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Abstract

A group G is called subgroup conjugacy separable (abbreviated as SCS), if any
two finitely generated and non-conjugate subgroups of G remain non-conjugate in
some finite quotient of G. We prove that the free groups and the fundamental
groups of finite trees of finite groups with some normalizer condition are SCS. We
also introduce the subgroup into-conjugacy separability property and prove that the
above groups have this property too.

1 Introduction

The subgroup conjugacy separability (see Definition 1.2) is a residual property of groups,
which logically continues the following series of well known properties of groups: the
residual finiteness, the conjugacy separability, and the subgroup separability (LERF).
These properties help to solve some algorithmic problems in groups and they are also
important in the theory of 3-manifolds.

Recall that a group G is called separable (or residually finite, abbreviated as RF), if
for any two elements x 6= y ∈ G, there exists a homomorphism φ from G to a finite group
G such that φ(x) 6= φ(y) in G.

∗During the process of writing this paper Fritz Grunewald died.
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Similarly, G is called conjugacy separable (abbreviated as CS), if for any two non-
conjugate elements x, y ∈ G, there exists a homomorphism φ from G to a finite group G
such that φ(x) is not conjugate to φ(y) in G.

If in these definitions we replace the words “elements” by the words “finitely generated
subgroups”, we obtain the following two definitions (the first one is well known, and the
second is new).

Definition 1.1 A group G is called subgroup separable (or LERF, for locally extended
residually finite), if for any two finitely generated subgroups H1 6= H2 6 G, there exists a
homomorphism φ from G to a finite group G such that φ(H1) 6= φ(H2) in G.

Note that this definition is equivalent to the usual one: G is called subgroup separable
if for any finitely generated subgroup H of G and for any element g ∈ G \H , there exists
a subgroup K of finite index in G such that H 6 K, but g /∈ K.

The LERF property is useful in 3-manifold topology: if π1(M
3) is a LERF group

and S → M3 is an immersion of an incompressible surface, then there is an embedding
S →֒ M̃3 in a finite cover M̃3 of M3. For more information, see the inspiring paper of
P. Scott [36] and an overview of D. Wise in [45]. It would be interesting to find applications
of the following property in topology.

Definition 1.2 A group G is called subgroup conjugacy separable (abbreviated as SCS),
if for any two finitely generated non-conjugate subgroups H1, H2 6 G, there exists a
homomorphism φ from G to a finite group G such that φ(H1) is not conjugate to φ(H2)
in G.

A.I. Mal’cev was the first, who noticed, that finitely presented residually finite (resp.
conjugacy separable) groups have solvable word problem (resp. conjugacy problem) [26].
Arguing in a similar way, one can show that finitely presented LERF groups have solvable
membership problem and that finitely presented SCS groups have solvable conjugacy
problem for finitely generated subgroups. The last means, that there is an algorithm,
which given a finitely presented SCS group G = 〈X |R〉 and two finite sets of elements
U = {u1, . . . , un} and V = {v1, . . . , vm}, decides whether the subgroups 〈U〉 and 〈V 〉 are
conjugate in G.

Clearly, any group with the property CS, LERF, or SCS is residually finite. We
conjecture, that SCS does not imply CS or LERF and conversely.

There is a lot of papers devoted to the properties RF, CS, and LERF. We cite here
some positive results about the CS and LERF properties. It would be interesting to
establish, which of the listed below groups have the SCS property.

The conjugacy separability was established for

– virtually polycyclic groups (V. Remeslennikov [31] and E. Formanek [15])

– finitely generated virtually free groups (see J.L. Dyer [12] combined with P.F. Stebe [39])

– groups which can be obtained from these groups by repeatedly forming free products
with cyclic amalgamations (L. Ribes, D. Segal und P. Zalesskii [33])

– virtually surface groups1 and the fundamental groups of Seifert 3-manifolds (A. Mar-
tino [27])

1For free products of two free groups, amalgamated over a cyclic group, in particular for surface groups
see the paper of J.L. Dyer [13]. For Fuchsian groups see the paper of B. Fine and G. Rosenberger [14].
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– fundamental groups of finite, 1-acylindrical graphs of free groups with finitely gen-
erated edge groups (O. Cotton-Barratt und H. Wilton [10])

– virtually limit groups (S. Chagas and P. Zalesskii [7, 9])

– finitely presented residually free groups (S. Chagas and P. Zalesskii [8])

– right angled Artin groups and their finite index subgroups (A. Minasyan [30]).

