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MULTIDIMENSIONAL TAUBERIAN THEOREMS FOR

WAVELET AND NON-WAVELET TRANSFORMS

STEVAN PILIPOVIĆ AND JASSON VINDAS

Abstract. We provide Abelian and Tauberian theorems for regulariza-
tion transforms of tempered distributions with values in Banach spaces,
that is, transforms of the form M f

ϕ(x, y) = (f ∗ ϕy)(x), where ϕ is a

test function and ϕy(·) = y−nϕ(·/y). If the first moment of ϕ vanishes,
it is a wavelet type transform; otherwise, we say it is a non-wavelet
type transform. It is shown that the scaling asymptotic properties of
distributions can be completely characterized by boundary asymptotics
of the wavelet and non-wavelet transforms plus natural Tauberian hy-
potheses. We apply our Tauberian results to the analysis of pointwise
and local regularity of Banach space valued distributions. We also give
applications to regularity theory within generalized function algebras,
the stabilizations of solutions for a class of Cauchy’s problems, for ex-
ample ut = ∆2ku, and Tauberian theorems for the Laplace transform;
in addition, we find a necessary and sufficient condition for the existence
of f(t0, ξ) ∈ S

′(Rn
ξ ), where f(t, ξ) ∈ S

′(Rn
t × R

n
ξ ).

1. Introduction

The aim of this paper is to characterize scaling asymptotic properties of
vector valued tempered distributions in terms of Tauberian type theorems
for integral transforms arising from regularizations.

Fix ϕ ∈ S(Rn) and set ϕy(·) = y−nϕ(·/y), for y > 0. To a tempered
distribution f , we associate the integral transform given by

(1.1) Mf
ϕ(x, y) := (f ∗ ϕy)(x) , (x, y) ∈ R

n × R+ ;

it is a C∞-function on the upper half-plane. Such a transform has been
studied by Drozhzhinov and Zavialov in [5, 6]; they named it the standard
average of f with respect to ϕ. Depending whether the integral of ϕ vanishes
or not, the transform is of wavelet or non-wavelet type. The common name
we use in this article for both transforms is the regularizing transform.
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In this article we provide Abelian and Tauberian theorems related to reg-
ularizing transforms of Banach space-valued distributions in S ′(Rn, E) and
S ′
0(R

n, E), (cf. [48] for vector-valued distributions). Moreover, in Section 7,
we show that a locally convex space-valued distribution f (X-valued one) sat-
isfying a Tauberian boundedness condition for M f

ϕ(x, y), (x, y) ∈ R
n×(0,∞)

or (x, y) ∈ R
n × (0, 1) in the Banach space E ⊂ X, is actually an E-valued

distribution up to an X valued distribution with support at zero or with a
controled compact support around zero.

We follow the approach of [7] and consider quasiasymptotics as a mesuare-
ment of scaling asymptotic properties within the quoted spaces of vector
valued generalized functions: the distributional limit of f(x0 + εx)/c(ε) →
g, ε→ 0, or f(λx)/c(λ) → g, λ→ ∞, where g must be homogeneous with de-
gree of homogeneity α as a distribution with values in E, i.e., g(at) = aαg(t),
for all a ∈ R+ while c(t), t > 0 must be of the form tαL(t), with L slowly
varying at zero or at infinity.

The precise relation between quasiasymptotics in S ′
0(Rn, E) and S ′(Rn, E)

is important for the Abelian and Tauberian type results since our basic tool is
actually the wavelet analysis on the space of E-valued tempered distributions
S ′
0(R

n, E). Because of that, we consider also asymptotically homogeneous
and associate homogeneous functions. They are intrinsically involved in
the study of asymptotic properties of distributions at a finite point and at
infinity. We refer to [51, 52, 53, 54, 60] (see also de Haan theory in [1]) for
the properties of such functions as well as of slowly varying functions.

Let us remark that all our results are formulated for the quasiasymp-
totic boundedness and the quasiasymptotic behaviour of a Banach-valued
distribution at a finite point and at infinity. They are related to those of
Drozhzhinov and Zavialov [5, 6], and also to those of the authors and D.
Rakić about the wavelet transform.

The paper is organized as follows. After introducing basic notions in
Section 2, we extend in Section 3 the wavelet analysis given in [19, 20] to
E-valued distributions, formulate a Tauberian boundedness condition and
present examples of wavelet and non-wavelet transforms which correspond
to specially chosen non-degenerate test functions ϕ [61]. We show that
the non-wavelet type transform is involved in the notion of summability of
divergent series [1, 18, 27, 70] and in a solution to certain Cauchy problems
(for example ∆ku = f). Our class of non-degenerate functions ϕ contains
Drozhzhinov-Zavialov wavelets [4, 8] as a proper subclass. We show how the
Laplace transform of a distribution supported by a cone can be expressed
as a φ-transform. Moreover, our φ-transform is used in embedding and
characterization of distributions within certain generalized function algebras
[2, 35]. Then we extend the scalar distribution wavelet analysis given in
[19, 20] to E-valued distributions and prepare the ground for the vector-
valued theory given in the next four sections.
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Our Abelian result in Section 4 is essentially due to Drozhzhinov and Za-
vialov [5, 6], but we refine their results by adding some information through
uniformity conditions included in the asymptotic behavior of the transform.

In Section 5 we present wavelet Tauberian results concerning quasiasymp-
totics in S0(Rn, E) through the form of a Tauberian boundedness condition
on the sphere |x|2 + y2 = 1, y > 0, x ∈ R

n. With this condition we for-
mulate our Tauberian results for the φ-transform and the quasiasymptotic
boundedness and quasiasymptotic behavior in the sense of the topology of
S ′
0(R

n, E).
Our main results in Section 6 are the Tauberian theorems for the φ− and

wavelet transforms in S ′(Rn, E). It involves associate asymptotically homo-
geneous and homogeneously bounded functions implying the transfer of the
Tauberian theorems for the wavelet transform and the extension theorems
for distributions defined on R

n \ {0} to distributions on R
n.

Section 7 is devoted to global and local class estimate related to f taking
values in a “broad” locally convex space which contains the narrower Banach
space E, with M f

φ(x, y), (x, y) ∈ R
n × (0,∞) satisfying Tauberian bounded-

ness condition in E. In this case there exists a distribution G with values in
the broad space such that supp Ĝ ⊆ {0} and f−G ∈ S ′(Rn, E). In case when
the broad space is a normed one, G reduces simply to a polynomial. If the
Tauberian boundedness condition holds locally, i.e. for (x, y) ∈ R

n × (0, 1],

we call it a local class estimate, then f − G ∈ S ′(Rn, E), where Ĝ has
compact support but its support may not be any longer the origin.

Applications of our theory are given in Section 8. Estrada’s distribu-
tionally small distributions, element of the dual space for K (the space of
symbols studied in [17]) are characterized through our Tauberian type the-
orems. This enables us to give, as our first application, the complete distri-
butional asymptotic expansion of Riemann’s “nondifferentiable function” at
t = 0 and t = 1. Regularity properties of distributions embedded into gener-
alized function algebra with prescribed boundedness condition are studied
as our second application. We show that under certain growth condition
with respect to ε for (f ∗ ϕε)ε, f ∈ S ′(Rn), f is a smooth function with
all derivatives being polinomially bounded. The third application is related
to the asymptotic stabilization in time of solutions for Cauchy problems.
Representing solutions by the use of kernels with appropriate properties,
we find necessary conditions for the time stabilization for a solution of an
evolution equation ut−P (∂/∂x)u = 0, u|t=0 = f , with a homogeneous poly-
nomial P. As a fourth application we present Tauberian theorems for Laplace
transforms of f , supp f ⊂ Γ with the less restrictive conditions than those
obtained in [3, 64] concerning the cone Γ. Then we apply our result for the
Laplace transform and obtain a new proof of Littlewood’s Tauberian theo-
rem [18, 27, 29]. As the last application we provide a new and very short
proof of the fact that the quasiasymptotics (boundedness or behaviour) of
f ∈ S ′(Rn;E) over D(Rn) is equivalent to the quasiasymptotics over S(Rn).



4 S. PILIPOVIĆ AND J. VINDAS

In Section 9 we extend our result to a more general setting; all the re-
sults from Sections 3–7 hold if we replace the Banach space E by a regular
injective inductive limit of an increasing limit of Banach spaces En, n ∈ N

([47], [28]), which have the property that a bounded set in the lim indn→∞

is actually bounded in some En0 . As an application we give a necessary and
sufficient condition for a tempered distribution f on R

n
t ×R

m
ξ to have trace

at at t = t0, i.e. for the existence of f(t0, ·) in S ′(Rm).
Applications of our results to several topics in local and microlocal anal-

ysis of Meyer, Jaffard, Holschneider and Boni [20, 26, 34] will be given in
our next article.

The purpose of the Appendix is to show precise connections between
quasiasymptotics in the spaces S ′

0(R
n, E) and S ′(Rn, E).

2. Notation and Preliminaries

We use the notation H
n+1 = R

n × R+; Sn−1 is the unit sphere; |x| is the
Euclidean norm, x ∈ R

n; |m| = m1 + m2 + · · · + mn, for m ∈ N
n, where N

includes 0; ϕ(m) = (∂|m|/∂xm)ϕ, m ∈ N
n. The space E always denotes a

fixed, but arbitrary, Banach space with norm ‖ · ‖. If a : I 7→ E and T : I 7→
R+, where I = (0, A) (resp. I = (A,∞)) we write a(y) = o(T (y)) as y → 0+

(resp. y → ∞) if ‖a(y)‖ = o(T (y)), and similarly for the big O Landau
symbol; ; let v ∈ E, we write a(y) ∼ T (y)v if a(y) = T (y)v + o(T (y)).

2.1. Spaces of Distributions. The Schwartz spaces [43] of smooth com-
pactly supported and rapidly decreasing test functions are denoted by D(Rn)
and S(Rn); their dual spaces, the scalar spaces of distributions and tempered
distributions, are D′(Rn) and S ′(Rn). We denote by E(Rn) the space of C∞-
functions, then E ′(Rn) is the space of compactly supported distributions. We
will use the Fourier transform ϕ̂(u) =

∫
Rn ϕ(t)e−iu·tdt, u ∈ R

n, ϕ ∈ S(Rn).
Following [19], we define the space S0(R

n) of highly time-frequency local-
ized functions over Rn as those elements of S(Rn) for which all the moments
vanish, i.e., η ∈ S0(R

n) if and only if
∫
Rn t

mη(t)dt = 0, for all m ∈ N
n. It

is provided with the relative topology inhered from S(Rn). This is space is
also known as the Lizorkin space [30, 40], and it is invariant under Riesz
potential operators. We must emphasize that S0(R

n) is different from the
one used in [7]. The corresponding space of highly localized function over
H
n+1 is denoted by S(Hn+1). It consists of those Φ ∈ C∞(Hn+1) for which

sup
(x,y)∈Hn+1

(
y +

1

y

)k1
(1 + |x|)k2

∣∣∣∣
∂l

∂yl
∂m

∂xm
Φ(x, y)

∣∣∣∣ <∞,

for all k1, k2, l ∈ N and m ∈ N
n. The canonical topology of this space is

defined in the standard way [19].
Let A(Ω) be a topological vector space of test function over an open sub-

set Ω ⊆ R
n. We denote by A′(Ω, E) = Lb(A(Ω), E), the space of continuous

linear mappings from A(Ω) to E with the topology of uniform convergence
over bounded subsets [50] of A(Ω). We are mainly concerned with the spaces
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D′(Rn, E), S ′(Rn, E), S ′
0(R

n, E), and S ′(Hn+1, E); see [48] for vector-valued
distributions. Let f be in one of these spaces of E-valued generalized func-
tions and let ϕ be in the corresponding space of test functions; the value
of f at ϕ will be denoted by 〈f , ϕ〉 = 〈f(t), ϕ(t)〉 ∈ E. If f is a scalar
generalized function and v ∈ E, we denote by fv = vf the E-valued gener-
alized function given by 〈f(t)v, ϕ(t)〉 = 〈f, ϕ〉v. The Fourier transform of

f ∈ S ′(Rn, E) is defined in the usual way, i.e.,
〈
f̂(u), ϕ(u)

〉
= 〈f(t), ϕ̂(t)〉 ,

ϕ ∈ S(Rn).
Observe that we have a well defined continuous linear projector from

S ′(Rn, E) onto S ′
0(Rn, E) as the restriction of E-valued tempered distribu-

tions to the closed subspace S0(R
n). It is clear that this map is surjective;

however, it has no continuous right inverse [12]. We do not want to intro-
duce a notation for this map, so if f ∈ S ′(Rn, E), we will keep calling by f its
projection onto S ′

0(R
n, E). Note also that the kernel of this projection is the

space of polynomials over R
n with coefficients in E (E-valued polynomials);

therefore, S ′
0(Rn, E) can be regarded as the quotient space of S ′(Rn, E) by

the space of E-valued polynomials.
If f is a continuous E-valued function of tempered growth on R

n, we
make the usual identification with the element f ∈ S ′(Rn, E), that is,
〈f(t), ϕ( t)〉 :=

∫
Rn f(t)ϕ(t)dt. On the other hand, our convention is dif-

ferent for the space S ′(Hn+1, E). Let K ∈ C(Hn+1, E), we say that it is of
slow growth on H

n+1 if there exist C > 0 and k, l ∈ N such that

‖K(x, y)‖ ≤ C

(
1

y
+ y

)k
(1 + |x|)l, (x, y) ∈ H

n+1;

we shall identify K ∈ S ′(Hn+1, E) by

〈K(x, y),Φ(x, y)〉 :=

∫ ∞

0

∫

Rn

K(x, y)Φ(x, y)
dxdy

y
, Φ ∈ S(Hn+1).

The choice of y−1dxdy instead of dxdy will be clear in Subsection 3.3 below.

2.2. Quasiasymptotics. The quasiasymptotics [6, 7, 15, 37, 51, 52, 60, 64]
measure the scaling asymptotic properties of a distribution by asymptotic
comparison with Karamata regularly varying functions. Recall a measurable
real valued function, defined and positive on an interval (0, A] (resp. [A,∞)),
A > 0, is called slowly varying at the origin (resp. at infinity) [1, 44] if

lim
ε→0+

L(aε)

L(ε)
= 1

(
resp. lim

λ→∞

L(aλ)

L(λ)
= 1

)
.

Observe that slowly varying functions are very convenient objects to be em-
ployed in wavelet analysis since they are asymptotic invariant under rescaling
at small scale (resp. large scale).

In the next definition A(Rn) is assumed to be a space of functions for
which the dilations and translations are continuous operators; consequently,
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these two operations can be canonically defined on A′(Rn, E). Our interest
is in A = D,S,S0.

Definition 2.1. Let f ∈ A′(Rn, E) and let L be slowly varying at the origin
(resp. at infinity). We say that:

(i) f is quasiasymptotically bounded of degree α ∈ R at the point x0 ∈ R
n

(resp. at infinity) with respect to L in A′(Rn, E) if

sup
0<ε≤1

1

εαL(ε)
‖〈f (x0 + εt) , ϕ(t)〉‖ <∞, for each ϕ ∈ A(Rn),

(
resp. sup

1≤λ

1

λαL(λ)
‖〈f (λt) , ϕ(t)〉‖ <∞

)
.

In such a case we write,

f (x0 + εt) = O (εαL(ε)) as ε→ 0+ in A′(Rn, E)
(
resp. f (λt) = O (λαL(λ)) as λ→ ∞ in A′(Rn, E)

)
.

(ii) f has quasiasymptotic behavior of degree α ∈ R at the point x0 ∈ R
n

(resp. at infinity) with respect to L in A′(Rn, E) if there exists g ∈
A′(Rn, E) such that for each ϕ ∈ A(Rn) the following limit holds
with respect to the norm of E

lim
ε→0+

1

εαL(ε)
〈f (x0 + εt) , ϕ(t)〉 = 〈g(t), ϕ(t)〉 ∈ E,

(
resp. lim

λ→∞

1

λαL(λ)
〈f (λt) , ϕ(t)〉

)
.

We write

(2.1) f (x0 + εt) ∼ εαL(ε)g(t) as ε→ 0+ in A′(Rn, E)
(
resp. f (λt) ∼ λαL(λ)g(t) as λ→ ∞ in A′(Rn, E)

)
.

We shall also employ the following notation for denoting the quasiasymp-
totic behavior (2.1)

f (x0 + εt) = εαL(ε)g(t) + o (εαL(ε)) as ε→ 0+ in A′(Rn, E)
(
resp. f (λt) = λαL(λ)g(t) + o (λαL(λ)) as λ→ ∞ in A′(Rn, E)

)
,

which has certain advantage when considering (quasi)asymptotic expan-
sions.

It is easy to show [15, 37, 64] that g in (2.1) must be homogeneous with
degree of homogeneity α as a generalized function in A′(Rn, E), i.e., g(at) =
aαg(t), for all a ∈ R+. We refer to [7] for an excellent presentation of the
theory of multidimensional homogeneous distributions; such results are valid
for E-valued distributions too.

Let f ∈ S ′(Rn, E) have quasiasymptotic behavior (resp. be quasiasymp-
totically bounded) in S ′(Rn, E), it is trivial to see that f has the same quasi-
asymptotic properties when it is seen as an element of S ′

0(Rn, E); however,
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the converse is in general not true. The precise relation between quasi-
asymptotics in S ′

0(R
n, E) and S ′(Rn, E) will be of vital importance for our

further investigations, it will be studied in detail in the Appendix A (see
Propositions A.1 and A.2).

Example 2.2.  Lojasiewicz point values. If A′(Rn, E) = D′(Rn, E), α = 0
and g(t) = v ∈ E, a constant E-valued distribution, in (ii) of Definition 2.1
(as ε→ 0+), then we say that the distributional point value of f at x0 is v.
We denote this by f(x0) = v, distributionally. The notion of point values
for distributions is due to  Lojasiewicz [31, 32] (see also [16, 55, 56]).

