ON ABSOLUTE CONVERGENCE OF MULTIPLE FOURIER INTEGRALS

E. LIFLYAND

Abstract

New sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained in the paper.

1. Introduction

If

$$
f(y)=\int_{\mathbb{R}^{d}} g(x) e^{i(x, y)} d x, \quad g \in L_{1}\left(\mathbb{R}^{d}\right)
$$

we write $f \in A\left(\mathbb{R}^{d}\right)$, with $\|f\|_{A}=\|g\|_{L_{1}\left(\mathbb{R}^{d}\right)}$.
The possibility to represent a function via the absolutely convergent Fourier integral was studied by many mathematicians and is of importance in various problems of analysis. For example, belonging of a function $m(x)$ to $A\left(\mathbb{R}^{d}\right)$ makes it to be an $L_{1} \rightarrow L_{1}$ Fourier multiplier (or, equivalently, $L_{\infty} \rightarrow L_{\infty}$ Fourier multiplier); written $m \in M_{1}$ ($m \in M_{\infty}$, respectively). One of such m-s attracted much attention in 50-70s (see, e.g., [3] and [10, Ch.4, 7.4], and references therein):

$$
\begin{equation*}
m(x)=\theta(x) \frac{e^{i|x|^{\alpha}}}{|x|^{\beta}}, \tag{1.1}
\end{equation*}
$$

where θ is a C^{∞} function on \mathbb{R}^{d}, which vanishes near zero, and equals 1 outside a bounded set, and $\alpha, \beta>0$. In is known that for $d \geq 2$:
I) If $\frac{\beta}{\alpha}>\frac{d}{2}$, then $m \in M_{1}\left(M_{\infty}\right)$.
II) If $\frac{\beta}{\alpha}<\frac{d}{2}$, then $m \notin M_{1}\left(M_{\infty}\right)$.

The first assertion holds true for $d=1$ as well, while the second one only when $\alpha \neq 1$; however, the case $\alpha=d=1$ is obvious.

[^0]Various sufficient conditions for absolute convergence of Fourier integrals were obtained by Titchmarsh, Beurling, Karleman, Sz.-Nagy, Stein, and many others. One can find more or less comprehensive and very useful survey on this problem in [9]. Let us mention also [7] and a couple of recent papers [1, 4].

New sufficient conditions of belonging to $A\left(\mathbb{R}^{d}\right)$ are obtained in this paper.

Let χ and η be d-dimensional vectors with the entries either 0 or 1 only. The inequality of vectors is meant coordinate wise. Here and in what follows $D^{\chi} f$ for $\chi=\mathbf{0}=(0,0, \ldots, 0)$ or $\chi=\mathbf{1}=(1,1, \ldots, 1)$ mean the function itself and the mixed derivative in each variable, respectively, where

$$
D^{\chi} f(x)=\left(\prod_{j: \chi_{j}=1} \frac{\partial}{\partial x_{j}}\right) f(x)
$$

Let us give a multidimensional result we are going, in a sense, to generalize (see [8]).

Theorem B. Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. If all the mixed derivatives (in the distributional sense) $D^{\chi} f(x) \in L^{p}\left(\mathbb{R}^{d}\right), \mathbf{0}<\chi<\mathbf{1}$, where $1<p \leq 2$, then $f \in A\left(\mathbb{R}^{d}\right)$.

After fixing certain notation and conventions we formulate the results. In the next section we give the proofs.

We shall denote absolute constants by c or maybe by c with various subscripts, like c_{1}, c_{2}, etc., while $\gamma(\ldots)$ will denote positive quantities depending only on the arguments indicated in the parentheses.