– free products of CS groups (P.F. Stebe [39] and V.N. Remeslennikov [32])

– non-uniform arithmetic lattices of SL2(C) and consequently the Bianchi groups
(S. Chagas and P. Zalesskii [7]; see also the paper of I. Agol, D.D. Long, and
A.W. Reid [1])

The subgroup separability was established for

– polycyclic groups (A.I. Mal’cev [26])

– free groups (M. Hall [21]

– surface groups (P. Scott [36])

– limit groups (H. Wilton [43])

– free products of LERF groups (R.G. Burns [5] and N.S. Romanovskii [35])

– free products of two free groups amalgamated along a cyclic group (A.M. Brunner,
R.G. Burns and D. Solitar [4]; see also a generalization of M. Tretkoff [41])

– free products of a LERF group G and a free group F amalgamated along a maximal
cyclic subgroup in F (R. Gitik [17]) (Note, that the free product of two LERF groups
amalgamated along a cyclic subgroup is not necessarily a LERF group (see [34]
and [18])

If G splits as a finite graph of free groups with cyclic edge groups, then G is LERF if
and only if G does not contain a non-trivial element a, such that an is conjugate to am

for some n 6= ±m (D. Wise [44]).
In [29], V. Metaftsis and E. Raptis are proved that a right-angled Artin group G with

associated graph Γ is subgroup separable if and only if Γ does not contain a subgraph
homeomorphic to either a square or a path of length three.

P. Scott in [36] showed, that LERF is inherited by subgroups and finite extensions, in
particular it is invariant under commensurability. In contrast, CS is not invariant under
commensurability: in [28], A. Martino and A. Minasyan constructed a finitely presented
CS-group, which has an index 2 subgroup without the CS property. An example of a
finitely generated (but not finitely presented) non-CS-group G, containing a CS-subgroup
of index 2, was constructed by A. Gorjaga in [19].

The subgroup conjugacy separability property. It seems that the SCS property
is much harder to establish than CS and LERF. One of the reasons is that this property
has no an evident reformulation in terms of the profinite topology on G.

Recall that the profinite topology on a group G is the topology, having the family of all
cosets of subgroups of finite index in G as a base of open sets. Clearly, a finitely generated
group G is residually finite, respectively conjugacy separable or subgroup separable, if and
only if one-element subsets of G, respectively conjugacy classes of one-element subsets, or
finitely generated subgroups are closed in the profinite topology. We conjecture, that the
subgroup conjugacy separability for G is not the same as the closeness, in the profinite
topology, of the union of the conjugacy classes of any finitely generated subgroup of G.
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We know only one paper on SCS (without restrictions on subgroups): in [20], F. Grune-
wald and D. Segal proved that all virtually polycyclic groups are subgroup conjugacy
separable (see also Theorem 7 in Chapter 4 of [37]).

In this paper we consider finitely generated virtually free groups. These groups are
subgroup separable (since they are commensurable with free groups) and they are conju-
gacy separable (J.L. Dyer [12] and P.F. Stebe [39]). Therefore it is natural to ask, whether
all finitely generated virtually free groups are subgroup conjugacy separable.

Recall that every finitely generated virtually free group is the fundamental group of
a finite graph of finite groups (A. Karrass, A. Pietrowski and D. Solitar [23]). The main
results of this paper are Theorems 1.3, 1.5, and 1.8, 1.9.

Theorem 1.3 Free groups are subgroup conjugacy separable.

In the following definition we use the notations of Section 5.1.

Definition 1.4 We say that a finite graph of finite groups (G,Γ) (and its fundamental
group) satisfies the normalizer condition, if |NG(E) : E| <∞ for each nontrivial subgroup
E of every edge group of G = π1(G,Γ).

For instance, A ∗C B satisfies the normalizer condition, if A,B are finite and C is
malnormal in A, i.e. Ca ∩C = 1 for every a ∈ A \C. Note that the normalizer condition
for G is equivalent to the condition that any finitely generated subgroup of G has finite
index in its normalizer. Moreover, the normalizer condition for a finite graph of finite
groups can be verified algorithmically (see [2]).

Theorem 1.5 Let (G,Γ) be a finite tree of finite groups, which satisfies the normalizer
condition. Then its fundamental group π1(G,Γ) is subgroup conjugacy separable.

We deduce these theorems from Theorems 1.8 and 1.9, and Proposition 1.7, where the
following variation of Definition 1.2 is used.

Definition 1.6 1) For two subgroups A and B of a group G, we say that A is conjugate
into B, if there is an element g ∈ G such that Ag is a subgroup of B.

2) A group G is called subgroup into-conjugacy separable (abbreviated as SICS) if for
any two finitely generated subgroups H1, H2 6 G such that H2 is not conjugate into
H1, there exists a homomorphism φ from G to a finite group G such that φ(H2) is not
conjugate into φ(H1) in G.

Proposition 1.7 Let G be a virtually free group. Suppose that G is subgroup into-
conjugacy separable. Then G is subgroup conjugacy separable.

Theorem 1.8 Free groups are subgroup into-conjugacy separable.

Theorem 1.9 Let (G,Γ) be a finite tree of finite groups, which satisfies the normalizer
condition. Then its fundamental group π1(G,Γ) is subgroup into-conjugacy separable.
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Methods. In the proof of Theorem 1.8 we use coverings of graphs, while in the proof
of Theorem 1.9, we use a 3-dimensional topological realization of the graph of groups.
Any covering of this realization can be obtained by gluing of some elementary spaces,
which we call covering pieces. This technique is similar to that, which was developed by
the first author in the papers [2] and [3] for a classification of groups with the M. Hall
property.

