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Abstract 

 

 For a multigraph G, the integer round-up  (G)  of the fractional 

chromatic index  f (G)  yields a good general lower bound for the 

chromatic index   „ (G).  For an upper bound, Kahn showed that for 
any real  c > 0  there exists a positive integer  N   so that   

 „ (G) < f (G) + c f (G)  whenever   f (G) > N.   We show that for 

any multigraph  G  with order  n  3  and at least one edge,     

 „ (G) ≤  (G) + log 3/2 ( min { (n+1)/3 , (G) } ) .  Kahn‟s result 

follows as a corollary. 
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 For a multigraph G, the integer round-up  (G)  of the fractional chromatic 

index f (G)  yields a good general lower bound for the chromatic index   „ (G).  

For an upper bound, Kahn showed that for any real  c > 0  there exists a positive 

integer  N   so that   „ (G) < f (G) + c f (G)  whenever   f (G) > N.   We show 

that for any multigraph  G  with order  n  3  and at least one edge,     

 „ (G) ≤  (G) + log 3/2 ( min { (n+1)/3 , (G) } ) .  Kahn‟s result follows as a 

corollary. 
 

1.  The Result 

 The order and size of a multigraph  G  with vertex set  V(G)  and edge set  

E(G)  are the cardinalities of  V(G)  and  E(G), respectively, and denoted n(G) and 

e(G).  Otherwise, we follow the terminology and notation of  [ 4 ]. 

 Recall that the chromatic index  „ (G)  of a multigraph  G  is the 

minimum number of matchings that are required to cover the edges of  G.  

Clearly   „ (G)  is at least as large as the maximum degree  (G).  Moreover, if  H  

is any multigraph with odd order at least three,  then   „ (H) ≥ 2 e(H)/(n(H) - 1), 

because any matching in  H  can contain at most (n(H) - 1 )/2 edges; we denote 

this lower bound on   „ (H)  by  t(H).  For any subset  S  of the vertices of  G  we 

let  < S >  denote the subgraph of  G  induced by the vertices in  S.  Then because  

 „ (G) ≥  „ (H)  for any subgraph  H  of  G, we have another lower bound for   

 „ (G)  given by  (G) = max { t(< S >) }, where the maximum is taken over all 

subsets  S  of  V(G)  for which  |S|  is odd and at least 3. 

 

Research supported in part by Summer Research Grants from  

Illinois State University 
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 Combining the lower bounds from the previous paragraph, we get a 

combined lower bound  f (G) = max { (G),  (G) } for the chromatic index of  

G, and  f (G)  is commonly referred to as the fractional chromatic index of  G  (a 

more complete discussion of this invariant is provided in [12]).  When n(G) < 3, 

(G)  is considered undefined and we let  f (G) = (G). Finally, because the 

chromatic index is always an integer, we get the standard combined lower bound  

 „ (G) ≥ (G) , where (G )  denotes the integer round-up of  f (G).  Goldberg [2], 

[3] and Seymour [11] independently conjectured that this lower bound is quite 

tight, in the following sense (Goldberg‟s Conjecture was a bit stronger than the 

version stated here). 

 

Conjecture A.  For any multigraph  G,   „ (G) ≤ max { (G) + 1,    (G)  }. 

 

 We often find it convenient to work with the following slightly weaker 

form of Conjecture A; this form of the Conjecture also appeared in [11]. 

 

Conjecture B.  For any multigraph G,   „ (G) ≤ 1 + max  { (G) ,  (G)  )  . 

 

 Although Conjecture B  is somewhat weaker than Conjecture A, it still 

reduces the possibilities for    „ (G)  to two: either   „ (G) = (G)  or   

 „ (G) = (G) + 1.    

The following three theorems give upper bounds for the chromatic index 

in terms of different invariants.  

 

Theorem A.  (Vizing [14])  If  G  is a simple graph,   „ (G) ≤  (G) + 1.  More 

generally, for any multigraph  G  with maximum edge multiplicity  m,   

 „ (G) ≤ (G) + m. 

 

The next result is the most recent in a string of similar earlier results by Shannon 

[13], Andersen [1] and Goldberg [2], [3]. 

 

Theorem B.  (Nishizeki & Kashiwagi [7])  Let  G  be a multigraph.  If   

 „ (G) > (11(G) + 8)/10, then   „ (G) =  (G) =   (G)  . 

 

Theorem C.  (Plantholt [9])  For any multigraph  G  of order  n ,  

 „ (G) ≤ (G) +  n/8   - 1. 
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In the three theorems above, we are given a bound for the amount by 

which the chromatic index can surpass a standard lower bound  for  

 „ (G)  in terms of three different invariants: the maximum edge multiplicity, the 

maximum degree, and the order of the multigraph.  However, the amount by 

which the upper bound exceeds the lower bound is in each case linear in the 

chosen invariant, even though Conjecture B  states that the difference between  

 „ (G)  and  (G)  should be bounded by a constant (indeed, the constant 1).  

Using breakthrough methods, Jeff Kahn was able to provide evidence that 

improvements in this direction are possible by obtaining the following result: 

 

Theorem D.  (Kahn [5]).  For any real  c > 0  there exists a positive integer  N   so 

that   „ (G) < f (G) + c f (G)  whenever  f (G) > N. 

 

Using more basic methods, some similar type results were obtained in  [10 ], but 

using the order  n  as the key invariant: 

 

Theorem E. For any multigraph  G  with even order  n ≥ 572, 

 „ (G) ≤ (G) +1 +  ( n ln n / 10 ) . 

 

Theorem F.  For any real c > 0 , there exists a positive integer  N  such that   

'(G)  < (G) + cn  for any multigraph  G  with order  n > N. 

 

We extend the methods from  [10]  to improve the results in two ways.  First, the 

amount by which the upper bound surpasses  (G)  is now strictly logarithmic.  

Also, as the key parameter we now use the combined term  

min{ (n+1)/3, (G) }, so that we get essentially two different upper bounds, 

choosing the minimum.  Specifically, we show the following. 

 

Theorem 1.  For any multigraph  G   with order  n  3 and at least one edge, 

 „ (G) ≤  (G) + log 3/2 ( min { n/3 , (G) } )  if  n  is even, and  

 „ (G) ≤  (G) + log 3/2 ( min { (n+1)/3 , (G) } )  if  n  is odd. 

 

Kahn‟s result in Theorem D and the result in Theorem F then both follow as 

immediate corollaries. 
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2.  The Approach 

 

 Let  G  be a multigraph and let  S  be a subset of  V(G).   We let < S >  

denote the subgraph of  G  that is induced by the vertices in  S, and let (S)  

denote the coboundary of  S, that is, the cutset consisting of all edges that are 

incident with exactly one vertex of  S.  Recall that  (< S >)  denotes the 

maximum degree of  < S >.  If we wish to stress that  < S >  is being considered as 

an induced subgraph of  G,  we use the notation  (< S >; G)  in order to clarify 

the host multigraph.  We use the same convention for other invariants.  For 

example, if  F  is a 1-factor of  G, then  ( S ; G - F)  gives the coboundary of the set 

of vertices  S  within  G - F. 

 

 Our approach is based on two elementary operations.  One, removal of a 

matching, corresponds to assigning a color to the edges of the matching, and 

then eliminating them from further consideration.  The second operation is the 

splitting operation, based on a shrinking procedure; these are defined below. 

 

Let  G  be a multigraph, and let  S  be a non-empty proper subset of  V(G).  
The multigraph  G

S
 with vertex and edge sets described below is called the 

multigraph obtained from  G  by shrinking  S : 

 

1.  The vertex set of  G
S
  is given by  V(G

S
) = V(G) - S  { s }, where  s  is the vertex 

replacing  S. 
2.  Each vertex  u  s  in V(G

S
)  has exactly  |(u,S) |  edges in  G

S
  joining it to  s, 

where  (u,S)  denotes the set of edges in  G  that join  u  with vertices of  S.  
These edges are the only edges of  G

S
  that are incident with  s, and so these 

comprise  ({s}) completely in G
S
. 

3.  The edge set of  G
S
  is given by  E(G

S
) = E(G - S) ({s}). 

