{G}(\tilde{R})$ by Lemma 1.3 applied over \hat{R}^{nr} . Suppose E is a normal extension of \hat{K}^{nr} and thus stable under $\tilde{\mathcal{G}}_{K}$. The rings $R_{E,n} = R_E/\mathfrak{m}_E^n$ are local Artin rings with residue field \bar{k} . Thus $R_{E,n}$ lies in the category $\mathcal{J}_{R/\mathfrak{m}^n}$ used in [La3, Section 5]. Let $\mathscr{P}_{E,n} = (P_{E,n}, Q_{E,n}, F, F_1)$ be the base change of \mathscr{P} to $R_{E,n}$. Since every ind-étale covering of Spec $R_{E,n}$ has a section, the definition of the functor BT in [La3, Proposition 5.4] as an ind-étale cohomology sheaf shows that $G(R_{E,n}) = \operatorname{BT}(\mathscr{P}_{E,n})$ is quasi-isomorphic to the complex of $\tilde{\mathcal{G}}_K$ -modules in degrees -1, 0, 1

$$C_{E,n} = [Q_{E,n} \xrightarrow{F_1 - 1} P_{E,n}] \otimes [\mathbb{Z} \to \mathbb{Z}[1/p]]$$

Let

(1)

$$C_E = \varprojlim_n C_{E,n}; \qquad C = \varinjlim_{E'} C_E$$

where E runs through the finite extensions of K^{nr} in \overline{K} , or equivalently the finite normal extensions. Since $G(R_{E,n})$ and the components of $C_{E,n}$ form surjective systems with respect to n, the complex C is quasi-isomorphic to $\hat{G}(\tilde{R})$. We will verify the following chain of isomorphisms (denoted \cong) and quasi-isomorphisms (denoted \simeq) of complexes of $\tilde{\mathcal{G}}_{K}$ -modules, which proves the proposition. Here Ext^{1} is taken component-wise in the second argument.

$$T_p(G) \stackrel{(1)}{\cong} \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\tilde{R})) \stackrel{(2)}{\cong} R \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\tilde{R}))$$

$$\stackrel{(3)}{\cong} R \operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, C) \stackrel{(4)}{\cong} \operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, C[-1]) \stackrel{(5)}{\cong} [\hat{Q}_{\tilde{R}} \xrightarrow{F_1 - 1} \hat{P}_{\tilde{R}}].$$

Since the torsion subgroups of $G(\bar{K})$ and of $\hat{G}(\tilde{R})$ coincide, we have (1). For (2) we need that $\operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, \hat{G}(\tilde{R}))$ vanishes, which is true since p is surjective on $\hat{G}(\tilde{R})$; see Lemma 1.2. The quasi-isomorphism between $\hat{G}(\tilde{R})$ and C gives (3). Let $(P_{\tilde{R}}, Q_{\tilde{R}}, F, F_1)$ be the base change of \mathscr{P} to $\mathscr{D}_{\tilde{R}}$ and let $P_{\tilde{k}} = W(\bar{k}) \otimes_{\mathbb{W}(R)} P$. The complex C can be identified with the cone of the map of complexes

$$[Q_{\tilde{R}} \xrightarrow{F_1 - 1} P_{\tilde{R}}] \to [P_{\bar{k}}[1/p] \xrightarrow{F_1 - 1} P_{\bar{k}}[1/p]].$$

Since \tilde{R} is a domain of characteristic zero, the rings $\mathbb{W}(\tilde{R}) \subset W(\tilde{R})$ have no *p*-torsion, and thus the components of *C* have no *p*-torsion either. In particular, $\operatorname{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, C)$ vanishes, which proves (4). The *p*-adic completions of $P_{\tilde{R}}$ and $Q_{\tilde{R}}$ are $\hat{P}_{\tilde{R}}$ and $\hat{Q}_{\tilde{R}}$. Thus Lemma 1.2 gives (5).

4. A variant for the prime 2

We keep the notation of section 3 and assume that p = 2. One may ask what the preceding constructions give if \mathbb{W} and \mathscr{D} are replaced by their *v*-stabilised variants \mathbb{W}^+ and \mathscr{D}^+ . Recall that $\mathbb{W}^+(R) = \mathbb{W}(R)[v(1)]$ as a subring of W(R), and we

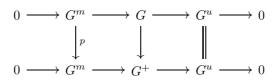
have a frame $\mathscr{D}_R^+ = (\mathbb{W}^+(R), \mathbb{I}_R^+, R, f, f_1)$ where f_1 is the inverse of v. The $\mathbb{W}(R)$ -module $\mathbb{W}^+(R)/\mathbb{W}(R)$ is a one-dimensional k-vector space generated by v(1); see [La3, Sections 1.4 and 2.5]. We put

$$\mathscr{D}_{\tilde{R}}^{+} = \varinjlim_{E} \varprojlim_{n} \mathscr{D}_{R_{E}/\mathfrak{m}_{E}^{n}}^{+} = (\mathbb{W}^{+}(\tilde{R}), \mathbb{I}_{\tilde{R}}^{+}, \tilde{R}, f, f_{1})$$

with E as in section 3, and denote the p-adic completion of $\mathscr{D}_{\tilde{P}}^+$ by

$$\hat{\mathscr{D}}_{\tilde{R}}^+ = (\hat{\mathbb{W}}^+(\tilde{R}), \hat{\mathbb{I}}_{\tilde{R}}^+, \tilde{R}, f, f_1).$$

For a p-divisible group G over R let G^m be the multiplicative part of G and define G^+ by the following homomorphism of exact sequences.