Example 2.3. Moment asymptotic expansions. Let f ∈ E ′(Rn, E), a com-
pactly supportedE-valued distribution. Then f satisfies the Estrada-Kanwal
moment asymptotic expansion [13, 15], i.e.,

(2.2) f(λt) ∼
∞∑

|m|=0

(−1)|m|

m!λ|m|+n
δ(m)(t)µm(f) as λ→ ∞ in S ′(Rn, E),

where µm(f) = 〈f(t), tm〉 ∈ E are the moments of f , in the sense that if
ϕ ∈ S(Rn), then, for each N ∈ N,

〈f(λt), ϕ(t)〉 =
∑

|m|≤N

ϕ(m)(0)

m!λ|m|+n
µm(f) +O

(
1

λN+n+1

)
as λ→ ∞,

Consequently, this shows that the quasiasymptotics of distributions is not a
local notion at infinity; in contrast with the the case at finite points where
the notion is actually local. The moment asymptotic expansion is valid
in many other important distribution spaces [15]. Distributions having an
expansion of the type (2.2) are said to be distributionally small at infinity, we
shall provide a wavelet characterization of such distributions in Subsection
8.1. We refer to [15] for the numerous and interesting applications of the
moment asymptotic expansions.

3. Wavelet and Non-Wavelet Transforms of E-valued

Distributions

We shall present in Subsection 3.1 some basic properties of wavelet and
non-wavelet type transforms of E-valued tempered distributions. We then
discuss examples in Subsection 3.2. Section 3.3 deals with wavelet analysis
on the space S ′

0(Rn, E). For test functions we set ϕ̌(·) = ϕ(−·) and ϕy(·) =
y−nϕ(·/y). The moments of ϕ are denoted by µm(ϕ) =

∫
Rn t

mϕ(t)dt, m ∈
N
n.

3.1. Wavelet and Non-Wavelet Transforms. Let f ∈ S ′(Rn, E). We
set, as in the introduction,

(3.1) M f
ϕ(x, y) := (f ∗ ϕy)(x) ∈ E, (x, y) ∈ H

n+1,
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the regularazing transform of f with respect to the test function ϕ ∈ S(Rn).
Notice that M f

ϕ ∈ C∞(Hn+1, E).
We shall distinguish two cases of the regularazing transform.
If µ0(ϕ) 6= 0, we say that (3.1) is a non-wavelet type transform. Further-

more, let φ ∈ S(Rn) be such that µ0(φ) =
∫
Rn φ(t)dt = 1. The φ−transform

of f is

(3.2) Fφf(x, y) := M f
φ̌
(x, y) = 〈f(x+ yt), φ(t)〉 ∈ E, (x, y) ∈ H

n+1.

It should be observed that the φ−transform essentially encloses all non-
wavelet cases of (3.1) after a normalization. The terminology of φ−transforms
is from [16, 55, 58, 59].

The second case of (3.1) is the wavelet one, i.e., µ0(ϕ) = 0. Let ψ ∈ S(Rn)
satisfy µ0(ψ) =

∫
Rn ψ(t)dt = 0, we then call ψ a wavelet. The wavelet

transform of f with respect to ψ is defined by

(3.3) Wψf(x, y) := M f
ˇ̄ψ
(x, y) =

〈
f(x + yt), ψ̄(t)

〉
∈ E, (x, y) ∈ H

n+1.

In the sequel we shall restrict our attention to those wavelets which posses
nice reconstruction properties (cf. Subsection 3.3 below).

Definition 3.1. We say that the test function ϕ ∈ S(Rn) is non-degenerate
if for any ω ∈ S

n−1 the function of one variable Rω(r) = ϕ̂(rω) ∈ C∞[0,∞)
is not identically zero, that is,

suppRω 6= ∅, for each ω ∈ S
n−1.

We say that ψ ∈ S(Rn) is a non-degenerate wavelet if it is a non-degenerate
test function and additionally µ0(ψ) = 0.

Obviously, test functions for which µ0(ϕ) 6= 0 are always non-degenerate.
We mention particular important cases of non-degenerate wavelets in Ex-
ample 3.7.

There is a remarkable difference between the wavelet and non-wavelet
transforms. Indeed, the following proposition shows such a difference. We
give a quick proof of it by using  Lojasiewicz point values (cf. Example 2.2),
the argument is essentially the same as in [58].

Proposition 3.2. Let f ∈ S ′(Rn, E) and let φ ∈ S(Rn), then

(3.4) lim
y→0+

M f
ϕ(·, y) = µ0(ϕ)f , in S ′(Rn, E).

Proof. Since S(Rn) is a Montel space [50], the Banach-Steinhaus theorem
implies that it is enough to show the convergence of (3.4) for the topology
of pointwise convergence [50]. Let ρ ∈ S(Rn), we have

〈
M f
ϕ (x, y) , ρ (x)

〉
= 〈h (yt) , ϕ (t)〉 , 0 < y < 1,

where h (u) = 〈f (x) , ρ (x+ u)〉 , u ∈ R
n, is a smooth E-valued function of

slow growth. The  Lojasewicz point value h (0) exists and equals the ordinary
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value and thus

lim
y→0+

〈h (yt) , ϕ (t)〉 = h (0)

∫

Rn

ϕ(t)dt = µ0(ϕ) 〈f (x) , ρ (x)〉 ,

as required. �

Since for the φ−transform

lim
y→0+

Fφf(·, y) = f, in S ′(Rn),

the Hahn-Banach theorem implies the ensuing important corollary.

Corollary 3.3. Let ϕ ∈ S(Rn) and let σ > 0. Then, the linear span
of the set of the dilates (at scale less than σ) and translates of ϕ, that
is, {ϕ(( · − x)/y) : (x, y) ∈ R

n × (0, σ)}, is dense in S(Rn) if and only if
µ0(ϕ) 6= 0.

A property shared by the wavelet and non-wavelet transforms is the fol-
lowing one: They map continuously tempered distributions to smooth func-
tions of slow growth on H

n+1.

Proposition 3.4. Let f ∈ S ′(Rn, E) and let ϕ ∈ S(Rn). Then, M f
ϕ ∈

C∞(Hn+1, E) is a function of slow growth on H
n+1. In addition, the linear

map f ∈ S ′(Rn, E) 7→ M f
ϕ ∈ S ′(Hn+1, E) is continuous for the topologies of

uniform convergence over bounded sets. Furthermore, if B ⊂ S ′(Rn, E) is
bounded for the topology of pointwise convergence, then there exist k, l and
C > 0 such that

(3.5)
∥∥∥M f

ϕ(x, y)
∥∥∥ ≤ C

(
1

y
+ y

)k
(1 + |x|)l , for all f ∈ B.

Proof. Since S ′(Rn, E) is the inductive limit of an (strictly) increasing se-
quence of Banach spaces [50, 63], it is bornological. Therefore, we should
show that this map takes bounded sets to bounded ones. Let B ⊂ S ′(Rn, E)
be a bounded set. The Banach-Steinhaus theorem implies that B is bounded
for the topology of bounded convergence if and only if it is bounded for the
topology of pointwise convergence; it is also an equicontinuous set, from
where we obtain the existence of k1 ∈ N and C1 > 0 such that

‖〈f , ρ〉‖ ≤ C1 sup
t∈Rn,|m|≤k1

(1 + |t|)k1
∣∣∣ρ(m)(t)

∣∣∣ , for all ρ ∈ S(Rn) and f ∈ B.

Consequently,
∥∥∥M f

ϕ(x, y)
∥∥∥ =

1

yn

∥∥∥∥
〈
f(t), ϕ

(
x− t

y

)〉∥∥∥∥

≤ C1

(
1

y
+ y

)n+k1
sup

u∈Rn,|m|≤k1

(1 + |x| + y |u|)k1
∣∣∣ϕ(m) (u)

∣∣∣

≤ C

(
1

y
+ y

)n+2k1

(1 + |x|)k1 , for all f ∈ B,
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where C = C1 supu∈Rn,|m|≤k1 (1 + |u|)k1
∣∣ϕ(m) (u)

∣∣. So, we obtain (3.5) with

k = n + 2k1 and l = k1. If C ⊂ S(Hn+1) is a bounded set of test functions,
we have
∥∥∥
〈
M f
ϕ(x, y),Φ(x, y)

〉∥∥∥ =

∥∥∥∥
∫ ∞

0

∫

Rn

M f
ϕ(x, y)Φ(x, y)

dxdy

y

∥∥∥∥

≤ C

∫ ∞

0

∫

Rn

(
1

y
+ y

)k
(1 + |x|)l |Φ(x, y)| dxdy

y
,

which stays bounded as f ∈ B and Φ ∈ C. Therefore, the set
{
M f
ϕ : f ∈ B

}
⊂ S ′(Hn+1, E)

is bounded, and hence the map is continuous. �

3.2. Examples of Wavelet and Non-wavelet Transforms. Let us dis-
cuss some examples of regularizing transforms. We shall return to these
examples in Section 8 where we will provide applications of the Tauberian
theorems from Section 6 and Section 7.

Our first example is one-dimensional and shows how the φ−transform is
related to summability of nummerical series.

Example 3.5. The φ−transform and summability of series. Let {cn}∞n=0
be a sequence of complex numbers and let ρ ∈ S(R) with ρ(0) = 1. We say
that the (possible divergent) series

∑∞
n=0 cn is (ρ) summable to β if

(3.6)

∞∑

n=0

cnρ(yn) converges for all y > 0,

and

(3.7) lim
y→0+

∞∑

n=0

cnρ(yn) = β.

One readily verifies that this summability method is regular [18], in the
sense that it sums convergent series to their actual values of convergence.
Furthermore, different choices of the kernel ρ lead to many familiar methods
of summability. For example, if ρ(u) = e−u for u > 0, one then recovers
the well known Abel method [18, 27], in such a case one writes for Abel
summable series

∞∑

n=0

cn = β (A).

Another instance is provided by ρ(u) = u/(eu − 1), u > 0, the kernel of
Lambert summability which is so important in number theory [27, 70].

Assume further that {cn}∞n=0 is of slow growth, i.e., there is k ∈ N such

that cn = O
(
nk
)
. Obviously, (3.6) is always fulfilled under this assump-

tion. Define f(t) =
∑∞

n=0 cne
itn, a periodic distribution over the real line.
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Moreover, set φ = (1/2π)ρ̂; thus, the φ−transform of f is precisely

Fφf(x, y) =
1

2π

〈
eixuf̂(u), ρ(yu)

〉
=

∞∑

n=0

cne
ixnρ(yn).

Consequently, (3.7) becomes equivalent to a statement on the (radial) bound-
ary behavior of the φ−transform, namely,

lim
y→0+

Fφf(0, y) = β.

In Section 8 we shall use these ideas to produce a new proof of Littlewood’s
Tauberian theorem for power series (Example 8.10).

Example 3.6. Embedding of distributions into generalized function alge-
bras. The second important example of φ−transforms points out its relation
with the theory of algebras of generalized functions [2, 35]. If φ ∈ S(Rn)
is a mollifier with all higher order vanishing moments, i.e., a test function
such that

(3.8) µ0(φ) = 1 and µm(φ) = 0, for all |m| ≥ 1,

then, for scalar distributions, the φ−transform is nothing but the standard
embedding of f ∈ S ′(Rn) into the special Colombeau algebra G(Rn) of
generalized functions (cf. Subsection 8.2), namely, the net

fε(x) = Fφf(x, ε), 0 < ε < 1, x ∈ R
n,

which determines the class [fε] ∈ G(Rn). Likewise, the φ−transform also in-
duces the embedding of f ∈ S ′(Rn) into the algebra Gτ (Rn) of tempered gen-
eralized functions [2, 35]. We will use this interpretation of the φ−transform
in Subsection 8.2 to give applications to regularity theory within the frame-
work of algebras of generalized functions.

We now give examples of non-degenerate wavelets.

Example 3.7. Drozhzhinov-Zavialov wavelets. We say that a polynomial
P is non-degenerate (at the origin) if for each ω ∈ S

n−1 one has that

P (rω) 6≡ 0, r ∈ R+.

Drozhzhinov and Zavialov have considered the class of wavelets ψ ∈ S(Rn),
µ0(ψ) = 0, for which there exists N ∈ N such that

TN
ψ̂

(u) =
∑

|m|≤N

ψ̂(m)(0)um

m!
,

the Taylor polynomial of order N at the origin, is non-degenerate; these
wavelets were used in [6] to obtain Tauberian theorems for distributions.
It should be noticed that this type of wavelets are included in Definition
3.1; naturally, Definition 3.1 gives much more wavelets. For instance, any
non-degenerate wavelet from S0(R

n) obviously fails to be of this kind. An
explicit example of a non-degenerate wavelet ψ ∈ S0(R

n) is given in the
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Fourier side by ψ̂(u) = e−|u|−(1/|u|), u ∈ R
n. Furthermore, if ψ1 ∈ S(Rn)

satisfies ψ̂1(u) = e−|u|−(1/|u|) + u21 for |u| < 1, where u = (u1, u2, . . . , un),
then ψ1 ∈ S(Rn) \ S0(R

n) is a non-degenerate wavelet but all its Taylor
polynomials vanish on the axis u1 = 0.

Let φ ∈ S(Rn) be a mollifier that satisfies (3.8) (cf. Example 3.6) and
let P be a non-degenerate polynomial of degree k, then ψ = P (−i∂/∂t)φ
is a wavelet of the type considered by Drozhzhinov and Zavialov; indeed,
T k
ψ̂

(u) = P (u). Wavelets of the form ψ = ∆dφ were used in [24] to study

Hölder-Zygmund regularity in algebras of generalized functions.

Example 3.8. The φ−transform as solution to Cauchy problems. When
the test function is of certain special form, the φ−transform can become the
solution to a PDE. We discuss a particular case in this example. Let the set
Γ ⊆ R

n be a closed convex cone with vertex at the origin. In particular, we
may have Γ = R

n. Let P be a homogeneous polynomial of degree d such
that ℜe P (iu) < 0 for all u ∈ Γ \ {0}. We denote [63, 64] by S ′

Γ ⊆ S ′(Rn)
the subspace of distributions supported by Γ.

Consider the Cauchy problem

(3.9)
∂

∂t
U(x, t) = P

(
∂

∂x

)
U(x, t), lim

t→0+
U(x, t) = f(x) in S ′(Rn),

supp f̂ ⊆ Γ, (x, t) ∈ H
n+1,

within the class of functions of slow growth over H
n+1, that is,

sup
(x,t)∈Hn+1

|U(x, t)|
(
t+

1

t

)−k1

(1 + |x|)−k1 <∞, for some k1, k2 ∈ N.

One readily verifies that (3.9) has a unique solution. Indeed,

U(x, t) =
1

(2π)n

〈
f̂(u), eix·uetP (iu)

〉
=

1

(2π)n

〈
f̂(u), eix·ueP(it1/du)

〉
,

is the sought solution. We can find [64] a test function η ∈ S(Rn) with

the property η(u) = eP (iu), u ∈ Γ; setting φ = (2π)−nη̂, we express U as a
φ−transform,

(3.10) U(x, t) =

〈
f(ξ),

1

tn/d
φ

(
ξ − x

t1/d

)〉
= Fφf(x, y), with y = t1/d.

If d = 2k is a positive even integer and P (ξ) = (−1)k−1 |ξ|d, then we may
take Γ = R

n, the differential operator becomes P (∂/∂x) = (−1)k−1∆d, and

φ is the Fourier inverse transform of η(u) = e−|u|d . In particular, when
d = 2, (3.9) is the Cauchy problem for the heat equation and φ(ξ) =

(2
√
π)−ne−ξ

2/4.
We will study in Subsection 8.3 necessary conditions for the asymptotic

stabilization in time of the solution U to (3.9).
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Example 3.9. Laplace transforms as φ−transforms. Let Γ be a closed
convex acute cone [63, 64] with vertex at the origin. Its conjugate cone is
denoted by Γ∗. The definition of an acute cone tells us that Γ∗ has non-
empty interior, set CΓ = int Γ∗ and TCΓ = R

n + iCΓ. We denote by S ′
Γ(E)

the subspace of E-valued tempered distributions supported by Γ. Given
h ∈ S ′

Γ(E), its Laplace transform [63] is

L{h; z} =
〈
h(u), eiz·u

〉
, z ∈ TCΓ;

it is a holomorphic E-valued function on the tube domain TCΓ . Fix ω ∈ CΓ.
We may write L{h;x+ iσω}, x ∈ R

n, σ > 0, as a φ−transform. In fact,
choose ηω ∈ S(Rn) such that ηω(u) = e−ω·u, u ∈ Γ; then, with φω =

(2π)−nη̂ω and f̂ = (2π)nh,

(3.11) L{h;x + iσω} = Fφω f(x, σ).

Notice that this is a particular case of Example 3.8 with Pω(ξ) = iω · ξ.

3.3. Wavelet Analysis on S ′
0(R

n, E). In this subsection we briefly sketch
how to extend the scalar distribution wavelet analysis given in [19] to E-
valued generalized functions. We complement the theory with some new
results.

Although Proposition 3.2 makes impossible to recover an E-valued tem-
pered distribution as the boundary value of its wavelet transform, the non-
degenerate wavelets from S0(R

n) enjoy excellent reconstruction properties as
long as we are interested in the projection of the tempered distribution onto
S ′
0(R

n, E). Observe that if the wavelet belongs to S0(R
n), the wavelet trans-

form with respect to this wavelet is continuous S ′(Rn, E) 7→ S ′(Hn+1, E),
as can be inferred from Proposition 3.4; however it is not injective, since it
maps every E-valued polynomial to 0, as follows from the moment vanishing
properties of the wavelet. This fact makes necessary to work on S ′

0(Rn, E) if
one wishes to have reconstruction of distributions from their wavelet trans-
forms.

Let ψ ∈ S0(R
n). We have that [19, Thm 19.0.1] Wψ : S0(R

n) 7→ S(Hn+1)
is a continuous linear map. We are interested in those wavelets for which
Wψ admits a left inverse. For wavelet-based reconstruction, we shall use the
wavelet synthesis operator [19]. Given Φ ∈ S(Hn+1), we define the wavelet
synthesis operator with respect to the wavelet ψ as

(3.12) MψΦ(t) =

∫ ∞

0

∫

Rn

Φ(x, y)
1

yn
ψ

(
t− x

y

)
dxdy

y
, t ∈ R

n.

One can show that Mψ : S(Hn+1) → S0(R
n) is continuous [19, p. 74].

We shall say that the wavelet ψ ∈ S0(Rn) admits a reconstruction wavelet
if there exists η ∈ S0(Rn) such that

(3.13) cψ,η(ω) =

∫ ∞

0
ψ̂(rω)η̂(rω)

dr

r
, ω ∈ S

n−1,
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is independent of the direction ω; in such a case we set cψ,η := cψ,η(ω). The
wavelet η is called a reconstruction wavelet for ψ.

It is easy to find explicit examples of wavelets admitting reconstruction
wavelets; in fact, any non-trivial rotation invariant element of S0(Rn) is itself
its own reconstruction wavelet.