 

 For a subset  S  of the vertex set of a multigraph G, we let  S
c
  denote the 

complementary set  V(G) – S.  We call the process of replacing  G  by the pair of 

multigraphs  G
S
 , G

S
c  a splitting of G.   The proof of the main result will follow from 

a combination of 1-factor (or near 1-factor) removals and splittings.  We depict 

the process using a binary tree, with root vertex G.  When a vertex in the tree has 

only one child, the edge leading to that child represents the removal of a number 
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of matchings; that number is given as the edge weight.  A splitting is denoted by 

a vertex having two children, the resulting multigraphs.   An example is given in 

Figure 1, which has starting multigraph G, and terminal multigraphs  Z1 through 

Z5.  In that example, there are k1 matching removals before the first splitting.  

The sum of the edge weights along the path from the root to a terminal 

multigraph gives the total number of matchings removed during only the steps 

represented by that path; we call this number for a terminal multigraph  Z  its 

matching removal number, denoted mr(Z).  For example, in Figure 1 we have 

mr(Z3) = k1 + k2 + k4.  Also, if  Zi  is a multigraph obtained at some point during 

this procedure, we call the value   

mr(Zi)  +( Zi) - (G)  the cost of going from  G  to  Zi .  This cost we denote by 

cost(G  Zi) ;  it gives a measure of the number of “wasted” colors when  

matching removals did not reduce the  value. 

 

 

 Figure 1.  Diagram representing reduction process 

k1 

k3 k2 

k4 k5 

k6 

G 

 Z1 

Z2 

Z3 

Z4 

Z5 
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In our main algorithm, our splittings will never increase the current  

-value.  And by using splittings to control the multigraphs being considered 

appropriately, we are able to ensure that removal of a matching will in many 

cases (though of course not always) reduce the -value by 1.  Since we can do this 

and significantly reduce the size (here measured by min { n/3 ,  }) of the 

terminal multigraphs, the result will follow.   As a simple example, consider 

Figure 2 below.  The multigraph G in (a) has  n =  =  = 6.  We remove a 1-factor 

from  G  to obtain the multigraph in (b), which is 5-regular but with =6 still.  

Based on the overfullness in the triangles, we shrink on them to get the splitting 

shown in (c).  The multigraphs in (c) still have =6, but since each has order  n = 

4, we‟ve reduced  min { n/3,  }, multiplying it in each by a factor of 2/3; this has 

been achieved at the “cost” of one color (edge-matching removal) since a 1-factor 

has been removed without decreasing   . 

 
 

(a) (b) 

Figure 2.  Reduction example. 

(c) 
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The following well-known result uses the splitting procedure to bound the 

chromatic index. 

 

Lemma A.  ([11])  Let  G  be a multigraph, and let  S  be a non-empty proper 

subset of  V(G).  Then  „ (G) ≤ max {  „ (G
S 

) ,  „ (G 
Sc ) }. 

 
It is worth noting that given proper edge-colorings of  G 

S  
and  G 

Sc in   

k = max {  „ (G
S 

) ,  „ (G 
Sc ) }  colors, it is easy (see [11])  to obtain a 

corresponding proper k-coloring of the edges of  G.  Thus the bound we obtain 

by our algorithm could be applied to actually construct an edge-coloring.  We 

also note that the fractional chromatic index version of Lemma A is also true, that 

is  f (G) ≤ max {  f  (GS 
) ,  f (G 

Sc ) }. 

 

We will actually use the following extension of Lemma A, which follows 

immediately from Lemma A. 

 

Lemma A ’.  Suppose that starting with multigraph  G, we perform removals of 

matchings and  t  splittings to reach terminal multigraphs  Z1 , Z 2, …, Zt+1 .  Then   

„ (G) ≤ max { mr(Z1 ) +  „ (Z1 ),  mr(Z2 )  +  „ (Z2 ) , … , mr(Zt+1 ) +  „ (Zt+1 ) }. 

 

 

By a nontrivial multigraph we mean one with more than one vertex, and a 

nontrivial splitting shrinks multigraphs that are both nontrivial.   Recall that if  H  

is any multigraph with odd order at least three, we let  t(H) = 2 e(H)/(n(H) - 1 ).  

For any integer  k, a non-trivial odd order subgraph  H  of  G  is said to be  

k-overfull if  t(H) >  k, and k-full if  t(H) = k; typically, we will be interested in 

fullness in the case where  k = (G).  Recall also that  

(G) = max { t(< S >)}, where the maximum is taken over all nontrivial odd 

cardinality subsets  S  of  V(G), the fractional chromatic index of  G  is given by   

f (G) = max { (G) , (G) }, and that the lower bound  (G)  for the chromatic 

index is given by  (G) = max { (G),  (G)  }.  Finally, following terminology 

introduced in [11], for  r > 0 we define an r-graph to be an r-regular multigraph  G  

for which  (G) ≤ r  (in fact, if  G  is an r-graph, then  G  must have even order, 

and we must have  (G) = r  because for any vertex v,  t(G - v) = r). 
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 Because we can always add an isolated vertex to a multigraph, we need 

only prove Theorem 1  for even order multigraphs, that is   

 „ (G) ≤  (G) + log 3/2 ( min { n/3 , (G) } )  if  n  is even.  

The following result shows that we can also restrict our attention to r-graphs. 

 

Lemma B.  (Seymour [11])  Let  G  be any multigraph, and let  (G) = r.  There 

exists a multigraph  G+  containing  G  such that 

  i) G+ is an r-graph, and 

 ii) |V(G+)| = |V(G) | if |V(G) | is even, 

     |V(G+)| = |V(G)| + 1  if |V(G) | is odd. 

 

Our proof is broken into three parts.  In Part 1, we give Stage 1 of our algorithm.  

It begins by taking as input an r-graph on an even number  n  of vertices.  By 

iteratively removing 1-factors and splitting, we construct larger and larger 

decomposition trees for  G, without ever exceeding cost 1, until each branch 

results in a multigraph  H  satisfying one of the following halting conditions: 

 

Criterion 1A.  n(H) ≤ 8  or  (H) ≤ 2 ; cost(G  H) ≤ 1. 

Criterion 1B.  n(H) ≤ (2/3) n(G), (H) ≥ n(H)/2, and cost(G  H) ≤ 1. 

Criterion 1C.  (Termination for Stage 1 only; must proceed to Stage 2, 

which will involve removing near-1-factors)  Min degree(H) = 0, 

(H) ≤ n(G)/3. 

 

The key result in Part 1 is Proposition 1, which shows that we can iterate the 

procedure until reaching the halting criteria without exacting cost greater than 1. 

 

In Part 2, we present  Stage 2 of the algorithm, which must be used when in Stage 

1 we reach Criterion 1C.  The Stage 2 halting criteria are: 

 

Criterion 2A.  n(H) ≤ 8  or  (H) ≤ 2 ; cost(G  H) ≤ 1. 

Criterion 2B.  n(H) ≤ (2/3) n(G) , (H) ≥ n(H)/2, cost(G  H) ≤ 1. 

Criterion 2C.  n(H) ≤ (G) , n(H) ≤ n(G)/3 , cost(G  H) ≤ 2 . 

Criterion 2D. (H) ≤ 2 n(G)/9, (H) ≤  (G)/2, cost(G  H) ≤ 1. 
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Stage 2 is presented in algorithmic format, with arguments to show that we can 

indeed iterate the procedure until all branches end in multigraphs that satisfy a 

halting criterion. 

 

Finally, in Part 3, we verify that the algorithm with the properties given in Parts 

1 & 2 does indeed yield the claimed upper bound.  The idea is simple, even 

though the set-up in Parts 1 & 2 is messy.  Our construction at each iteration 

generally yields (except in Criterion 2C, where we need a minor adjustment) 

multigraphs with cost at most  1, and we show that it  guarantees a reduction of  

min { n/3, }  by a fixed factor, yielding the desired result    

 „ (G) ≤  (G) + log min { n/3, (G) }  through repeated application of Lemma A‟. 
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3. Additional Background 

 

 Two classic 1-factor results will help assure that 1-factors or near 1-factors 

exist in multigraphs at key stages of our reduction. 

 

Lemma C. (Tutte‟s 1-factor Theorem).  Let  G  be a multigraph.  There is a  

1-factor of  G  if and only if for each set  K  of vertices of  G, the number of odd-

order components of  G - K does not exceed  |K|. 

 

Lemma D.  (Seymour [11])  Any r-graph has a 1-factor. 

 

We will require also the following background Lemmas.  They are referenced in 

[10], though appeared first in  [6] and [11]. 

 

Lemma E.  Let  H  be a nontrivial odd order subgraph of  G.  If H is  

(G)-overfull  then | (V(H))| < (G); if H  is (G)-full then  | (V(H)) | ≤ (G). 