Proposition 4.1. Let \mathscr{P} be a Dieudonné display over R and let G be the associated p-divisible group over R. Let $\hat{\mathscr{P}}_{\bar{R}}^+ = (\hat{P}_{\bar{R}}^+, \hat{Q}_{\bar{R}}^+, F, F_1^+)$ be the base change of \mathscr{P} to $\hat{\mathscr{D}}_{\bar{R}}^+$. There is a natural exact sequence of $\tilde{\mathcal{G}}_K$ -modules

$$0 \to T_p(G^+) \to \hat{Q}^+_{\tilde{R}} \xrightarrow{F_1^+ - 1} \hat{P}^+_{\tilde{R}} \to 0.$$

In particular we have an isomorphism of \mathcal{G}_K -modules

$$\operatorname{per}^+: T_p(G^+) \xrightarrow{\sim} T(\hat{\mathscr{P}}^+_{\tilde{R}}).$$

Proof. Let $\bar{P}_{\bar{k}} = \bar{k} \otimes_{W(R)} P$. We will construct the following commutative diagram with exact rows, where \bar{F} is induced by F.

$$\begin{array}{cccc} 0 & \longrightarrow & \hat{Q}_{\tilde{R}} & \longrightarrow & \hat{Q}_{\tilde{R}}^{+} & \longrightarrow & \bar{P}_{\bar{k}} & \longrightarrow & 0 \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ 0 & \longrightarrow & \hat{P}_{\tilde{R}} & \longrightarrow & \hat{P}_{\tilde{R}}^{+} & \longrightarrow & \bar{P}_{\bar{k}} & \longrightarrow & 0 \end{array}$$

Here the Frobenius linear endomorphism \overline{F} is nilpotent if G is unipotent, and is given by an invertible matrix if G is of multiplicative type. Thus $\overline{F} - 1$ is surjective with kernel an \mathbb{F}_p -vector space of dimension equal to the height of G^m , and Proposition 4.1 follows from Proposition 3.1.

The natural homomorphism $\hat{\mathbb{W}}(\tilde{R}) \to \hat{\mathbb{W}}^+(\tilde{R})$ is injective and defines a u_0 homomorphism of frames $\iota : \hat{\mathscr{D}}_{\tilde{R}} \to \hat{\mathscr{D}}_{\tilde{R}}^+$ where the unit $u_0 \in \mathbb{W}^+(\mathbb{Z}_2)$ is defined by $v(u_0) = p - [p]$; see [La3, Section 2.5]. Since u_0 maps to 1 in $W(\mathbb{F}_2)$ there is a unique unit c_0 of $\mathbb{W}^+(\mathbb{Z}_2)$ which maps to 1 in $W(\mathbb{F}_2)$ such that $c_0f(c_0^{-1}) = u_0$, namely $c_0 = u_0f(u_0)f^2(u_0)\cdots$; see the proof of [La2, Proposition 8.7].

The cokernel of ι is given by

(4.1)
$$\hat{\mathbb{I}}_{\tilde{R}}^{+}/\hat{\mathbb{I}}_{\tilde{R}} = \hat{\mathbb{W}}^{+}(\tilde{R})/\hat{\mathbb{W}}(\tilde{R}) = \bar{k} \cdot v(1);$$

see [La3, Le. 1.10]. We extend the operator f_1 of $\hat{\mathscr{D}}_{\tilde{R}}$ to $\hat{\mathscr{D}}_{\tilde{R}}^+$ by $f_1 = u_0^{-1} f_1$. Then f_1 induces an *f*-linear endomorphism \bar{f}_1 of $\bar{k} \cdot v(1)$. We claim that $\bar{f}_1(v(1)) = v(1)$. It suffices to prove this formula in $\mathbb{W}^+(\mathbb{Z}_2)/\mathbb{W}(\mathbb{Z}_2) \cong \mathbb{F}_2$, and thus it suffices to show that $f_1(v(1))$ does not lie in $\mathbb{W}(\mathbb{Z}_2)$. But $\mathbb{W}(\mathbb{Z}_2)$ is stable under the operator $x \mapsto v(x) = v(u_0 x)$, and $v(f_1(v(1)) = v(1)$ does not lie in $\mathbb{W}(\mathbb{Z}_2)$. This proves the claim.

Let us extend the operator F_1 of $\hat{\mathscr{P}}_{\bar{R}}$ to $\hat{\mathscr{P}}_{\bar{R}}^+$ by $F_1 = u_0^{-1}F_1^+$. Since we have $c_0(F_1-1) = (F_1^+-1)c_0$ as a homomorphism $\hat{Q}_{\bar{R}}^+ \to \hat{P}_{\bar{R}}^+$, it suffices to construct the above diagram with F_1 in place of F_1^+ . Now (4.1) implies that $\hat{Q}_{\bar{R}}^+/\hat{Q}_{\bar{R}} = \hat{P}_{\bar{R}}^+/\hat{P}_{\bar{R}} = \bar{P}_{\bar{k}} \cdot v(1)$, which gives the exact rows. Clearly the left hand square commutes. The relation $F_1(ax) = \mathfrak{f}_1(a)F(x)$ for $x \in \hat{P}_{\bar{R}}^+$ and $a \in \hat{\mathbb{I}}_{\bar{R}}^+$ applied with a = v(1) shows that the right hand square commutes.

Remark 4.2. The period isomorphisms per and per⁺ satisfy per⁺ = τ_{c_0} per, where $\tau_{c_0}: T(\hat{\mathscr{P}}_{\tilde{R}}) \to T(\hat{\mathscr{P}}_{\tilde{R}}^+)$ is the homomorphism defined in section 2.