Our main result reads as follows.
Theorem 1.1. Let $f \in C_{0}\left(\mathbb{R}^{d}\right)$ and let f and its partial derivatives $D^{\eta} f, \mathbf{0} \leq \eta<\mathbf{1}$, be locally absolutely continuous on $(\mathbb{R} \backslash\{0\})^{d}$ in each variable.
a) Let $D^{\chi} f(x) \in L_{p_{\chi}}\left(\mathbb{R}^{d}\right), 1<p_{\chi}<\infty$ (it is allowed $p_{\mathbf{0}}=1$). If

$$
\begin{equation*}
\sum_{0 \leq \chi \leq 1} \frac{1}{p_{\chi}}>2^{d-1} \tag{1.2}
\end{equation*}
$$

then $f \in A\left(\mathbb{R}^{d}\right)$.
b) If for the numbers $p_{1}, \ldots, p^{2^{d}}, 1 \leq p_{1}<\infty, 1<p_{2}, \ldots, p_{2^{d}}<\infty$,

$$
\begin{equation*}
\sum_{k=1}^{2^{d}} \frac{1}{p_{k}}<2^{d-1} \tag{1.3}
\end{equation*}
$$

then there exists a function f with $D^{\chi} f(x) \in L_{p_{\chi}}\left(\mathbb{R}^{d}\right)$, where each $p \chi$ is one and only one of the above p_{k}, but $f \notin A\left(\mathbb{R}^{d}\right)$.

As a corollary, we present a different proof of \mathbf{I}).
Corollary 1.2. If $\frac{\beta}{\alpha}>\frac{d}{2}$, then $m \in A\left(\mathbb{R}^{d}\right)$.
The other corollary gives conditions on which exponent decay of a function f and its derivatives ensures $f \in A\left(\mathbb{R}^{d}\right)$.

Corollary 1.3. If

$$
\begin{equation*}
\left|D^{\chi} f(x)\right| \leq c \frac{1}{(1+|x|)^{\gamma_{\chi}}} \tag{1.4}
\end{equation*}
$$

where $\gamma_{\chi}>0$ for all $\chi, \mathbf{0} \leq \chi \leq \mathbf{1}$, and

$$
\begin{equation*}
\sum_{0 \leq \chi \leq 1} \gamma_{\chi}>d 2^{d-1} \tag{1.5}
\end{equation*}
$$

then $f \in A\left(\mathbb{R}^{d}\right)$.

2. Proofs

We give, step by step, proofs of the results formulated in Introduction. We need certain auxiliary results.
2.1. Auxiliary results. One of the basic tools is the following result (see Lemma 4 in [12] or Theorem 3 in [2]).

In order to formulate the next result, on which much in the proofs of our new results is based on, we denote $\Delta_{u} f(x)=\Delta_{u_{1}, \cdots, u_{d}} f(x)=$ $\prod_{j=1}^{d} D_{u_{j}} f(x)$, where $D_{u_{j}} f$ is defined as

$$
\begin{equation*}
\Delta_{u_{j}} f(x)=f\left(x+u_{j} e_{j}^{0}\right)-f\left(x-u_{j} e_{j}^{0}\right), \quad 1 \leq j \leq d \tag{2.1}
\end{equation*}
$$

Theorem C. Let $f \in C_{0}\left(\mathbb{R}^{d}\right)$. If

$$
\sum_{s_{1}=-\infty}^{\infty} \cdots \sum_{s_{d}=-\infty}^{\infty} 2^{\frac{1}{2} \sum_{j=1}^{d} s_{j}}\left\|\Delta_{\frac{\pi}{2^{s_{1}}}, \cdots, \frac{\pi}{2^{s_{d}}}}(f)\right\|_{2}<\infty
$$

where the norm is that in $L_{2}\left(\mathbb{R}^{d}\right)$, then $f \in A\left(\mathbb{R}^{d}\right)$.
In dimension one the second basic tools was the following SteklovHardy type inequality (a partial case of the general result [5, Cor.3.14]):

For $F(s) \geq 0$ and $1<q \leq Q<\infty$

$$
\begin{equation*}
\left(\int_{\mathbb{R}}\left[\int_{t-h}^{t+h} F(s) d s\right]^{Q} d t\right)^{1 / Q} \leq c h^{1 / Q+1 / q^{\prime}}\left(\int_{\mathbb{R}} F^{q}(t) d t\right)^{1 / q} . \tag{2.2}
\end{equation*}
$$