 

Lemma F.  Let  G  be r-regular.  Then  G  is an  r-graph if and only if  |(S)| ≥ r  

for each odd order subset  S  of  V(G). 

 

We now introduce some additional terminology.  If  k is any integer and 

H  is a nontrivial odd-order multigraph, the k-excess of H (denoted ex(H, k)) is 

given by  e(H) – [k (n(H) - 1 ) / 2 ] ; thus the k-excess of  H  gives the number of 

edges by which  H  is k-overfull.  Note that ex(H, k) may be negative, and in fact 

ex(H, k) is 0 (positive) if and only if  H  is k-full (overfull). The k-slack of  H  

(denoted  sl(H, k) )  is given by ( k + 1) [( n(H) - 1)/2 ] – e(H).  Thus sl(H, k)  gives 

the number of additional edges that H  would need  in order to    

(k + 1)-full ; note also that  sl(H, k) +ex(H, k) = (n(H) – 1)/2.  Often when we 

discuss k-excess and k-slack, we are considering  H  as a subgraph of a 

multigraph  G, and use the value  k = (G).  In that default case, we will 

sometimes use the simpler notation  ex(H)  and  sl(H) . 

 

 In the proof we will require a careful count of the effect that matching 

removal and splitting have on the excess of odd-order subgraphs.  The following 

two technical observations will be of use throughout the proof. 
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Observation 1.  (Effect of 1-factor removal on excess) 

Let  G  be a multigraph of even order  n, and let  S  be a nontrivial odd-

cardinality subset of vertices of  G.  If  F  is any 1-factor of  G  and   = (G), then   

ex( < S >,  -1 ; G - F) ≤ ex( < S >,  ; G ) + min { (n -|S|-1)/2, (|S| - 1)/2 }. 

 

Proof.  Since   = ( G - F ) + 1, it follows that  

 ex( < S >,  -1 ; G - F ) = ex( < S >,  ; G ) + (|S|-1 )/2 - r , where r gives the 

number of edges of  F  which are incident with two vertices of  S.  But  F  has  n/2  

edges, and at most  n - |S|  of them do not have both incident vertices in  S.  

Thus  r ≥ |S| - n/2, and the result follows.    

 

Observation 2.  (Effect of shrinking on excess) 

Let  G  be a multigraph, and suppose that  S  is a nontrivial odd-cardinality 
subset of  V(G).  Let  R‟  be a nontrivial odd-cardinality set of vertices in  G

S
  and 

let  s  be the vertex of  G
S
  that replaces  S  upon shrinking  S.  For any integer k, 

if s  R‟, then ex( < R‟ >, k ; G
S
 ) = ex ( < R‟ >, k ; G ), and  

if s  R‟, then ex( < R‟ >, k ; G
S
 ) = ex ( < R >, k ; G ) – ex( < S >, k ; G ), where  

R = R‟ - {s}  S. 

 
Proof.  To find ex( < R‟ >, k ; G

S
 ) we need only check to see how the numbers of 

edges and vertices in  < R‟ >  are changed by the shrinking procedure.  If  s  R‟, 

the result is clear, so assume  s  R‟.  Let R  be the set of vertices   

R‟ - {s}  S  in  G.  Then  |R| = |R‟| + |S| - 1, while  
|E(< R‟ > ; G

S
 )| = |E(< R > ; G)| - |E(< S > ; G)|.  

Thus ex( < R‟ >, k ; G
S
 ) = |E(< R‟ >; G

S
 )| - k (|R‟| - 1)/2 

 = |E(< R >; G)| - |E(< S >; G)| - k (|R‟|-|S|+|S| - 1)/2 

 = [|E(< R >; G)| - k (|R‟| + |S| - 2)/2 ] - |E(< S >; G)| + k (|S|-1 )/2 

 = ex ( < R >, k ; G ) - ex( < S >, k ; G ), as desired.    

 

In the following Lemma, note that because   G  is -regular,  G) ≥ .  It is 
possible, though, that  |S| = |V(G)| - 1, in which case we would get  G 

Sc  to be 

isomorphic to  G. 
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Lemma G.  (Effects of shrinking maximum excess subgraph in a regular 

multigraph)  

Let  G  be a -regular multigraph of even order and suppose   < S >  is an odd-

order induced -full or -overfull subgraph which has maximum -excess in  G 

among all such subgraphs .  Then   

(G
S 

) ≤   and (G
S
) ≤ (G), and  similarly   

(G Sc 
) ≤   and  (G Sc 

) ≤ (G) . 

 

Proof.  Because  (G) = , and   < S > is -full or -overfull, |(S)| = |(Sc) |≤ .  

Thus we have both  (G
S 

) ≤   and  (G Sc 
) ≤ .  Moreover, because  < S >   and 

therefore also  < Sc > (because G is -regular) have maximum -excess, the other 

two inequalities in the statement of the Lemma follow, because by Observation 2 
any subgraph containing the vertex from shrinking in G

S  
or G Sc  will have non-

positive -excess.    

 

Our final preliminary result is similar in nature to Lemma G, but has the 

advantage that it can be applied in situations where  G  is not regular. 

 

Lemma H.  (Effects of shrinking a minimum slack subgraph) 

Let  G  be a multigraph of even order, with  (G) < (G) ≤ (G) + 1.  Let  =(G), 

let  < S >  be an odd order subgraph that is  -overfull in  G, with  sl(< S >, )   a 

minimum among all such  -overfull subgraphs.  Then: 

 

 (G
S 

) ≤ (G), and (G
S 

) ≤ (G) + 1, and 

 (G Sc ) ≤ (G), and (G Sc 
) ≤ (G) + 1. 

Proof.   As  < S > is k-full or k-overfull in  G, by Lemma E we have  

|(S ; G) | = |( Sc ; G ) | < (G), so that  (G
S
) ≤ (G) and  

(G 
Sc 

) ≤ (G), as desired. 

Now let  M  be a matching of new edges, its vertices identified with those of  S, 

such that  | E(M) | = sl(< S >, )  (so t(< S >  E(M)) = (G) + 1).  Since adding a 

matching can increase  t(H)  for any subset  H  by at most  1, and since  S  has 

minimum  -slack among all overfull subgraphs of  G,  (G  E(M)) = (G) + 1.  

By Lemma C, we can add edges to expand  G E(M)  to a multigraph  G+  which 

is a   ((G) + 1)-graph.  Then in G+,  < S >  is ( +1)-full and has maximum 

 ( + 1)-excess  equal to  0, as does  <  Sc >.  Thus by Lemma G,   
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(G+
S
) ≤ (G) + 1 and  (G+

 Sc 
) ≤ (G) + 1, so  (G

S
) ≤ (G) + 1 and   

(G Sc 
) ≤ (G) + 1 .   
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4.  Main Theorem 

 

We are now ready to take on the proof of Theorem 1. 

 

Theorem 1.  For any multigraph G with order  n  3  and at least one edge, 

 „ (G) ≤  (G) + log 3/2 ( min { n/3 , (G) } )  if  n  is even, and  

 „ (G) ≤  (G) + log 3/2 ( min { (n+1)/3 , (G) } )  if  n  is odd. 

 

Proof.  As noted earlier, it suffices to prove the result  for  n even, and by Lemma 

B  we may also assume that  G  is an r -graph, where r = (G) = (G).   

Throughout the proof, we omit the log base, as it will always be 3/2.  Because  

n  3  and  G  has an edge, log ( min { n/3 , (G) }  0.  The result is thus true 

when  n ≤ 8 for then   „ (G) = (G)  by Theorem C.  The result also holds if 

 (G) ≤ 2 because then each component of  G is a path or even cycle and  

 „ (G) =  (G).  Again the result is true if (G) = 3  and  n > 8, for in this case  (G) 

≤ 3 so   „ (G) ≤ 4  by Shannon‟s Theorem, and  log ( min { n/3 , (G) }  1.  So 

assume  that  G has even order   n ≥ 10, that (G) ≥ 4, and the result is true for all 

multigraphs  H   with n(H) ≤ n(G) and  (H) < (G), or with n(H) < n(G) and   

(H) ≤ (G).   

 

 

Part 1 – Algorithm Stage 1.  We first show that in Stage 1 we can construct a 

decomposition tree in accordance with the earlier discussion in which each 

terminal vertex multigraph  H  satisfies one of the Stage 1 halting criteria, 

without incurring cost more than 1.   