5. The relation with $A_{\rm cris}$

Let R be a complete discrete valuation ring with perfect residue field k of characteristic p and fraction field K of characteristic zero. In this case our ring $\hat{\tilde{R}}$ is equal to \hat{R} , the p-adic completion of the integral closure of R in \bar{K} . Let $A_{\rm cris} = A_{\rm cris}(R)$ and consider the frame

$$\mathcal{A}_{\mathrm{cris}} = (A_{\mathrm{cris}}, \mathrm{Fil}\,A_{\mathrm{cris}}, \bar{R}, \sigma, \sigma_1)$$

with $\sigma_1 = p^{-1}\sigma$.¹ For a *p*-divisible group *G* over *R* let $\mathbb{D}(G)$ be its covariant Dieudonné crystal. The free A_{cris} -module $M = \mathbb{D}(G_{\hat{R}})_{A_{\text{cris}}}$ carries a filtration Fil *M* and a σ -linear endomorphism *F*. The operator $F_1 = p^{-1}F$ is well-defined on Fil *M*, and we get an A_{cris} -window $\mathcal{M} = (M, \text{Fil } M, F, F_1)$; see [Ki1, A.2] or [La3, Proposition 3.15]. Faltings [Fa] constructs a period homomorphism

$$\operatorname{per}_{\operatorname{cris}}: T_p(G) \to \operatorname{Fil} M^{F=p} = T(\mathcal{M})$$

which is bijective if p is odd; for p = 2 the homomorphism is injective with cokernel annihilated by p. More precisely, for p = 2 the cokernel is zero if G is unipotent by [Ki2, Proposition 1.1.10], while the cokernel is non-zero if G is non-zero and of multiplicative type; thus the period homomorphism extends to an isomorphism $T_p(G^+) \cong T(\mathcal{M})$ with G^+ as in section 4.

Let us relate this with the period isomorphisms of sections 3 and 4. For the sake of uniformity, in the following we write $\mathbb{W}^+ = \mathbb{W}$ etc. if p is odd. Then $\hat{\mathbb{W}}^+(\tilde{R}) \to \hat{R}$ is a divided power extension of p-adic rings for all p. By the universal property of A_{cris} there is a unique ring homomorphism

$$\varkappa_{\rm cris}: A_{\rm cris} \to \widetilde{\mathbb{W}}^+(R)$$

which commutes with the projections to \overline{R} . The proof of this universal property shows that $\varkappa_{\text{cris}} \circ \sigma = f \circ \varkappa_{\text{cris}}$. Since $\hat{\mathbb{W}}(\tilde{R})$ has no *p*-torsion, it follows that \varkappa_{cris} is a \mathcal{G}_K -equivariant strict frame homomorphism

$$\mathcal{L}_{\mathrm{cris}}: \mathcal{A}_{\mathrm{cris}} \to \hat{\mathscr{D}}_{\tilde{R}}^+.$$

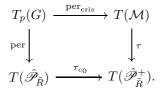
Let \mathscr{P} be the Dieudonné display associated to G so that $G = \operatorname{BT}(\mathscr{P})$. The Dieudonné crystal $\mathbb{D}(G)$ gives rise to a \mathscr{D}_R^+ -window $\Phi_R^+(G)$ by [La3, Section 3]. Its base change to $\widehat{\mathscr{D}}_{\bar{R}}^+$ is isomorphic to $\varkappa_{\operatorname{cris}*}(\mathcal{M})$ by the functoriality of $\mathbb{D}(G)$. Let $\iota : \mathscr{D}_R \to \mathscr{D}_R^+$ be the inclusion. We have an isomorphism $\iota_*(\mathscr{P}) \cong \Phi_R^+(G)$ by [La3, Proposition 5.7] if p is odd and by [La3, Corollary 6.12] if p = 2. Thus we get an isomorphism $\widehat{\mathscr{P}}_{\bar{R}}^+ \cong \varkappa_{\operatorname{cris}*}(\mathcal{M})$, which induces a homomorphism of \mathcal{G}_K -modules

$$\tau: T(\mathcal{M}) \to T(\mathscr{P}^+_{\tilde{R}})$$

as explained in section 2.

¹Here we need that $\sigma_1(\text{Fil}\,A_{\text{cris}})$ generates A_{cris} . But $\xi = p - [\underline{p}]$ lies in Fil A_{cris} , and $\sigma_1(\xi) = 1 - [\underline{p}]^p/p$ is a unit because [p] lies in the divided power ideal Fil $A_{\text{cris}} + pA_{\text{cris}}$.

Proposition 5.1. The following diagram of \mathcal{G}_K -modules commutes up to multiplication by a p-adic unit which is independent of G.



Remark 5.2. The *p*-adic unit in the statement of the proposition remains indetermined because only the existence of an isomorphism $\iota_*(\mathscr{P}) \cong \Phi_R^+(G)$ is proved in [La3], but a priori this isomorphism and the related homomorphism τ are defined only up to multiplication by a *p*-adic unit; cf. [La3, Lemma 4.6]. By a suitable choice one can arrange that the diagram commutes.

Remark 5.3. Since per is bijective by Proposition 3.1, the Propositions 3.1 and 4.1 together with Remark 4.2 imply that τ is an isomorphism. In fact, for this conclusion one needs only that the \mathbb{Q}_p -dimension of $T(\mathcal{M}) \otimes \mathbb{Q}$ is \leq the height of G and that per_{cris} is not bijective if p = 2 and G is non-zero of multiplicative type. Thus we recover the isomorphism $T_p(G^+) \cong T(\mathcal{M})$.

Proof of Proposition 5.1. We first consider the case $G = \mathbb{Q}_p/\mathbb{Z}_p$. Then per and τ_{c_0} are isomorphisms by Propositions 3.1 and 4.1. We have $T_p(G) = \mathbb{Z}_p$, and $M = \operatorname{Fil} M = A_{\operatorname{cris}}$ with Frobenius $p\sigma$, which implies that $\hat{Q}_{\tilde{R}}^+ = \hat{P}_{\tilde{R}}^+ = \hat{\mathbb{W}}_{\tilde{R}}^+$ with $F_1 = f$. Thus τ can be identified with the homomorphism $A_{\operatorname{cris}}^{\sigma=1} \to \hat{\mathbb{W}}^+(\tilde{R})^{f=1}$. Since the target is a \mathbb{Z}_p -algebra isomorphic to \mathbb{Z}_p as a module, τ is bijective. Thus $\tau_{c_0} \circ \operatorname{per} = \rho \cdot \tau \circ \operatorname{per}_{\operatorname{cris}}$ for a well defined $\rho \in \mathbb{Z}_p^*$.