Here $\frac{1}{q}+\frac{1}{q^{\prime}}=1$. Similarly $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
Though there are multivariate versions of general Steklov-Hardy inequality (see, e.g., [11]), we need a simpler direct generalization of (2.2):

Lemma 2.1. For $F(u) \geq 0,1 \leq k \leq d$, and $1<q \leq Q<\infty$

$$
\begin{align*}
& \left(\int_{\mathbb{R}^{d}}\left[\int_{x_{1}-h_{1}}^{x_{1}+h_{1}} \ldots \int_{x_{k}-h_{k}}^{x_{k}+h_{k}} F\left(u_{1}, \ldots, u_{k}, x_{k+1}, \ldots, x_{d}\right) d u_{1} \ldots d u_{k}\right]^{Q} d x\right)^{1 / Q} \\
& \leq c\left(h_{1} \ldots h_{d}\right)^{1 / Q+1 / q^{\prime}}\left(h_{k+1} \ldots h_{d}\right)^{-1}\left(\int_{\mathbb{R}^{d}} F^{q}(x) d x\right)^{1 / q} \tag{2.3}
\end{align*}
$$

Proof. The proof is inductive. For $d=1$, the result holds true: (2.2). Supposing that it is true for $d-1, d=2,3, \ldots$, let us prove (2.3) with $k=d$. Applying inductive assumption for the first $d-1$ variables, we obtain

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{d}}\left[\int_{x_{1}-h_{1}}^{x_{1}+h_{1}} \ldots \int_{x_{d}-h_{d}}^{x_{d}+h_{d}} F\left(u_{1}, \ldots, u_{d}\right) d u_{1} \ldots d u_{d}\right]^{Q} d x_{1} \ldots d x_{d}\right)^{1 / Q} \\
= & \left(\int\left\{\int_{\mathbb{R}} \int_{\mathbb{R}^{d-1}} \int_{x_{1}-h_{1}}^{x_{1}+h_{1}} \ldots \int_{x_{d-1}-h_{d-1}}^{x_{d-1}+h_{d-1}} \int_{x_{d}-h_{d}}^{x_{d}+h_{d}} F\left(u_{1}, \ldots, u_{d}\right) d u_{1} \ldots d u_{d}\right]^{Q}\right. \\
& \left.\left.d x_{1} \ldots d x_{d-1}\right\}^{Q / Q} d x_{d}\right)^{1 / Q} \\
\leq & c\left(h_{1} \ldots h_{d-1}\right)^{1 / Q+1 / q^{\prime}}\left(\int \int _ { \mathbb { R } } \left\{\int_{\mathbb{R}^{d-1}}\left[\int_{x_{d}-h_{d}}^{x_{d}+h_{d}} F\left(x_{1}, \ldots, x_{d-1}, u_{d}\right) d u_{d}\right]^{q}\right.\right. \\
& \left.\left.d x_{1} \ldots d x_{d-1}\right\}^{Q / q} d x_{d}\right)^{\frac{q}{Q} \frac{1}{q}} .
\end{aligned}
$$

Applying now the generalized Minkowski inequality with exponent $Q / q \geq 1$, we bound the right-hand side by, times a constant,

$$
\begin{array}{r}
\left(h_{1} \ldots h_{d-1}\right)^{1 / Q+1 / q^{\prime}}\left(\int _ { \mathbb { R } ^ { d - 1 } } \left\{\int_{\mathbb{R}}\left[\int_{x_{d}-h_{d}}^{x_{d}+h_{d}} F\left(x_{1}, \ldots, x_{d-1}, u_{d}\right) d u_{d}\right]^{Q}\right.\right. \\
\left.\left.d x_{d}\right\}^{q / Q} d x_{1} \ldots d x_{d-1}\right)^{1 / q} .
\end{array}
$$

To obtain (2.3), it remains again to make use of (2.2) for the d-th variable.