If ψ is admits the reconstruction wavelet η, one has the reconstruction
formula [19] for the wavelet transform on S0(R

n)

(3.14) IdS0(Rn) =
1

cψ,η
MηWψ.

We now characterize those wavelets which have a reconstruction wavelet.
Actually, the class of non-degenerate wavelets from S0(Rn) (cf. Definition
3.1) coincides with the class of wavelets admitting reconstruction wavelets.

Proposition 3.10. Let ψ ∈ S0(R
n). Then, ψ admits a reconstruction

wavelet if and only if it is non-degenerate.

Proof. The necessity is clear, for if ψ̂(rw0) identically vanishes in the direc-
tion of w0 ∈ R, then cψ,η(w0) = 0 (cf. (3.13)) for any η ∈ S0(Rn).

Suppose now that ψ is non-degenerate, we will construct a reconstruction
wavelet for it. As in (3.13), we write cψ,ψ(ω) =

∫∞
0 |ψ̂(rω)|2(dr/r) > 0,

ω ∈ S
n−1. Set

̺(r, w) =
ψ̂(rw)

cψ,ψ(w)
, (r, w) ∈ [0,∞) × S

n−1;

obviously, if we prove that ̺(|u| , u/ |u|) ∈ S(Rn) and all its partial deriva-
tives vanish at the origin, then η given by η̂(u) = ̺(|u| , u/ |u|) will be a
reconstruction wavelet for ψ; actually, cψ,η = 1. By the characterization
theorem for polar coordinates of test functions from S(Rn) [7, Prop. 1.1],
the fact η̂ ∈ S(Rn) is a consequence of the relations

(
∂

∂r

)k
̺(r, ω)

∣∣∣∣∣
r=0

= 0, k = 0, 1, . . . ;

the same relations show that all partial derivatives of η̂ vanish at the origin,
and hence η ∈ S0(Rn). �

In [19], (3.14) was extended to S ′
0(R

n) via duality arguments, the main
step being the formula∫ ∞

0

∫

Rn

Wψf(x, y)Φ(x, y)
dxdy

y
=
〈
f(t),Mψ̄Φ (t)

〉
,

valid for Φ ∈ S(Hn+1) and f ∈ S ′
0(R

n). It can be easily extended to the
E-valued case, as the next proposition shows.

Proposition 3.11. Let f ∈ S ′
0(Rn, E) and ψ ∈ S0(Rn). Then

(3.15)

∫ ∞

0

∫

Rn

Wψf(x, y)Φ(x, y)
dxdy

y
=
〈
f(t),Mψ̄Φ (t)

〉
, Φ ∈ S(Hn+1).



TAUBERIAN THEOREMS FOR WAVELET AND NON-WAVELET TRANSFORMS 15

Proof. The same argument used in Proposition 3.4 shows that Wψ : S ′
0(R

n, E) 7→
S ′(Hn+1, E) is continuous. The linear map T : S ′

0(Rn, E) 7→ S ′(Hn+1, E)
given by

〈(T f)(x, y),Φ(x, y)〉 =
〈
f(t),Mψ̄Φ (t)

〉
,

is continuous as well. Thus, if we show that Wψ and T coincide on a dense
subset of S ′

0(R
n, E), we would have (3.15). The nuclearity [50] of S ′

0(R
n)

implies that S ′
0(Rn) ⊗ E ⊂ S ′

0(R
n, E) is dense; thus, it is enough to verify

(3.15) for f = fv, where f ∈ S ′
0(Rn) and v ∈ E. Now, the scalar case

implies

〈Wψ(fv)(x, y),Φ(x, y)〉 = 〈Wψf(x, y),Φ(x, y)〉 v =
〈
f(t),Mψ̄Φ (t)

〉
v

=
〈
f(t)v,Mψ̄Φ (t)

〉
,

as required. �

We now extend the definition of the wavelet synthesis operator (3.12)
to S ′

0(Hn+1, E). Let K ∈ S ′
0(Hn+1, E), we define Mψ : S ′

0(Hn+1, E) 7→
S ′
0(R

n, E), a continuous linear map, as

〈MψK(t), ρ(t)〉 =
〈
K(x, y),Wψ̄ρ(x, y)

〉
, ρ ∈ S0(R

n).

So, we have the ensuing reconstruction formula for the wavelet transform.

Proposition 3.12. Let ψ ∈ S0(R
n) be non-degenerate and let η ∈ S0(R

n)
be a reconstruction wavelet for it. Then,

(3.16) IdS′
0(R

n,E) =
1

cψ,η
MηWψ.

Furthermore, we have the desingularization formula,

(3.17) 〈f(t), ρ(t)〉 =
1

cψ,η

∫ ∞

0

∫

Rn

Wψf(x, y)Wη̄ρ(x, y)
dxdy

y
,

for all f ∈ S ′
0(R

n, E) and ρ ∈ S0(R
n).

Proof. We apply the definition of Mη, Proposition 3.11 and (3.14), and use
the fact that cψ,η = cη̄,ψ̄,

1

cψ,η
〈MηWψf(t), ρ(t)〉 =

1

cψ,η

∫ ∞

0

∫

Rn

Wψf(x, y)Wη̄ρ(x, y)
dxdy

y

=
1

cψ,η
〈Wψf(x, y),Wη̄ρ(x, y)〉

=

〈
f ,

1

cη̄,ψ̄
Mψ̄Wη̄ρ

〉

= 〈f(t), ρ(t)〉 ,
so both (3.16) and (3.17) have been established. �
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The next result provides a second characterization of non-degenerate
wavelets from S0(R

n), a corollary of the inversion formula.

Corollary 3.13. Let ψ ∈ S0(Rn). Then, the linear span of the set of dilates
and translates of ψ̄,

{
ψ̄(( · − x)/y) : (x, y) ∈ H

n+1
}

, is dense in S0(Rn) if
and only if ψ is a non-degenerate wavelet.

Proof. The direct implication is a consequence of the Hahn-Banach theorem
and the inversion formula (Proposition 3.12). On the other hand, suppose

that there is ω0 ∈ S
n−1 such that ψ̂(rω0) = 0 for all r ∈ R+. Let f ∈

S ′(Rn) be the distribution whose Fourier transform is given by 〈f̂ , ρ〉 =∫∞
0 ρ(rω0)dr, then Wψf(x, y) = 0, for all (x, y) ∈ H

n+1, which implies that
f identically vanishes on the clousure of the linear span of the dilates and
translates of ψ̄. This yields the converse. �

In analogy to [19, Thm. 28.0.1], we can characterize the bounded sets of
S ′
0(R

n, E). One can also characterize some types of convergent nets. The
next propositions will be very important for the subsequent sections.

Proposition 3.14. Let ψ ∈ S0(Rn) be a non-degenerate wavelet. A neces-
sary and sufficient condition for a set B ⊂ S ′

0(R
n, E) to be bounded for the

topology of pointwise convergence (or bounded convergence) of S ′
0(R

n, E) is
the existence of k, l ∈ N and C > 0 such that

(3.18) ‖Wψf(x, y)‖ ≤ C

(
1

y
+ y

)k
(1 + |x|)l , for all f ∈ B.

Proof. The necessity can be established as in the proof of Proposition 3.4.
For the sufficiency, we only need to show the boundedness of B for the
topology of pointwise convergence [50], in view of the Banach-Steinhaus
theorem. Let η be a reconstruction wavelet for ψ. Let ρ ∈ S0(Rn), by the
wavelet desigularization formula (cf. Proposition 3.12) and (3.18),

‖〈f , ρ〉‖ ≤ C

cψ,η

∫ ∞

0

∫

Rn

(
1

y
+ y

)k
(1 + |x|)l |Wη̄ρ(x, y)| dxdy

y
,

and the last quantity is uniformly bounded for f ∈ B since Wη̄ρ ∈ S(Hn+1).
This completes the proof. �

Proposition 3.15. Let ψ ∈ S0(R
n) be a non-degenerate wavelet. Necessary

and sufficient conditions for the net {fλ}λ∈R+
to be convergent (λ→ ∞), for

the topology of pointwise convergence (or bounded convergence) of S ′
0(R

n, E),
are the existence of the limits (with respect to the norm of E)

(3.19) lim
λ→∞

Wψfλ(x, y), for each (x, y) ∈ H
n+1,

and the existence of k, l ∈ N and C, λ0 > 0 such that

(3.20) ‖Wψfλ(x, y)‖ ≤ C

(
1

y
+ y

)k
(1 + |x|)l , for all λ0 ≤ λ.
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In such a case, the limit generalized function h = limλ→∞ fλ satisfies

Wψh(x, y) = lim
λ→∞

Wψfλ(x, y),

uniformly over compact subsets of Hn+1.

Proof. By Proposition 3.14, (3.20) is itself equivalent to the boundedness of
{fλ} for large values of λ, which in turn is equivalent to the equicontinuity
of the set for large values of λ (Banach-Steinhaus theorem). Because of the
standard result [50, p. 356], the convergence of {fλ}λ∈R+

is then equivalent

to the pointwise convergence of the net of linear mappings over a dense sub-
set of S0(R

n). But (3.19) gives precisely this convergence over the linear span
of
{
ψ̄(( · − x)/y) : (x, y) ∈ H

n+1
}

, which is actually dense (Corollary 3.13).
The last property follows by the definition of convergence in S ′

0(R
n, E), since

if K ⊂ H
n is a compact set, then

{
y−nψ̄(( · − x)/y) : (x, y) ∈ K

}
is compact

in S0(R
n). �

4. Abelian Results

We present in this section an Abelian proposition for the transform M f
ϕ.

Its Tauberian counterparts will be the main subject of the next two sections.
This Abelian result is essentially due to Drozhzhinov and Zavialov [5, 6]
(cf. [59, 61]), but we refine their results by adding some information about
uniformity in the asymptotics. Let x0 ∈ R

n and 0 ≤ ϑ < π/2, we denote by
Cx0,ϑ the cone of angle ϑ in H

n+1 with vertex at x0, namely,

Cx0,ϑ =
{

(x, y) ∈ H
n+1 : |x− x0| ≤ (tan ϑ)y

}
.

Proposition 4.1. Let L be slowly varying at the origin (resp. at infinity)
and let f ∈ S ′(Rn, E).

(i) Assume that f is quasiasymptotically bounded of degree α at the point
x0 (resp. at infinity) with respect to L in S ′(Rn, E). Then, there
exist k, l ∈ N, C > 0 and ε0 > 0 (resp. λ0 > 1) such that for all
(x, y) ∈ H

n+1

(4.1)
∥∥∥M f

ϕ(x0 + εx, εy)
∥∥∥ ≤ CεαL(ε)

(
1

y
+ y

)k
(1 + |x|)l , 0 < ε ≤ ε0,

(
resp.

∥∥∥M f
ϕ(λx, λy)

∥∥∥ ≤ CλαL(λ)

(
1

y
+ y

)k
(1 + |x|)l , λ0 ≤ λ

)
.

(ii) If f ∈ S ′(Rn, E) has the quasiasymptotic behavior f (x0 + εt) ∼
εαL(ε)g(t) as ε → 0+ (resp. f (λt) ∼ λαL(λ)g(t) as λ → ∞) in
S ′(Rn, E), and if 0 ≤ ϑ < π/2, then

(4.2) lim
(x,y)→(0,0)
(x,y)∈C0,ϑ

|(x, y)|−α
∥∥∥∥

1

L (|(x, y)|)M
f
ϕ(x0 + x, y) −Mg

ϕ (x, y)

∥∥∥∥ = 0
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
resp. lim

|(x,y)|→∞
(x,y)∈C0,ϑ

|(x, y)|−α
∥∥∥∥

1

L (|(x, y)|)M
f
ϕ(x, y) −Mg

ϕ (x, y)

∥∥∥∥ = 0


 ;

in particular, for each fixed (x, y) ∈ H
n+1,

(4.3) lim
ε→0+

1

εαL (ε)
M f
ϕ(x0 + εx, εy) = Mg

ϕ (x, y) in E

(
resp. lim

λ→∞

1

λαL (λ)
M f
ϕ(λx, λy) = Mg

ϕ(x, y)

)
.

Proof. The estimate (4.1) from Part (i) follows immediately from Proposi-
tion 3.4 by considering the bounded set
{

1

εαL(ε)
f(x0 + ε · ) : 0 < ε ≤ 1

} (
resp.

{
1

λα/L(λ)
f(λ · ) : 1 ≤ λ

})
.

For (ii), we may assume that x0 = 0. Next, observe that (x, y) ∈ C0,ϑ can
be written as x = rξ and y = r cos θ, where r > 0, ξ ∈ R

n, |ξ| = sin θ and
0 ≤ θ ≤ ϑ. So,

M f
ϕ(rξ, r cos θ) =

〈
f(rt),

1

(cos θ)n
ϕ

(
ξ − t

cos θ

)〉
.

Since the subset C = {(1/ cos θ)ϕ ((ξ − · )/ cos θ) : 0 ≤ θ ≤ ϑ} is a compact
set in S(Rn), the Banach-Steinhaus theorem implies that the quasiasymp-
totic behavior of f holds uniformly when evaluated at test functions of C.
Then, as r → 0+ (resp. r → ∞),

1

rαL(r)
M f
ϕ(rξ, r cos θ) →

〈
g(t),

1

(cos θ)n
ϕ

(
ξ − t

cos θ

)〉
= Mg

ϕ (ξ, cos θ),

uniformly in |ξ| = sin θ and 0 ≤ θ ≤ ϑ. Thus, we have shown (4.2). On the
other hand, if again x = rξ and y = r cos θ, where r, ξ and θ are fixed, we
have that, as h→ 0+ (resp. h→ ∞),

M f
ϕ(hx, hy) ∼ (rh)αL(hr)

〈
g(t),

1

(cos θ)n
ϕ

(
ξ − t

cos θ

)〉

= hαL(hr)

〈
g(rt),

1

(cos θ)n
ϕ

(
ξ − t

cos θ

)〉
∼ hαL(h)Mg

ϕ (x, y), in E,

because of the homogeneity of g and the fact that L is slowly varying. Hence,
(4.3) has been proved. �

5. Wavelet Tauberian Characterization of Quasiasymptotics in

S ′
0(R

n, E)

The purpose of this section is to characterize the quasiasymptotic be-
havior in the space S ′

0(Rn, E) in terms of the asymptotic behavior of the
wavelet transform with respect to a non-degenerate wavelet from S0(Rn).
Our characterization is of Tauberian character and it is related to (4.1) and
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(4.3) for the wavelet transform. We begin with a preliminary proposition
which shows that conditions (4.1) and (4.3) are equivalent to (apparently)
weaker ones.

Proposition 5.1. Let f ∈ S ′(Rn, E), ϕ ∈ S(Rn), and let L be slowly varying
at the origin (resp. at infinity). Then,

(i) The estimate (4.1) is equivalent to one of the form (k may be a
different exponent)

(5.1) lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)

∥∥∥M f
ϕ (x0 + εx, εy)

∥∥∥ <∞

(
resp. lim sup

λ→∞
sup

|x|2+y2=1, y>0

yk

λαL(λ)

∥∥∥M f
ϕ (λx, λy)

∥∥∥ <∞
)
.

(ii) If

(5.2) lim
ε→0+

1

εαL(ε)
M f
ϕ(x0 + εx, εy) = Mx,y ∈ E

(
resp. lim

λ→∞

1

λαL(λ)
M f
ϕ(λx, λy) = Mx,y ∈ E

)

exists for each (x, y) ∈ H
n+1∩S

n, then it exists for all (x, y) ∈ H
n+1.

Proof. By translating, we may assume that x0 = 0.
Part (i). We only need to showthat (5.1) implies (4.1). Our assumption

is that there are constants C1, h0 > 0 such that

∥∥∥M f
ϕ (hξ, h cos ϑ)

∥∥∥ < C1

(cos ϑ)k
hαL(h),

|ξ|2 + (cos ϑ)2 = 1 and 0 < h ≤ h0 (resp. h0 ≤ h). We can assume that
1 + |α| ≤ k and h0 < 1 (resp. 1 < h0). Potter’s estimate [1, p. 25] implies
that we may assume that

(5.3)
L(hr)

L(h)
< C2

(1 + r)2

r
, for h, hr ∈ (0, h0] (resp. h, hr ∈ [h0,∞) ).

In addition, since 1/L(h) = o(h−1) as h → 0+ (resp. 1/L(h) = o(h), as
h→ ∞) [1, 44], we can assume

(5.4)
1

L(h)
<
C3

h
, for 0 < h ≤ h0

(
resp.

1

L(h)
< C3h, for h0 ≤ h

)
.

After this preparation, we are ready to give the proof. For (x, y) ∈ H
n+1

write x = rξ and y = r cosϑ, with r = |(x, y)|. We always keep h ≤ h0
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(resp. h0 ≤ h). If rh ≤ h0 (resp. h0 ≤ rh), we have that

∥∥∥M f
ϕ (hrξ, hr cosϑ)

∥∥∥ < C1

yk
hαL(hr)rα+k < C1C2h

αL(h)
(1 + r)α+k+1

yk

< C4h
αL(h)

(
1

y
+ y

)α+2k+1

(1 + |x|)α+k+1 ,

with C4 = 2α+k+1C1C2. We now analyze the case h0 < hr (resp. hr < h0).
Proposition 3.4 implies the existence of k1, l1 ∈ N, k1 ≥ k, and C5 such that

∥∥∥M f
ϕ (hx, hy)

∥∥∥ < C5

(
1

hy
+ hy

)k1
(1 + h |x|)l1

< C5h
αL(h)

(
1

y
+ y

)k1
(1 + |x|)l1 1

hα+k1L(h)(
resp. < C5h

αL(h)

(
1

y
+ y

)k1
(1 + |x|)l1 hk1+l1

hαL(h)

)

< C3C5h
αL(h)

(
1

y
+ y

)k1
(1 + |x|)l1

(
r

h0

)k1+α+1

(
resp. < C3C5h

αL(h)

(
1

y
+ y

)k1
(1 + |x|)l1

(
h0
r

)k1+l1−α+1
)

< C6h
αL(h)

(
1

y
+ y

)α+2k1+1

(1 + |x|)α+l1+k1+1

(
resp. < C6h

αL(h)

(
1

y
+ y

)2k1+l1−α+1

(1 + |x|)l1
)
,

with C6 = C3C5(2/h0)α+k1+1 (resp. C6 = C3C5h
k1+l1−α+1
0 ). Therefore, if

C = max {C4, C6}, k2 > |α| + 2k1 + l1 + 1 and l2 > α+ l1 + k1 + 1,

∥∥∥M f
ϕ (hx, hy)

∥∥∥ < ChαL(h)

(
1

y
+ y

)k2
(1 + |x|)l2 ,

for all (x, y) ∈ H
n+1 and 0 < h ≤ h0 (resp. h0 < h).