Let now G be arbitrary. Since the map $\tau_{c_0} \circ \text{per} = \text{per}^+$ is injective with cokernel annihilated by p, the composition $\gamma = p\rho \cdot (\text{per}^+)^{-1} \circ \tau \circ \text{per}_{\text{cris}}$ is a well-defined functorial endomorphism of T_pG . We have to show that $\gamma = p$. By [Ta, 4.2], γ comes from an endomorphism γ_G of G; moreover γ_G is functorial in G and compatible with finite extensions of the base ring R inside \bar{K} . The endomorphisms γ_G induce a functorial endomorphism γ_H of each commutative finite flat p-group scheme H over a finite extension R' of R inside \bar{K} because H can be embedded into a p-divisible group by Raynaud [BBM, 3.1.1]; cf. [Ki1, 2.3.5] or [La3, Proposition 4.1]. Assume that H is annihilated by p^r and let $H_0 = \mathbb{Z}/p^r\mathbb{Z}$. There is a finite extension R'' of R' inside \bar{K} such that $H(\bar{K}) = H(R'') = \text{Hom}_{R''}(H_0, H)$. Since $\gamma_{H_0} = p$ it follows that $\gamma_H = p$, and thus $\gamma_G = p$ for all G.

6. The ring \mathfrak{S}^{nr}

Let us recall the ring $\mathfrak{S}^{\mathrm{nr}}$ of [Ki1], which is denoted A_S^+ in [Fo], and some of this properties. One starts with a two-dimensional complete regular local ring \mathfrak{S} of characteristic zero with perfect residue field k of characteristic p equipped with a Frobenius lift $\sigma : \mathfrak{S} \to \mathfrak{S}$. Let $\delta : \mathfrak{S} \to W(\mathfrak{S})$ be the unique ring homomorphism with $\delta\sigma = f\delta$ and $w_0\delta = \mathrm{id}$. Let t be a generator of the kernel of $\mathfrak{S} \to W(\mathfrak{S}) \to$ W(k). Then $\mathfrak{S} = W(k)[[t]]$ and $\sigma(t) \in t\mathfrak{S}$.

Let $\mathcal{O}_{\mathcal{E}}$ be the *p*-adic completion of $\mathfrak{S}[t^{-1}]$ and let $\mathbb{E} = k((t))$ be its residue field. Fix a maximal unramified extension $\mathcal{O}_{\mathcal{E}^{nr}}$ of $\mathcal{O}_{\mathcal{E}}$ and let $\mathcal{O}_{\widehat{\mathcal{E}}^{nr}}$ be its *p*-adic completion. Let \mathbb{E}^{sep} be the residue field of \mathcal{E}^{nr} , let $\overline{\mathbb{E}}$ be an algebraic closure of \mathbb{E}^{sep} , let $\mathcal{O}_{\mathbb{E}} = \mathfrak{S}/p\mathfrak{S} = k[[t]]$, and let $\mathcal{O}_{\mathbb{E}} \subset \overline{\mathbb{E}}$ be its integral closure. The Frobenius lift σ on \mathfrak{S} extends uniquely to $\mathcal{O}_{\widehat{\mathcal{E}}^{nr}}$ and induces an embedding

$$\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \xrightarrow{o} W(\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}) \to W(\bar{\mathbb{E}})$$

with δ as above. Let $\mathfrak{S}^{\mathrm{nr}} = \mathcal{O}_{\widehat{\mathcal{E}}^{\mathrm{nr}}} \cap W(\mathcal{O}_{\overline{\mathbb{E}}})$ and $\mathfrak{S}^{(\mathrm{nr})} = \mathcal{O}_{\mathcal{E}^{\mathrm{nr}}} \cap W(\mathcal{O}_{\overline{\mathbb{E}}})$ and $\mathfrak{S}_{n}^{\mathrm{nr}} = \mathcal{O}_{\mathcal{E}^{\mathrm{nr}}} \cap W_{n}(\mathcal{O}_{\overline{\mathbb{E}}})$. These rings are stabilised by σ .

Suppose a finite extension \mathbb{E}' of \mathbb{E} contained in \mathbb{E}^{sep} is given. Let $\mathcal{O}_{\mathcal{E}'}$ be the étale extension of $\mathcal{O}_{\mathcal{E}}$ contained in $\mathcal{O}_{\mathcal{E}^{nr}}$ with residue field \mathbb{E}' . We write $\mathfrak{S}' = \mathcal{O}_{\mathcal{E}'} \cap W(\mathcal{O}_{\mathbb{E}})$ and $\mathfrak{S}'_n = \mathcal{O}_{\mathcal{E}'}/p^n \mathcal{O}_{\mathcal{E}'} \cap W_n(\mathcal{O}_{\mathbb{E}})$; these are the invariants under $\mathcal{G}_{\mathbb{E}'} = \text{Gal}(\mathbb{E}^{\text{sep}}/\mathbb{E}')$ in \mathfrak{S}^{nr} and in \mathfrak{S}_n^{nr} . Let us recall the following well-known consequence of [Fo, B 1.8.4].

Lemma 6.1. We have $\mathfrak{S}^{nr}/p^n\mathfrak{S}^{nr} = \mathfrak{S}^{(nr)}/p^n\mathfrak{S}^{(nr)} = \mathfrak{S}^{nr}_n$, and \mathfrak{S}^{nr} is the p-adic completion of $\mathfrak{S}^{(nr)}$. The ring \mathfrak{S}' is p-adic with $\mathfrak{S}'/p^n\mathfrak{S}' = \mathfrak{S}'_n$.