To construct certain coverings (and so certain subgroups), we use a gluing schema,
which comes from Theorem 3.3 of Füredi, Lazebnik, Seress, Ustimenko, and Woldar on
the existence of (r, s)-bipartite graphs without short cycles.

The structure of the paper is the following. In Section 2 we prove Proposition 1.7,
in Section 3 we give some auxiliary statements. In Sections 4 and 5 we prove our main
Theorems 1.8 and 1.9.

2 The SICS-property implies the SCS-property

for virtually free groups

Lemma 2.1 Let H1, H2 be two finitely generated subgroups of a virtually free group G,
such that H1 is conjugate into H2 and H2 is conjugate into H1. Then H1 is conjugate
to H2.

Proof. It is sufficient to prove this theorem for finitely generated G.
Let Hg1

1 6 H2 and Hg2
2 6 H1 for some g1, g2 ∈ G. Then Hg

1 6 H1 for g = g1g2.
Moreover, Hg

1 = H1 if and only if Hg1
1 = H2 and Hg2

2 = H1.
Suppose that Hg

1 strictly less than H1. Then, for x = g−1, we have the strictly
ascending chain of subgroups: H1 < Hx

1 < Hx2

1 < . . . . Let F be a free normal subgroup
of finite index in G. We compare this chain with the chain H1 ∩ F 6 (H1 ∩ F )x 6

(H1 ∩ F )x
2

6 . . . .
Since the indices |Hxi

1 : (H1∩F )
xi

| are finite and independent of i, and since the indices
|Hxi

1 : H1| are increasing with i, the second chain is also strictly ascending: H1 ∩ F <
(H1 ∩ F )x < (H1 ∩ F )x

2

< . . . . This contradicts to the theorem of M. Takahasi (see [40],
or [22, Theorem 14.1]), which claims, that a free group of a finite rank (in our case F )
does not contain a strictly ascending chain of subgroups of a finite bounded rank. Thus,
Hg

1 = H1 and so Hg1
1 = H2. 2

Proof of Proposition 1.7. Let H1, H2 be two non-conjugate, finitely generated sub-
groups of G. By Lemma 2.1, w.l.o.g. we may assume that H1 is not conjugate into H2.
Since G is a SICS-group, there exists a homomorphism ϕ from G to a finite group G,
such that ϕ(H1) is not conjugate into ϕ(H2) in G. In particular, ϕ(H1) is not conjugate
to ϕ(H2) in G. So, G is subgroup conjugacy separable. 2
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3 Auxiliary statements

Lemma 3.1 Let H1, H2 be subgroups of a group G. Then the following conditions are
equivalent:

(1) H2 is conjugate into every finite index subgroup of G, containing H1;
(2) For every finite quotient of G, the image of H2 is conjugate into the image of H1.

Proof. (2) ⇒ (1): Suppose that (2) holds and let D be a finite index subgroup of G,
containing H1. Then D contains a finite index subgroup N , which is normal in G. By
(2), the image of H2 in G/N is conjugate into the image of H1 in G/N . This implies that
H2 is conjugate into H1N , and so into D.

(1) ⇒ (2): Suppose that (1) holds and let G/N be a finite quotient of G. By (1), H2

is conjugate into H1N . Then the image of H2 in G/N is conjugate into the image of H1

in G/N . 2

Lemma 3.2 Let G be a free product: G = G1 ∗G2 ∗ · · · ∗Gl ∗F , and let H = 〈h1, . . . , hr〉
be a finitely generated subgroup of G. Suppose that each hi and each hihj is conjugate into
a factor Gk, where k depends on i (on i,j). Then the whole H is conjugate into some Gs.

Proof. We may assume that H 6= 1. By the Bass-Serre theory (see [38]), G acts
on a simplicial tree T without inversions of edges so that the stabilizers of vertices of T
are conjugate to G1, . . . , Gl, F . So, each hi and each hihj stabilize a vertex of T . By
Corollary 3 in [38, Chapter I, Section 6.5] of Serre, H stabilizes a vertex of T and hence
H is conjugate into some Gs or into F . The last cannot happen, since H contains a
non-trivial generator hi, which is conjugate into some Gk. 2

A graphK is called bipartite if the set of its vertices is a disjoint union of two nonempty
sets V1 and V2, such that every edge of K connects a vertex from V1 to a vertex from V2.
A bipartite graph is said to be bi-regular if there exist integers r, s such that deg(x) = r
for all x ∈ V1 and deg(y) = s for all y ∈ V2. In this case (r, s) is called bi-degree of K.
Note that the lengths of cycles in a bipartite graph are always even.