Part (ii). Fix (x, y) ∈ H
n+1 and write it as (x, y) = (rξ, r cos ϑ), where

(ξ, cos ϑ) ∈ H
n+1 ∩ S

n. Then, as h→ 0+ (resp. h→ ∞), we have

1

hαL(h)
M f
ϕ(hrξ, hr cos ϑ) =

L(hr)

L(h)
rα
(

1

(hr)αL(hr)
M f
ϕ(hrξ, hr cosϑ)

)

−→ 1 · rαMξ,cosϑ , in E.

�

We now state the Tauberian characterization of quasiasymptotics in the
space S ′

0(Rn, E). The proof of the following theorem is a simple consequence
of our previous work.
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Theorem 5.2. Let ψ ∈ S0(Rn) be a non-degenerate wavelet and let L be
slowly varying at the origin (resp. at infinity).

(i) A necessary and sufficient condition for f ∈ S ′(Rn, E) to be quasi-
asymptotically bounded of degree α at the point x0 (resp. at infinity)
with respect to L in S ′

0(Rn, E) is the existence of k ∈ N such that

(5.5) lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)
‖Wψf (x0 + εx, εy)‖ <∞

(
resp. lim sup

λ→∞
sup

|x|2+y2=1, y>0

yk

λαL(λ)
‖Wψf (λx, λy)‖ <∞

)
.

(ii) The existence of the limits

(5.6) lim
ε→0+

1

εαL(ε)
Wψf(x0 + εx, εy) = Wx,y , for each (x, y) ∈ H

n+1∩S
n,

(
resp. lim

λ→∞

1

λαL(λ)
Wψf(λx, λy) = Wx,y ∈ E

)

and the estimate (5.5), for some k ∈ N, are necessary and sufficient
for f to have quasiasymptotic behavior of degree α at the point x0
(resp. at infinity) with respect to L in the space S ′

0(Rn, E).

Proof. The equivalence between the quasiasymptotic boundedness and the
estimate (5.5) follows at once on combining Proposition 5.1 with Proposition
3.14 when considering the set (in S ′

0(Rn, E))
{

1

εαL(ε)
f(x0 + ε · ) : 0 < ε ≤ 1

}(
resp.

{
1

λαL(λ)
f(λ · ) : 1 ≤ λ

})
,

while Part (ii) follows from Proposition 5.1 and Proposition 3.15. �

We will need the following proposition for future applications when study-
ing Tauberian theorems for the non-wavelet case and wavelet transforms
with respect to non-degenerate wavelets from S(Rn) \ S0(Rn). It tells us
the quasiasymptotic properties of the projection of a tempered distribution
onto S ′

0(Rn, E) when its transform M f
ϕ has asymptotics as in Proposition

5.1.

Proposition 5.3. Let ϕ ∈ S(Rn) be non-degenerate and let L be slowly
varying at the origin (resp. at infinity). Suppose that f ∈ S ′(Rn, E).

(i) If there exists k ∈ N such that the estimate (5.1) holds, then f is
quasiasymptotically bounded of degree α at the point x0 (resp. at
infinity) with respect to L in the space S ′

0(Rn, E).
(ii) If the limit (5.2) exists for each (x, y) ∈ H

n+1∩Sn, and there is a k ∈
N such that the estimate (5.1) is satisfied, then f has quasiasymptotic
behavior of degree α at the point x0 (resp. at infinity) with respect
to L in the space S ′

0(Rn, E).
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Proof. Translating f , we can assume that x0 = 0. Consider the non-degenerate
wavelet ψ ∈ S0(Rn) given on Fourier side by ψ̂(u) = e−|u|−(1/|u|). Set
ψ1 = ˇ̄ϕ ∗ ψ, then, ψ1 ∈ S0(Rn) is also a non-degenerate wavelet. Indeed,

ψ̂1 = ̂̌̄ϕψ̂ and its partial derivatives of any order vanish at the origin. First
notice that Wψ1f is given by

Wψ1f(x, y) =
〈
f(x+ yt), ϕ̌ ∗ ψ̄(t)

〉
=

〈
f(x + yt),

∫

Rn

ψ̄(u)ϕ(u − t)du

〉

=

∫

Rn

ψ̄(u) 〈f(x + yt), ϕ(u − t)〉du

=

∫

Rn

ψ̄(u)(f ∗ ϕy)(x+ yu)du

=

∫

Rn

M f
ϕ(x+ yu, y)ψ̄(u)du.

Part (i). By Proposition 5.1, (5.1) is equivalent to an estimate (4.1)
(k may be a different number). Our strategy will be to show that Wψ1f

satisfies (5.5), and then the result would follow immediately from Theorem
5.2. Indeed, for all (x, y) ∈ H

n+1 ∩ S
n, and 0 < h ≤ ε0 (resp. λ0 ≤ h) we

have the estimate
(5.7)∥∥∥M f

ϕ(hx+ hyu, hy)
∥∥∥ ≤ 2kC

yk
hαL(h) (1 + |x| + y |u|)l < C1

yk
hαL(h)(1 + |u|)l,

with C1 = 2k+lC. Therefore, Wψ1f satisfies (5.5), namely,

sup
|x|2+y2=1, y>0

yk ‖Wψ1f(hx, hy)‖ < C2h
αL(h),

where C2 = C1

∫
Rn(1 + |u|)l

∣∣ψ̄(u)
∣∣ du.

Part (ii). If the limit (5.2) exists for each (x, y) ∈ H
n+1 ∩ S

n−1, then
so does it for all (x, y) ∈ H

n+1. The estimate (5.7) allows us to use the
dominated convergence theorem for Bochner integrals and conclude that,
for each fixed (x, y) ∈ H

n+1 ∩ S
n,

1

hαL(h)
Wψf(hx, hy) =

∫

Rn

1

hαL(h)
M f
ϕ(hx+ hyu, hy)ψ̄(u)du

−→
∫

Rn

Mx+yu,y ψ̄(u)du,

as h→ 0+ (resp. h→ ∞). Thus, Theorem 5.2 yields the result. �

6. Tauberian Theorems in S ′(Rn, E)

We will state and prove in this section Tauberian theorems for quasi-
asymptotics of tempered E-valued distributions.
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6.1. Associate Asymptotically Homogeneous and Homogeneously

Bounded Functions. We need to introduce a class of functions which is
of great importance in the study of asymptotic properties of distributions.
They appear naturally in the statements and proofs of our Tauberian theo-
rems. The terminology is from [51, 52, 53, 54, 60] (see also de Haan theory
in [1]).

Definition 6.1. Let c : (0, A) → E (resp. (A,∞) → E), A > 0, be a
continuous E-valued function and let L be slowly varying function at the
origin (resp. at infinity). We say that:

(i) c is associate asymptotically homogeneous of degree 0 with respect to
L if for some v ∈ E

c(aε) = c(ε) + L(ε) log a v + o(L(ε)) as ε→ 0+, for each a > 0

(resp. c(aλ) = c(λ) + L(λ) log a v + o(L(λ)) as λ→ ∞ ) .

(ii) c is asymptotically homogeneously bounded of degree 0 with respect
to L if

c(aε) = c(ε) +O(L(ε)) as ε→ 0+, for each a > 0

(resp. c(aλ) = c(λ) +O(L(λ)) as λ→ ∞ ) .

If c satisfies either condition (i) or (ii) of Definition 6.1, one can show as
in [51, Prop. 2.3] that given any σ > 0

‖c(ε)‖ = o(ε−σ) as ε→ 0+ (resp. ‖c(λ)‖ = o(λσ) as λ→ ∞ ) .

6.2. Tauberian Theorem for φ−transforms. The ensuing theorem char-
acterizes quasiasymptotic boundedness in terms of the φ−transform.

Theorem 6.2. Let φ ∈ S(Rn) be such that µ0(φ) = 1 and let L be slowly
varying at the origin (resp. at infinity). A necessary and sufficient condition
for f ∈ S ′(Rn, E) to be quasiasymptotically bounded of degree α ∈ R at the
point x0 ∈ R

n (resp. at infinity) with respect to L is the existence of k ∈ N

such that

(6.1) lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)
‖Fφf (x0 + εx, εy)‖ <∞

(
resp. lim sup

λ→∞
sup

|x|2+y2=1, y>0

yk

λαL(λ)
‖Fφf (λx, λy)‖ <∞

)
.

We shall present two different proofs of this theorem. The two methods
of proof are applicable to both the case of behavior at infity and the one at
finite points. We concentrate in showing the sufficiency because the necessity
follows at once from the Abelian result (Proposition 4.1).

First proof of Theorem 6.2. We show the case of behavior at the point x0
in this first proof. We first need to prove the following claim:
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Claim 6.3. Given a set of distinct multi-indices {ml}ql=1, a point u =
(u1, · · · , uq) ∈ R

q, and an arbitrary positive number σ, there exists a test
function ρ in the linear span of

{
y−nφ(( · − x)/y) : (x, y) ∈ H

n+1
}

such that

|ul − µml
(ρ)| < σ, l = 1, · · · , q.

Proof of Claim 6.3. The linear continuous map

T : η ∈ S(Rn) 7→ (µm1(η), . . . , µmq (η)) ∈ R
q,

is clearly surjective, as can be verified directly or by using general results
(e.g., Borel theorem or results from [9, 11]) . Corollary 3.3 implies that the
image under T of the linear span of

{
φ(( · − x)/y) : (x, y) ∈ H

n+1
}

is dense
in R

q, from where we obtain the claimed approximation property. �

We now divide the proof of Theorem 6.2 into two cases.
Case α /∈ N.
Proposition 5.3 and Proposition A.2 imply the existence of an E-valued

polynomial

P(t) =
∑

|m|≤d

tmwm

such that

f(x0 + εt) = P(εt) +O (εαL(ε)) in S ′(Rn, E).

We must show that P(εt) = O (εαL(ε)). We may assume that d < α
because: εν−α = O(L(ε)) whenever ν > α [1, 44]. On the other hand, since
L(ε) = O(ε−σ), for any σ > 0, we obtain that

(6.2) f(x0 + εt) = P(εt) +O
(
εd+κ

)
in S ′(Rn, E),

where κ is chosen so that 0 < κ < α − d. Take ρ in the linear span of{
y−nφ(( · − x)/y) : (x, y) ∈ H

n+1
}

, this test function is fixed by the moment
but its properties will be appropriately chosen later. The hypothesis (6.1)
implies that ‖〈f(x0 + εt), ρ(t)〉‖ = O(εd+κ). Evaluation of (6.2) at ρ and
the last fact yield

d∑

ν=0

εν
∑

|m|=ν

µm(ρ)wm = O(εd+κ),

which readily implies that,

(6.3)
∑

|m|=ν

µm(ρ)wm = 0, for ν = 0, 1, · · · , d.

For a fixed index 0 ≤ ν ≤ d, let q = qν be the number of multi-indices
such that |m| = ν; moreover, index such multi-indices as {ml}ql=1. Given an
arbitrary 0 < σ < 1, we select ρ as in Claim 6.3 with u = el ∈ R

q, the vector
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with 1 in the lth component and zeros in the other entries. Then, (6.3) with
this ρ gives

‖wml
‖ < σ

1 − σ

q∑

i=1,i 6=l

‖wmi‖ ,

and taking σ → 0+, we conclude wml
= 0. Since the argument works for all

l and ν, it follows that wm = 0, for all |m| ≤ d. This completes the proof in
the first case.

Case α = p ∈ N.
In this case, Proposition 5.3 and Proposition A.2 imply the existence

of wj, |j| < p, and asymptotically homogeneously bounded functions cm,
|m| = p, of degree 0 with respect to L such that

f(x0 + εt) =
∑

|j|<p

ε|j|tjwj + εp
∑

|m|=p

tmcm(ε) +O (εpL(ε)) in S ′(Rn, E).

We have that each cm satisfies cm(ε) = O(ε−1/2) (cf. Subsection 6.1), and
thus

f(x0 + εt) =
∑

|j|<p

ε|j|tjwj +O
(
εp−1/2

)
in S ′(Rn, E).

Proceeding as in the preceding case, we conclude that each wj = 0. Sum-
marizing, we have shown so far

(6.4) f(x0 + εt) = εp
∑

|m|=p

tmcm(ε) +O (εpL(ε)) in S ′(Rn, E).

Let now q be the number of multi-indices such that |m| = p, once again, we
index those multi-indices as {ml}ql=1, and consider the vectors el ∈ R

q with
1 in the lth component and zeros in the other entries. Let σ > 0 be small
enough such that if the q × q matrix A = (al,ν)l,ν satisfies |al,ν − δl,ν | < σ,

then A is invertible (δl,ν is the Kronecker delta). For each 1 ≤ l ≤ q, find ρl
satisfying the conclusions of Claim 6.3 for σ and el, that is, |µmν (ρl) − δl,ν | <
σ. Then, the matrix A := (µmν (ρl))l,ν is invertible. Evaluation of (6.4) at

the ρl and the hypothesis (6.1) yield the q × q system of inequalities
q∑

ν=1

µmv(ρl)cmν (ε) = O(L(ε)), l = 1, · · · , q.

Multiplication by A−1 implies that cm(ε) = O(L(ε)), for each |m| = p,
which turns out to prove

f(x0 + εt) = O (εpL(ε)) in S ′(Rn, E),

as required. �

Second proof of Theorem 6.2. In this second proof we only consider the be-
havior at infinity. As in the first proof, we can conclude the existence of
an E-valued polynomial, which can be assumed to have the form P(t) =∑

α<|m|≤d t
mwm such that f(λt) = P(λt) + O(λαL(λ)) if α ∈ N, or f(λt) =
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P(λt) + λp
∑

|m|=p cm(λ)tm + O(λpL(λ)) if α = p ∈ N, where the cm are

asymptotically homogeneously bounded of degree 0 with respect to L; ei-
ther asymptotic formula holding as λ→ ∞ in the space S ′(Rn, E). We first
show that P = 0. Select α < κ < [α] + 1, since both L(λ) and the cm are
O(λκ−α), we obtain in either case that

f(λt) = P(λt) +O(λκ) as λ→ ∞ in S ′(Rn).

If we use the estimate for Fφf(λx, λy), we have that for each (fixed) (x, y) ∈
H
n+1,

FφP(λx, λy) =
∑

α<|m|≤d

(−λi)|m| ∂
|m|

∂um

(
eix·uφ̂(−yu)

)∣∣∣
u=0

wm = O(λκ),

λ → ∞. This allows us to conclude that, for each (x, y) ∈ H
n+1 and

α < ν ≤ d,

0 =
∑

|m|=ν

∂|m|

∂um

(
eix·uφ̂(−yu)

)∣∣∣
u=0

wm =
∑

|m|=ν

(ix)mwm +

ν∑

q=1

(iy)qRq(x),

for certain E-valued polynomials Rq. But we can take y → 0+ in the above
equation, which implies that wm = 0 for |m| = q, and since the same holds
for every α < ν ≤ d, we have just shown that P = 0. Therefore, Part (i) has
been established. Part (ii) would now follow if we were able to prove that
C(λ, t) :=

∑
|m|=p t

mcm(λ) = O(L(λ)) as λ → ∞ in S ′(Rn, E). We keep

(x, y) ∈ B(0, 1)× (0, 1), where B(0, 1) is the unit ball in R
n. By Proposition

4.1, applied to (λ−p/L(λ))(f(λt)−λp∑|m|=p t
mcm(λ)), and Proposition 5.1,

applied to Fφf , there are constants λ0, C > 0 and l ∈ N such that
∥∥∥∥∥∥
λp
∑

|m|=p

(−λi)p ∂
|m|

∂um

(
eix·uφ̂(−yu)

)∣∣∣
u=0

cm(λ)

∥∥∥∥∥∥
≤ C

yl
λpL(λ),

for all (x, y) ∈ B(0, 1) × (0, 1) and λ0 ≤ λ, that is,
∥∥∥∥∥C(λ, x) +

p∑

ν=1

yνCν(λ, x)

∥∥∥∥∥ ≤ CL(λ)

λpyl
,

for suitable E-valued functions Cq(λ, x). If we now select p points 0 < y1 <
y2 · · · < yp < 1, we obtain a system of q + 1 inequalities with Vandermonde
matrix A = (yνj )j,ν. Multiplying by A−1 and setting x = t/(1 + |t|), we can
find a constant C1 such that

‖C(λ, t)‖ ≤ C1(1 + |t|)pL(λ)

λp
, for all t ∈ R

n and λ0 < λ.

This completes the proof.
�

We now investigate the quasiasymptotic behavior.
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Theorem 6.4. Let φ ∈ S(Rn) be such that µ0(φ) = 1 and let L be slowly
varying at the origin (resp. at infinity). Then, the existence of the limits

(6.5) lim
ε→0+

1

εαL(ε)
Fφf(x0 + εx, εy) = Fx,y , for each (x, y) ∈ H

n+1 ∩ S
n,

(
resp. lim

λ→∞

1

λαL(λ)
Fφf(λx, λy) = Fx,y ∈ E

)
,

and the estimate (6.1), for some k ∈ N, are necessary and sufficient for f to
have quasiasymptotic behavior in the space S ′(Rn, E), namely, the existence
of an E-valued homogeneous distribution g ∈ S ′(Rn, E) such that

(6.6) f(x0 + εt) ∼ εαL(ε)g(t) as ε→ 0+ in S ′(Rn, E)
(
resp. f (λt) ∼ λαL(λ)g(t) as λ→ ∞ in S ′(Rn, E)

)
.

In such a case, g is completely determined by Fφg(x, y) = Fx,y.

Proof. Theorem 6.2 gives the equivalence of (6.1) with the quasiasymptotic
boundedness of f . So, by the Banach-Steinhaus theorem, (6.6) is now equiv-
alent to the convergence of (ε−α/L(ε))f(x0 + ε · ) (resp. (λ−α/L(λ))f(λ · ))
over a dense subset of S(Rn). By Corollary 3.3, the linear span of the
set
{
y−nφ(( · − x)/y) : (x, y) ∈ H

n+1
}

is dense in S(Rn), it remains only to
observe that (6.5) gives precisely convergence over such a dense subset. �

Remark 6.5. We have stated the theorems of this subsection only for
φ−transforms, but they are obviously true for any non-wavelet transform
M f
ϕ if we just assume that µ0 = µ0(ϕ) =

∫
Rn ϕ(t)dt 6= 0. Indeed, it follows

simply by considering the φ−transform with kernel φ = µ−1
0 ϕ̌.