Proof. It is easy to see that $\mathfrak{S}^{nr} = \varprojlim \mathfrak{S}_n^{nr}$ and that $\mathfrak{S}^{nr}/p^n \to \mathfrak{S}_n^{nr}$ is injective. The projection $\mathfrak{S}_{n+1}^{nr} \to \mathfrak{S}_n^{nr}$ is surjective by [Fo, B 1.8.4]. It follows that $\mathfrak{S}^{nr}/p^n = \mathfrak{S}_n^{nr}$, and \mathfrak{S}^{nr} is *p*-adic. The projection $\mathfrak{S}'_{n+1} \to \mathfrak{S}'_n$ is surjective too since $H^1(\mathcal{G}_{\mathbb{E}'}, \mathcal{O}_{\mathbb{E}^{sep}})$ is zero. Again it follows that $\mathfrak{S}'/p^n = \mathfrak{S}'_n$, and \mathfrak{S}' is *p*-adic. Since $\mathfrak{S}^{(nr)}$ is the union over \mathbb{E}' of \mathfrak{S}' , we get $\mathfrak{S}^{nr}/p^n = \mathfrak{S}^{(nr)}/p^n$, and thus \mathfrak{S}^{nr} is the *p*-adic completion of $\mathfrak{S}^{(nr)}$.

Since $\mathfrak{S}'/p\mathfrak{S}' = \mathcal{O}_{\mathbb{E}'}$ is a finite free $\mathcal{O}_{\mathbb{E}}$ -module and a complete discrete valuation ring, \mathfrak{S}' is a finite free \mathfrak{S} -module and a complete regular local ring of dimension two. Let k' be its residue field and let t' generate the kernel of $\mathfrak{S}' \to W(\mathfrak{S}') \to W(k')$. Then $\mathfrak{S}' = W(k')[[t']]$ and $\sigma(t') \in t'\mathfrak{S}'$.

Lemma 6.2. Let r be minimal with $\sigma(t) \in t^r \mathfrak{S}$ and let r' be minimal with $\sigma(t') \in t'^{r'} \mathfrak{S}'$. Then r = r'.

Proof. We have $t \in t'\mathfrak{S}'$. Let $t \equiv bt'^s \mod t'^{s+1}\mathfrak{S}'$ with non-zero $b \in W(k')$ and $s \geq 1$. If $\sigma(t) \equiv at^r \mod t^{r+1}\mathfrak{S}$ and $\sigma(t') \equiv a't'^{r'} \mod t'^{r'+1}\mathfrak{S}'$ with non-zero $a \in W(k)$ and non-zero $a' \in W(k')$, then

$$\sigma(t) \equiv at^r \equiv ab^r t'^{rs} \mod t'^{rs+1} \mathfrak{S}',$$

$$\sigma(t) \equiv \sigma(b)a'^s t'^{r's} \mod t'^{r's+1} \mathfrak{S}'.$$

It follows that r's = rs and hence r = r'.

7. BREUIL-KISIN MODULES

Let R be a complete discrete valuation ring with perfect residue field k of characteristic p and fraction field K of characteristic zero. Let $\mathfrak{S} = W(k)[[t]]$ and let $\sigma : \mathfrak{S} \to \mathfrak{S}$ be a Frobenius lift that stabilises the ideal $t\mathfrak{S}$. We choose a representation $R = \mathfrak{S}/E\mathfrak{S}$ where E has constant term p. Let $\pi \in R$ be the image of t, so π generates the maximal ideal of R.

For an \mathfrak{S} -module M let $M^{(\sigma)} = \mathfrak{S} \otimes_{\sigma,\mathfrak{S}} M$. We consider pairs (M, ϕ) where M is a finite \mathfrak{S} -module and where $\phi : M \to M^{(\sigma)}$ is an \mathfrak{S} -linear map with cokernel annihilated by E. Following the [VZ] terminology, (M, ϕ) is called a Breuil window (resp. a Breuil module) relative to $\mathfrak{S} \to R$ if the \mathfrak{S} -module M is free (resp. annihilated by a power of p and of projective dimension at most one). We have a frame in the sense of [La2]

$$\mathscr{B} = (\mathfrak{S}, E\mathfrak{S}, R, \sigma, \sigma_1)$$

with $\sigma_1(Ex) = \sigma(x)$ for $x \in \mathfrak{S}$. Windows $\mathscr{P} = (P, Q, F, F_1)$ over \mathscr{B} are equivalent to Breuil windows relative to $\mathfrak{S} \to R$ by the functor $\mathscr{P} \mapsto (Q, \phi)$ where $\phi : Q \to Q^{(\sigma)}$ is the composition of the inclusion $Q \to P$ with the inverse of the isomorphism $Q^{(\sigma)} \cong P$ defined by $a \otimes x \mapsto aF_1(x)$.

Let \varkappa be the ring homomorphism

$$\varkappa: \mathfrak{S} \xrightarrow{\delta} W(\mathfrak{S}) \to W(R).$$

It image lies in $\mathbb{W}(R)$ if and only if the endomorphism of $t\mathfrak{S}/t^2\mathfrak{S}$ induced by σ is divisible by p^2 . In this case, $\varkappa : \mathfrak{S} \to \mathbb{W}(R)$ is a u-homomorphism of frames $\mathscr{B} \to \mathscr{D}_R$ for a well-defined unit u of $\mathbb{W}(R)$, and \varkappa induces an equivalence between \mathscr{B} -windows and \mathscr{D}_R -windows, which are equivalent to p-divisible groups over R; see [La3, Section 7]. As a corollary, Breuil modules relative to $\mathfrak{S} \to R$ are equivalent to commutative finite flat p-group schemes over R. Since u maps to 1 under $\mathbb{W}(R) \to$ W(k), there is a unique unit $\mathfrak{c} \in \mathbb{W}(R)$ which maps to 1 in W(k) with $\mathfrak{c}\sigma(\mathfrak{c}^{-1}) = \mathfrak{u}$. It is given by $\mathfrak{c} = \mathfrak{u}\sigma(\mathfrak{u})\sigma^2(\mathfrak{u})\cdots$; see the proof of [La2, Proposition 8.7].