Theorem 3.3 [16]. For any natural r, s, t > 2, there exists a finite connected bipartite
graph of bi-degree (r, s), with length of smallest cycle exactly 2t.

An r-star is a tree with r + 1 vertices and r edges, outgoing from one common vertex.
This vertex will be called central and the other ones peripherical. It is convenient to
reformulate a weaker version of this theorem.

Theorem 3.4 For any natural r, s, t > 1, one can glue several r-stars to several s-stars,
so that all peripherical vertices of r-stars will be identified (by some bijection) with all
peripherical vertices of s-stars, the resulting graph will be connected, and it will not have
cycles of length smaller than t.
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4 SICS-property for free groups

4.1 Notations

Our proof of Theorem 1.3 uses coverings of labeled graphs. Here we define a core of a
covering, an outer edge, and an outer vertex of a core.

Let Γ be a graph. By Γ0 we denote the set of its vertices and by Γ1 the set of its edges.
The inverse of an edge e ∈ Γ1 is denoted by e, the initial and the terminal vertices of e
are denoted by i(e) and t(e).

Let F be a free group with finite basis x1, . . . , xn. Let R be the graph consisting of
one vertex v and n oriented edges e1, . . . , en. We label ei by xi and ei by x

−1
i . We will

identify F with π1(R, v) by identifying xi with the homotopy class [ei].
To every subgroup H 6 F corresponds a covering map ϕ : (ΓH , vH) → (R, v), such

that H is the image of the induced map ϕ∗ : π1(ΓH , vH) → π1(R, v). We lift the labeling
of R to ΓH . So, an edge e of ΓH is labeled by x if its image ϕ(e) is labeled by x.

IfH is finitely generated, then ΓH has a finite core, Core(ΓH), that is a finite connected
subgraph, which is homotopy equivalent to ΓH . We can enlarge Core(ΓH) if necessary and
assume that vH is a vertex of Core(ΓH) and that every vertex of Core(ΓH) has valency 1
or 2n. The vertices of valency 1 and the edges incident to these vertices are called outer.
All other vertices and edges of Core(ΓH) are called inner. Let e be an oriented outer
edge of Core(ΓH), which starts at an outer vertex. Then there is a unique oriented path
e1e2 . . . ek in Core(ΓH), such that e1 = e, the labels of edges ei are coincide, and the last
edge ek is outer. We will write e ∗

1 = ek. Clearly e ∗
k = e1. Thus, we get a free involution

∗ on the set of outer edges of Core(ΓH).

4.2 Proof of Theorem 1.8

Let F be a free group with finite basis x1, . . . , xn. Let H1, H2 be two nonconjugate finitely
generated subgroups of F such that H2 is not conjugate into H1. By Lemma 3.1, it is
sufficient to construct a finite index subgroup D of F , that contains H1 and does not
contain a conjugate of H2.

Let H2 = 〈h1, . . . , hr〉 and let C = 2max{|h1|, . . . , |hr|}. Since F is a residually finite,
there exists a normal subgroup K of finite index in F , such that K does not contain
nontrivial elements of F of length C or smaller. Since K is normal, K does not contain
any conjugate to these elements. This means that the covering graph ΓK is finite, every
its vertex has valency 2n, and

every cycle in ΓK has length at least C + 1. (1)

Without loss of generality, we assume that the vertices of Core(ΓH1
) have valency 1

or 2n. Now we will embed Core(ΓH1
) into a finite labeled graph ∆ without outer edges.

Let E be the set of all edges of Core(ΓH1
), that start at outer vertices of Core(ΓH1

). For
every edge e ∈ E we choose an edge ê in ΓK with the same label. Let ∆ be the labeled
graph, obtained from the disjoint union of graphs

Core(ΓH1
)
⊔

⊔
e∈E

(
ΓK \ {ê, ê}

)
(2)

7



by identifying the vertices α(e) with α(ê) and ω(e∗) with ω(ê) for every e ∈ E .

ΓK \ {̂e, ̂e}

Core(ΓH1
)

e e∗

Figure 1

Since every vertex of ∆ has valency 2n, there is a finitely sheeted covering map ψ :
(∆, vH1

) → (R, v), respecting the labeling. Thus ∆ = ΓD for some finite index subgroup
D of F . Since ΓH1

is a subgraph of ΓD, the subgroup D contains H1 as a free factor:
D = H1 ∗ L.