If $k<d$, we just add the integration over $\int_{x_{k+1}-h_{k+1}}^{x_{k+1}+h_{k+1}} \ldots \int_{x_{d}-h_{d}}^{x_{d}+h_{d}}$, compensate it with $\left(2 h_{k+1} \ldots 2 h_{d}\right)^{-1}$, and apply the proved version for $k=d$. The proof is complete.
2.2. Proof of Theorem 1.1. Let us first prove b). Let us take m (see Introduction) such that $D^{\chi} m(x) \in L_{p_{\chi}}\left(\mathbb{R}^{d}\right)$. Since for each $k=\chi_{1}+\ldots+$ χ_{d} there holds $\left|D^{\chi} m(x)\right| \leq c|x|^{-\beta+k(\alpha-1)}$ for $|x|$ large, we must have, assuming $\beta-k(\alpha-1)>0$ for all k, the inequality $(\beta-k(\alpha-1)) p_{j}>d$ for $\binom{d}{k}$ numbers p_{j}. Then

$$
\sum_{k=1}^{2^{d}} \frac{1}{p_{k}}<\frac{2^{d} \beta-(\alpha-1) \sum_{k=1}^{d} k\binom{d}{k}}{d}=\frac{2^{d} \beta-(\alpha-1) d 2^{d-1}}{d} .
$$

Choosing also β and α such that the right-hand side is smaller than 2^{d-1}, we obtain

$$
2^{d} \beta-(\alpha-1) d 2^{d-1}<d 2^{d-1}
$$

which is equivalent to II). Therefore such m cannot be in $A\left(\mathbb{R}^{d}\right)$.
For simplicity, let us give a two-dimensional proof of a). First of all, this allows us to use much simpler notation. On the one hand, we will denote the derivatives by merely f_{1}, f_{2}, and f_{12}. On the other hand, we will correspondingly denote p_{χ} by p_{0}, p_{1}, p_{2}, and p_{12}. Analogously, we will denote Δ_{12}, Δ_{1}, and Δ_{2}. The two-dimensional version of the sum in Theorem C can be expressed as the 4 sums

$$
\begin{align*}
& \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} 2^{-k / 2} 2^{-l / 2}+\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} 2^{-k / 2} 2^{l / 2} \\
& +\sum_{k=0}^{\infty} \sum_{l=1}^{\infty} 2^{k / 2} 2^{-l / 2}+\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{k / 2} 2^{l / 2} . \tag{2.4}
\end{align*}
$$

The second and third sums are estimated in absolutely the same way, therefore we will estimate only on of them.
Let us start with the first sum. We have

$$
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} 2^{-k / 2} 2^{-l / 2}\left(\int_{\mathbb{R}^{2}}\left|\Delta_{12} f(x, y)\right|^{2} d x d y\right)^{1 / 2}
$$

Here $\Delta_{12} f(x, y)=f(x+h(-k), y+h(-l))-f(x+h(-k), y-h(-l))-$ $f(x-h(-k), y+h(-l))+f(x-h(-k), y-h(-l))$, with $h(q)=\pi 2^{-q}$. For this sum, Δ_{1} and Δ_{2} will be used with the same steps. In what follows, we will use the steps $h(k)$ or $h\left(-k\right.$ when $2^{k / 2}$ or $2^{-k / 2}$, respectively, are summed up; the same for $h(\pm l)$.

Now, we represent the inner integral as

$$
\begin{aligned}
& \left.\left.\int_{\mathbb{R}^{2}}\left|\Delta_{12} f(x, y)\right|^{1 / 2}\right|_{x-h(-k)} ^{x+h(-k)} \Delta_{2} f_{1}(u, y) d u\right|^{1 / 2} \\
\times & \left|\int_{y-h(-l)}^{y+h(-l)} \Delta_{1} f_{2}(x, v) d v\right|^{1 / 2}\left|\int_{x-h(-k)}^{x+h(-k)} \int_{y-h(-l)}^{y+h(-l)} f_{12}(u, v) d u d v\right|^{1 / 2} d x d y .
\end{aligned}
$$