7.1. Modules of invariants. For a Breuil module or Breuil window (M, ϕ) relative to $\mathfrak{S} \to R$ we write $M^{\mathrm{nr}} = \mathfrak{S}^{\mathrm{nr}} \otimes_{\mathfrak{S}} M$ and $M_{\mathcal{E}}^{\mathrm{nr}} = \mathcal{O}_{\widehat{\mathcal{E}}^{\mathrm{nr}}} \otimes_{\mathfrak{S}} M$. Consider the \mathbb{Z}_{p} -modules:

$$T^{\mathrm{nr}}(M,\phi) = \{ x \in M^{\mathrm{nr}} \mid \phi(x) = 1 \otimes x \text{ in } \mathfrak{S}^{\mathrm{nr}} \otimes_{\sigma,\mathfrak{S}^{\mathrm{nr}}} M^{\mathrm{nr}} \}$$
$$T^{\mathrm{nr}}_{\mathcal{E}}(M,\phi) = \{ x \in M^{\mathrm{nr}}_{\mathcal{E}} \mid \phi(x) = 1 \otimes x \text{ in } \mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}} \otimes_{\sigma,\mathcal{O}_{\widehat{\mathcal{E}^{\mathrm{nr}}}}} M^{\mathrm{nr}}_{\mathcal{E}} \}$$

By [Fo, A 1.2], $T_{\mathcal{E}}^{nr}(M,\phi)$ is finitely generated, and the natural map

(7.1)
$$\mathcal{O}_{\widehat{\mathcal{E}}^{\operatorname{nr}}} \otimes_{\mathbb{Z}_p} T^{\operatorname{nr}}_{\mathcal{E}}(M,\phi) \to \mathcal{O}_{\widehat{\mathcal{E}}^{\operatorname{nr}}} \otimes_{\mathfrak{S}} M$$

is bijective. It is pointed out in [Ki1, Ki2] that the natural map

(7.2)
$$T^{\mathrm{nr}}(M,\phi) \to T_{\mathcal{E}}^{\mathrm{nr}}(M,\phi)$$

is bijective as well. If (M, ϕ) is a Breuil window, this follows from the proof of [Fo, 1.8.4]. If (M, ϕ) is a Breuil module, the map (7.2) is injective since the group $X = \mathcal{O}_{\widehat{\mathcal{E}^{nr}}}/\mathfrak{S}^{nr}$ has no *p*-torsion and thus $\operatorname{Tor}_{1}^{\mathfrak{S}}(X, M)$ is zero. One can find a Breuil window (M', ϕ') and a surjective map $(M', \phi') \to (M, \phi)$. Then $T^{nr}(M', \phi') \cong T^{pr}_{\mathcal{E}}(M', \phi') \to T^{nr}_{\mathcal{E}}(M, \phi)$ is surjective, thus (7.2) is surjective.

7.2. The choice of K_{∞} . Let $\hat{\mathfrak{m}}$ be the maximal ideal of \bar{R} . The power series $\sigma(t)$ defines a map $\sigma(t) : \hat{\mathfrak{m}} \to \hat{\mathfrak{m}}$. This map is surjective, and the inverse images of algebraic elements are algebraic by the Weierstrass preparation theorem. Choose a system of elements $(\pi^{(n)})_{n\geq 1}$ of \bar{K} with $\pi^{(0)} = \pi$ and $\sigma(t)(\pi^{(n+1)}) = \pi^{(n)}$, and let K_{∞} be the extension of K generated by all $\pi^{(n)}$. The system $(\pi^{(n)})$ corresponds to an element $\underline{\pi} \in \mathcal{R} = \varprojlim \bar{R}/p\bar{R}$, the limit taken with respect to Frobenius.

We embed $\mathcal{O}_{\mathbb{E}} = k[t]$ into \mathcal{R} by $t \mapsto \underline{\pi}$, and identify \mathbb{E}^{sep} and $\overline{\mathbb{E}}$ with subfields of Frac \mathcal{R} ; thus $W(\overline{\mathbb{E}}) \subset W(\text{Frac }\mathcal{R})$. Then $\mathfrak{S}^{\text{nr}} = \mathcal{O}_{\widehat{\mathcal{E}}^{\text{nr}}} \cap W(\mathcal{R})$, and the unique ring homomorphism $\theta : W(\mathcal{R}) \to \overline{\hat{R}}$ which lifts the projection $W(\mathcal{R}) \to \overline{R}/p\overline{R}$ induces a homomorphism

$$pr^{\mathrm{nr}}:\mathfrak{S}^{\mathrm{nr}}\to\bar{R}.$$

Let us verify that its restriction to \mathfrak{S} is the given projection $\mathfrak{S} \to R$.

Lemma 7.1. We have $pr^{nr}(t) = \pi$.

Proof. The lemma is evident if $\sigma(t) = t^p$ since then $\delta(t) = [t]$ in $W(\mathfrak{S})$, which maps to $[\underline{\pi}]$ in $W(\mathcal{R})$, and $\theta([\underline{\pi}]) = \pi$. In general let $\delta(t) = (g_0, g_1, \dots)$ with $g_i \in \mathfrak{S}$; these power series are determined by the relations

$$g_0^{p^n} + pg_1^{p^{n-1}} + \dots + p^n g_n = \sigma^n(t)$$

for $n \ge 0$. Let $x = (x_0, x_1, \ldots) \in W(\mathcal{R})$ be the image of t, thus $x_i = g_i(\underline{\pi})$. Let $x_i = (x_{i,0}, x_{i,1}, \ldots)$ with $x_{i,j} \in \overline{R}/p\overline{R}$. If $\tilde{x}_{i,j} \in \widehat{R}$ lifts $x_{i,j}$ we have

$$pr^{nr}(t) = \theta(x) = \lim_{n \to \infty} \left[(\tilde{x}_{0,n})^{p^n} + p(\tilde{x}_{1,n}^{p^{n-1}}) + \dots + p^n \tilde{x}_{n,n} \right].$$

For $\tilde{x}_{i,n} = g_i(\pi^{(n)})$ the sum in the limit becomes $\sigma^n(t)(\pi^{(n)}) = \pi$, and the lemma is proved.

