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0 On the rational Picard group

of the moduli space of curves

Claudio Fontanari

Abstract

We speculate about an algebro-geometric proof of Harer’s theorem

on the rational Picard group of the moduli space of smooth complex

curves. In particular, we refine the approach of Diaz and Edidin in-

volving the Hurwitz space which parameterizes smooth covers of the

projective line.

1 Introduction

The rational Picard group Pic(Mg)⊗Q of the moduli space Mg of smooth
complex curves of genus g is unidimensional, generated by the Hodge class λ.
This basic result, which turns out to be a cornerstone in the enumerative ge-
ometry of moduli spaces, is due to Harer [5]. Indeed, according to a previous
theorem by Mumford [7], Pic(Mg) can be identified with H2(Γg), where Γg

denotes the mapping class group; in [5] Pic(Mg) is determined by explicitly
computing H2(Γg). However, as pointed out by Arbarello and Cornalba in
[1], from the point of view of an algebraic geometer, Harer’s approach has the

drawback of being entirely transcendental; in addition, his proof is anything

but simple. It would be desirable to provide a proof of his result which is

more elementary, and algebro-geometric in nature. In [1], the trascendental
part of the proof is reduced to Harer’s computation of the cohomological
dimension of Mg (hence eventually to Looijenga’s conjecture that Mg is
covered by g − 1 affine open subsets) by a clever inductive procedure and a
subtle spectral sequence argument. A different kind of reduction (namely,
to Harer’s stability theorem) is proposed in [8]. Here instead we address the
same problem by revisiting the approach of Diaz and Edidin in [2].
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Let Hk,b be the Hurwitz space of degree k covers of P1 branched over b

ordered points. It is an étale cover of (P1)b \ ∆, where ∆ is the union of
the large diagonals. Our crucial improvement on [2] consists in compatifying
(P1)b \ ∆ not to (P1)b but to the Fulton-MacPherson space P1[b] (see [4]).
Namely, we define the compactification Hk,b of Hk,b as the normalization of
P1[b] in the function field of Hk,b. Since the boundary of P1[b] is a simple
normal crossing divisor, we get

Lemma 1. The scheme Hk,b has finite quotient singularities.

On the other hand, since there is a canonical projection Hk,b → P1[b] →
(P1)b, we are able to adapt the construction in [2], in particular we obtain

Proposition 1. We have H1(Hk,b,Q) = 0.

Our main contribution is the following

Theorem 1. We have dimH2(Hk,b,Q) = n, where n is the maximum number

of linearly independent boundary divisors of Hk,b, if and only if Pic(Hk,b)⊗
Q = 0.

As a consequence of Theorem 1 and [2], Theorem 3.1 (1), Harer’s result on
Pic(Mg)⊗Q can be deduced in a purely algebraic way from the computation
of H2(Hk,b,Q), which should be approached in the spirit of [2], proof of
Theorem 5.1 (c). We hope to come back on this in the future.

We work over the complex field C.
We are grateful to Edoardo Ballico and Gabriele Mondello for their careful

reading of a previous version of this note.
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2 The proofs

Proof of Lemma 1. The induced morphism p : Hk,b → P1[b] is a finite domi-
nant morphism from a normal variety to a smooth variety and by [4], Theo-
rem 3, the boundary ∂P1[b] of P1[b] is a simple normal crossing divisor such
that p is smooth over P1[b] \ ∂P1[b] of P1[b]. Therefore by [6], Theorem 2.23,
Hk,b has finite quotient singularities.
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Proof of Proposition 1. Consider the canonical projection Hk,b → P1[b] →
(P1)b. The cellular decomposition of (P1)b defined in [2], §4.1, determines
a cellular decomposition of P1[b] by the inductive construction in [4]. This
cellular decomposition lifts to Hk,b by the proof of [2], Lemma 4.1, and the
corresponding cell complex does compute homology by [2], §4.4. Hence we
may argue as in [2], proof of Theorem 5.1 (b). In particular, since there are
no 1-cells in the complex, it follows that H1(Hk,b,Q) = 0, as claimed.

Proof of Theorem 1. Since the homology of an algebraic variety is finitely
generated, from the Universal Coefficient Theorem for Cohomology it follows
that dimH2(Hk,b,Q) = dimH2(Hk,b,Q). On the other hand, by Lemma 1
Poincaré duality holds forHk,b with rational coefficients, in particular we have
H2b−2(Hk,b,Q) ∼= H2(Hk,b,Q). Finally, since according to the proof of Propo-
sition 1 Hk,b admits a cellular decomposition, by [3], Example 19.1.11 (b),
there is an isomorphism Ab−1(Hk,b)⊗Q ∼= H2b−2(Hk,b,Q). Hence

dimAb−1(Hk,b)⊗Q = dimH2b−2(Hk,b,Q) = dimH2(Hk,b,Q) = dimH2(Hk,b,Q)

and Ab−1(Hk,b)⊗Q is generated by boundary classes if and only if

dimH2(Hk,b,Q) = n.

Now the conclusion follows from the exact sequence

Ab−1(Hk,b \Hk,b) → Ab−1(Hk,b) → Ab−1(Hk,b) → 0

and the equality Pic(Hk,b) = Ab−1(Hk,b).
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