Further, we apply Hölder's inequality with 4 parameters $2 p_{0}, 2 q_{1} \geq$ $2 p_{1}, 2 q_{2} \geq 2 p_{2}$, and $2 q_{12} \geq 2 p_{12}$ satisfying

$$
\begin{equation*}
\frac{1}{2 p_{0}}+\frac{1}{2 q_{1}}+\frac{1}{2 q_{2}}+\frac{1}{2 q_{12}}=1 . \tag{2.5}
\end{equation*}
$$

This is possible because of (1.2) for $d=2$. We obtain 4 norms, the first one is dominated by $\|f\|_{p_{0}}^{1 / 4}$. We then apply Lemma 2.1 to the next 3 norms with the exponents q_{1} and p_{1}, q_{2} and p_{2}, q_{12} and p_{12}, respectively. The bound for the sum in question will then be, times a constant,

$$
\begin{array}{r}
\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} 2^{-k / 2} 2^{-l / 2}\left(2^{k / 2} 2^{l / 2}\right)^{\left(\frac{1}{2 q_{1}}+\frac{1}{2 p^{\prime} 1}\right)+\left(\frac{1}{2 q_{2}}+\frac{1}{2 p^{\prime} 2}\right)-\frac{1}{2}+\left(\frac{1}{2 q_{12}}+\frac{1}{2 p^{\prime} 12}\right)} \\
\times\|f\|_{p_{0}}^{1 / 4}\left\|f_{1}\right\|_{p_{1}}^{1 / 4}\left\|f_{2}\right\|_{p_{2}}^{1 / 4}\left\|f_{12}\right\|_{p_{12}}^{1 / 4} .
\end{array}
$$

We thus have $2^{-k / 2}$ (and $2^{-l / 2}$) in the power

$$
\begin{aligned}
1 & -\left[\left(\frac{1}{2 q_{1}}+\frac{1}{2 p_{1}^{\prime}}\right)+\left(\frac{1}{2 q_{2}}+\frac{1}{2 p_{2}^{\prime}}\right)-\frac{1}{2}+\left(\frac{1}{2 q_{12}}+\frac{1}{2 p^{\prime}}\right)\right] \\
& =\left[1-\frac{1}{2 q_{1}}-\frac{1}{2 q_{2}}-\frac{1}{2 q_{12}}\right]-1+\frac{1}{2 p_{1}}+\frac{1}{2 p_{2}}+\frac{1}{2 p_{12}} .
\end{aligned}
$$

By (2.5), the expression in the brackets on the right is $\frac{1}{2 p_{0}}$, and by (1.2) the whole right-hand side is positive. Therefore, the sums converge, as required.

Let us now prove the finiteness of the sum

$$
\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{k / 2} 2^{l / 2}\left(\int_{\mathbb{R}^{2}}\left|\Delta_{12} f(x, y)\right|^{2} d x d y\right)^{1 / 2}
$$

We remind that the steps here are $h(k)$ and $h(l)$. In this case we represent the inner integral as

$$
\begin{aligned}
& \left.\left.\int_{\mathbb{R}^{2}}\left|\Delta_{12} f(x, y)\right|^{\frac{(1-\delta)^{2}}{2}}\right|_{x-h(-k)} ^{x+h(-k)} \int_{2} f_{1}(u, y) d u\right|^{\frac{1-\delta^{2}}{2}} \\
& \left|\int_{y-h(-l)}^{y+h(-l)} \Delta_{1} f_{2}(x, v) d v\right|^{\frac{1-\delta^{2}}{2}}\left|\int_{x-h(-k)}^{x+h(-k)} \int_{y-h(-l)}^{y+h(-l)} f_{12}(u, v) d u d v\right|^{\frac{(1+\delta)^{2}}{2}} d x d y .
\end{aligned}
$$

This is true for any $\delta \in(0,1)$, and the sum of the exponents is 2 . Applying similarly Hölder's inequality, this time with the parameters $\frac{(1-\delta)^{2}}{2 p_{0}}, 2 q_{1} \geq 2 p_{1}, 2 q_{2} \geq 2 p_{2}$, and $2 q_{12} \geq 2 p_{12}$ satisfying

$$
\begin{equation*}
\frac{(1-\delta)^{2}}{2 p_{0}}+\frac{1}{2 q_{1}}+\frac{1}{2 q_{2}}+\frac{1}{2 q_{12}}=1 \tag{2.6}
\end{equation*}
$$

