
ar
X

iv
:1

01
2.

51
49

v1
  [

m
at

h.
O

C
] 

 2
3 

D
ec

 2
01

0

ASYMPTOTIC PROPERTIES OF OPTIMAL TRAJECTORIES IN DYNAMIC

PROGRAMMING

SYLVAIN SORIN, XAVIER VENEL, GUILLAUME VIGERAL

Abstract. We show in a dynamic programming framework that uniform convergence of the
finite horizon values implies that asymptotically the average accumulated payoff is constant on
optimal trajectories. We analyze and discuss several possible extensions to two-person games.

1. Presentation

Consider a dynamic programming problem as described in Lehrer and Sorin [1]. Given a set of
states S, a correspondence Φ from S to itself with non empty values and a payoff function f from
S to [0, 1], a feasible play at s ∈ S is a sequence {sm} of states with s1 = s and sm+1 ∈ Φ(sm). It
induces a sequence of payoffs {fm = f(sm)},m = 1, ..., n, .... Recall that starting from a standard
problem with random transitions and/or signals on the state, this presentation amounts to work
on the set of probabilities on S and to consider expected payoffs.

Let vn(s) (resp. vλ(s)) be the value of the n stage program Gn(s) (resp. λ discounted program
Gλ(s)) starting from state s. The asymptotic approach deals with asymptotic properties of
the values vn and vλ as n goes to ∞ or λ goes to 0.

The uniform approach focuses on properties of the strategies that hold uniformly in long
horizons. v∞ is the uniform value if for each ε > 0 there exists N such that for each s ∈ S:
1) there is a feasible play {sm} at s with

1

n

n∑

m=1

f(sm) ≥ v∞(s)− ε, ∀n ≥ N

2) for any feasible play {s′m} at s and any n ≥ N

1

n

n∑

m=1

f(s′m) ≤ v∞(s) + ε.

Obviously the second approach is more powerful than the second (existence of a uniform value
implies existence of an asymptotic value : the limit of vn exists) but it is also more demanding:
there are problems without uniform value where the asymptotic value exists (see Section 2).
Note that the condition for the existence of a uniform value implies that the average accumulated
payoff on optimal trajectories remains close to the value.

We will prove that a similar phenomenon holds true under conditions that are stronger than
the existence of an asymptotic value but weaker than the existence of a uniform value.

Say that the dynamic programming problem is regular if :
i) lim vn(s) = v(s) exists for each s ∈ S.
ii) the convergence is uniform.
This condition was already introduced and studied in Lehrer and Sorin [1] (see Section 2).

We consider the following property P:
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For any ε > 0, there exists n0, such that for all n ≥ n0, for any state s and any feasible play
{sm} ε-optimal for Gn(s) and for any t ∈ [0, 1]:

(1) 3ε ≥
1

n
(

[tn]∑

m=1

fm)− tv(s) ≥ −3ε.

where [tn] stands for the integer part of tn.

This condition says that the average payoff remains close to the value on every almost-optimal
trajectory with long duration (but the trajectory may depend on this duration).
It also implies a similar property on every time interval.

2. Examples and comments

1) The existence of the asymptotic value is not enough to control the payoff as required in
property P.
An example is given in Lehrer and Sorin [1] (Section 2), where both lim vn and lim vλ exist on
S but where the asymptotic average payoff is not constant on the unique optimal trajectory, nor
on ε-optimal trajectories: in G2n, an optimal play will induce n times 0 then n times 1 while
v = 1/2.
Note that this example is not regular: the convergence of vn to v is not uniform.

2) Recall that in the framework of dynamic programming, regularity is also equivalent to
uniform convergence of vλ (and with the same limit), see Lehrer and Sorin [1] (Section 3).
Note also that this regularity condition is not sufficient to obtain the existence of a uniform value,
see Monderer and Sorin [2] (Section 2).

3) General conditions for regularity can be found in Renault [5].

3. Main result

Theorem 3.1. Assume that the program is regular, then P holds.