 

Recall that our multigraph  G  has even order  n  and is an r -graph, with   

r = (G) = (G) .  By Lemma D,  G  has a 1-factor F.  Clearly  G - F  is   

(-1)-regular; if  (G - F) = -1 (so the cost of the reduction is 0) , then  

 „ (G) ≤ 1  +  „ (G - F) ≤ 1 + (G - F)  + log ( min { n/3 , (G - F) }  

     ≤ (G) + log ( min { n/3 , (G) }  so we are done.   

So assume that  G – F  contains a (-1)-overfull subgraph. 
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Let   < S >  be an induced (-1)-overfull odd order subgraph of  G – F  which has 

maximum excess among all such subgraphs; as  G - F  is regular,   

ex(< S >, ) = ex(< Sc >, ).  By Lemma G,  (G-F)
S
 and (G-F)

Sc  
both have 

maximum degree   -1, and we have both  ((G-F)
S
) ≤   and  ((G-F)

Sc ) ≤ .  

 
 Let  H  denote either (G-F)

S
  or  (G-F) 

Sc 
.  For the arguments below we will 

assume that  H =  (G-F)
S 

; the argument is essentially identical if we have   

H = (G-F)
Sc 

 .  Recall that  n  denotes n(G).  Currently we have cost(GH) = 1 

because  (H) = (G) and mr(GH) = 1.  We note that one vertex  s  in  H  (the 

vertex replacing the shrunken set  S )  has degree less than  -1  (by Lemma E), 

and all other vertices of  H  have degree -1. 

 

Claim 1.  Any (-1)-overfull induced odd subgraph  < R >  of  H  has  

ex(< R >, ) ≤ (n(G) - |R| - 1)/2. 

 

Proof of Claim 1.   

If  s  R, then ex(< R >, ; H) = ex( < R >, ; G-F) ≤ (n - |R| - 1)/2, by 

Observation 1.   

If  s  R, let  Q denote the subset of  V(G)  given by  R - {s}  S.  

Then by Observation 2, 

ex(< R >, -1; H) = ex(< Q >, -1; G-F ) – ex(< S >, -1; G-F )  

≤ 0  by the maximality of ex( < S > , -1 ; G – F ). 

This yields the desired result.   

 

Let  *  denote the maximum degree of  H.  At this point, we have an even order 

multigraph  H  with the following properties: 

(i) all vertices in  H  have degree  *= (G) – mr(GH), except 

one vertex  s  may have degree less than  *, 

(ii) (H) ≤ * + 1, and so cost(GH) ≤ 1, and 

(iii)  any induced *-overfull subgraph < R > of  H  has *-excess at 

most  (n(G) - |R| - 1)/2. 

 

 

The following Proposition shows that we can iterate our operations until all 

multigraphs obtained satisfy a Stage 1 Halting Criterion. 
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Proposition 1.   Let  H  be a multigraph which does not satisfy a Stage 1 Halting 

Criterion, but does satisfy conditions (i), (ii), and (iii) above.  Then either: 

 

(a) H contains a 1-factor whose removal results in a new multigraph that 

satisfies properties (i) through (iii), or 

(b) H contains a non-trivial splitting such that the resulting multigraphs 

either satisfy a Stage 1 Halting Criterion, or satisfy (i) though (iii), except 

that two vertices may have degree less than the others. 

 

We will perform a sequence of 1-factor removals and splittings, using 

Proposition 1 to guarantee that we retain conditions (i) – (iii) and can therefore 

continue until all branches reach a Halting Criterion.  If as in (b) we get two 

vertices with lower degree, we show in the argument following the proof of 

Claim 8 that we can add edges between the vertices to keep the desired 

properties (i) – (iii).  Proposition 1 is proved below, but we first give the Halting 

Criteria and the basic algorithm for Stage 1 reduction, starting with multigraph 

H. 

 

Any multigraph  H  obtained in Stage 1 will have cost(GH) ≤ 1.  Multigraph  H   

obtained in our algorithm will be considered Stage 1 terminal (no further 

reduction needed in this stage) if it satisfies one of the following criteria. 

 

Stage 1 Halting Criteria for a multigraph  H: 

 

Halting Criterion 1A . (H) ≤ 2  or  H has order at most 8.   

Note that by Theorem C , we know that then ‟(H) = (H). 

 

Halting Criterion 1B.  Let  s  be the vertex with minimum degree in  H.  Stop if  

ex(H-s, (H)) ≥ n(H)/4.   

We shall show that if we reach this halting criterion in our procedure, then 

two important relations hold: 

(a) n(H) ≤ 2 n(G)/3, and 

(b) (H) ≥ n(H)/2, so  (H) ≥ n(H)/2. 
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Halting Criterion 1C.  H has a vertex of degree 0.  We shall show also that in this 

case, (H) ≤ n(G)/3.  Clearly  here  H  will not have a perfect matching.  We will 

then need to continue the reduction procedure by going to Stage 2. 

 

 

 

Stage 1 Reduction Algorithm   Let  * = (H). 

 

If  in  H - s  there is no *-overfull odd order induced subgraph <R>  for 

which sl(< R >, *; H-s) < sl(H-s, *), then remove any 1-factor F; by 

Claims 5-7 below, such a 1-factor exists and  H-F will satisfy 

properties (i)-(iii) with  * replaced by  * -1. 

 

Otherwise, such a multigraph  R  exists, so perform the splitting 
described in Claim 8 below, obtaining multigraphs  H

 R 
and  H

 Rc  
.  

Multigraph H
 Rc  

will satisfy conditions (i)-(iii).  Also H
 R

  will 

satisfy them, except there may now be two vertices  s and  s
R 

 with 

degree less (H
 R

).  If this occurs, add edges of the form  s s
R

  to  H
R

  

until either : 

 

(1) s or s
R

  has degree *, or 

(2) there is a subgraph  <W>  containing both  s and  s
R 

 for which  

t(<W>) = *+1. 

 

Call the resulting multigraph H+ . 

 

If  (1) occurs first,  H+
  
satisfies (i) – (iii) by the discussion following 

Claim 8.   

If (2) occurs first, perform another splitting, to obtain multigraphs 

H+
W

  and  H+
Wc 

.  By the discussion following the proof of Claim 8,  

H+
 W  

satisfies (i) – (iii), while  H+
Wc  satisfies Halting Criterion 1B. 
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As all multigraphs finally obtained now satisfy either a Halting Criterion or 

conditions (i) – (iii), we can iterate this procedure to eventually obtain all terminal 

multigraphs satisfying Halting Criteria for Stage 1, when Stage 1 is completed. 

 

To verify Proposition 1, let  H  be any multigraph which satisfies the properties 

(i) – (iii) above, but which does not satisfy any of the Stage 1 Halting Criteria.  Let  

p  denote n(H), and recall that  n  denotes  n(G).  We prove the Proposition by a 

series of claims. 

 

 

 

Claim 2.  The *-excess of  H - s  is  (* - deg(s; H) )/2. 

 

Proof of Claim 2.  Clearly  H - s  has  [(p-1)* - deg(s; H)]/2  edges. Thus  

ex(H – s, *) = [(p-1)* - deg(s; H)]/2 - (p-2)*/2 = [* - deg(s)]/2, as desired.   

 

Because H does not satisfy Halting Criterion 1C, we have deg(s; H) > 0.  We 

consider two cases. 

 

Case A.  In  H - s  there is no *-overfull odd order induced subgraph <R>  for 

which sl(< R >, *; H-s) < sl(H-s, *).  We show that  H  contains a 1-factor  F  and  

H – F  satisfies (i) – (iii). 

 

Claim 3.  In Case A, if < R > is *-overfull in H - s, then  |R| ≥ p/2. 

Proof of Claim 3.   Assume < R > is *-overfull in H - s, and suppose that    

|R| < p/2, so |R| ≤ p/2 –1, since  p  is even.   Then sl(<R>, *) ≤ p/4 – 1  

because  < R >  is  *-overfull.  But  sl(H – s, *) = p/2 - 1 – ex(H – s, *), and 

because  H  does not satisfy Halting Criterion 1B, ex(H-s, *) < p/4.  Thus  

sl(H – s, *) > p/4 - 1 ≥ sl(<R>, *), a contradiction to our being in Case A.    

 

Claim 4.  In Case A, for any nontrivial odd subset  R  of V(H) containing  s,  

< R; H >  is not *-overfull. 