Since the natural action of $\mathcal{G}_{K_{\infty}} = \operatorname{Gal}(\overline{K}/K_{\infty})$ on $W(\operatorname{Frac} \mathcal{R})$ is trivial on $\mathcal{O}_{\mathcal{E}}$ it stabilises $\mathcal{O}_{\hat{\mathcal{E}}^{\operatorname{nr}}}$ and $\mathfrak{S}^{\operatorname{nr}}$ with trivial action on \mathfrak{S} . Thus $\mathcal{G}_{K_{\infty}}$ acts on $T^{\operatorname{nr}}(M,\phi)$ for each Breuil window or Breuil module (M,ϕ) .

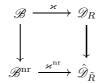
7.3. From $\mathfrak{S}^{\mathrm{nr}}$ to Zink rings. We assume now that $\sigma(t) \in t^2 \mathfrak{S}$. For each finite extension \mathbb{E}' of \mathbb{E} in $\mathbb{E}^{\mathrm{sep}}$ the associated ring $\mathfrak{S}' = \mathcal{O}_{\mathcal{E}'} \cap W(\mathcal{O}_{\mathbb{E}})$ is a finite \mathfrak{S} -module, so its image in \hat{R} is contained in a finite extension R' of R. Since $\mathfrak{S}' = W(k')[[t']]$ with $\sigma(t') \in t'^2 \mathfrak{S}'$ by Lemma 6.2, the image of

$$\varkappa':\mathfrak{S}'\xrightarrow{\delta} W(\mathfrak{S}')\to W(R')$$

lies in $\mathbb{W}(R')$ by [La3, Pr. 7.2]. Let us compose \varkappa' with $\mathbb{W}(R') \to \mathbb{W}(\tilde{R})$, where $\mathbb{W}(\tilde{R})$ was defined in section 3, and pass to the direct limit over \mathbb{E}' . This gives a homomorphism $\varkappa'^{(\mathrm{nr})} : \mathfrak{S}^{(\mathrm{nr})} \to \mathbb{W}(\tilde{R})$. Let

$$\varkappa^{\mathrm{nr}}:\mathfrak{S}^{\mathrm{nr}}\to\hat{\mathbb{W}}(\tilde{R})$$

be its *p*-adic completion. This map can be viewed as a frame homomorphism as follows. Let $\mathscr{B}^{nr} = (\mathfrak{S}^{nr}, E\mathfrak{S}^{nr}, \mathfrak{S}^{nr}/E\mathfrak{S}^{nr}, \sigma, \sigma_1)$ with $\sigma_1(Ex) = \sigma(x)$ for $x \in \mathfrak{S}^{nr}$. Then there is a commutative square of frames, where the horizontal arrows are u-homomorphisms and the vertical arrows are strict:



Here \mathcal{G}_K acts on $\hat{\mathscr{D}}_{\tilde{R}}$ and $\mathcal{G}_{K_{\infty}}$ acts on $\mathscr{B}^{\mathrm{nr}}$ and \varkappa^{nr} is $\mathcal{G}_{K_{\infty}}$ -equivariant.

Let (M, ϕ) be a Breuil window relative to $\mathfrak{S} \to R$ with associated \mathscr{B} -window \mathscr{P} and let $\mathscr{P}^{\mathrm{nr}}$ be the base change of \mathscr{P} to $\mathscr{B}^{\mathrm{nr}}$. By definition we have $T^{\mathrm{nr}}(M, \phi) = T(\mathscr{P}^{\mathrm{nr}})$ as $\mathcal{G}_{K_{\infty}}$ -modules. Let $\mathscr{P}_{\mathscr{D}}$ be the base change of \mathscr{P} to \mathscr{D}_R and let $\hat{\mathscr{P}}_{\hat{\mathscr{D}}}$ be the common base change of $\mathscr{P}^{\mathrm{nr}}$ and $\mathscr{P}_{\mathscr{D}}$ to $\hat{\mathscr{D}}_{\hat{R}}$. As in section 2, multiplication by \mathfrak{c} induces a $\mathcal{G}_{K_{\infty}}$ -invariant homomorphism

$$\tau(\mathscr{P}^{\mathrm{nr}}): T(\mathscr{P}^{\mathrm{nr}}) \to T(\hat{\mathscr{P}}_{\hat{\mathscr{D}}})$$

We recall that the \mathcal{G}_K -module $T(\hat{\mathscr{P}}_{\hat{\mathscr{D}}})$ is isomorphic to the Tate module of the *p*-divisible group associated to (M, ϕ) ; see Proposition 3.1.

Proposition 7.2. The homomorphism $\tau(\mathscr{P}^{nr})$ is bijective.

Note that we assume $\sigma(t) \in t^2 \mathfrak{S}$; otherwise $\tau(\mathscr{P}^{\mathrm{nr}})$ has not been defined.

Proof. Let h be the \mathfrak{S} -rank of M. The source and target of $\tau(\mathscr{P}^{\mathrm{nr}})$ are free \mathbb{Z}_{p} -modules of rank h which are exact functors of \mathscr{P} ; this is true for $T(\mathscr{P}^{\mathrm{nr}})$ since (7.2) and (7.1) are bijective, and for $T(\hat{\mathscr{D}}_{\tilde{R}})$ by Proposition 3.1.

Consider first the case where the *p*-divisible group associated to \mathscr{P} is étale, which means that $\mathscr{P} = (P, Q, F, F_1)$ has P = Q, and $F_1 : Q \to P$ is a σ -linear isomorphism. Then a \mathbb{Z}_p -basis of $T(\mathscr{P}^{\mathrm{nr}})$ is an $\mathfrak{S}^{\mathrm{nr}}$ -basis of P^{nr} , and a \mathbb{Z}_p -basis of $T(\hat{\mathscr{P}}_{\hat{\mathscr{D}}})$ is a $\hat{\mathbb{W}}(\tilde{R})$ -basis of $\hat{P}_{\tilde{R}}$. Since $\mathbb{Z}_p \to \hat{\mathbb{W}}(\tilde{R})$ is a local homomorphism it follows that $\tau(\mathscr{P}^{\mathrm{nr}})$ is bijective.