6.3. Tauberian Theorems for Wavelet Transforms. We now present
the Tauberian theorems for wavelet transforms. We begin with quasiasymp-
totic boundedness.

Theorem 6.6. Let f ∈ S ′(Rn, E), let ψ ∈ S(Rn) be a non-degenerate
wavelet, and let L be slowly varying at the origin (resp. at infinity). The
estimate (5.5), for some k ∈ N, is sufficient for the existence of an E-
valued polynomial P, of degree less than α (resp. of the form P(t) =∑

α<|m|≤d t
mwm, for some d ∈ N), such that:

(i) If α /∈ N, f − P is quasiasymptotically bounded of degree α at the
point x0 (at infinity) with respect to L in the space S ′(Rn, E).

(ii) If α = p ∈ N, there exist asymptotically homogeneously bounded E-
valued functions cm, |m| = p, of degree 0 with respect to L such that
f has the following asymptotic expansion

f(x0 + εt) = P(εt) + εp
∑

|m|=p

tmcm(ε) +O (εpL(ε))


resp. f (λt) = P(λt) + λp

∑

|m|=p

tmcm(λ) +O (λpL(λ))


 ,
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as ε→ 0+ (resp. λ→ ∞) in the space S ′(Rn, E).

Moreover, denote by Pq the homogeneous terms of the Taylor polynomials

of ψ̂ at the origin, that is,

(6.7) Pq(u) =
∑

|m|=q

ψ̂(m)(0)um

m!
, q ∈ N.

Then, the E-valued polynomial P must satisfy

(6.8) Pq

(
∂

∂t

)
P = 0, for all q ∈ N.

Proof. By Proposition 5.3, (5.5) implies that f is quasiasymptotically bounded
in the space S ′

0(Rn, E). The existence of the E-valued polynomial P is then
a direct consequence of Proposition A.2. The assertion about the degree
of P follows from the growth properties of L (in the case (ii) the terms
of order |m| = p can be assumed to be aborbed by the cm). It remains
to establish that P satisfies the equations (6.8). We show this fact only
in the case of infinity, the proof of the case of behavior at finite points
is completely analogous. Suppose the E-valued polynomial has the form

P(t) =
∑

α<|m|≤d t
mwm =

∑d
ν=[α]+1Qν(t), where each Qν is homogeneous

of degree ν. Choose α < κ < [α] + 1. Then, since L(λ) = O(λκ−α) and
cm(λ) = O(λκ−α), we obtain that

f(λt) = P(λt) +O(λκ) as λ→ ∞ in S ′(Rn, E).

But, then, for each fixed (x, y) ∈ H
n+1, the assumption on the size of

Wψf(λx, λy) implies that

WψP(λx, λy) =
∑

α<|m|≤d

(−λi)|m| ∂
|m|

∂um

(
eix·uψ̂(yu)

)∣∣∣
u=0

wm = O(λκ),

λ→ ∞. Then, we infer that, for each α < ν ≤ d and each (x, y) ∈ H
n+1,

0 =
∑

|m|=ν

∂|m|

∂um

(
eix·uψ̂(yu)

)∣∣∣
u=0

wm =
ν∑

q=0

(iy)q(Pq (∂/∂x)Qν)(x),

and thus

Pq

(
∂

∂x

)
Qν = 0, for all q, ν ∈ N,

as required. �

We now consider the quasiasymptotic behavior.

Theorem 6.7. Let f ∈ S ′(Rn, E), let ψ ∈ S(Rn) be a non-degenerate
wavelet, and let L be slowly varying at the origin (resp. at infinity). Sup-
pose that the estimate (5.5) holds for some k ∈ N, and the limits (5.6)
exist. Then, there exist an E-valued tempered distribution g, which satisfies
Wψg(x, y) = Wx,y, and an E-valued polynomial P, of degree less than α
(resp. of the form P(t) =

∑
α<|m|≤d t

mwm, for some d ∈ N), such that:
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(i) If α /∈ N, g is homogeneous of degree α and

f(x0 + εt) −P(εt) ∼ εαL(ε)g(t) as ε→ 0+ in S ′(Rn, E)
(
resp. f (λt) −P(λt) ∼ λαL(λ)g(t) as λ→ ∞ in S ′(Rn, E)

)
.

(ii) If α = p ∈ N, there exist associate asymptotically homogeneous E-
valued functions cm, |m| = p, of degree 0 with respect to L such that
f has the following asymptotic expansion

f(x0 + εt) = P(εt) + εpL(ε)g(t) + εp
∑

|m|=p

tmcm(ε) + o (εpL(ε))


resp. f (λt) = P(λt) + λpL(λ)g(t) + λp

∑

|m|=p

tmcm(λ) + o (λpL(λ))


 ,

as ε→ 0+ (resp. λ→ ∞) in the space S ′(Rn, E).

Furthermore, P satisfies the equations (6.8).

Proof. Proposition 5.3, under the assumptions (5.5) and (5.6), implies that
f has quasiasymptotic behavior. An application of Proposition A.1 yields
now the existence of g and P. That P sastisfies the equations (6.8) actually
follows from Theorem 6.6. �

When α /∈ N in Theorem 6.7, the condition Wψg(x, y) = Wx,y uniquely
determines g, in view of its homogeneity. On the other hand, if α ∈ N, the
prescribed values of Wψg can only determine g modulo polynomials which
are homegeneous of degree α.

At this point it is worth to point out that the use of non-degenerate
wavelets in Theorem 6.6 and Theorem 6.7 is absolutely imperative. Clearly,
if ψ̂ identically vanishes on a ray through the origin, then there are distri-
butions for which Wψf is identically zero and hence for those distributions
the hypothesis (5.5) is satisfied for all α. However, it is easy to find explicit
examples of such f for which the conclusion of Theorem 6.6 does not hold
for a given α.

Observe that if ψ ∈ S0(Rn) in Theorem 6.6 and Theorem 6.7, then the
converses are also true, as follows from the moment vanishing properties of
ψ. This is actually the content of Theorem 5.2.

7. Tauberian Class Estimates

In this section we show that the estimate of type

(7.1)
∥∥∥M f

ϕ(x, y)
∥∥∥ ≤ C

(1 + y)k (1 + |x|)l
yk

, (x, y) ∈ H
n+1,

characterizes the space S ′(Rn, E). We call (7.1) a global class estimate, and
we may say that it has a Tauberian nature. Specifically, we prove that if f
takes values in a “broad” locally convex space which contains the narrower
Banach space E, and if f satisfies (7.1) for a non-degenerate test function
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ϕ, then, there is a distribution G with values in the broad space such that
supp Ĝ ⊆ {0} and f − G ∈ S ′(Rn, E). In case when the broad space is
a normed one, G reduces simply to a polynomial. This will be done in
Subsection 7.1.

We shall also investigate in Subsection 7.2 the consequences of (7.1) when
it is only assumed to hold for (x, y) ∈ R

n× (0, 1], we call it then a local class
estimate. In this case the situation is slightly different and we obtain that
f − G ∈ S ′(Rn, E), where Ĝ has compact support but its support may

not be any longer the origin. We may take G with supp Ĝ ⊆ {0} if we
employ the wavelets introduced in the Example 3.7 (Subsection 7.4). For
the φ−transform G does not occur (Subsection 7.3).

We point out that the results of this section extend in several directions
those of Drozhzhinov and Zavialov from [5, 6].

Throughout this section, unless specified, X is assumed to be a (arbitrary)
Hausdorff locally convex topological vector space such that E ⊂ X, where
the embedding is linear and continuous. Observe that the transform (3.1)
makes sense for X-valued distributions as well. Measurability for E-valued
functions is meant in the sense of Bochner (i.e., a.e. pointwise limits of E-
valued continuous functions); likewise, integrals for E-valued functions are
taken in the Bochner sense.

7.1. Global Class Estimates. We begin with wavelets in S0(Rn).

Proposition 7.1. Let f ∈ S ′
0(R

n,X) and let ψ ∈ S0(R
n) be a non-degenerate

wavelet. The following three conditions,

(7.2) Wψf(x, y) ∈ E, for almost all (x, y) ∈ H
n+1,

(7.3) Wψf is measurable as an E-valued function,

there are constants k, l ∈ N and C > 0 such that

(7.4) ‖Wψf(x, y)‖ ≤ C

(
1

y
+ y

)k
(1 + |x|)l , for almost all (x, y) ∈ H

n+1,

are necessary and sufficient for f ∈ S ′
0(Rn, E).

Proof. The necessity is clear (Proposition 3.14). We show the sufficience.
Let η be a reconstruction wavelet for ψ. We apply the wavelet synthesis
operator to K(x, y) = Wψf(x, y), this is valid because our assumptions

(7.2)–(7.4) ensure that K ∈ S ′(Hn+1, E). So, set f̃ := MηK ∈ S ′
0(R

n, E) ⊂
S ′
0(R

n,X). We must therefore show f̃ = f . Let ρ ∈ S0(Rn). We have, by
definition, (3.12), and (3.14),

〈f̃ , ρ〉 =
1

cψ,η

∫ ∞

0

∫

Rn

〈
f(t),

1

yn
ψ̄

(
t− x

y

)
Wη̄ρ(x, y)

〉
dxdy

y
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and

〈f , ρ〉 =
1

cψ,η

〈
f ,Mψ̄Wη̄ρ

〉

=
1

cψ,η

〈
f(t),

∫ ∞

0

∫

Rn

1

yn
ψ̄

(
t− x

y

)
Wη̄ρ(x, y)

〉
dxdy

y
.

Thus, with Φ(x, y; t) = y−n−1ψ̄ ((t− x)/y)Wη̄ρ(x, y), our problem reduces
to justify the interchange of the integrals with the dual pairing in

(7.5)

∫ ∞

0

∫

Rn

〈f(t),Φ(x, y; t)〉 dxdy =

〈
f(t),

∫ ∞

0

∫

Rn

Φ(x, y; t)dxdy

〉
.

To show (7.5), we verify that
(7.6)〈
w∗,

∫ ∞

0

∫

Rn

〈f(t),Φ(x, y; t)〉 dxdy

〉
=

〈
w∗,

〈
f(t),

∫ ∞

0

∫

Rn

Φ(x, y; t)dxdy

〉〉
,

for arbitrary w∗ ∈ X ′ (here is where the local convexity of X plays a role).
Since the integral involved in the left hand side of the above expression is
a Bochner integral in E and the restriction of w∗ to E belongs to E′, we
obtain at once the exchange formula
(7.7)〈
w∗,

∫ ∞

0

∫

Rn

〈f(t),Φ(x, y; t)〉 dxdy

〉
=

∫ ∞

0

∫

Rn

〈w∗, 〈f(t),Φ(x, y; t)〉〉dxdy.

On the other hand, we may write
∫∞
0

∫
Rn Φ(x, y; t)dxdy as the limit of Rie-

mann sums, convergent in S0(Rnt ), we then easily justify the exchanges that
yield
(7.8)〈
w∗,

〈
f(t),

∫ ∞

0

∫

Rn

Φ(x, y; t)dxdy

〉〉
=

∫ ∞

0

∫

Rn

〈w∗, 〈f(t),Φ(x, y; t)〉〉 dxdy.

The equality (7.6) follows now by comparing (7.7) and (7.8). �

Proposition 7.1 provides a full characterization of S ′
0(Rn, E).

We now abord the general wavelet case. The φ−transform will be studied
separately in Subsection 7.3 because a stronger result holds for it.

Theorem 7.2. Let f ∈ S ′(Rn,X) and let ψ ∈ S(Rn) be a non-degenerate
wavelet. Sufficient conditions for the existence of an X-valued distribution
G ∈ S ′(Rn,X) such that f −G ∈ S ′(Rn, E) and supp Ĝ ⊆ {0} are:

(i) Wψf(x, y) takes values in E for almost all (x, y) ∈ H
n+1 and is

measurable as an E-valued function.
(ii) There exist constants k, l ∈ N and C > 0 such that (7.4) holds.

Proof. Let ψ1 ∈ S0(Rn) be the non-degenerate wavelet given by ψ̂(u) =

e−|u|−(1/|u|). Set ψ2 = ψ1 ∗ ψ, then, ψ2 ∈ S0(R
n) is also a non-degenerate

wavelet. Using the same argument as in the proof of Proposition 7.1, the
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exchange of integral and dual paring performed in the proof of Proposition
5.3 is valid and so we have the formula

Wψ2f(x, y) =

∫

Rn

Wψf(x+ yu, y)ψ1(u)du,

where the integral is taken in the sense of Bochner. Thus, the restriction
of f to S0(Rn) satiesfies the hypotheses of Proposition 7.1, and hence there
exists g ∈ S ′(Rn, E) such that 〈f − g, ρ〉 = 0 for all ρ ∈ S0(Rn). This gives

at once that G = f − g satisfies supp Ĝ ⊆ {0} and f −G ∈ S ′(Rn, E). �

When X is a normed space, we obviously have that the only X-valued
distributions with support at the origin are precisely those having the form∑

|m|≤N δ
(m)wm, wm ∈ X. Thus, we have:

Corollary 7.3. Let X be a normed space. Then, the conditions (i) and (ii)
of Theorem 7.2 imply the existence of an X-valued polynomial P such that
f −P ∈ S ′(Rn, E).

Moreover, if Pq denote the homogeneous terms of the Taylor polynomials

of ψ̂ at the origin (cf. (6.7)), then

(7.9) Pq

(
∂

∂t

)
f ∈ S ′(Rn, E), for all q ∈ N.

Proof. By Theorem 7.2, one can find P ∈ S ′(Rn,X) such that f − P ∈
S ′(Rn, E) and supp P̂ ⊆ {0}. Since X is normed, the point support property

of P̂ implies that P is a polynomial. Next, write P(t) =
∑

|m|≤N i
|m|tmwm,

with wm ∈ X. The relation (7.9) would follow immediately if we show that

Pq (∂/∂t)P is an E-valued polynomial. Observe that the hypotheses imply
that WψP(x, y) ∈ E, for almost all (x, y). Hence, for almost all (x, y),

WψP(x, y) =
1

(2π)n

〈
P̂(u), eix·uψ̂(yu)

〉
=
∑

|m|≤N

∂|m|

∂um

(
eix·uψ̂(yu)

)∣∣∣
u=0

wm

=

N∑

q=0

yq
∑

|m|=q

ψ̂(m)(0)
∑

|j|≤N−q

(
m+ j

m

)
(ix)jwm+j

=

N∑

q=1

(iy)q(Pq (∂/∂x)P)(x) ∈ E.

But the latter readily implies that (Pq (∂/∂x)P)(x) ∈ E, for all 0 ≤ q ≤ N
and x ∈ R

n. �

In general, it is not possible to replace the G by an X-valued polynomial
in Theorem 7.2. However, we know some valuable information about Ĝ.
Since it is supported by the origin, it is easy to show that

Ĝ =
∑

m∈Nn

(−1)|m|δ(m)

m!
µm(Ĝ),
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where µm(Ĝ) =
〈
Ĝ(u), um

〉
∈ X are its moments and the series is conver-

gent in S ′(Rn,X). This series is “weakly finite”, in the sense that for each
w∗ ∈ X ′ there exists Nw∗ ∈ N such that

〈w∗, 〈Ĝ, ρ〉〉 =
∑

|m|≤Nw∗

ρ(m)(0)

m!

〈
w∗, µm(Ĝ)

〉
, for all ρ ∈ S(Rn).

Furthermore, given any continuous seminorm p on X, one can find an Np

such that p(〈Ĝ, ρ〉 −∑|m|≤Np
(ρ(m)(0)/m!)µm(Ĝ)) = 0, for all ρ ∈ S(Rn).

Finally, we remark that G, its inverse Fourier transform, can be naturally
identified with an entire X-valued function (cf. Subsection 7.2).

Example 7.4. We consider X = C(R) and E = Cb(R), the space of
continuous bounded functions. Let χν ∈ C(R) be non-trival such that
suppχν ⊂ (ν, ν + 1), ν ∈ N. Furthermore, for each ν ∈ N find a har-
monic homogeneous polynomial Qν of degree ν, i.e., ∆Qν = 0. Consider the
E-valued distribution

G(t, ξ) =

∞∑

ν=0

Qν(t)χν(ξ) ∈ S ′(Rnt , C(Rξ)) \ S ′(Rnt , Cb(Rξ)).

Its Fourier transform is given by an infinite multipole series supported at
the origin, i.e.,

Ĝ(u, ξ) = (2π)n
∞∑

ν=0

(Qν (i∂/∂u) δ) (u) χν(ξ).

Let h ∈ S ′(Rn, Cb(R)) and let ψ ∈ S(Rn) \ S0(Rn) be a non-degenerate

wavelet such that its Fourier transform satisfies ψ̂(u) = |u|2 + O(|u|N ) as
u → 0, for all N > 2. If f = h + G ∈ S ′(Rn, C(R)), then Wψf(x, y) =
Wψh(x, y) for all (x, y) ∈ H

n+1. Thus, f satisfies all the hypotheses of
Theorem 7.2; however, there is no C(R)-valued polynomial P such that
f −P ∈ S ′(R, Cb(R)).

7.2. Local Class Estimates. We now proceed to study local class esti-
mates, namely, (7.1) only assumed for (x, y) ∈ R

n × (0, 1]. Let us start by
pointing out that M f

ϕ(x, y) may sometimes be trivial for y ∈ (0, 1), this may
happen even if ϕ is non-degenerate:

Example 7.5. Let ω ∈ S
n−1 and r ∈ R+. Denote [0, rω] = {σω : σ ∈ [0, r]}.

Suppose that f ∈ S ′(Rn,X) is such that supp f̂ ⊂ [0, rω] and ψ ∈ S0(R
n) is

any wavelet satisfying supp ψ̂ ⊂ R
n \ [0, rω], then

Wψf(x, y) =
1

(2π)n

〈
f̂(u), eixuψ̂(yu)

〉
= 0, for all y ∈ (0, 1).



34 S. PILIPOVIĆ AND J. VINDAS

Fortunately, we will show that the only distributions f ∈ S ′(Rn,X) \
S ′(Rn, E) that may satisfy a local class estimate, with respect to a non-
degenerate wavelet, are those whose Fourier transforms are compactly sup-
ported.