Proof of Claim 4.  Suppose  R  is an odd order subset of  V(H)  containing  s, and 

that  <R ; H> is *-overfull.  Then   

|(R ; H) | < * - ( * - deg(s) ) = deg(s), so 

ex(<Rc>, * ; H ) ≥ (* - deg(s))/2 = ex(H – s, *)  by Claim 2. 
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But   Rc  is a proper subset of  H - s, so then 

sl(< Rc>, *) < sl(H-s, *), a contradiction because we are in Case A.    

 

Claim 5.  In Case A there exists a 1-factor  F  of  H. 

Proof of Claim 5.  Let  K  be any subset of  V(H), and suppose the number of odd 

components of  H - K  is  t > |K|.  All odd components of  H - K, except possibly 

the one containing  s  and at most one which is overfull (and therefore by Claim 3 

contains at least half the vertices of H) have at least  *  edges in their 

coboundary in  H.  Since deg(s) > 0, by Claim 4 the odd component containing  s  

would have at least 1 coboundary edge.  Thus, the number of edges in the 

coboundary of  K  in H  is at least  (t-2)* + 1 ≥ |K|* + 1, since t  and  K  have 

the same parity (because  p  is even).  This yields a contradiction, as each vertex 

in  K  has degree at most  *.  Thus, by Tutte's Theorem,  H  contains a 1-factor F.   

 

 

 

Claim 6.  Let  R  be an odd order subset of  V(H)  such that   < R >  is *-overfull 

in  H, and let  F  be a 1-factor of  H.  If we are in Case A, then  

ex(< R >, * - 1; H - F ) ≤ (n - |R| - 1)/2. 

Proof of Claim 6.  By Claim 4,  R  does not contain  s.  Also 

ex(< R >, * ; H) ≤ ex (< H – s >, *  ; H) - (p - |R| - 1)/2, because we are in Case 

A.  But  by condition (iii),  ex(< H – s >, * ; H) ≤ (n-p)/2, so by Observation 1, 

ex(< R >, * - 1 ; H - F) ≤ ((n-p)/2 - (p -|R|-1)/2) + (p -|R|-1)/2 = (n – p)/2.  

Thus  ex(< R >, * - 1 ; H - F) ≤ (n-p)/2 ≤ (n-|R| - 1)/2, as desired.    

 

Claim 7.  For any 1-factor  F  of  H,  (H - F) ≤ *. 

Proof of Claim 7.  Clearly  (H - F) = * - 1.  We need to show that if  R  is any 

nontrivial odd order subset  of  V(H),  then t(< R > ; H - F) ≤ *  .   

If  t(< R > ; H) ≤ *, this is certainly true.  So, assume that  <R>  is *-overfull in  

H.  Because  H  does not satisfy Halting Criterion 1B, ex(H – s, * ; H) < p/4, so 

ex( H – s, * ; H) ≤ (p – 2)/4 . Therefore, because we are in Case A,  

ex(< R >, * ; H) ≤ (p – 2)/4 – ( p – 1 - |R|)/2.  Thus by Observation 1,  

ex(< R >, *-1 ; H – F) ≤ (p - 2)/4 – (p – 1 - |R|)/2 + (p – 1 - |R|)/2 = (p – 2)/4.  

But by Claim 3, |R| ≥ p/2, and thus   t(< R > ; H - F) ≤ *.    

 

 



 22 

Thus in Case A,  by Claim 5  H contains a 1-factor  F.  Because  H  satisfies (i), all 

vertices in  H - F  have degree (G) – mr(G(H - F)), except possibly one vertex s  

of smaller degree.  By Claim 7,  (H - F)  ≤ (H - F) + 1, so cost(G H – F) ≤ 1.  

And by Claim 6, any induced overfull subgraph of  H – F  has  (*-1)-excess at 

most  (n - |R|- 1)/2.  Thus with the substitutions  H ← H – F, * ← * - 1, the key 

properties (i) – (iii)  remain satisfied. 

 

 Case B.  There exists a   *-overfull odd order subgraph  <R>  of  H - s  such that   

sl(< R >, *) < sl(H – s, *).  We show that there is a splitting in which the 

resulting multigraphs (almost) satisfy (i) – (iii). 

 

Let  R  be a subset of  V(H)    such that  < R >  has minimum  *-slack among all 

*-overfull subgraphs of  H .  By Lemma H,  H
R

  and  H
Rc  each have maximum 

degree at most  *, and -values which are at most  *+1, so they satisfy property 

(ii).  We wish to show that they also have property (iii). 

      
Claim 8.  In both H

R
  and  H

 Rc , any nontrivial induced odd order subgraph  

< Q >  has *-excess at most  (n - |Q| - 1)/2. 

 

Proof of Claim 8.   
First consider  H

R
   and let s

R
  be the vertex of  H

R
  that was formed by shrinking  

R.  Let  < Q >  be any nontrivial odd order induced subgraph of  H
R

. 

If s
R

  Q, then  ex(< Q >, * ; H
R

 ) = ex(< Q >, * ; H) ≤ (n - |Q| - 1)/2, because 

condition (iii)  is satisfied within  H. 

If  s
R

  Q, then  ex(< Q >, * ; H
R

 ) < ex(<Q - s
R

  R>, * ; H ) (by Observation 2, 

since <R> is *-overfull) 

     ≤ [n - (|Q| - 1 + |R|) - 1]/2  (by (iii) in H) 

     < (n - |Q| - 1)/2, as desired. 

 
Now consider H

 Rc , and let s
 Rc  denote the vertex that replaces  < Rc >  upon  

shrinking.  Let < Q > be any nontrivial odd order induced subgraph of H
 Rc . 

If   s
 Rc  Q, then as before   

ex(< Q >, * ; H
 Rc ) = ex(< Q >, * ; H) ≤ (n - |Q| - 1)/2. 

So, assume that  s
 Rc  Q. 
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If  sRc , then  < Rc >   must be overfull in  H, as  ex( < Rc > ; H ) ≥  ex( < R > ; H) .  

Thus  ex(< Q >, * ; H
Rc ) ≤ ex(<Q - s

Rc  Rc >, * ; H ) ≤  

 [n - (|Q| - 1 + |Rc|) - 1]/2  < (n - |Q| - 1)/2, as desired. 

 

Finally, assume that  s
Rc  Q  and  s  Rc  .  Note that s

Rc  is the only possible 

vertex with degree less than  *   in  H
Rc  . 

Suppose that  ex(< Q >; H
 Rc ) > ( n - |Q| - 1)/2.  Then 

ex(< Qc >; H
 Rc ) ≥ ex(< Q >; H

 Rc) > ( n - |Q| - 1)/2  ≥ ( |Qc| - 1)/2  (the first 

inequality because  s
 Rc  Q, the third because  |Q| + |Qc| ≤ n).  Thus  

t(<Qc> ; H
 Rc  ) >  * +1, yielding a contradiction.  Claim 8  now follows.   

 

 
Thus both H

R
  and  H

 Rc  satisfy conditions (i), (ii), and (iii), with one possible 

exception:  in H
 R there may be two vertices with degree less than * :  s and  s

R
.  

If this occurs, we add parallel edges of the form  s s
R

 to H
 R  until one of two 

things happen:  either  s  or s
R

 has degree  *, or until  there is an odd order 

subgraph  < W >  containing both  s  and s
R 

 for which  t(< W >) = * + 1.  Let  H+  

denote H
 R with the added edges.   We first show that  H+  satisfies condition 

(iii).   To do so, we show that as we were adding edges between  s and s
R

 to H
 R

, 

we kept the property that any induced overfull odd subgraph  < Q >  has   

ex(< Q >, *) ≤ (n - |Q| - 1)/2.   If not, then since H
 R  originally satisfied 

property (iii),  both  s and s
R

 must be in Q, so  

ex(< Qc >; H+ ) ≥ ex(< Q >; H+ ).  But  if  ex(< Q >) > (n - |Q| - 1)/2, we have 
 

ex(< Qc >) > (n- |Q| - 1)/2 ≥ (|Qc | - 1)/2 , so that  t(<Qc >) > * + 1, a 
contradiction.  Thus, Property (iii)  is retained. 
 

Thus in the first case above that completes  H+  (s  or s
R

 has degree  * in H+ ), 

H+  now also satisfies conditions (i) – (iii).  In the latter case (multigraph  W  

containing both  s  and s
R 

 has t(< W >) = * + 1) , we use the shrinking operation 

to form multigraphs  H+
W

  and  H+
 Wc 

.  Because 
 

t(< W >) = * + 1, H+
 Wc  satisfies Halting Criterion 1B, and so is terminal – it has 

two vertices with degree less than  *   but we have made enough progress.  It is 
straightforward to check that it also contains the additional properties of 
Criterion 1B (because ex(< Wc >) > ex(< W >), but  t(< Wc >) ≤ t(< W>), we have  
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|W|<|Wc|, so  n(H+
 Wc ) < 2 n(G)/3; also as  t(< W >) = *+1,  (H+

Wc )  * ).   