We again obtain 4 norms, the first one is dominated by $\|f\|_{p_{0}}^{(1-\delta)^{2} / 4}$. We then apply Lemma 2.1 to the next 3 norms with the exponents
$\left(1-\delta^{2}\right) q_{1}$ and $p_{1},\left(1-\delta^{2}\right) q_{2}$ and $p_{2},(1+\delta)^{2} q_{12}$ and p_{12}, respectively. The bound for the sum in question will then be, times a constant,

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{k / 2} 2^{l / 2}\left(2^{-k / 2} 2^{-l / 2}\right)^{\left(\frac{1}{2 q_{1}}+\frac{1-\delta^{2}}{2 p^{\prime}{ }_{1}}\right)+\left(\frac{1}{2 q_{2}}+\frac{1-\delta^{2}}{2 p^{\prime}{ }_{2}}\right)-\frac{1-\delta^{2}}{2}+\left(\frac{1}{2 q_{12}}+\frac{(1+\delta)^{2}}{2 p^{\prime} 12}\right)} \\
& \times \quad\|f\|_{p_{0}}^{(1-\delta)^{2} / 4}\left\|f_{1}\right\|_{p_{1}}^{\left(1-\delta^{2}\right) / 4}\left\|f_{2}\right\|_{p_{2}}^{\left(1-\delta^{2}\right) / 4}\left\|f_{12}\right\|_{p_{12}}^{(1+\delta)^{2} / 4}
\end{aligned}
$$

We thus have $2^{k / 2}$ (and $2^{l / 2}$) in the power

$$
\begin{aligned}
1 & -\left[\left(\frac{1}{2 q_{1}}+\frac{1-\delta^{2}}{2 p^{\prime}{ }_{1}}\right)+\left(\frac{1}{2 q_{2}}+\frac{1-\delta^{2}}{2 p^{\prime}{ }_{2}}\right)-\frac{1-\delta^{2}}{2}+\left(\frac{1}{2 q_{12}}+\frac{(1+\delta)^{2}}{2 p^{\prime}{ }_{12}}\right)\right] \\
& =\left[1-\frac{1}{2 q_{1}}-\frac{1}{2 q_{2}}-\frac{1}{2 q_{12}}\right]-1-\delta+\frac{1-\delta^{2}}{2 p_{1}}+\frac{1-\delta^{2}}{2 p_{2}}+\frac{(1+\delta)^{2}}{2 p_{12}}
\end{aligned}
$$

By (2.6), the expression in the brackets on the right is $\frac{(1-\delta)^{2}}{2 p_{0}}$. We must have the final expression

$$
\frac{(1-\delta)^{2}}{2 p_{0}}+\frac{1-\delta^{2}}{2 p_{1}}+\frac{1-\delta^{2}}{2 p_{2}}+\frac{(1+\delta)^{2}}{2 p_{12}}-1-\delta
$$

to be negative. We cannot use (1.2) immediately as above: the choice of δ is in order. Since for $\delta=1$ the inequality $\frac{4}{2 p_{12}}<2$ is true (we remind that $1<p_{12}<\infty$), one can choose by continuity certain $\delta<1$ to continue keeping the inequality true. This completes the proof of the case in question.

It remains to prove the finiteness of the sum

$$
\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} 2^{-k / 2} 2^{l / 2}\left(\int_{\mathbb{R}^{2}}\left|\Delta_{12} f(x, y)\right|^{2} d x d y\right)^{1 / 2}
$$

with the steps $h(-k)$ and $h(l)$ now. In this case we represent the inner integral as

$$
\begin{array}{r}
\left.\left.\int_{\mathbb{R}^{2}}\left|\Delta_{12} f(x, y)\right|^{\frac{1-\delta}{2}}\right|_{x-h(-k)} ^{x+h(-k)} \Delta_{2} f_{1}(u, y) d u\right|^{\frac{1-\delta}{2}} \\
\left|\int_{y-h(-l)}^{y+h(-l)} \Delta_{1} f_{2}(x, v) d v\right|^{\frac{1+\delta}{2}}\left|\int_{x-h(-k)}^{x+h(-k)} \int_{y-h(-l)}^{y+h(-l)} f_{12}(u, v) d u d v\right|^{\frac{1+\delta}{2}} d x d y .
\end{array}
$$