We need to introduce some terminology in order to move further on.
We will make use of weak integrals for X-valued functions as defined, for
example, in [39, p. 77]. We say that a tempered X-valued distribution
g ∈ S ′(Rn,X) is weakly regular if there exists an X-valued function g̃ such
that ρg̃ is weakly integrable over R

n for all ρ ∈ S(Rn) and

〈g, ρ〉 =

∫

Rn

ρ(t)g̃(t) ∈ X,

where the last integral is taken in the weak sense. We identify g with g̃, so,
as usual, we write g = g̃. The same notion makes sense, modulo X-valued
polynomials, on S ′

0(R
n,X).

Let us recall some facts about (vector valued) compactly supported dis-

tributions. Let g ∈ S ′(Rn,X) have support in B(0, r), the closed ball of
radius r. Then, the following version of the Schwartz-Paley-Wiener theorem
holds: G(z) =

〈
g(u), e−iz·u

〉
, z ∈ C

n, is an X-valued entire function which
defines a weakly regular tempered distribution, and G(ξ) = ĝ(ξ), ξ ∈ R

n;
moreover, G is of weakly exponential type, i.e., for all w∗ ∈ X ′ one can find
constants Cw∗ > 0 and Nw∗ ∈ N with

(7.10) |〈w∗,G(z)〉| ≤ Cw∗(1 + |z|)Nw∗ er|ℑm z|, z ∈ C
n.

Conversely, if G is an X-valued entire function which defines a weakly reg-
ular tempered distribution and for all w∗ ∈ X∗ there exist Cw∗ > 0 and
Nw∗ ∈ N such that (7.10) holds, then Ĝ = g, where g ∈ S ′(Rn,X) and

suppg ⊆ B(0, r).
The following concept for non-degenerate test functions is of much rele-

vance for the problem under consideration.

Definition 7.6. Let ϕ ∈ S(Rn) be non-degenerate. Given ω ∈ S
n−1, con-

sider the function of one variable Rω(r) = ϕ̂(rω) ∈ C∞[0,∞). We define
the index of non-degenerateness of ϕ as the (finite) number

τ = inf
{
r ∈ R+ : suppRω ∩ [0, r] 6= ∅,∀ω ∈ S

n−1
}
.

We first study local class estimates for wavelets in S0(R
n).

Proposition 7.7. Let f ∈ S ′
0(R

n,X) and let ψ ∈ S0(R
n) be a non-degenerate

wavelet with index of non-degenerateness τ . Suppose that Wψf(x, y) takes
values in E for almost every (x, y) ∈ R

n × (0, 1] and is measurable as an
E-valued function on R

n × (0, 1]. Furthermore, assume that it satisfies the
local class estimate

‖Wψf(x, y)‖ ≤ C
(1 + |x|)l

yk
, for almost all (x, y) ∈ R

n × (0, 1].
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Let r > τ . Then there exists an X-valued entire function G, which defines
a weakly regular tempered distribution and satisfies (7.10), such that

f −G ∈ S ′
0(Rn, E).

Proof. Let r1 be such that τ < r1 < r. A similar argument to that given
in the proof of Proposition 3.10 shows the existence of a reconstruction
wavelet η for ψ with the property supp η̂ ⊂ B(0, r1). Observe now that if
supp ρ̂ ⊆ R

n \B(0, r1), then

Wη̄ρ(x, y) =
1

(2π)n

∫

Rn

eix·uρ̂(u)η̂(−yu)du = 0, for all y ∈ [1,∞).

Hence, the same argument applied in Proposition 7.1 applies to show

(7.11) 〈f , ρ〉 =
1

cψ,η

∫ 1

0

∫ ∞

−∞
Wψf(x, y)Wη̄ρ(x, y)

dxdy

y
,

for all ρ ∈ S0(Rn) with supp ρ̂ ⊆ R
n\B(0, r1). Choose χ ∈ C∞(Rn) such that

χ(u) = 1 for all u ∈ R
n\B(0, r) and suppχ ∈ R

n\B(0, r1). Now, χ̂∗f is well
defined since χ̂ ∈ O′

C(Rn) (the space of convolutors, cf. [43]), and actually
(7.11) implies that (2π)−nχ̂ ∗ f ∈ S ′

0(Rn, E). Therefore, G = f − (2π)−nχ̂∗ f
satisfies the requirements because supp Ĝ ⊆ B(0, r). �

The following theorem deals with the general case, we state it in terms of
the transform M f

ϕ.

Theorem 7.8. Let f ∈ S ′(Rn,X) and let ϕ ∈ S(Rn) be a non-degenerate
test function with index of non-degenerateness τ . Assume:

(i) M f
ϕ(x, y) takes values in E for almost all (x, y) ∈ R

n × (0, 1] and is
measurable as an E-valued function on R

n × (0, 1].
(ii) There exist constants k, l ∈ N and C > 0 such that (7.1) holds for

almost all (x, y) ∈ R
n × (0, 1].

Then, for any r > τ , there exists an X-valued entire function G, which
defines a weakly regular tempered distribution and satisfies (7.10), such that

f −G ∈ S ′(Rn, E).

Proof. Let ψ ∈ S0(Rn) be given by ψ̂(u) = e−|u|−(1/|u|). Set ψ1 = ˇ̄ϕ ∗ ψ,
then, ψ1 ∈ S0(Rn) is also a non-degenerate wavelet and we have the formula

Wψ1f(x, y) =

∫

Rn

M f
ϕ(x + yu, y)ψ̄(u)du,

and so the restriction of f to S0(R
n) satisfies the hypotheses of Proposition

7.7; consequently there exists G1 ∈ S ′(Rn,X) with supp Ĝ1 ⊂ B(0, r) such
that the restriction of f −G1 to S0(R

n) belongs to S ′
0(Rn, E). Finally, one

can find G2 ∈ S ′(Rn,X) whose Fourier transform is supported at the origin
and f −G1 −G2 ∈ S ′

0(Rn, E), and therefore, G = G2 +G1 satisfies all the
requirements. �
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One may be tempted to think that in Proposition 7.7 and Theorem 7.8
it is possible to take G with support in B(0, τ); however, this is not true, in
general, as the following counterexample shows.

Example 7.9. Let X, E, and the sequence {χν}∞ν=1 be as in Example 7.4.
We work in dimension n = 1. We assume additionally that supξ |χν(ξ)| = 1,

for all ν ∈ N. Let τ ≥ 0, the wavelet ψ, given by ψ̂(u) = e−|u|−(1/(|u|−τ))

for |u| > τ and ψ̂(u) = 0 for |u| ≤ τ , has index of non-degenerateness τ .
Consider the C(R)-valued distribution

f(t, ξ) =
∞∑

ν=1

eν+i(τ+
1
n )tχν(ξ) ∈ S ′(Rt, C(Rξ)) \ S ′(Rt, Cb(Rξ)).

Then,

Wψf(x, y)(ξ) =
∑

1≤ν< y
τ(1−y)

e
ν+(ix−y)(τ+1/ν)− ν

y−ντ(1−y)χν(ξ), 0 < y < 1.

and hence, ‖Wψf(x, y)‖Cb(R)
≤ 1, for all 0 < y < 1. Therefore, the hypothe-

ses of both Proposition 7.7 and Theorem 7.8 are fully satisfied, however,
f −G /∈ S ′(R, Cb(R)), for any G ∈ S ′(R, C(R)) with supp Ĝ ⊆ [−τ, τ ].

7.3. The φ−transform. Theorem 7.8 can be improved for the φ−transform.
Observe that the index of non-degenerateness of φ is now τ = 0. Remark-
ably, one gets a full characterization of the space S ′(Rn, E).

Theorem 7.10. Let f ∈ S ′(Rn,X) and let φ ∈ S(Rn) be such that µ0(φ) =
1. Necessary and sufficient conditions for f to belong to the space S ′(Rn, E)
are:

(i) Fφf(x, y) takes values in E for almost all (x, y) ∈ R
n × (0, 1] and is

measurable as an E-valued function on R
n × (0, 1], and,

(ii) There exist constants k, l ∈ N and C > 0 such that

‖Fφf(x, y)‖ ≤ C
(1 + |x|)l

yk
, for almost all (x, y) ∈ R

n × (0, 1].

Proof. By Theorem 7.8, one may assume that supp f̂ ⊆ B(0, 1). So, f is given
by an entire function of weakly exponential type which defines a weakly reg-
ular X-valued tempered distribution. Let ρ ∈ S(Rn) such that ρ(u) = 1 for

u ∈ B(0, 3/2) and suppρ ⊂ B(0, 2). Choose 2σ < 1 such that |φ̂(u)| > 0 for

all u ∈ B(0, 2σ). For a fixed x ∈ R
n, the function χ̂x(u) = eixuρ(u)/φ̂(−σu)

defines an element of S(Rn). Thus,

f(x) =
1

(2π)n

〈
f̂(u), eix·u

〉
=

1

(2π)n

〈
f̂(u), χ̂x(u)φ̂(−σu)

〉

=
1

σn

〈
f(t),

∫

Rn

χx(ξ)φ

(
t+ ξ

σ

)
dξ

〉
=

∫

Rn

χx(ξ)Fφf(−ξ, σ)dξ ∈ E,
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where the exchange with the integral sign can be established as in the proof
of Proposition 7.1. Hence the entire function f takes values in E. Moreover,

‖f(x)‖ < C

σk

∫

Rn

(1 + |ξ|)l |χx(ξ)| dξ ≤ C1(1 + |x|)N , for all x ∈ R
n,

for some constants C1 > 0 and N ∈ N. Clearly, the last E-norm estimate
over the growth of f implies that f ∈ S ′(Rn, E), as required. �

7.4. Local Class Estimates and Strongly Non-degenerate Wavelets.

A strengthened version of both Theorem 7.2 and Theorem 7.8 holds if we
restrict the non-degenerate wavelets to those fulfilling the requirements of
the following definition.

Definition 7.11. Let ψ ∈ S(Rn) be a wavelet. We call ψ strongly non-
degenerate if there exist constants N ∈ N, r > 0, and C > 0 such that

(7.12) C |u|N ≤ |ψ̂(u)| , for all |u| ≤ r.

Theorem 7.12. Let f ∈ S ′(Rn,X) and let ψ ∈ S(Rn) be a strongly non-
degenerate wavelet. Assume:

(i) Wψf(x, y) takes values in E for almost all (x, y) ∈ R
n× (0, 1] and is

measurable as an E-valued function on R
n × (0, 1].

(ii) There exist constants k, l ∈ N and C > 0 such that

‖Wψf(x, y)‖ ≤ C
(1 + |x|)l

yk
, for almost all (x, y) ∈ R

n × (0, 1].

Then, there exists G ∈ S ′(Rn,X) such that f−G ∈ S ′(Rn, E) and supp Ĝ ⊆
{0}.

Proof. As in Theorem 7.10, we may assume that supp f̂ ⊆ B(0, 1). Let
ρ ∈ S(Rn) be the same as in the proof of Theorem 7.10. We can find

σ,C1 > 0 and N ∈ N such that 2σ ≤ 1 and C1|u|N ≤ |ψ̂(u)|, for all u ∈
B(0, 2σ). Given η ∈ S0(Rn), then χ̂(u) = χ̂η(u) = ρ(u)η̂(−u)/ψ̂(σu) defines
an element of S(Rn) in a continuous fashion, consequently, the mapping
γ : S0(R

n) 7→ [0,∞) given by γ(η) =
∫
Rn(1 + |ξ|)l |χ(ξ)| dξ is a continuous

seminorm over S0(Rn). Now, for any η ∈ S0(Rn),

〈f , η〉 =
1

(2π)n

〈
f̂(u), χ̂(u)ψ̂(σu)

〉
=

∫

Rn

χ(ξ)Wψf(−ξ, σ)dξ.

Therefore, ‖〈f , η〉‖ ≤ (C/σk)γ(η), for all η ∈ S0(R
n), and the latter implies

that the restriction of f to S0(Rn) belongs to S ′
0(Rn, E). The standard

argument (see the proof of Theorem 7.2) yields the existence of G satisfying
all the requirements.

�

It should be noticed that the class of strongly non-degenerate wavelets co-
incides with that of Drozhzhinov-Zavialov wavelets, introduced in Example
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3.7. Indeed, the condition (7.12) holds if and only if the Taylor polynomial

of order N at the origin of ψ̂ is non-degenerate in the sense of Example 3.7.
In dimension n = 1, there is no distinction between non-degenerateness

and strong non-degenerateness, whenever we consider wavelets in S(R) \
S0(R). Actually, a stronger result than Theorem 7.12 holds in the one-
dimensional case.

Proposition 7.13. Let f ∈ S ′(R,X) and let ψ ∈ S(R) be a wavelet with
µd(ψ) 6= 0, for some d ∈ N. If the conditions (i) and (ii) of Theorem 7.12
are satisfied, then there exists an X-valued polynomial P of degree at most
d− 1 such that f −P ∈ S ′(R, E).

Proof. There exists φ ∈ S(R) such that φ(d) = (−1)dψ, and we may assume
that µ0(φ) = 1. Then,

Fφ(f (d))(x, y) =
1

yd
Wψf(x, y),

hence, an application of Theorem 7.10 gives that f (d) ∈ S ′(R, E), and this
clearly implies the existence of P with the desired properties. �

Observe that the conclusion of Proposition 7.13 does not hold for multi-
dimensional wavelets, in general, even if they are strongly non-degenerate.
This fact is shown by Example 7.4.

Naturally, if X is a normed space in Theorem 7.12, then G must be an
X-valued polynomial, this fact is stated in the next corollary. Corollary 7.14
extends an important result of Drozhzhinov and Zavialov [6, Thm. 2.1].

Corollary 7.14. Let the hypotheses of Theorem 7.10 be satisfied. If X is
a normed space, then there is an X-valued polynomial P such that f −P ∈
S ′(Rn, E). Moreover, if Pq, q ∈ N, are the homogeneous terms of the Taylor

polynomials of ψ̂ at the origin (cf. (6.7)), then Pq (∂/∂t)P is an E-valued
polynomial, for each q ∈ N.

Proof. The existence of the polynomial is clear. The proof of the remaining
assertion is identically the same as that of Corollary 7.3. �

In general, the degree of the the polynomial P occurring in Corollary 7.14
depends merely on f , and not on the wavelet. However, when the Taylor
polynomials of the wavelet ψ̂ posses a rich algebraic structure, it is possible
to say more about the degree of P. This fact was already observed in [6,
Thm. 2.2] for Banach spaces X. We denote by Pd(R

n) the ideal of (scalar-
valued) polynomials of the form Q(t) =

∑
d≤|m|≤N amt

m, for some N ∈ N.

Corollary 7.15. Let the hypotheses of Corollary 7.14 be satisfied. If there
exists d ∈ N such that Pd(R

n) is contained in the ideal generated by the
polynomials P1, P2, . . . , Pd, where the Pq, q ∈ N, are the homogeneous terms

of the Taylor polynomials of ψ̂ at the origin (cf. (6.7)), then there exists an
X-valued polynomial P of degree at most d− 1 such that f −P ∈ S ′(Rn, E).
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Proof. Corollary 7.14 yields the existence of an X-valued polynomial P̃(t) =

P(t) +
∑

d≤|m|≤N wmt
m such that f − P̃ ∈ S ′(Rn, E) and P has degree at

most d − 1. Then, we must show that wm ∈ E, for d ≤ |m| ≤ N . But

Corollary 7.14 also implies that Pq(∂/∂t)P̃ is an E-valued polynomial for
q = 1, . . . , d, and since Pd(R

n) is also contained in the ideal generated by

P 1, . . . , P d, we obtain at once that wm = m!((∂|m|/∂tm)P̃)(0) ∈ E, for
d ≤ |m| ≤ N . �

8. Several Applications

8.1. Distributionally Small Distributions at Infinity. Estrada [10] has
characterized the class of distributions which are distributionally small at
infinity (cf. Example 2.3), that is, the ones which have an asymptotic ex-
pansion

(8.1) f(λt) ∼
∞∑

|m|=0

(−1)|m|

m!λ|m|+n
δ(m)(t)wm as λ→ ∞ in S ′(Rn, E),

for some multi-sequence {wm}m∈Nn in E.
The distributionally small distributions are precisely the elements of the

space K′(Rn, E), where K(Rn) is test function space of the so-called GLS
symbols [17], defined as follows. Given β ∈ R, the space Kβ(Rn) is formed

by those smooth functions ρ such that ρ(m)(t) = O(|t|β−|m|) as |t| → ∞ for
each m ∈ N

n, provided with the topology generated by the seminorms

max{sup
|t|≤1

|ρ(m)(t)|, sup
|t|≥1

|t||m|−β |ρ(m)(t)|}.

Then, K(Rn) = ind limβ→∞Kβ(Rn). Observe that the elements of K(Rn)
are indeed symbols of pseudodifferential operators.

Using the Theorem 6.6 and Fourier transforming (8.1), we obtain the
following wavelet characterization of K′(Rn, E). Let ψ ∈ S0(Rn) be a
non-degerate wavelet. Then, a tempered E-valued distribution f belongs
to K′(Rn, E) if and only if there exists a sequence {νp}∞p=0 of non-negative

integers such that for each p ∈ N

lim sup
ε→0+

sup
|x|2+y2=1, y>0

yνp

εp

∥∥∥Wψ f̂(εx, εy)
∥∥∥ <∞.

Example 8.1. We will find the complete distributional asymptotic expan-
sion of Riemann’s “nondifferentiable function” at t = 0 and t = 1, i.e.,

∞∑

n=1

sin(πn2t)

n2
.