It is also easy to check that the multigraph H+
W  

satisfies each of the key 

properties (i), (ii) and (iii).  Thus the algorithm can continue. 

 

We have thus verified Proposition 1, and shown that the reduction procedure 

can continue until the multigraphs obtained each satisfy one of the Halting 

Criterion 1A, 1B or 1C.  To see that the Criteria 1B and 1C carry with them all the 

claimed properties, let = (H).   

 

First suppose that as in 1B  we have  ex(H-s, ) ≥ n(H)/4.  A simple count shows 

that this forces (H) ≥ n(H)/2, and so of course (H) ≥ n(H)/2.  Moreover, since 

by condition (iii) ,  ex(H-s, ) ≤ ( n – n(H) )/2, we have n(H)/4 ≤ (n – n(H))/2 so  

n(H) ≤ 2n/3, as desired.   

 

If instead  H  satisfies 1C but not 1B, then because  H – s  is (H)-regular, it has 

excess (H)/2, so (H) < n(H)/2.  Thus if n(H) ≤ 2n/3, we get the desired 

inequality (H) ≤ n/3.  On the other hand, if n(H) > 2n/3, then again by property 

(iii), ex(H-s, k) ≤ ( n – n(H))/2, so (H)/2 ≤ ( n – n(H))/2 and so again (H) ≤ n/3. 

 

 If the original maximum degree of  G  was sufficiently small and a 

multigraph is terminated by Criterion 1C, we would not yet be guaranteed 

significant reduction to continue the algorithm and achieve our desired result.  

Thus we require Stage 2  of the reduction. 

 

 

Part 2 – Algorithm Stage 2 

 

 We now show that we can continue with a Stage 2 reduction that mimics, with 

some adjustments, the procedure in the previous stage, using splitting and 

removal of matchings  in order to reduce the multigraphs involved.  Now 

however the matchings we remove will sometimes need to be one edge short of 

being a 1-factor (when one vertex has degree 0) in which case not all vertex 

degrees are reduced.  Typically, then, we will be working with a multigraph   H  

in which each vertex has degree either  d  or  d+1 for some d ( these vertices we 

call Type 0 and Type 1 vertices, respectively), except possibly for a single vertex  
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s  for which deg(s) ≤ d.  In such a situation, we say that  H – s  is d-slack dominant 

if  sl(H – s, d) < sl( R, d)  for any odd-order, non-trivial proper subgraph  R  of  

H – s which has coboundary cardinality at most d.  A key observation is that then 

we must have  ex(H-s, d) > ex(R, d) + (n(H - s) – n(R))/2  for each such R.  Each 

time we remove a near 1-factor, we will create an additional Type 1 vertex, and 

generally this will be the only way such vertices are created.  We seek to reduce 

the multigraphs so they satisfy Halting Criterion 2A or 2B  below, mimicking 

what we did in Stage 1.  However, the existence of the Type 1 vertices makes 

things more complicated, and thus we also allow as successful terminal 

multigraphs those satisfying  Criterion 2C or 2D.  Recall that  G  denotes the 

multigraph we began with in Stage 1. 

 

Stage 2  Halting Criteria  (Employed after reaching criterion 1C ). 

 

Criterion 2A.  n(H) ≤ 8  or  (H) ≤ 2 ; cost(G  H) ≤ 1. 

 

Criterion 2B.  n(H) ≤ (2/3) n(G) , (H) ≥ n(H)/2, cost(G  H) ≤ 1. 

 

Criterion 2C.  n(H) ≤ (G) , n(H) ≤ n(G)/3 , cost(G  H) ≤ 2 . 

 

Criterion 2D. (H) ≤ 2 n(G)/9, (H) ≤  (G)/2, cost(G  H) ≤ 1. 

 

 

 

The flow of these Criteria is summarized in Figure 3  on the next page. 

 

If the number of Type 1 vertices is more than  d, this will show we have removed 

a significant number of matchings, and in fact we will show that the multigraph 

satisfies Criterion 2D (this is why Splitting Lemma 3 and the Matching Lemma 

that follow assume that the number of Type 1 vertices is at most  d).   The 

following Proposition therefore forms the basis for completing Stage 2.  We will 

show in our algorithm that if t(H - s) > d+1, then H  satisfies a Halting Criterion, 

so we assume in the Proposition that  t(H - s) ≤ d+1. 
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                                         Figure 3.  Flow of algorithm to halting criteria 

Multigraph 

      G ,  

Even order  n 

1A.   n(H)≤ 8 

or  (H) ≤ 2; 

cost(GH) ≤ 1 1C. 

min deg = 0 

max deg ≤ n/3 

1B.  n(H) ≤ 2n/3 

(H) ≥ n(H)/2 

cost(GH) ≤ 1 

2A.   n(H)≤ 8 

or  (H) ≤ 2; 

cost(GH) ≤ 1 

2B.  n(H) ≤ 2n/3 

(H) ≥ n(H)/2 

cost(GH) ≤ 1 

2C.  n(H) ≤ (G) 

n(H) ≤ n/3 

cost(GH) ≤ 2 

 

2D.  (H) ≤ 2n/9 

(H) ≤ (G)/2 

cost(GH) ≤ 1 
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Proposition 2.  Let  H  be an even order multigraph, with all vertex degrees 

either  d or d+1, except one vertex  s  has degree (possibly 0) at most d.  Assume 

H  has at most  d  vertices with degree d+1, that t(H - s) ≤ d+1 and (H) ≤ d+2.  

Then either 

 

(a) there is a non-trivial splitting of  H  whose resulting multigraphs satisfy 

either some Stage 2 Halting Criterion or the same degree and -value 

restrictions as H (though there may be two vertices with degree less than 

d), or 

(b) H  has a perfect or (if deg(s) = 0) near-perfect matching whose removal 

leaves at most one additional vertex with maximum degree. 

 

Using Proposition 2 as the foundation, we then show with some additional 

analysis that Stage 2 reduction can be completed as desired. 

 

Proof of Proposition 2.  The proof will follow from a sequence of four lemmas; 

the first three provide splitting rules, the fourth guarantees an appropriate 

matching when needed.  Lemmas 1-3 handle situations where (H) is 

respectively greater than, equal to, or less than  d; these are used when   

H – s  is not d-slack dominant. 

 

Splitting Lemma 1.   Let  H  be a multigraph of even order, with  (H) ≤ d + 1,  r  

vertices of degree  d+1, and d+1 < (H) ≤ d.  Let    < S >  be  

(d+1)-overfull in  H, and assume that  sl(< S >; d+1)  is a minimum among all  

(d+1)-overfull subgraphs.  Then: 

 

 (H
S 

) ≤ d, (H
S 

) ≤ d+2, and H
S
 has at most  r  vertices of degree d+1; 

similarly,  

 (H
Sc ) ≤ d, (H

Sc 
) ≤ d+2, and H

Sc has at most  r  vertices of degree d+1. 

Proof.  Because  < S >  is (d+1)-overfull, its coboundary cardinality is less than  

d+1, so shrinking  S  or Sc  will not create a new vertex of degree d+1, so the 

degree claims are easily verified.  Now let  M  be a matching of new edges, its 

vertices identified with those of  S, such that  | E(M) | = sl(< S >; d+1)   

(so  t(< S >  E(M)) = d).  Since adding a matching can increase  t(R)  for any 

subset  R  by at most  1, and since  S  has minimum (d+1)-slack among all (d+1)-
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overfull subgraphs of  H,  (H  E(M)) = d.  By Lemma B, we can add edges to 

expand  H E(M)  to a multigraph  H+  which is a  (d+2)-graph.  Then    

< S >  has maximum (d+2)-excess  0  in  H+, as does  <  Sc >.  Thus by Lemma G,   

(H+
S 

) ≤ d + 2  and  (H+
Sc 

) ≤ d + 2, so  (H
S 

) ≤ d+2 and   

(H
 Sc 

) ≤ d+2, and the result follows.    