We show, that H2 = 〈h1, . . . , hr〉 is not conjugate into D. Suppose the contrary:
Hg

2 6 D for some g ∈ F , Then every element h ∈ {hgi , (hihj)
g : i, j = 1, . . . , r} can be

represented by a closed path l(h) in ∆ based at vH1
. By definition of the constant C,

every path l(h) can be freely homotopic to a closed path in ∆ of length at most C. By
Condition (1) and by Construction (2), every such path is freely homotopic to a closed
path in Core(ΓH1

). This means that every element h ∈ {hgi , (hihj)
g : i, j = 1, . . . , r} can

be conjugated into H1 by an element d(h) ∈ D. By Lemma 3.2, Hg
2 can be conjugated

into H1 by an element d ∈ D. This contradicts to the assumption, that H2 cannot be
conjugated into H1 in F . 2

5 SICS-property for virtually free groups

By [6], every finitely generated virtually free group is the fundamental group of a finite
graph of finite groups (see also [11, Chapter IV, Theorem 1.6] and historical comments
on page 133 of [11]). We will also represent these groups as fundamental groups of some
graphs of spaces (3-dimensional complexes). Below we introduce notations and recall
some definitions. In Subsection 5.6 we prove Theorem 1.9.

5.1 Graphs of groups

A graph of groups (G,Γ) is a system consisting of a connected graph Γ, of vertex groups
Gv, v ∈ Γ0, of edge groups Ge, e ∈ Γ1, and of boundary monomorphisms ρie : Ge → Gi(e)

and ρte : Ge → Gt(e), e ∈ Γ1, which satisfy Ge = Ge and ρ
i
e = ρte.

A path in the graph of groups (G,Γ) is a sequence of the form g1e1g2e2 . . . ekgk+1, where
e1e2 . . . ek is a path in Γ, gs ∈ Gi(es) and gs+1 ∈ Gt(es) for s = 1, 2, . . . , k. This path is
closed, if i(e1) = t(ek+1); in this case we say that it is based at the vertex i(e1). There is
a usual (partial) multiplication of paths in (G,Γ).

8



Now we define three types of elementary transformations of a path l = g1e1g2e2 . . . ekgk+1:

1) replace a subpath of l of the form aeb, where e ∈ Γ1, a ∈ Gi(e) and b ∈ Gt(e), by the
path a1eb1, where a1 = a(ρie(g))

−1 and b1 = ρte(g)b for some g ∈ Gi(e);
2) replace a subpath of l of the form ae1eb, where e ∈ Γ1 and a, b ∈ Gi(e), by the

element ab ∈ Gi(e);
3) this is the transformation inverse to 2).

Two paths l and l′ in (G,Γ) are called equivalent, if l′ can be obtained from l by a
finite number of elementary transformations. The equivalence class of l is denoted by [l].

The fundamental group of the graph of groups (G,Γ) with respect to a vertex v ∈ Γ0,
denoted π1(G,Γ, v), is the set of equivalence classes of all closed paths in (G,Γ) based at
v with respect to the multiplication [l1][l2] = [l1l2].

Denote G = π1(G,Γ, v). Every element g ∈ G can be represented by a closed path
g1e1g2e2 . . . ekgk+1 with minimal k = k(g). We call such k the length of g and denote it
by |g|.

Note, that every vertex group Gu of the graph of groups (G,Γ) can be embedded
into G by the following rule. Choose a path p is Γ from v to u. The map g 7→ [pgp−1],
g ∈ Gu determines an embedding of Gu into G. If we choose another path from v to u,
the resulting subgroup will be conjugate to the first one. Thus, Gu canonically determines
the conjugacy class of a subgroup of G. Any subgroup of this class will be called a vertex
subgroup of G, corresponding to Gu.

5.2 Graph of spaces

Below all spaces are assumed to be path connected topological spaces. In particular, their
fundamental groups are well defined (up to isomorphism).

A graph of spaces (X,Γ) is a system consisting of a connected graph Γ, of vertex
spaces Xv, v ∈ Γ0, of edge spaces Xe, e ∈ Γ1, and of π1-injective continuous boundary
maps ∂ie : Xe → Xi(e) and ∂

t
e : Xe → Xt(e), e ∈ Γ1, which satisfy Xe = Xe and ∂ie = ∂te.

For the later it is convenient to think, that Xe and Xe are two copies of the same space.
The topological realization of the graph of spaces (X,Γ), denoted Real(X,Γ), is defined

to be the quotient obtained from

∐

v∈Γ0

Xv ⊔
∐

e∈Γ1

(Xe × [0, 1]),

by gluing (x, 0) to ∂ie(x) and (x, 1) to ∂te(x) for every e ∈ Γ1 and x ∈ Xe, and by identifying
the spaces Xe× [0, 1] and Xe× [0, 1] through the map (x, t) → (x, t−1), x ∈ Xe, t ∈ [0, 1].
Denote X = Real(X,Γ).

9



The space X The pieces of X
Figure 2 Figure 3

A body of X is a subspace of X of the form Xv, v ∈ Γ0. The piece associated with
the body Xv, denoted N (Xv), is defined to be the quotient obtained from the topological
space

Xv ⊔
∐

e∈Γ1,i(e)=v

(Xe × [0,
1

2
]),

by identifying (x, 0) with ∂ie(x) for each edge e ∈ Γ1 outgoing from v and for every x ∈ Xe.
The subspaces Xe × [0, 1

2
] are called the handles of this piece. The subspaces Xe × {1

2
}

are called the faces of this piece.
Any covering of a piece in X is called a covering piece. Lifts of the body, of the

handles, and of the faces of the piece are called the body, the handles, and the faces of
the covering piece. Note that if Γ is finite and π1(Xv) is finite for every v ∈ Γ0, then there
is only a finite number of covering pieces, up to homeomorphism.