Consider next the case $\mathscr{P} = \mathscr{B}$, which corresponds to the *p*-divisible group $\mu_{p^{\infty}}$. Assume that the proposition does not hold for \mathscr{B} , i.e. that $\tau(\mathscr{B}^{nr})$ is divisible by *p*. We may replace *k* be an arbitrary perfect extension since this does not change $\tau(\mathscr{B})$; in particular we may assume that *k* is uncountable. Let \mathscr{P}_0 be the etale \mathscr{B} -window that corresponds to $\mathbb{Q}_p/\mathbb{Z}_p$. We consider extensions of \mathscr{B} -windows $0 \to \mathscr{B} \to \mathscr{P}_1 \to \mathscr{P}_0 \to 0$, which correspond to extensions in $\operatorname{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^{\infty}})$.

The image of $\tau(\mathscr{P}_1^{\mathrm{nr}})$ provides a splitting of the reduction modulo p of the exact sequence

$$0 \to T(\hat{\mathscr{D}}_{\tilde{R}}) \to T((\hat{\mathscr{P}}_1)_{\hat{\mathscr{D}}}) \to T((\hat{\mathscr{P}}_0)_{\hat{\mathscr{D}}}) \to 0$$

and thus the natural homomorphism

(7.3)
$$\operatorname{Ext}^{1}_{R}(\mathbb{Q}_{p}/\mathbb{Z}_{p},\mu_{p^{\infty}}) \to \operatorname{Ext}^{1}_{K}(\mathbb{Z}/p\mathbb{Z},\mu_{p}) \to \operatorname{Ext}^{1}_{K_{\infty}}(\mathbb{Z}/p\mathbb{Z},\mu_{p})$$

is zero. Now the first arrow in (7.3) can be identified with the obvious homomorphism of multiplicative groups $1 + \mathfrak{m}_R \to K^*/(K^*)^p$; see [La1, Lemma 7.2] and its proof. By our assumption on k its image is uncountable. Since for a finite extension K'/K the homomorphism $H^1(K, \mu_p) \to H^1(K', \mu_p)$ has finite kernel, the kernel of the second map in (7.3) is countable. Thus the composition (7.3) cannot be zero, and the proposition is proved for $\mathscr{P} = \mathscr{B}$.

Finally let \mathscr{P} be arbitrary. Duality gives the following commutative diagram; see section 2.

Since (7.2) and (7.1) are bijective, the upper line of the diagram is a perfect bilinear form of free \mathbb{Z}_p -modules of rank h. Proposition 3.1 implies that the lower line is a bilinear form of free \mathbb{Z}_p -modules of rank h. We have seen that $\tau(\mathscr{B}^{nr})$ is bijective. These properties imply that $\tau(\mathscr{P}^{nr})$ is bijective.

References

- [Ar] M. Artin: Etale coverings of schemes over Hensel rings. Amer. J. Math. 88 (1966), 915–934
 [BBM] P. Berthelot, L. Breen, W. Messing: Théorie de Dieudonné cristalline II. Lecture Notes in Math. 930, Springer Verlag, 1982
- [Br] C. Breuil: Schemas en groupes et corps des normes, unpublished manuscript (1998)
- [El] R. Elkik: Solutions d'équations à coefficients dans un anneau hensélien. Ann. Sci. École Norm. Sup. (4) 6 (1973), 553–603
- [Fa] G. Faltings: Integral crystalline cohomology over very ramified valuation rings. JAMS 12 (1999) 117–144
- [Fo] J.-M. Fontaine: Représentations p-adiques des corps locaux. Grothendieck Festschrift II, 249–309, Prog. Math. 87, Birkhäuser, Boston, 1990
- [Gre] S. Greco: Two theorems on excellent rings. Nagoya Math. J. 60 (1976), 139–149
- [K] W. Kim: The classification of p-divisible groups over 2-adic discrete valuation rings. arXiv:1007.1904
- [Ki1] M. Kisin: Crystalline representations and F-crystals, Algebraic geometry and number theory, 459–496, Progr. Math., Vol. 253, Birkhäuser, 2006
- [Ki2] M. Kisin: Modularity of 2-adic Barsotti-Tate representations. Invent. Math. 178 (2009), 587–634
- [La1] E. Lau: Tate modules of universal p-divisible groups. Compos. Math. 146 (2010), 220–232
- [La2] E. Lau: Frames and finite group schemes over complete regular local rings. Doc. Math. 15 (2010), 545–569
- [La3] E. Lau: A relation between crystalline Dieudonné theory and Dieudonné displays. arXiv:1006.2720
- [Me] W. Messing: Travaux de Zink. Séminaire Bourbaki 2005/2006, exp. 964, Astérisque 311 (2007), 341–364
- [Se] H. Seydi: Sur la théorie des anneaux de Weierstrass I. Bull. Sci. Math. (2) 95 (1971), 227–235
- [Ta] J. Tate: p-divisible groups. Proceedings of a conference on local fields, Dribergen (1966), 158–183, Springer Verlag, 1976
- [VZ] A. Vasiu, Th. Zink: Breuil's classification of p-divisible groups over regular local rings of arbitrary dimension. arXiv:0808.2792. To appear in: Advanced Studies in Pure Mathematics, Proceeding of Algebraic and Arithmetic Structures of Moduli Spaces, Hokkaido University, Sapporo, Japan, September 2007

- [Zi2] Th. Zink: A Dieudonné theory for p-divisible groups. Class field theory—its centenary and prospect, 139–160, Adv. Stud. Pure Math. 30, Math. Soc. Japan 2001

Fakultät für Mathematik, Universität Bielefeld, D-33501 Bielefeld $E\text{-}mail \ address: lau@math.uni-bielefeld.de$

14