This is true for any $\delta \in(0,1)$, and the sum of the exponents is 2 . Applying similarly Hölder's inequality, this time with the parameters $\frac{1-\delta}{2 p_{0}}, 2 q_{1} \geq 2 p_{1}, 2 q_{2} \geq 2 p_{2}$, and $2 q_{12} \geq 2 p_{12}$ satisfying

$$
\begin{equation*}
\frac{1-\delta}{2 p_{0}}+\frac{1}{2 q_{1}}+\frac{1}{2 q_{2}}+\frac{1}{2 q_{12}}=1 \tag{2.7}
\end{equation*}
$$

We again obtain 4 norms, the first one is dominated by $\|f\|_{p_{0}}^{(1-\delta) / 4}$. We then apply Lemma 2.1 to the next 3 norms with the exponents $(1-\delta) q_{1}$ and $p_{1},(1+\delta) q_{2}$ and $p_{2},(1+\delta) q_{12}$ and p_{12}, respectively. The bound for the sum in question will then be, times a constant,

$$
\begin{aligned}
& \sum_{k=1}^{\infty} 2^{-k / 2}\left(2^{k / 2}\right)^{\left(\frac{1}{2 q_{1}}+\frac{1-\delta}{2 p^{\prime}}\right)+\left(\frac{1}{2 q_{2}}+\frac{1+\delta}{2 p^{\prime}}\right)-\frac{1+\delta}{2}+\left(\frac{1}{2 q_{12}}+\frac{1+\delta}{2 p^{\prime} 12}\right)} \\
& \sum_{l=0}^{\infty} 2^{l / 2}\left(2^{-l / 2}\right)^{\left(\frac{1}{2 q_{1}}+\frac{1-\delta}{2 p_{1}^{\prime}}\right)+\left(\frac{1}{2 q_{2}}+\frac{1+\delta}{2 p^{\prime}{ }_{2}}\right)-\frac{1-\delta}{2}+\left(\frac{1}{2 q_{12}}+\frac{1+\delta}{2 p^{\prime} 12}\right)} \\
& \quad\|f\|_{p_{0}}^{(1-\delta) / 4}\left\|f_{1}\right\|_{p_{1}}^{(1-\delta) / 4}\left\|f_{2}\right\|_{p_{2}}^{(1+\delta) / 4}\left\|f_{12}\right\|_{p_{12}}^{(1+\delta) / 4} .
\end{aligned}
$$

To ensure the convergence of both sums, we arrive at the inequality

$$
\begin{equation*}
1<\frac{1-\delta}{2 p_{0}}+\frac{1-\delta}{2 q_{1}}+\frac{1+\delta}{2 q_{2}}+\frac{1+\delta}{2 q_{12}}<1+\delta \tag{2.8}
\end{equation*}
$$

to be valid for certain δ. The left inequality follows from the estimates in k, while the right one from estimates in l. Recording the sum in the left-hand side of (1.2) as $1+\epsilon, 0<\epsilon<1$, we can rewrite (2.8) as

$$
\begin{equation*}
0<\epsilon-\delta A+\delta B<\delta \tag{2.9}
\end{equation*}
$$

with obvious meaning for A and B. We note meantime that $0<A, B<$ 1 and $A+B=1$.