Clearly, the space X can be obtained by an appropriate gluing of all pieces N (Xv),
v ∈ Γ0, along their free faces. Every covering space of X can be obtained by gluing of
(may be infinitely many) copies of covering pieces along their faces.

A topological space Z is called a pre-covering of X , if Z is a connected subspace of
some covering of X , which can be presented as a result of gluing of some covering pieces
along their faces. A face F ⊆ Z is called a free face of Z, if it is a face of exactly one
handle of Z. A handle of Z which contains a free face is called a free handle of Z.

With every pre-covering Z of X we can naturally associate a graph ∆ by collapsing its
bodies to vertices and its handles to “half”-edges. Let p : Z → ∆ be the collapsing map
for Z. We equip Z with the pseudometric induced by the usual path metric on ∆ (where
the “half”-edges have length 1

2
). In particular, the distance between any two points of a

body of Z is zero and the maximal distance between two points of a handle is 1
2
.

Let ∆
1

2 be the set of middle points of edges of length 1 in ∆. A curve c : [0, 1] → ∆ is

called regular, if c has endpoints in ∆0∪∆
1

2 and is locally injective on [0, 1]\c−1(∆0∪∆
1

2 ).
The e-length of a regular curve c in ∆, denoted |c|e, is the sum of lengths of the “half”-
edges which c passes.

A curve γ : [0, 1] → Z is called regular, if the curve p ◦ γ : [0, 1] → ∆ is regular. The
e-length of a regular curve γ in Z, denoted |γ|e, is defined to be |p◦γ|e. Roughly speaking,
|γ|e is the number of handles which γ passes, divided by 2.

10



5.3 From graphs of groups to graphs of spaces

With every group G we associate the 2-dimensional CW-complex Space(G), consisting of
the unique vertex uG, the edge set {eg | g ∈ G}, and the set of 2-cells {Da,b | a, b ∈ G},
where the boundary of Da,b is glued along the path eaebeab. We identify the groups G and
π1(Space(G),uG) through the canonical isomorphism g 7→ [eg].

With every embedding of groups ϕ : H1 →֒ H we associate the embedding of complexes
Space(H1) →֒ Space(H), such that the induced homomorphism of fundamental groups
coincides with ϕ.

Now, with any graph of groups (G,Γ) we associate the graph of spaces (X,Γ), such
that Xw = Space(Gw) for w ∈ Γ0 ∪ Γ1 and the embeddings of spaces, ∂ie, ∂

t
e, correspond

to the embeddings of groups ρie, ρ
t
e. For any vertex v ∈ Γ, the groups π1(G,Γ, v) and

π1(Real(X,Γ),uGv
) are canonically isomorphic and we will identify them through this

isomorphism. Every element g ∈ π1(G,Γ, v) can be realized by a regular closed path γ(g)
in Real(X,Γ) based at uGv

, such that the number of subspaces Xe × [0, 1] it crosses is
equal to |g|; in our notations we have |γ(g)|e = |g|.

5.4 Subgroups and coverings, cores of coverings

Simplifying notations in the previous section, we denote G = π1(G,Γ, v), X = Real(X,Γ),
and x = uGv

. We may assume G = π1(X, x).
For every subgroup H of G there exists a covering map ψ : (Y, y) → (X, x), such

that H = ψ∗(π1(Y, y)). The space Y can be presented as the topological realization of a
graph of spaces (Y,∆). The vertex spaces and the edge spaces of (Y,∆) are connected
components of ψ−1(Xu), u ∈ Γ0, and of ψ−1(Xe), e ∈ Γ1 respectively.

If H is finitely generated, then there is a pre-covering Y0 ⊆ Y of X , such that
1) Y0 can be obtained by gluing of finitely many covering pieces along some of their faces;
2) every loop in Y can be freely homotoped into Y0.

Any such pre-covering will be called a core of Y . We choose one of them and denote
it by Core(Y ). The closure of every connected component of Y \Core(Y ) will be called a
thick tree. Every thick tree grows from a free face of the core and it can be deformationally
retracted onto this face.

5.5 Trivial handles

A covering handle will be called trivial if its fundamental group is trivial. The following
is a preparation to the proof of Theorem 1.9.

5.5.1 A linear order on the set of trivial covering handles

From now on we assume that Γ is a tree. For every edge e ∈ Γ1, let Comp(e) denote the
connected component of Γ \ {e, e} which contains t(e). For every m > 0 we set

Γ1(m) = {e ∈ Γ1 | the number of geometric edges in Comp(e) is equal to m}.