Let us consider the distribution

f(t) =

∞∑

n=1

eiπn
2t − ei

π
4

2(t + i0)
1
2

,
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where (t+ i0)α is the distributional boundary value of the analytic function
zα, ℑm z > 0. Then, if ψ ∈ S0(R) and k ∈ N, there exists Ck such that

|Wψf(εx, εy)| =

∣∣∣∣∣

∞∑

n=1

eiεxπn
2
ψ̂
(
εyπn2

)
−
∫ ∞

0
eiεxπu

2
ψ̂
(
εyπu2

)
du

∣∣∣∣∣ ≤
Ck
y
εk,

for all y, ε ∈ (0, 1) and |x| ≤ 1, as shown by the Euler-Maclaurin summation

formula [15]. This implies that f̂ ∈ K′(R) and thus satisfies the moment
asymptotic expansion,

f̂(λu) ∼
∞∑

m=0

(−1)mµm
m!λm+1

δ(m)(u) as λ→ ∞ in K′(R),

where the moments of f̂ can be evaluated in the Cesàro sense [10, 15]. If
H denotes the Heaviside function, ζ the Riemann zeta function, and (C)
stands for limits in the Cesàro sense, then

1

2π
µm =

1

2π

〈
f̂(u), um

〉
= πm

〈
∞∑

n=1

δ(ξ − n) −H(ξ), ξ2m

〉

= πm lim
x→∞



∑

1≤n≤x

n2m −
∫ x

0
ξ2mdξ


 = πmζ(−2m) (C),

and hence µ0 = 2πζ(0) = −π, and µm = ζ(−2m) = 0 for every m ≥ 1.
Consequently,

f̂(λu) = −πδ(u)

λ
+ o

(
1

λ∞

)
as λ→ ∞ in S ′(R),

where o
(

1
λ∞

)
means o

(
1
λk

)
for every k ∈ N. Taking Fourier inverse transform

and integrating [60] the resulting asymptotic expression, we have

W (εt) :=

∞∑

n=1

eiπn
2εt

n2
=
π2

6
+ ε

1
2 iπei

π
4 (t + i0)

1
2 − iπ

2
εt + o(ε∞) in S ′(R)

as ε→ 0+. Finally, if we split into real and imaginary parts, we obtain the
ensuing distributional asymptotic formulas at the origin:

∞∑

n=1

sin(πn2εt)

n2
=

√
2π

2
sgn(t) |εt| 12 − π

2
εt+ o(ε∞) as ε→ 0+ in S ′(R)

and
∞∑

n=1

cos(πn2εt)

n2
=
π2

6
−

√
2π

2
|εt| 12 + o(ε∞) as ε→ 0+ in S ′(R).

We can also determine the distributional asymptotic expansions of these
functions at t = 1. Observe that W (1 + t) = (1/2)W (4t) −W (t), thus the
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behavior at origin implies that

W (1 + εt) = −π
2

6
− iπ

2
εt + o(ε∞) as ε→ 0+ in S ′(R),

and hence,
∞∑

n=1

sin(πn2(1 + εt))

n2
= −π

2
εt+ o(ε∞) as ε→ 0+ in S ′(R)

and
∞∑

n=1

cos(πn2(1 + εt))

n2
= −π

2

6
+ o(ε∞) as ε→ 0+ in S ′(R).

It should be noticed that all these expansions actually hold in the ordinary
sense, and not just distributionally, when considered up to order o(ε) (cf.
[19, 20]).

8.2. Applications to Regularity Theory in Algebras of Generalized

Functions. In this section we show how the Tauberian theorems for the
wavelet transform can be used as a standard device to derive results in the
regularity theory for algebras of generalized functions.

First, we consider the algebra of tempered generalized functions which
contains S ′(Rn) as a proper subspace. Let OM (Rn) be the space of mul-
tipliers of S(Rn) [43], that is, the space of smooth functions whose deriva-
tives are bounded by polynomials, of possible different degress. Colombeau
[2] defined the algebra of tempered generalized functions as the quotient
Gτ (Rn) = EM,τ (R

n)/Nτ (Rn), where EM,τ (R
n) is the algebra of nets (fε)ε ∈

OM (Rn)(0,1)

(∀m ∈ R
n)(∃N ∈ N)( sup

x∈Rn
(1 + |x|)−N |f (m)

ε (x)| = O(ε−N ))

while its ideal Nτ (Rn) consists of those such that

(∀m ∈ R
n)(∃N ∈ N)(∀b > 0)( sup

x∈Rn
(1 + |x|)−N |f (m)

ε (x)| = O(εb)).

We can embed S ′(Rn) into Gτ (Rn) via ι(f) = [(f ∗ φε)ε], where φ satisfies
(3.8).

The algebra of regular tempered generalized functions G∞
τ (Rn) consists

of those nets in OM (Rn)(0,1) such that

(8.2) (∃a ∈ R)(∀m ∈ R
n)(∃N ∈ N)( sup

x∈Rn
(1 + |x|)−N |f (m)

ε (x)| = O(ε−a)).

We will show the regularity theorem for G∞
τ (Rn); it originally appeared in

[23].

Theorem 8.2. S ′(Rn) ∩ G∞
τ (Rn) = OM (Rn).

This equality means that if f ∈ S ′(Rn) and fε = f ∗ φε, ε ∈ (0, 1), deter-
mines an element of G∞

τ (Rn), then f ∈ OM (Rn).
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Proof. The inclusion OM (Rn) ⊆ S ′(Rn)∩G∞
τ (Rn) is obvious. Let f ∈ S ′(Rn)

such that ι(f) ∈ G∞
τ (Rn), that is, the net fε = f ∗ φε satisfies (8.2). We

should show that f (m) is continuous of polynomial growth for each m ∈ N
n.

Let ν ∈ N be such that β = 2ν−a > 0. Then, there exists N0 ∈ N such that

(8.3) sup
x∈Rn

(1 + |x|)−N0

∣∣∣Wψf
(m)(x, y)

∣∣∣ = O(yβ), 0 < y < 1,

where ψ = ∆ν φ̌, a non-degenerate wavelet. Define h by 〈h, ρ〉 = f (m) ∗
ρ̌, for ρ ∈ S(Rn), then there exists N > N0 such that h ∈ S ′(Rn, E),
where E is the Banach space of continuous functions v ∈ C(Rn) such that
‖v‖ := supξ∈Rn(1 + |ξ|)−N |v(ξ)| < ∞, provided with the norm ‖ · ‖. Since

Wψh(x, y)(ξ) = Wψf
(m)(ξ + x, y), the estimate (8.3) gives now

lim sup
ε→0+

sup
|x|≤1, 0<y<1

ε−β ‖Wψh(εx, εy)‖ <∞.

The Theorem 6.6 implies, in particular, that h has a distributional point
value at the origin (cf. Example 2.2), say h(0) = v ∈ E, i.e., for each

test function ρ, limε→0+ f
(m) ∗ ρ̌ε = limε→0+ 〈h(εt), ρ(t)〉 = v

∫
Rn ρ(t)dt,

where the limit holds in E. But if we take ρ = φ̌, we obtain in particular
that limε→0+(f ∗ φε)(ξ) = v(ξ) uniformly for ξ in compacts of Rn, and this

means exactly that f (m) = v is a continuous function of at most polynomial
growth. �

Remark 8.3. Recall [2], the Colombeau algebra of generalized functions
is defined as G(Ω) = EM (Ω)/N (Ω), where EM (Ω), N (Ω), consist of nets of
smooth functions in Ω, (fε)ε∈(0,1), with the properties

(∀ω ⊂⊂ Ω)(∀ν ∈ N)(∃N ∈ N)( sup
|m|≤ν,x∈ω

|f (m)
ε (x)| = O(ε−N )),

(∀ω ⊂⊂ Ω)(∀b ∈ R)(∀ν ∈ N)( sup
|m|≤ν,x∈ω

|f (m)
ε (x)| = O(εb)).

The embedding of the Schwartz distribution space E ′(Ω) is realized through
the sheaf homomorphism E ′(Ω) ∋ f 7→ ι(f) = [(f∗φε|Ω)ε] ∈ G(Ω), where φ ∈
S(Rn) is as before. This sheaf homomorphism, extended onto D′, gives the
embedding of D′(Ω) into G(Ω). The embedding respects the multiplication
of smooth functions.

The generalized algebra of “smooth generalized functions” G∞(Ω) is de-
fined in [35] as the quotient of algebras E∞

M (Ω) and N (Ω), where E∞
M (Ω),

consists of nets of smooth functions in Ω with the property

(∀ω ⊂⊂ Ω)(∃a ∈ R)(∀ν ∈ N)( sup
|m|≤ν,x∈ω

|f (m)
ε (x)| = O(ε−a)),

Note that G∞ is a subsheaf of G. Roughly speaking, it has the same role
as C∞ in D′.

Similarly as above, one can prove the following well known assertion [35]:

Theorem 8.4. D′(Ω) ∩ G∞(Ω) = C∞(Ω).
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8.3. Asymptotic Stabilization in Time for Cauchy Problems. We re-
tain in this subsection the notation from Example 3.8, that is, U is the unique
solution to the Cauchy problem (3.9) and φ = (2π)−nη̂, where η ∈ S(Rn)

satisfies η(u) = eP (iu), u ∈ Γ; thus, U is given by (3.10). We apply Theorem
6.2 to find sufficient geometric conditions for the stabilization in time of the
solution to the Cauchy problem (3.9), namely, we study conditions which
ensure the existence of a function T : (A,∞) → R+ and a constant ℓ ∈ C

such that the following limits exist

(8.4) lim
t→∞

U(x, t)

T (t)
= ℓ, for each x ∈ R

n.

Let L be slowly varying at infinity and α ∈ R. We shall say that U
stabilizes along d-curves (at infinity), relative to λαL(λ), if the following
two conditions hold:

(1) There exist the limits

(8.5) lim
λ→∞

U(λx, λdt)

λαL(λ)
= U0(x, t), (x, t) ∈ S

n ∩H
n+1;

(2) There are constants M ∈ R+ and l ∈ N such that

(8.6)

∣∣∣∣
U(λx, λdt)

λαL(λ)

∣∣∣∣ ≤
M

tl
, (x, t) ∈ S

n ∩H
n+1.

Theorem 8.5. The solution U to the Cauchy problem (3.9) stabilizes along
d-curves, relative to λαL(λ), if and only if f has quasiasymptotic behavior
of degree α at infinity with respect to L.

Proof. We have that U(x, t) = Fφf(x, y), with y = t1/d, then, conditions
(8.5) and (8.6) translate directly into conditions (6.1) and (6.5), with Fx,y =

U0(x, t
1/d) and k = dl. Therefore, Theorem 6.4 yields the desired equiva-

lence. �

Corollary 8.6. If U stabilizes along d-curves, relative to λαL(λ), then U
stabilizes in time with respect to T (t) = tα/dL(t1/d). Moreover, the limit
(8.4) holds uniformly for x in compacts of Rn.

Proof. By Theorem 8.5, there exists g ∈ S ′(Rn) such that

f(λξ) ∼ λαL(λ)g(ξ) as λ→ ∞ in S ′(Rn).

If K ⊂ R
n is compact, then,

lim
t→∞

U(x, t)

T (t)
= lim

t→∞

1

tα/dL(t1/d)

〈
f(t1/dξ), φ

(
ξ − x

t1/d

)〉
= 〈g(ξ), φ(ξ)〉 ,

uniformly for x ∈ K because φ
(
ξ − x/t1/d

)
→ φ(ξ) in S(Rn), as t→ ∞. �

Example 8.7. The heat equation. When Γ = R
n and P (∂/∂x) = ∆,

we obtain that stabilization along parabolas (i.e., d = 2) is sufficient for
stabilization in time of the solution to the Cauchy problem for the heat
equation. This particular case of Corollary 8.6 was studied in [5, 6, 8].
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8.4. Tauberian Theorems for Laplace Transforms. We now apply the
results from Subsection 6.2 to Laplace transforms. As in Example 3.9, Γ is
assumed to be a closed convex acute cone with vertex at the origin; we set
CΓ = int Γ∗ and TCΓ = R

n+ iCΓ. The following Tauberian theorems for the
Laplace transform were originally obtained in [3, 64] under the additional
assumption that Γ is a regular cone (i.e., its Cauchy-Szegö kernel is a divisor
of the unity in the Vladimirov algebra H(TCΓ) [63, 64]); we will not make
use of such a hypothesis over the cone Γ.

Given 0 ≤ κ, we denote by Ωκ ⊂ H
n+1 the set

(8.7) Ωκ =
{

(x, σ) ∈ H
n+1 : |x| ≤ σκ and 0 < σ ≤ 1

}
.

Theorem 8.8. Let h ∈ S ′
Γ(E) and let L be slowly varying at infinity. Then,

h is quasiasymptotically bounded of degree α at infinity with respect to L if
and only if there exist numbers k ∈ N and 0 ≤ κ < 1 and a vector ω ∈ CΓ

such that

(8.8) lim sup
ε→0+

sup
(x,σ)∈∂Ωκ, σ>0

σkεn+α

L(1/ε)
‖L {h; ε (x+ iσω)}‖ <∞.

Proof. Set f̂ = (2π)nh and keep the notation from Example 3.9. Clearly, h
is quasiasymptotically bounded of degree α at infinity with respect to L if
and only if f is quasiasymptotically bounded of degree −α−n at the origin
with respect to L(1/ε). The latter holds, by (3.11) and Theorem 6.2, if and
only if there exists k1 ∈ N such that

(8.9) lim sup
ε→0+

sup
|x|2+(cosϑ)2=1

ϑ∈[0,π/2)

(cos ϑ)k1 εn+α

L(1/ε)
‖Fφω f(εx, ε cos ϑ)‖ <∞.

Thus, we shall show the equivalence between (8.8) and (8.9). By part (i) of
Proposition 5.1, (8.9) implies (8.8). Assume now (8.8), namely, there exist
C1 and 0 < ε0 < 1 such that

(8.10)
∥∥Fφω f(εx′, εσ)

∥∥ < C1

σk
ε−α−nL (1/ε) , ε ≤ ε0, (x′, σ) ∈ Ωκ.

We may assume that k ≥ α + n + 1 and L satisfies (5.3) and (5.4) (the
case at infinity). We keep arbitrary ε < ε0, ϑ ∈ (0, π/2) and x ∈ R

n with

|x|2 + (cos ϑ)2 = 1. Set r = |x| 1
1−κ /(cos ϑ)

κ
1−κ , x′ = x/r, and σ = (cos ϑ)/r;

observe that (x′, σ) ∈ ∂Ωκ. Assume first that rε ≤ ε0, then, in view of (8.10)
and (5.3),

‖Fφω f(εx, ε cos ϑ)‖ < C1

(cos ϑ/r)k
(rε)−α−nL (1/(rε))

≤ 4C1C2ε
−α−nL (1/ε) (cos ϑ)−k−

κ
1−κ

(k−α−n+1);
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on the other hand, if now ε0 < rε, Proposition 3.4 implies that for some
k2 ∈ N, k2 ≤ k and C4 > 0,

‖Fφω f(εx, ε cos ϑ)‖ < C4

(ε cos ϑ)k2
=

C4

(cos ϑ)k2
ε−α−nL (1/ε)

(1/ε)k2−α−n

L(1/ε)

<
C4C3

(cos ϑ)k2
ε−α−nL (1/ε)

(
r

ε0

)k2+1−α−n

<
C4C3

εk2+1−α−n
0

ε−α−nL (1/ε) (cos ϑ)−k2−
κ

1−κ
(k2−α−n+1),

where we have used (5.4). Therefore, (8.9) is satisfied with k1 ≥ k2 +κ(k2−
α− n+ 1)/(1 − κ). �

We obtain as a corollary the so-called general Tauberian theorem for
Laplace transforms [64, p. 84].

Corollary 8.9. Let h ∈ S ′
Γ(E) and let L be slowly varying at infinity. Then,

an estimate (8.8), for some k ∈ N and ω ∈ CΓ, and the existence of a solid
cone C ′ ⊂ CΓ (i.e., intC ′ 6= ∅) such that

(8.11) lim
ε→0+

εα+n

L(1/ε)
L{h; iεξ} = G(iξ), in E, for each ξ ∈ C ′,

are necessary and sufficient for h to have quasiasymptotic behavior at infin-
ity of degree α, i.e.,

h(λu) ∼ λαL(λ)g(u) as λ→ ∞ in S ′(Rn, E), for some g ∈ S ′
Γ(E).

In such a case, G(z) = L{g; z}, z ∈ TCΓ .

Proof. Recall [63] that S ′
Γ(E) is canonically isomorphic to S ′(Γ, E) = Lb(S(Γ), E).

By the injectivity of the Laplace transform and the uniqueness property of
holomorphic functions, the linear span of

{
eiξ·u : ξ ∈ C ′

}
is dense in S(Γ);

observe that (8.11) gives precisely convergence of (1/(λαL(λ)))h(λ ·) over
such a dense subset. To conclude the proof, it suffices to apply Theorem 8.8
and the Banach-Steinhaus theorem. �

Example 8.10. Littlewood’s Tauberian theorem. The classical Tauberian
theorem of Littlewood [18, 27, 29] states that if

(8.12) lim
ε→0+

∞∑

n=0

cne
−εn = β

and if the Tauberian hypothesis cn = O(1/n) is satisfied, then the numerical
series is convergent, i.e.,

∑∞
n=0 cn = β.

We give a quick proof of this theorem based on Corollary 8.9. We first
show that the distribution h(u) =

∑∞
n=0 cnδ(u−n) has the quasiasymptotic

behavior

(8.13) h(λu) =

∞∑

n=0

cnδ(λu− n) ∼ β
δ(u)

λ
as λ→ ∞ in S ′(R).
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Observe that (8.11) is an immediate consequence of (8.12) (here n = 1,
α = −1, L ≡ 1). We verify (8.8) with κ = 0, actually, on the rectangle
Ω0 = [−1, 1] + i(0, 1]. Indeed, (8.12) and the Tauberian hypothesis imply
that for suitable constants C1, C2, C3, C4 > 0, independent of (x, σ) ∈ Ω0,

|L {h; ε(x + iσ)}| =

∣∣∣∣∣

∞∑

n=0

cne
−εσneiεxn

∣∣∣∣∣ ≤ C1 + C2

∞∑

n=1

e−εσn

n

∣∣eiεxn − 1
∣∣

< C1 +C3ε

∞∑

n=1

e−εσn <
C4

σ
, (x, σ) ∈ Ω0, 0 < ε ≤ 1.

Consequently, Corollary 8.9 yields (8.13). Finally, it is well known that
(8.13) and cn = O(1/n) imply the convergence of the series; in fact, this is
true under more general Tauberian hypotheses (cf. [56, Sec. 3]). We can
proceed as follows. Let σ > 1 be arbitrary. Choose ρ ∈ D(R) such that
0 ≤ ρ ≤ 1, ρ(u) = 1 for u ∈ [0, 1], and supp ρ ⊂ [−1, σ], then, evaluation of
(8.13) at ρ gives, for some constant C5,

lim sup
λ→∞

∣∣∣∣∣∣

∑

0≤n≤λ

cn − β

∣∣∣∣∣∣
≤ lim sup

λ→∞

∣∣∣∣∣∣

∑

λ≤n

cnρ
(n
λ

)
∣∣∣∣∣∣
< C5 lim sup

λ→∞

∑

1<n
λ
<σ

ρ
(
n
λ

)

n

= C5

∫ σ

1

ρ(x)

x
dx < C5(σ − 1),

and so, taking σ → 1+, we conclude
∑∞

n=0 cn = β.

Remark 8.11. We refer to the monograph [64] (and references therein) for
the numerous applications of Corollary 8.9 in mathematical physics, espe-
cially in quantum field theory. Corollary 8.9 can also be used to easily recover
Vladimirov multidimensional generalization [62] of the Hardy-Littlewood-
Karamata Tauberian theorem (cf. [3, 64]).