Proof

Let us start with the upper bound inequality in (1).
The result is clear for t ≤ ε (recall that that the payoff is in [0, 1]). Otherwise let n1 large enough
so that n ≥ n1 implies ||vn − v|| ≤ ε by uniform convergence. Then the required inequality holds
for n ≥ n2 with [εn2] ≥ n1.

Consider now the lower bound inequality in (1).
The result holds for t ≥ 1 − ε by the ε-optimal property of the play, for n ≥ n1. Otherwise we
use the following lemma from Lehrer and Sorin [1] (Proposition 1).

Lemma 3.1. Both lim sup vn and lim sup vλ decresase on feasible histories.

In particular, starting from s[tn] the value of the program for the last n− [tn] stages is at most
v(s[tn]) + ε for n ≥ n2, by uniform convergence, hence less than the initial v(s) + ε, using the
previous Lemma. Since the play is ε-optimal in Gn(s), this implies that

(2)

[tn]∑

m=1

fm + (n− [tn])(v(s) + ε) ≥ n(vn(s)− ε) ≥ n(v(s)− 2ε)

hence the required inequality.

4. Extensions

4.1. Discounted case.

A similar result holds for the program Gλ corresponding to the evaluation
∑

∞

m=1 λ(1−λ)m−1fm.
Explicitly, one introduces the property P′:
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For any ε > 0, there exists λ0, such that for all λ ≤ λ0, for any state s and any feasible play {sm}
ε-optimal for Gλ(s) and for any t ∈ [0, 1]:

(3) 3ε ≥

n(t;λ)∑

m=1

λ(1− λ)m−1fm)− tv(s) ≥ −3ε.

where n(t;λ) = inf{p ∈ IN;
∑p

m=1 λ(1 − λ)m−1 ≥ t}. Stage n(t;λ) corresponds to the fraction t
of the total duration of the program.

Theorem 4.1. Assume that the program is regular, then P’ holds.

Proof

The proof follows the same lines than the proof of Theorem 3.1.
Recall that by regularity both vn and vλ converge uniformly to v. Moreover the discounted sums
(1−λ)−N

∑N
m=1 λ(1−λ)m−1fm belong to the convex hull of the averages 1

n

∑n
m=1 fm; 1 ≤ n ≤ N .

The counterpart of equation (2) is now

(4)

n(t;λ)∑

m=1

λ(1− λ)m−1fm + (1− t)(v(s) + ε) ≥ (vλ(s)− ε) ≥ v(s)− 2ε

4.2. Continuous time.

Similar results holds in the following set-up: vT (x) is the value of the control problem ΓT with
control set U where the state variable inX is governed by a differential equation (or more generally
a differential inclusion)

ẋt = f(xt, ut)

starting from x at time 0. The real payoff function is g(x, u) and the evaluation is given by:

1

T

∫ T

0
g(xt, ut)dt.

Regularity in this framework amounts to uniform convergence (on X) of VT to some V . (Sufficient
conditions for regularity can be found in Quincampoix and Renault [4]). The corresponding
property is now P”:
For any ε > 0, there exists T0, such that for all T ≥ T0, for any state x and any feasible trajectory
ε-optimal for ΓT (x) and for any θ ∈ [0, 1]:

(5) 3ε ≥
1

T

∫ θT

0
g(xt, ut)dt− θV (x) ≥ −3ε.

Theorem 4.2. Assume that the optimal control problem is regular, then P” holds.

Proof

Follow exactly the same lines than the proof of Theorem (2).

Finally the same tools can be used for an evaluation of the form λ
∫ +∞

0 e−λtg(xt, ut)dt.

5. Two-player zero-sum games

In trying to extend this result to a two-person zero-sum framework, several problems occurs.
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5.1. Optimal strategies on both sides.

First it is necessary, to obtain good properties on the trajectory, to ask for optimality on both
sides.
For example in the Big Match with no signals,

α β
a 1∗ 0∗

b 0 1

where a ∗ denotes an absorbing payoff, the optimal strategy of player 1 in the “asymptotic game”
on [0, 1] is to play “a before time t” with probability t, see Sorin [6] Section 5.3.2. Obviously,
if there is no restrictions on player 2’s moves the average payoff will not be constant. However,
the optimal strategy of player 2 is “always (1/2, 1/2)” hence time independent on [0, 1]. It thus
induces a constant payoff and it is easy to see that the property is robust to small perturbations
in the evaluation of the payoff.