Now we choose an arbitrary linear order on each Γ1(m) and extend these orders to a
linear order ≺ on Γ1 by saying that edges in Γ1(m1) are smaller than edges in Γ1(m2) if
and only if m1 < m2.

11



We will consider covering spaces up to equivalence of coverings. Let C1, C2 be two
trivial covering handles, which cover the handles Xe1 × [0, 1

2
] and Xe2 × [0, 1

2
] of X . We

say that C1 is smaller than C2 and write C1 ≺∗ C2, if e1 ≺ e2.

5.5.2 Extensions of pre-coverings through their free trivial handles

We explain a construction, which enables to extend pre-coverings of X through their
trivial free handles keeping the fundamental group unchanged.

Let Y be a pre-covering of X and let A be a trivial free handle of Y . By definition,
the face of A is free in Y and A is the universal covering of a handle in X , say C1. Let C2

be the other handle in X which has a common face with C1, and let N be the piece in
X which contains C2. Consider the universal covering Ñ → N and some lift B of C2 in
Ñ . We can extend Y by gluing Y and Ñ along the free faces of A and B. So we obtain
a new pre-covering of X with the same fundamental group as Y .

.

.

.

Y

˜
N

A B.
.
.

.

.

.

.

.

.
.
.
.C1 C2

N

X :

.

.

.

.

.

.

Figure 4

As a preparation to the proof of Theorem 1.9, we explain a more complicated gluing.
Let B1, . . . , Bs be all lifts of C2 in Ñ . Now we take s copies of Y , say Y1, . . . , Ys (with

the handles A1, . . . , As corresponding to A) and glue them to Ñ so that the free face of
Ai will be glued to the free face of Bi for i = 1, . . . , s. The resulting space is again a
pre-covering of X and its fundamental group is isomorphic to the free product of s copies
of π1(Y ). We call the tuple (B1, . . . , Bs; Ñ ) the tuple associated with the handle A.

The following lemma allows to prove Theorem 1.9 by induction.

Lemma 5.1 Let K be a handle of Ñ , different from B1, . . . , Bs. Then K ≺∗ A.

Proof. The proof is straightforward and uses the assumption, that Γ is a tree. 2

5.6 Proof of Theorem 1.9

Let G be the fundamental group of a finite graph of finite groups: G = π1(G,Γ, v), where
Γ is a tree and suppose that G satisfies the normalizer condition. By Section 5.3, we can
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write G = π1(X, x), where X is the topological realization of the graph of spaces (X,Γ)
associated with the graph of groups (G,Γ).

Let H1, H2 be two finitely generated subgroups of G and suppose that H2 is not
conjugate into H1 in G. We will construct a finite index subgroup H3 of G, such that H1

is contained in H3 and H2 is not conjugate into H3. Then Theorem 1.9 will immediately
follow from Lemma 3.1.

Suppose that H2 = 〈h1, h2, . . . , hk〉 and let C = 2max{|hi| : i = 1, . . . , k} + 3, where
|·| is the length function on G (see Section 5.1).

Consider the covering ϕ : (Y, y) → (X, x) which corresponds to H1, i.e. H1 =
ϕ∗(π1(Y, y)). By enlarging the core of Y if necessary, we may assume that y ∈ Core(Y ).
We will complete Core(Y ) to a finite sheeted covering space Z and put thenH3 = π1(Z, y).
We will do that in several steps.

1) Since G satisfies the normalizer condition, there is a compact pre-covering Y0 ⊆ Y
that contains Core(Y ) and whose free faces are trivial.

2) Consider the compact pre-covering Y1 ⊆ Y that contains Y0 and whose free faces
are at distance C from Y0. The components of Y1 \Y0 are parts of thick trees, which grow
from the free faces of Y0. By 1) these componens are contractible.

Figure 5

Note for step 4), that H1 = ϕ∗(π1(Y1, y)).

3) Let A1, . . . , Ar be the free handles of Y1 that are maximal, with respect to ≺∗,

among all free handles of Y1. Let (B1, . . . , Bs; Ñ ) be the tuple associated with the handle
A1 (and so with each Ai). Taking into account only these handles, it is convenient to

think that Y1 has the form of the r-star and Ñ has the form of the s-star.
We take several copies of Y1 and several copies of Ñ and glue them according to

Theorem 3.4, where we put t = C.

13



Figure 6

The resulting space Y2 has the following properties.

(a) The free handles of Y2 are trivial.
(b) The maximal (with respect to ≺∗) free handles of Y2 are smaller than that of Y1.

Property (a) follows from 1). Property (b) follows from the fact, that the maximal
free handles of the copies of Y1 became non-free after gluing them with the free handles
of the copies of Ñ . Moreover, the handles of copies of Ñ , which remain free in Y2 are
smaller than A1 with respect to ≺∗ by Lemma 5.1.