8.5. Relation between Quasiasymptotics in D′(Rn, E) and S ′(Rn, E).
If a tempered E-valued distribution has quasiasymptotic behavior in the
space S ′(Rn, E) then, clearly, it has the same quasiasymptotic behavior in
D′(Rn, E). The converse is also well known in the case of scalar-valued
distributions, but the true of this result is less obvious. There have been
several proofs of such a converse result and, remarkably, none of them is
simple (cf. [36, 59, 60] and especially [72, Lem. 6] for the general case). We
provide a new proof of this fact, which will actually be derived as an easy
consequence of the results from Subsection 6.2.

We begin with quasiasymptotic boundedness. Let L be slowly varying at
the origin (resp. at infinity)

Proposition 8.12. Let f ∈ S ′(Rn, E). If f is quasiasymptotically bounded
of degree α at the point x0 (resp. at infinity) with respect to L in the space
D′(Rn, E), so is f in the space f ∈ S ′(Rn, E).
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Proof. We may assume that x0 = 0. The Banach-Steinhaus theorem implies
the existence of ν ∈ N, C > 0, and h0 > 0 such that

|〈f(ht), ρ(t)〉| ≤ ChαL(h) sup
|x|≤1, |m|≤ν

∣∣∣ρ(m)(t)
∣∣∣ , for all ρ ∈ D(B(0, 3))

and all 0 < h < h0 (resp. h0 < h), where B(0, 3) is the ball of radius 3.
Let now φ ∈ D(B(0, 1)). If we take ρ(t) = y−nφ(y−1(t − x)) in the above
estimate, where 0 < y < 1 and |x| ≤ 1, we then obtain at once that (6.1)
is satisfied with k = ν + n, and consequently the Theorem 6.2 implies the
result. �

Proposition 8.12, the Banach-Steinhaus theorem, and the density of D(Rn)
in S(Rn) immediately yield what we wanted:

Corollary 8.13. If f ∈ S ′(Rn, E) has quasiasymptotic behavior in D′(Rn, E),
so does f have the same quasiasymptotic behavior in the space S ′(Rn, E).

9. Further Extensions

We indicate in this section some useful extentions and variants of the
Tauberian results from the previous sections.

9.1. Other Tauberian Conditions. The Tauberian conditions (5.5) and
(6.1), occurring in Theorems 5.2 – 6.7, can be replaced by estimates of the
form (8.8), that is, one may use the boundary of some set Ωκ, 0 ≤ κ < 1
(cf. (8.7)), instead of the upper half sphere H

n+1 ∩ S
n. Specifically, the

same argument given in proof of Theorem 8.8 applies to show that (5.1)
(and hence (4.1)) is equivalent to the estimate

lim sup
ε→0+

sup
(x,y)∈∂Ωκ, y>0

yk

εαL(ε)

∥∥∥M f
ϕ (x0 + εx, εy)

∥∥∥ <∞

(
resp. lim sup

λ→∞
sup

(x,y)∈∂Ωκ, y>0

yk

λαL(λ)

∥∥∥M f
ϕ (λx, λy)

∥∥∥ <∞
)

for some 0 ≤ κ < 1 and k ∈ N (the k may be different numbers).

9.2. Distributions with Values in DFS Spaces. All the results from
Sections 3–7 hold if we replace the Banach space E by a Silva [47, 28]
inductive limit of Banach spaces En, n ∈ N, that is, E =

⋃∞
n=1En =

ind limn→∞(En, || · ||n), where E1 ⊂ E2 ⊂ ... and each injection En → En+1

is compact. These spaces is an DFS spaces (strong duals of Fréchet-Schwartz
spaces). Particular examples are E = S ′(Rn),S ′

0(Rn),D′(Y ), where Y is a
compact manifold, among many other important spaces arising in applica-
tions. In this situation E is regular, namely, for any bounded set B there
exists n0 ∈ N such that B is bounded in En0 .

Thus, our Tauberian theorems from Sections 3–6 for E-valued distribu-
tions are valid if we replace the norm estimates by memberships in bounded
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sets of E. For instance, a condition such as (5.1) should be replaced by one
of the form: There exist k ∈ N, ε0 > 0, and a bounded set B ⊂ E such that

(9.1)
yk

εαL(ε)
M f
ϕ (x0 + εx, εy) ∈ B, for all 0 < ε ≤ ε0 and |x|2 + y2 = 1;

and similarly for all other conditions occurring within these sections. As
already observed, (9.1) is equivalent to an estimate of the form (5.1) in
some norm ‖ · ‖n0

, but the existence of the n0 would be extremely hard to
verify in applications and thus such a Tauberian condition would have no
value in concreate situations. It is therefore desirable to have more realistic
Tauberian conditions. We can achieve this if we use the Mackey theorem [50,
Thm. 36.2], because the condition (9.1) is then equivalent to the following
one: There exists k ∈ N such that for each e∗ ∈ E′

(9.2) lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)

∣∣∣
〈
e∗,M f

ϕ (x0 + εx, εy)
〉∣∣∣ <∞.

Since E is a Montel space [47, 50], the limit condition (5.2) can be replaced
be the equivalent one: There exist the limits

(9.3) lim
εα→0+

1

εL(ε)

〈
e∗,M f

ϕ(x0 + εx, εy)
〉
∈ C,

for all e∗ ∈ E′ and (x, y) ∈ H
n+1, and likewise for all other limit conditions.

Furthermore, the results from Section 7 are also valid in this context, if
we use suitable hypotheses. For example, Theorem 7.2 remains true if we
replace the hypotheses (i) and (ii) by:

(i)′ Wψf(x, y) ∈ E for all (x, y) ∈ H
n+1.

(ii)′ There exist k, l ∈ N such that

sup
(x,y)∈Hn+1

(
1

y
+ y

)−k

(1 + |x|)−l |〈e∗,Wψf(x, y)〉| <∞, for each e∗ ∈ E′.

The other results are true under similar considerations.
Note that one can find in [28] an overview of results concerning regular

inductive limits (extensions of Silva’s results) which are also Montel spaces.
Since the Montel property of Silva spaces is actually what we used above,
the comments of this section are also valid in more general situations.

Let us discuss an example in order to illustrate the ideas of this subsection.

Example 9.1. Fixation of variables in tempered distribumaner1tions. Let
f ∈ S ′(Rnt × R

m
ξ ) and t0 ∈ R

n. Following  Lojasiewicz [32], we say that the

variable t = t0 ∈ R
n can be fixed in f(t, ξ) if there exists g ∈ S ′(Rmξ ) such

that

lim
ε→0+

〈f(t0 + εt, ξ), η(t, ξ)〉 =

∫

Rn

〈g(ξ), η(t, ξ)〉 for each η ∈ S(Rnt × R
m
ξ ).

We write f(t0, ξ) = g(ξ), distributionally. The nuclearity of the Schwartz
spaces [50, 48] implies that S ′(Rnt × R

m
ξ ) is isomorphic to S ′(Rnt , E), where
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E = S ′(Rmξ ), a DFS space. Actually, the latter tells us that fixation of
variables is nothing but the notion of  Lojasiewicz point values itself for E-
valued distributions (cf. Example 2.2). Therefore, the DSF space valued
version of Theorem 6.4 implies that if φ ∈ S(Rnt ) with µ0(φ) = 1, then the
variable t = t0 can be fixed in f(t, ξ) if and only if there exists k such that
for each ρ ∈ S ′(Rmξ )

lim sup
ε→0+

sup
(x,y)∈Hn+1

|x|2+y2=1

yk |〈f (t0 + εx+ εyt, ξ) , φ(t)ρ(ξ)〉| <∞,

and

lim
ε→0+

〈f (t0 + εx+ εyt, ξ) , φ(t)ρ(ξ)〉 exists for all (x, y) ∈ H
n+1 ∩ S

n.

Remark 9.2. It is well known [21] that the projection π : R
n
t × R

m →
{t0} × R

m, π(t, ξ) = (t0, ξ), defines the pull-back S ′(Rnt × R
m
ξ ) ∋ f(t, ξ) →

f(t0, ξ) := π∗f(ξ) ∈ S ′(Rmξ ) if the wave front set of f satisfies

WFf ∩ {(t0, ξ, ω, 0); ξ ∈ R
m, ω ∈ R

n} = ∅.
Thus the result given in Example 9.1 is interesting since we give the necessary
and sufficient condition for the existence of this pull-back.

A. Appendix

Relation Between Quasiasymptotics in S ′
0(R

n, E) and S ′(Rn, E)

The purpose of this Appendix is to show two propositions which establish
the precise connection between quasiasymptotics in the spaces S ′

0(R
n, E)

and S ′(Rn, E). Observe that such a relation was crucial for the arguments
given in Section 6.

Propositions A.1 and A.2 below are multidimensional generalizations of
the results from [61, Sec. 4] and their proofs are based on recent structural
theorems from [54].

Proposition A.1. Let L be slowly varying at the origin (resp. at infinity)
and let f ∈ S ′(Rn, E) have quasiasymptotic behavior of degree α at the point
x0 (resp. at infinity) with respect to L in S ′

0(R
n, E), i.e., for each ϕ ∈ S0(R

n)
the following limit exists

(A.1) lim
ε→0+

1

εαL(ε)
〈f(x0 + εt), ϕ(t)〉 in E

(
resp. lim

λ→∞

1

λαL(λ)
〈f(λt), ϕ(t)〉

)
.

Then, there is g ∈ S ′(Rn, E) such that:

(i) If α /∈ N, g is homogeneous of degree α and there exists an E-valued
polynomial P such that

(A.2) f(x0 + εt) −P(εt) ∼ εαL(ε)g(t) as ε→ 0+ in S ′(Rn, E)
(
resp. f (λt) −P(λt) ∼ λαL(λ)g(t) as λ→ ∞ in S ′(Rn, E)

)
.
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(ii) If α = p ∈ N, g is associate homogeneous of order 1 and degree
−n− p (cf. [15, p. 74], [46]) satisfying

(A.3) g(ax) = apg(x) + ap log a
∑

|m|=p

tmvm, for each a > 0,

for some vectors vm ∈ E, |m| = p, and there exist an E-valued
polynomial P and associate asymptotically homogeneous E-valued
functions cm, |m| = p, of degree 0 with respect to L such that

(A.4) cm(aε) = c(ε)+L(ε) log avm+o(L(ε)) as ε→ 0+, for each a > 0,

(resp. cm(aλ) = c(λ) + L(λ) log a vm + o(L(λ)) as λ→ ∞ )

and f has the following asymptotic expansion

(A.5) f(x0 + εt) = P(εt) + εpL(ε)g(t) + εp
∑

|m|=p

tmcm(ε) + o (εpL(ε))


resp. f (λt) = P(λt) + λpL(λ)g(t) + λp

∑

|m|=p

tmcm(λ) + o (λpL(λ))


 ,

as ε→ 0+ (resp. λ→ ∞) in the space S ′(Rn, E).

Proof. Let S0(Rn) be the image under Fourier transform of S0(Rn). Then,
S0(Rn) is precisely the closed subspace of S(Rn) consisting of test functions
which vanish at the origin together with their partial derivatives of any
order. Thus, if we Fourier transform (A.1) and employ the Banach-Steinhaus

theorem, we obtain the existence of h ∈ S0′(Rn, E) such that the restriction
of f to S0(Rn) satisfies

exp(iε−1u · x0)f̂(ε−1u) ∼ εn+αL(ε)ĝ(u) as ε→ 0+ in S0′(Rn, E)
(

resp. f̂(λ−1u) ∼ λn+αL(λ)ĝ(u) as λ→ ∞ in S0′(Rn, E)
)
.

Setting f̃(u) = ei u·x0 f̂(u) (resp. f̃(u) = f̂(u) ), L̃(y) = L(1/y), β = −n − α

and replacing ε by λ−1, we have that the restriction of f̃ to S0(Rn) has the
quasiasymptotic behavior

(A.6) f̃(λu) ∼ λβL̃(λ)h0(u) as λ→ ∞ in S0′(Rn, E)
(

resp. f̃(εu) ∼ εβL̃(ε)h0(u) as ε→ 0+ in S0′(Rn, E)
)
,

for some h0 ∈ S0′(Rn, E). We now apply the results from [54].
Case (i): α /∈ N. By (A.6) and [54, Part (i) of Thm. 3.1], there are

an E-valued distribution h ∈ S ′(Rn, E), which is homogeneous of degree
β = −n− α, an natural number d ∈ N, and wm ∈ E, |m| ≤ d, such that

f̃(λu) = λβL̃(λ)h(u) +
∑

|m|≤d

δ(m)(u)

λn+|m|
wm + o

(
λβL̃(λ)

)
as λ→ ∞
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
resp. f̃(εu) = εβL̃(ε)h(u) +

∑

|m|≤d

δ(m)(u)

εn+|m|
wm + o

(
εβL̃(ε)

)
as ε→ 0+




in S ′(Rn, E). Finally, by setting ĝ = h, taking Fourier inverse transform and
replacing λ by ε−1 (resp. ε by λ−1), the last relation shows that f satisfies
(A.2) with P(t) = (1/2π)n

∑
|m|≤d(−it)mwm.

Case (ii): β = −n − p, p ∈ N. The quasiasymptotics (A.6) and [54,
Part (ii) of Thm. 3.1] yield the existence of d ∈ N, wm ∈ E (for |m| ≤ d),
ṽm ∈ E (for |m| = p), continuous functions c̃m : R+ → E (for |m| = p),

and a tempered E-valued distribution h ∈ S ′(Rn, E) such that f̃ has the
following asymptotic expansion in S ′(Rn, E) as λ→ ∞ (resp. ε→ 0+)

f̃(λu) =
L̃(λ)

λn+p
h(u) +

∑

|m|≤d

δ(m)(u)

λn+|m|
wm +

∑

|m|=p

δ(m)(u)

λn+p
c̃m(λ) + o

(
L̃(λ)

λn+p

)
,

respectively

f̃(εu) =
L̃(ε)

εn+p
h(u) +

∑

|m|≤d

δ(m)(u)

εn+|m|
wm +

∑

|m|=p

δ(m)(u)

εn+p
c̃m(ε) + o

(
L̃(ε)

εn+p

)
,

where h satisfies

h(au) = a−n−ph(u) + a−n−p log a
∑

|m|=p

δ(m)(u)ṽm,

for each a > 0, while the c̃m fulfill

c̃m(aλ) = c̃m(λ) + L̃(λ) log a ṽm + o
(
L̃(λ)

)
, |m| = p,

(
resp. c̃m(aε) = c̃m(ε) + L̃(ε) log a ṽm + o

(
L̃(ε)

) )
.

Then, Fourier inverse transforming the quasiasymptotic expansion of f̃ ,
we convince ourselves that f satisfies (A.5) with the polynomial P(t) =
(2π)−n

∑
|m|≤d(−it)mwm, the functions cm(y) = (−i)p(2π)−nc̃m(y−1) and

g given by ĝ = h. In addition, the relations (A.3) and (A.4) hold with
vm = −(−i)p(2π)−nṽm , |m| = p.

�

The proof of the following proposition is completely analogous to that of
Proposition A.1, but now making use of [54, Thm. 3.2] instead of [54, Thm.
3.1]; we therefore omit it.

Proposition A.2. Let L be slowly varying at the origin (resp. at infinity)
and let f ∈ S ′(Rn, E) be quasiasymptotically bounded of degree α at the point
x0 (at infinity) with respect to L in S ′

0(R
n, E). Then:

(i) If α /∈ N, there exists an E-valued polynomial P such that f −P is
quasiasymptotically bounded of degree α at the point x0 (at infinity)
with respect to L in the space S ′(Rn, E).
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(ii) If α = p ∈ N, there exist an E-valued polynomial P and asymptot-
ically homogeneously bounded E-valued functions cm, |m| = p, of
degree 0 with respect to L such that f has the following asymptotic
expansion

f(x0 + εt) = P(εt) + εp
∑

|m|=p

tmcm(ε) +O (εpL(ε))


resp. f (λt) = P(λt) + λp

∑

|m|=p

tmcm(λ) +O (λpL(λ))


 ,

as ε→ 0+ (resp. λ→ ∞) in the space S ′(Rn, E).
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[24] G. Hörmann, Hölder-Zygmund regularity in algebras of generalized functions Z. Anal.
Anwendungen 23 (2004), 139165

[25] S. Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients, Con-
ference on Mathematical Analysis (El Escorial, 1989). Publ. Mat. 35 (1991), 155168.

[26] S. Jaffard, Y. Meyer, Wavelet Methods for Pointwise Regularity and Local Oscillations
of Functions, Memoirs of the American Mathematical Society, vol.123, No 587, 1996.

[27] J. Korevaar, Tauberian theory. A century of developments, Grundlehren der Mathe-
matischen Wissenschaften, 329., Springer-Verlag, Berlin, 2004.

[28] H. Komatsu, Ultradistributions, I Structure theorems and a characterization, J.Fac.
Sci. Univ. Tokkyo, Sec. IA, 20 (1973), 25–105.

[29] J. E. Littlewood, The converse of Abel’s theorem on power series, Proc. London Math.
Soc. 9 (1911), 434–448.

[30] P. I. Lizorkin, Generalized Liouville differentiation and the multiplier method in the
theory of imbeddings of classes of differentiable functions, (in Russian) Trudy Mat.
Inst. Steklov. 105 (1969), 89–167.

[31] S.  Lojasiewicz, Sur la valeur et la limite d’une distribution en un point, Studia Math.
16 (1957), 1–36.

[32] S.  Lojasiewicz, Sur la fixation des variables dans une distribution, Studia Math. 17
(1958), 1–64.

[33] Y. Meyer, Wavelets and Operators, Cambridge Univ. Press, Cambridge, 1992.
[34] Y. Meyer, Wavelets, vibrations and scalings, CRM Monograph series 9, American

Mathematical Society, Providence, 1998.
[35] M. Oberguggenberger, Multiplication of distributions and application to partial dif-

ferential equations. Pitman Res. Notes Math. Ser. 259, Longman, Harlow, 1992.
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54 S. PILIPOVIĆ AND J. VINDAS

[46] V. M. Shelkovich, Associated and quasi associated homogeneous distributions (gener-
alized functions), J. Math. Anal. Appl. 338 (2008), 48–70.

[47] J. Sebastião e Silva, Su certe classi di spazi localmente convessi importante per le
applicazioni, Rend. Mat. Univ. Roma 14 (1955), 388–410.
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