5.2. Player 1 controls the transition.

Consider a repeated game with finite characteristics (states, moves, signals, ...) and use the
recursive formula corresponding to the canonical representation with entrance laws being consis-
tent probabilities on the universal belief space, see Mertens, Sorin and Zamir [3], Chapters III.1,
IV.3. This representation preserves the values but in the auxiliary game, if player 1 controls the
transition an optimal strategy of player 2 is to play a stage by stage best reply. Hence the model
reduces to the dynamic programming framework and the results of the previous sections apply.
A simple example corresponds to a game with incomplete information on one side where asymp-
totically an optimal strategy of the uniform player 1 is a splitting at time 0, while player 2 can
obain u(pt) at time t where u is the value of the non-revealing game and pt the martingale of
posteriors at time t, see Sorin [6], 3.7.2.

5.3. Example.

Back to the general framework of two person zero-sum repeated games, the following example
shows that in addition one has to strengthen the conditions on the pair of ε-optimal strategies.
We exhibit a game having a uniform value v but for some state s with v(s) = 0 one can construct,
for each n, optimal strategies in Γn(s) inducing essentially a constant payoff 1 during the first
half of the game.

Starting from the initial state s, the tree representing the game Γ has countably many subgames
Γ̃2n, the transition being controlled by player 1 (with payoff 0). In Γ̃2n there are at most n stages
before reaching an absorbing state. At each of these stages of the form (2n,m),m = 1, ...n,
the players plays a “jointly controlled” process leading either to a payoff 1 and the next stage
(2n,m+ 1) (if they agree) or an absorbing payoff x2n,m with (m− 1) + (2n− (m− 1))x2n,m = 0,

otherwise. Hence every feasible path of length 2n in Γ̃2n gives a total payoff 0. Obviously
the uniform value exists since each player can stop the game at each node, inducing the same
absorbing payoff. The representation is as follows:

Notice that in the 2n + 1 stage game, after a move of player 1 to Γ̃2n, any play is compatible
with optimal strategies, in particular those leading to the sequence of payoffs 2n times 0 or n
times 1 then n times −1.

5.4. Conjectures.

A natural conjecture is that in any regular game (i.e. where vn converges uniformly to v):
for any ε > 0, there exists n0, such that for all n ≥ n0, for any initial state s, there exists a couple
(σn, τn) of ε-optimal strategies in Gn(s) such that for any t ∈ [0, 1]:

(6) 3ε ≥
1

n
Es

σn,τn
(

[tn]∑

m=1

fm)− tv(s) ≥ −3ε.
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Γ̃2 Γ̃4 Γ̃2n

Figure 1. The game Γ starting from state s

C A C A C A C A C A
C 1−→ 0* C 1−→ x2n,2* C 1−→ x2n,m* C 1−→ x2n,n* C -1* -1*

A 0* 0* A x2n,2* x2n,2* A x2n,m* x2n,m* A x2n,n* x2n,n* A -1* -1*

(2n, 1) (2n, 2) · · · (2n,m) · · · (2n, n) −1∗

Figure 2. The subgame Γ̃2n starting from state (2n, 1)

where [tn] stands for the integer part of tn and fm is the payoff at stage m.
A more elaborate conjecture would rely on the existence of an asymptotic game Γ∗ played in con-
tinuous time on [0, 1] with value v (as in Section 5.1). We use the representation of the repeated
game as a stochastic game trough the recursive structure as above, see Mertens, Sorin, Zamir [3],
Chapter IV. The condition is now the existence of a couple of strategies (σ, τ) in the asymptotic
game that would depend only on the time t ∈ [0, 1] and on the current state s such that for
any ε > 0, there exists η with the following property: in any repeated game where the (relative)
weight of stage m is αm, with {αm} decreasing and less than η, thus defining a partition Π of
[0, 1], the strategies (σΠ, τΠ) induced in the repeated game by (σ, τ) satisfies (6).
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