 

 

Splitting Lemma 2.   Let  H  be a multigraph of even order, with  (H) ≤ d + 1,  

and suppose    < S >  is  (d+1)-full in  H  (i.e.  t(< S>) = d+1).  Let  r  denote the 

number of vertices of degree d+1  in  H.  Then: 

 

(H
S 

) ≤ d and  (H
S 

) ≤ d+1; moreover, H
S
 has at most   r  

vertices of degree d+1.  Also,  

(H
Sc 

) ≤ d, (H
Sc 

) ≤ d+1, and if H
Sc 

 has more than  r  vertices of 

degree  d+1, then it has exactly  r+1  vertices, each of degree d+1. 

 

Proof.  The bounds on the maximum degree and  values follow readily from 

Lemma G in the usual fashion if we first add edges to make the multigraph a 

(d+1)-graph.  The graphs obtained by the shrinking can have an additional 

vertex of degree  d+1  only if the coboundary cardinality |(S)| = d+1  in H.  But 

then in order to have t(< S; H >) = d+1, all vertices in  S  must have degree d+1. 

The result now follows.    

 

 

Splitting Lemma 3.  Let  H  be a multigraph with even order p ≥ 4.   

Suppose  d ≥ 2, and that except for one vertex  s  for which  deg(s) ≤ d, each 

vertex has degree  d  or  d+1, with  r ≤ d  vertices having degree  d+1.  Suppose 

that  H – s  is not d-slack dominant; that is, there exists a non-trivial odd order 

proper subgraph of  H – s  with  coboundary cardinality at most  d  and whose  

d-slack is less than or equal to   sl(H - s, d).  If  (H
 
) ≤ d + 1  then there is an odd-

order subset  S  of  V(H)  with  1 < | S | < p-1  such that  

 

(H
S 

) ≤ d,  (H
S 

) ≤ d + 1, and the number of vertices with degree  d+1  in H
S 

 

is at most  r,  and similarly 
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(H
Sc 

) ≤ d,  (H
Sc 

) ≤ d + 1, and the number of vertices with degree  d+1  in H
Sc 

 

is at most  r. 

 

Proof. 

Let R be a non-trivial odd order proper induced subgraph of  H – s  with  

coboundary cardinality at most  d  and sl( R, d) ≤  sl(H-s, d), with  R  chosen to 

have minimum slack among  such subgraphs.  Let  M  be a matching of new 

edges, its vertices identified with vertices of  R which have degree  d  in H, such 

that  | E(M) | = sl( R, d)  (so t( R  E(M)) = d + 1).  Such a matching is guaranteed 

to exist because  R  is  d-full or d-overfull with | cobound(R) | ≤ d  and each 

vertex of  R  has degree at least  d  in H.  Since adding a matching can increase  

t(L)  for any subgraph L   by at most  1, and since  R  has minimum d-slack 

among subgraphs of  H - s  with coboundary cardinality at most  d,   

(H - s  E(M)) = d + 1.  It may be however that  (H  E(M)) > d+1, if there 

were a subgraph of  H  E(M) containing  s  that is  (d+1)-overfull.  Thus, we 

select M‟ to be a minimal subset of  M  such that H  E(M‟)  has a (d+1)-full 

subgraph (it is quite possible that  M‟ = M), and let  S  be the vertex set of that 

subgraph.  By construction, the subgraph of  H  induced by  S  has coboundary 

cardinality at most  d (if  M‟ ≠ M  and thus  S  contains  s, its coboundary 

cardinality is less than  d+1  because  s  has degree at most d, and   

< S; H  E(M‟)>  is  (d+1)-full).  By Lemma B, we can add edges to expand   

H E(M‟)  to a multigraph  H+  which is a  (d + 1)-graph.  Then   < S >  has 

maximum excess  0  in  H+, as does  <  Sc >.  Thus by Lemma G,  (H+
S 

) ≤ d + 1 

and  (H+
 Sc ) ≤ d + 1, so   (H

S 
) ≤ d+ 1   and  (H Sc 

) ≤ d + 1.  Finally, as the 

subgraph of  H  induced by  S  has coboundary cardinality at most  d , the degree 

conditions on H
S 

and H Sc  follow as desired.    

 

Matching Lemma.  Let  H  be a multigraph with even order p ≥ 4.   

Suppose  d ≥ 2, and that except for one vertex  s  for which  deg(s) ≤ d, each 

vertex has degree  d  or  d+1, with at most  d  vertices having degree  d+1, and at 

least one vertex other than  s  having degree d.  Suppose that    

ex(H-s, d) < p/4, and that H - s  is d-slack-dominant.  Then: 

 if deg(s) > 0, then H has a perfect matching, and 

 if deg(s) = 0, then there is a vertex  v  of  H  with degree  d, such that  

H – s – v  has a perfect matching. 
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Proof.  Let  H  be a multigraph with the degree properties given above, and 

suppose that  H – s  is d-slack-dominant with ex (H-s, d) < p/4.  Because the 

excess is an integer and  p  is even, then  ex (H-s, d) < (p-1)/4 . 

 

Let  H ′  be that multigraph obtained from  H  according to the rule that  H ′ = H  

if  deg(s) >0, and if deg(s)=0 then  H ′  = H + e, where  e  is an edge  added 

between  s  and some vertex  v  with degree  d  in H.  If some vertex of degree  d  

is adjacent to a vertex of degree  d+1  in H, we choose  v  to be such a vertex; 

otherwise we place no additional restriction on the choice of v.   

Note that  H ′  – s = H - s, so  ex(H ′ - s, d) < (p-1)/4  and  H ′ -s  is   

d-slack-dominant.  However,  H ′   has up to  d+1  vertices of degree  d+1.  The 

Lemma will be proved if we can show that  H ′   has a perfect matching. 

 

Suppose that  H ′   has no perfect matching.  Because  H ′   has even order,  by 

Tutte‟s Theorem there is a set  S  of  m  vertices  in  H ′   such that  H ′  – S  has at 

least  m+2  odd order components.  We consider two cases. 

 

Case 1.  A non-trivial odd component  R  of  H ′ – S  not containing  s  has 

coboundary cardinality  k ≤ d in H ′.   

 

Because  ex(H ′ -s, d) < (p-1)/4, and H ′ - s  is d-slack-dominant,  at most one such 

component  R  can exist, for it must have order greater than p/2.  Let  x , y 

respectively  denote the number of vertices of  H ′ - s  not in  R  which have 

degree  d, d+1  in H ′, and let  j = deg(s).  Then   

ex(R, d) + (y + k – j)/2 =  ex(H ′- s, d)  > ex(R, d) + (x + y)/2, the inequality 

following as  H ′ -s has x+y more vertices than does R  and sl(R, d) >  sl(H ′ – s, d) 

because  H ′ - s  is d-slack dominant.  Thus  k – j > x. 

 

Clearly the  m  vertices of  S  have degree sum at most m(d+1)  in  H ′.  But now 

consider the  m+2 or more odd order components of  H ′ – S.  In addition to the 

component containing  s (if there is one), and the component R, let  a  of them 

have d  edges in  H ′  joining them to members of  S  (each of these must be 

singleton vertices by the uniqueness of R), and the remaining  b  components 

have at least  d+1  edges each joining them to members of  S, where  a+b ≥ m.  
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But  a ≤ x < k-j.  Thus the total number of edges in  H ′  joining the odd 

components of  H ′ – S  to vertices in  S  is at least   

k + ad + b(d+1) ≥ k + b + md > a + b + md ≥ m(d+1), a contradiction since the m 

vertices of S each have degree at most d+1.  Thus  H ′  must have a perfect 

matching. 

 

Case 2.  Each non-trivial odd component of  H ′ – S  not containing  s  has 

coboundary cardinality at least  d+1  in H ′. 

 

Because the degree of  s  is at least 1, the (possibly trivial) odd components of   

H ′  – S  have total coboundary cardinality at least (m+1)d + 1  in  H ′.  On the 

other hand, letting  t  denote the number of Type 1 vertices (vertices with degree  

d+1) in S, the degree sum in  H ′   of vertices in  S  is at most  md + t ≤ md + d + 1 

= (m+1)d + 1.  Because this sum must be at least as large as the coboundary 

cardinality of the odd components of  H ′ – S, we conclude we must have equality 

in the equation above so that  t = d + 1, so  S  contains all d+1 of the Type 1 

vertices of H ′   (one of which is the earlier designated vertex  v  incident with  e), 

with all their incident edges joining them to odd component vertices of  H ′ – S.  

But  v  is then not adjacent to a vertex of degree  d+1, contradicting the rule for 

its selection.  The result follows.    