1) Let first $B>A$. In this case the left inequality in (2.9) holds automatically, we discuss the right one. It is equivalent to the inequality $\frac{\epsilon}{2 A-\epsilon}<\delta$. Since $A>\epsilon$, there holds $\frac{\epsilon}{2 A-\epsilon}<1$, and such δ does exist.
2) When $B<A$, both inequalities should be justified. The right one is treated as above. The left one is equivalent to $\delta<\frac{\epsilon}{2 A-1-\epsilon}$. If the value on the right is not smaller than 1 , the needed inequality holds true for any $\delta<1$. If it is smaller than one, it suffices to take δ just a little bit smaller than $\frac{\epsilon}{2 A-1-\epsilon}$, but such that it is still greater than $\frac{\epsilon}{2 A-\epsilon}$.
3) Of course, the situation when $A=B$ is trivial.

The proof is complete.
2.3. Proof of Corollary 1.2. The result, in fact, follows from Corollary 1.3 and estimates for the derivatives of m as in the proof of \mathbf{b}) of the theorem.
2.4. Proof of Corollary 1.3, Let us rewrite (1.5) as

$$
\sum_{0 \leq \chi \leq 1} \gamma_{\chi}=d 2^{d-1}+\epsilon
$$

For each χ, let us choose p_{χ} so that $\gamma_{\chi} p_{\chi}=d+\frac{\epsilon}{2^{d}}$. Then

$$
\sum_{\mathbf{0} \leq \chi \leq 1} \frac{d+\epsilon / 2^{d}}{p_{\chi}}>d 2^{d-1}+\epsilon
$$

Since

$$
\sum_{\mathbf{0} \leq \chi \leq \mathbf{1}} \frac{\epsilon / 2^{d}}{p_{\chi}}<\epsilon
$$

there holds

$$
\sum_{\mathbf{0} \leq \chi \leq 1} \frac{d}{p_{\chi}}>d 2^{d-1}
$$

This is equivalent to (1.2), and hence $f \in A\left(\mathbb{R}^{d}\right)$.

References

[1] E.S. Belinsky, M.Z. Dvejrin, M.M. Malamud, Multipliers in L_{1} and estimates for systems of differential operators, Russ. J. Math. Phys. 12(2005), 6-16.
[2] O.V. Besov, Hörmander's theorem on Fourier multipliers, Trudy Mat. Inst. Steklov 173(1986), 164-180 (Russian). - English transl. in Proc. Steklov Inst. Math., 4 (1987), 4-14.
[3] Ch. Fefferman, Inequalities for Strongly Singular Convolution Operators, Acta Math. 124(1970), 9-36.
[4] M. Girardi, L. Weis, Operator-valued Fourier multiplier theorems on Besov spaces, Math. Nachr. 251(2006), 34-51.
[5] A. Kufner, L.E. Persson, Weighted Inequalities of Hardy Type, World Scientific, 2003.
[6] E. Liflyand, R. Trigub, Known and new results on absolute integrability of Fourier integrals, Preprint CRM 859, 2009, 29 p.
[7] J. Peetre, New thoughts on Besov spaces, Duke Univ. Math. Series, No.1. Math. Dept. Duke Univ. Durham, N.C., 1976.
[8] S.G. Samko, The spaces $L_{p, r}^{\alpha}\left(R^{n}\right)$ and hypersingular integrals, Studia Math. 61 (1977), 193-230 (Russian).
[9] S. G. Samko, G. S. Kostetskaya, Absolute integrability of Fourier integrals. Vestnik RUDN (Russian Peoples Friendship Univ.), Math. 1(1994), 138-168.
[10] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
[11] V.D. Stepanov, E.P. Ushakova, On boundedness of acertain class of HardySteklov type operators in Lebesgue spaces, Banach J. Math. Anal. 4 (2010), 28-52.
[12] R. M. Trigub, Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus, Izv. Akad. Nauk SSSR, Ser.Mat. 44(1980), 1378-1408 (Russian). - English translation in Math. USSR Izv. 17(1981), 567-593.
[13] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Appoximation of Functions, Kluwer, 2004.

Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, IsRAEL

E-mail address: liflyand@math.biu.ac.il

[^0]: 1991 Mathematics Subject Classification. Primary 42B10; Secondary 42B15, 42A38, 42A45.

 Key words and phrases. Fourier integral, Fourier multiplier, Hardy-Steklov inequality.