4) We construct Y3 by fulfilling Step 3) for Y2 instead of Y1. Continuing in this way, we
obtain the sequence of regular spaces Y1, Y2, Y3, . . . , with the property that the maximal
free handles of Yi+1 are smaller than those of Yi. Since the order ≺∗ is finite, the sequence
Y1, Y2, Y3, . . . is finite and the last space, denote it by Z, has no free handles. Then Z is
a finite sheeted covering of X . Let H3 be the corresponding finite index subgroup of G.

Note, that Z is the result of gluing of several copies of Y1, say Y1,1, . . . , Y1,n, and

several contractible spaces, say Ñ1, . . . , Ñm, along their free faces. So, we have π1(Z) ∼=
π1(Y1,1) ∗ · · · ∗ π1(Y1,n) ∗ F for some free group F . This means, that

H3 = Hg1
1 ∗ · · · ∗Hgn

1 ∗ F (3)

for some g1, . . . , gn ∈ G. After renumbering, we may assume that Y1 = Y1,1, and so g1 = 1.

Lemma 5.2 Every regular loop γ in Z, which crosses a face of some Ñi and has the
e-length smaller than C is contractible.

Proof. Let l be the minimal natural number, such that γ lies in a copy of Yl, which
was used in the construction of Z. For simplicity, we assume that this copy coincides
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with Yl. Note that the e-length of any closed regular curve in Z is a nonnegative integer
number (see Section 5.2).

We will proceed by induction on (l, |γ|e), assuming that the pairs are lexicographically
ordered. If |γ|e = 0, then γ entirely lies in a face of Z, and hence is contractible. So, we
assume that |γ|e > 0.

Case 1. Suppose that l = 1. Then γ lies in Y1 and crosses a free face of Y1. Recall
that by Step 2), the distance between any free face of Y1 and Y0 is C and that every
component of Y1 \ Y0 is contractible. Since |γ|e < C, the curve γ lies in some component
of Y1 \ Y0 and so is contractible.

Case 2. Suppose that l > 2. Recall that Yl is the result of gluing of several copies of
Yl−1 and several Ñ -spaces. We will say that these Ñ -spaces have level l.

Since l is minimal, γ crosses some Ñ -space of level l, say Ñ1. If γ completely lies in
Ñ1, it is contractible. So, we assume that γ crosses a free face of Ñ1, say F1, and enters
into a copy of Yl−1, say Yl−1,1. After running inside Yl−1,1 it must again cross a free face
F2 of Yl−1,1.

Subcase 2.1. Suppose that F1 = F2. We write γ = γ1γ2, where γ1 is a subcurve of γ,
which lies in Yl−1,1, has endpoints in F1 and |γ1|e > 0. If |γ2|e = 0, then γ2 lies in F1 and
so γ lies in Yl−1,1, that contradicts to the minimality of l. Hence |γ2|e > 0.

Let γ3 be a path in F1 from the terminal point of γ1 to the initial one. Then |γ|e >
|γ1|e = |γ1γ3|e and |γ|e > |γ2|e = |γ−1

3 γ2|e. Since both γ1γ3 and γ−1
3 γ2 meet the face F1

and lie in Yl, they are contractible by induction. So, γ is contractible.
Subcase 2.2. Suppose that F1 6= F2. Denote by Ñ2 the Ñ -space, which is adjacent

to Yl−1,1 through the common face F2. Clearly it has level l. The curve γ must leave Ñ2

through a face F3. Since Ñ2 is contractible, we may assume that F3 6= F2. Continuing,
we obtain that γ passes through a cyclic sequence of subspaces

Ñ1, Yl−1,i1, Ñ2, Yl−1,i2, . . . , Ñp, Yl−1,ip,

where we may assume that for every three consecutive subspaces U, V,W the faces U ∩V
and V ∩ W are different. So, p 6 |γ|e < C, that contradicts to the construction of Yl
according to Theorem 3.4. 2

Lemma 5.3 Every regular loop γ in Z, which has length smaller than C, is either con-
tractible or lies in some Y1,i.

Proof. This follows from the previous lemma in view of the facts that Z \
m

∪
i=1

Ñi is the

disjoint union of the interiors of Y1,1, . . . , Y1,n and that each Ñi is contractible. 2

Lemma 5.4 H2 is not conjugate into H3 in the group G.

Proof. Assume the contrary, say Hg
2 6 H3 for some g ∈ G, and represent the elements

hgi and (hihj)
g by loops li and lij in Z based at y. By definition of the constant C, every

such loop can be freely homotoped in Z to a regular loop of e-length smaller than C. By
Lemma 5.3, it can be further freely homotoped into some Y1,t. This means that every
element h ∈ {hgi , (hihj)

g : i, j = 1, . . . , r} can be conjugated into some π1(Y1,t) = Hgt
1 by

an element of H3. Then, by (3) and by Lemma 3.2, Hg
2 can be conjugated into some Hgs

1 .
This contradicts to the assumption, that H2 cannot be conjugated into H1 in G. 2

The proof of Theorem 1.9 is completed.
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