 

The four previous Lemmas together provide the proof of Proposition 2. 

 

 

 

Finally, we present our reduction algorithm for Stage 2.  Denote by  G2  the 

multigraph with which we enter Stage 2.  Recall that  ( G2) ≤ n/3, where n = 

n(G).  After a sequence of reductions in which  m  matchings have been removed, 

we let   d =  (G2) – m.  Thus  d  would be the maximum degree of our current 

multigraph  H, if each matching had been a 1-factor.  Suppose our multigraph  H  

has  (H) ≤ d+1  and  (H) ≤d+2, that vertex  s  has minimum degree, and  H  

does not satisfy any of the Criteria 2A, 2B, 2C or 2D.   
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The next step of the algorithm is given; we would iterate on any resulting 

multigraphs until all reach one of the four Stage 2  Halting Criteria. 
 

1.   If (H) > d+1, let  < S >  have minimum (d+1)-slack value among (d+1)-
overfull subgraphs, and perform the splitting to get reduced 
subgraphs  G

S
 and G 

Sc  as in Splitting Lemma 1.  (By observation  

D  below, this splitting in non-trivial and results in two 
multigraphs whose order is less than  n(H)). 

 

2.   Else if (H) = d+1, and there exists a subgraph  < S > with   

1 < S < n(H) – 1  and  t(<S>) = d+1, perform the splitting 
described in Splitting Lemma 2.  We note that if the number of 
Type 1 vertices increases in one of these shrinkings, the resulting 
multigraph has all vertices of degree d+1, and it is easy to check 
that this is then a terminal multigraph satisfying Criterion 2B, as 
shown in observation B below. 

 
3.   Else if there are at least two vertices  s, w  with degree less than  d, add 

an edge sw; 
 Note: if we reach this operation, adding the edge will not increase  

  above d+1, else we would be in Case 2. 
 
4. Else H satisfies the conditions of either Splitting Lemma 3  or the 

Matching Lemma, depending on whether on not  H – s  is  d-slack 
dominant.   We apply the appropriate Lemma to get the desired 
reduction. 

 
 

At each step we reduce either  d(H)  or  n(H) (or add an edge without increasing 
them), so the algorithm eventually terminates.  We complete the verification of 
Proposition 2 and the Stage 2 algorithm by verifying the following Observations 
on a non-terminal multigraph  H  formed during Phase 2. 
 

A. (H) ≤ d(H) + 2.  (This guarantees that cost(GH) ≤ 2). 
 To see this, note that by the algorithm design, the first time we 

obtain a multigraph  H  for which  (H) > d(H) + 1, we have just 

removed a matching, and  (H) = d(H) + 2.  But for a multigraph  H  
with these properties, Case 1 of the algorithm applies, and thus the  

 –value will never surpass the d-value by more than 2. 
 
B. If a new Type 1  vertex is created in Splitting Lemma 2, the resulting 

multigraph   H
Sc 

 is terminal.   (Thus if the algorithm needs to continue, 
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the only way that Type 1 vertices have been created is by removal of 
near 1-factors).    

To see this, recall that in the algorithm there are only two ways that 
a Type 1  vertex can be created: using the Matching Lemma to 
remove a near 1-factor may change a Type 0  vertex to a Type 1 
vertex, or the new vertex created in forming H

Sc 
 in Splitting 

Lemma 2 may be Type 1.  So, assume that we reach the situation 
where a Type 1 vertex is produced by Splitting Lemma 2.  By that 
Lemma, all vertices in  H

Sc 
 have degree  d(H) + 1.  Thus   

n(H
Sc)  ≤ 1 +  mr(G2H) ≤  (G2).  Thus  n(H

Sc)  ≤ (G), and  

n(H
Sc)  ≤ n(G)/3, so   H

Sc  
is terminal under criterion 2C. 

 

C. If   (H) ≤ d(H)+1, at most  d = d(H)  vertices are Type 1 (this is needed 
to apply Splitting Lemma 3 or the Matching Lemma). 

 To verify this, recall that when an iteration on a multigraph that is 
not terminal is being considered, the number of Type 1 vertices is at 

most the matching reduction number mr(G2H), measured 

starting from G2.  Suppose there are  r > d  Type 1 vertices.  As  G2  

is the multigraph that began Stage 2, we have that   

n/3 ≥ ( G2) ≥ d+r ≥ 2d + 1, and therefore  ( G2) ≥ 2d+2  since   

( G2)  > ( G2) .  We then have (H) ≤ (G)/2.  Also, since  

(n/3)/(2d+1) ≥ 1 , (H) ≤ [(d+1)/(2d+1)] (n/3) < 2n/9  for d ≥ 2 .  
Thus  H  would satisfy Criterion 2D, a contradiction. 

 
D. t(H-s) ≤ d+1.   (Thus if we do the splitting in Case 1  of the algorithm, 

we get a real reduction, as we are not shrinking on  H-s  and its 
complement).       

 To verify this property, suppose t(H-s) > d+1, and again let  r  
denote the number of Type 1 vertices in H.  As before, we must 

have  n/3 ≥ ( G2) ≥ d+r, and also  (G)  ( G2) ≥ d+r .  But   

t(H-s) > d+1  implies that  if  H  has  k  vertices other than  s   with 
degree less than d+1, H-s  must have at least  (d+1) (r + k – 1)/2 + 1  
edges, so its degree sum, which can be no more than  r(d+1) + kd,  
must be at least  (d+1)(r + k –1) + 2, so that  k ≤ d-1.   

Thus  n(H) ≤ r + d.  It follows that  n(H) ≤ (G), and n(H) ≤ n/3, so 
that  H  would satisfy Halting Criterion 2C, a contradiction.   
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Part 3 – Reduction Verification 

 

It remains to show that  if each terminal multigraph H in an iteration of the 

reduction process always satisfies one of the Halting Criteria 1A, 1B, 2A, 2B, 2C 

or 2D , then the theorem is true.   In view of Lemma A‟, it suffices to show that 

when cost(GH) = k, we have  

min { n(H)/3, (H) } ≤ (2/3)k min { n(G)/3, (G) }. 

 

We consider the possible criteria in turn.  If H satisfies 1A or 2A, it is actually 

possible that  min{ n(H)/3, (H) } is not sufficiently reduced.  But we know that  

‟ (H) = (H) under these conditions, so we can remove additional matchings 

that each time reduce (H) by one, so that min{ n(H)/3, (H) } is eventually small 

enough. 

 

Next suppose  H  satisfies 1B or 2B.  If min { n(G)/3, (G) } = n(G)/3, the 

reduction in n(H) is sufficient, so assume min { n(G)/3, (G) } =  (G) .  But   

n(H) ≤ 2 (H) ≤ 2 (G), so min { n(H)/3, (H) } ≤ (2/3) min { n(G)/3, (G) } as 

desired. 

 

Next suppose H satisfies Criterion 2C.  Again, if min { n(G)/3, (G) } = n(G)/3, 

the reduction in n(H) is sufficient, so assume min { n(G)/3, (G) } =  (G) .  

Because  n(H) ≤ (G), we have 

 min { n(H)/3, (H) } } ≤ (G)/3 ≤ (2/3)2 min { n(G)/3, (G) }, as desired. 

 

Finally, suppose H satisfies Criterion 2D.  If min { n(G)/3, (G) } = n(G)/3, then 

since (H) ≤ 2n(G)/9, we have the desired relation  

min { n(H)/3, (H) } ≤ (2/3) min { n(G)/3, (G) }.  Finally, if  

min { n(G)/3, (G) } = (G), then because (H) ≤ (G)/2, we again have the 

desired reduction. 

 
Thus since we can achieve the reductions with Halting Criteria as claimed, the 
proof follows. 
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We close with three comments.  First, it is interesting to note that interrelations 

between  n  and   were a key to this proof, so that for example trying to directly 

prove that   „ (G) ≤  (G) + log ( (G))   does not appear to be any simpler than 

getting our result.  Second, in order to improve the result in this paper 

significantly, the most promising approach would seem to be to be more 

selective in choosing matchings that are removed; in our process, the matchings 

were selected arbitrarily.  Finally, in trying to implement the algorithm, the main 

stumbling point would be identifying subgraphs whose slack is a minimum; 

indeed, this task could be NP-hard.  It seems natural to instead adjust the 

algorithm to shrink on subgraphs with maximum fractional chromatic index.  

Although this approach fits better with other theory, it creates other complexities 

that would need to be overcome. 
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