ON ABSOLUTE CONVERGENCE OF MULTIPLE FOURIER INTEGRALS

E. LIFLYAND

ABSTRACT. New sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained in the paper.

1. Introduction

If

$$f(y) = \int_{\mathbb{R}^d} g(x)e^{i(x,y)}dx, \qquad g \in L_1(\mathbb{R}^d),$$

we write $f \in A(\mathbb{R}^d)$, with $||f||_A = ||g||_{L_1(\mathbb{R}^d)}$.

The possibility to represent a function via the absolutely convergent Fourier integral was studied by many mathematicians and is of importance in various problems of analysis. For example, belonging of a function m(x) to $A(\mathbb{R}^d)$ makes it to be an $L_1 \to L_1$ Fourier multiplier (or, equivalently, $L_{\infty} \to L_{\infty}$ Fourier multiplier); written $m \in M_1$ ($m \in M_{\infty}$, respectively). One of such m-s attracted much attention in 50-70s (see, e.g., [3] and [10, Ch.4, 7.4], and references therein):

(1.1)
$$m(x) = \theta(x) \frac{e^{i|x|^{\alpha}}}{|x|^{\beta}},$$

where θ is a C^{∞} function on \mathbb{R}^d , which vanishes near zero, and equals 1 outside a bounded set, and $\alpha, \beta > 0$. In is known that for $d \geq 2$:

- I) If $\frac{\beta}{\alpha} > \frac{d}{2}$, then $m \in M_1(M_{\infty})$.
- II) If $\frac{\beta}{\alpha} < \frac{d}{2}$, then $m \notin M_1(M_{\infty})$.

The first assertion holds true for d=1 as well, while the second one only when $\alpha \neq 1$; however, the case $\alpha = d = 1$ is obvious.

 $^{1991\} Mathematics\ Subject\ Classification.$ Primary 42B10; Secondary 42B15, 42A38, 42A45.

Key words and phrases. Fourier integral, Fourier multiplier, Hardy-Steklov inequality.

Various sufficient conditions for absolute convergence of Fourier integrals were obtained by Titchmarsh, Beurling, Karleman, Sz.-Nagy, Stein, and many others. One can find more or less comprehensive and very useful survey on this problem in [9]. Let us mention also [7] and a couple of recent papers [1, 4].

New sufficient conditions of belonging to $A(\mathbb{R}^d)$ are obtained in this paper.

Let χ and η be d-dimensional vectors with the entries either 0 or 1 only. The inequality of vectors is meant coordinate wise. Here and in what follows $D^{\chi}f$ for $\chi=\mathbf{0}=(0,0,...,0)$ or $\chi=\mathbf{1}=(1,1,...,1)$ mean the function itself and the mixed derivative in each variable, respectively, where

$$D^{\chi}f(x) = \left(\prod_{j:\chi_j=1} \frac{\partial}{\partial x_j}\right) f(x).$$

Let us give a multidimensional result we are going, in a sense, to generalize (see [8]).

Theorem B. Let $f \in L^1(\mathbb{R}^d)$. If all the mixed derivatives (in the distributional sense) $D^{\chi}f(x) \in L^p(\mathbb{R}^d)$, $\mathbf{0} < \chi < \mathbf{1}$, where $1 , then <math>f \in A(\mathbb{R}^d)$.

After fixing certain notation and conventions we formulate the results. In the next section we give the proofs.

We shall denote absolute constants by c or maybe by c with various subscripts, like c_1 , c_2 , etc., while $\gamma(...)$ will denote positive quantities depending only on the arguments indicated in the parentheses.

Our main result reads as follows.

Theorem 1.1. Let $f \in C_0(\mathbb{R}^d)$ and let f and its partial derivatives $D^{\eta}f$, $\mathbf{0} \leq \eta < \mathbf{1}$, be locally absolutely continuous on $(\mathbb{R} \setminus \{0\})^d$ in each variable.

a) Let
$$D^{\chi}f(x) \in L_{p_{\chi}}(\mathbb{R}^d)$$
, $1 < p_{\chi} < \infty$ (it is allowed $p_0 = 1$). If

(1.2)
$$\sum_{\mathbf{0} < \chi < \mathbf{1}} \frac{1}{p_{\chi}} > 2^{d-1},$$

then $f \in A(\mathbb{R}^d)$.

b) If for the numbers $p_1, ..., p^{2^d}$, $1 \le p_1 < \infty$, $1 < p_2, ..., p_{2^d} < \infty$,

(1.3)
$$\sum_{k=1}^{2^d} \frac{1}{p_k} < 2^{d-1},$$

then there exists a function f with $D^{\chi}f(x) \in L_{p_{\chi}}(\mathbb{R}^d)$, where each p_{χ} is one and only one of the above p_k , but $f \notin A(\mathbb{R}^d)$.

As a corollary, we present a different proof of \mathbf{I}).

Corollary 1.2. If
$$\frac{\beta}{\alpha} > \frac{d}{2}$$
, then $m \in A(\mathbb{R}^d)$.

The other corollary gives conditions on which exponent decay of a function f and its derivatives ensures $f \in A(\mathbb{R}^d)$.

Corollary 1.3. If

(1.4)
$$|D^{\chi}f(x)| \le c \frac{1}{(1+|x|)^{\gamma_{\chi}}},$$

where $\gamma_{\chi} > 0$ for all χ , $0 \le \chi \le 1$, and

(1.5)
$$\sum_{\mathbf{0} \le \chi \le \mathbf{1}} \gamma_{\chi} > d2^{d-1},$$

then $f \in A(\mathbb{R}^d)$.

2. Proofs

We give, step by step, proofs of the results formulated in Introduction. We need certain auxiliary results.

2.1. **Auxiliary results.** One of the basic tools is the following result (see Lemma 4 in [12] or Theorem 3 in [2]).

In order to formulate the next result, on which much in the proofs of our new results is based on, we denote $\Delta_u f(x) = \Delta_{u_1,\dots,u_d} f(x) = \prod_{j=1}^d D_{u_j} f(x)$, where $D_{u_j} f$ is defined as

(2.1)
$$\Delta_{u_i} f(x) = f(x + u_j e_i^0) - f(x - u_j e_i^0), \quad 1 \le j \le d.$$

Theorem C. Let $f \in C_0(\mathbb{R}^d)$. If

$$\sum_{s_1=-\infty}^{\infty} \cdots \sum_{s_d=-\infty}^{\infty} 2^{\frac{1}{2} \sum_{j=1}^{d} s_j} \|\Delta_{\frac{\pi}{2^{s_1}}, \dots, \frac{\pi}{2^{s_d}}}(f)\|_2 < \infty,$$

where the norm is that in $L_2(\mathbb{R}^d)$, then $f \in A(\mathbb{R}^d)$.

In dimension one the second basic tools was the following Steklov-Hardy type inequality (a partial case of the general result [5, Cor.3.14]):

For $F(s) \ge 0$ and $1 < q \le Q < \infty$

(2.2)
$$\left(\int_{\mathbb{R}} \left[\int_{t-h}^{t+h} F(s) \, ds \right]^{Q} dt \right)^{1/Q} \le ch^{1/Q+1/q'} \left(\int_{\mathbb{R}} F^{q}(t) \, dt \right)^{1/q}.$$

Here $\frac{1}{q} + \frac{1}{q'} = 1$. Similarly $\frac{1}{p} + \frac{1}{p'} = 1$.

Though there are multivariate versions of general Steklov-Hardy inequality (see, e.g., [11]), we need a simpler direct generalization of (2.2):

Lemma 2.1. For $F(u) \ge 0$, $1 \le k \le d$, and $1 < q \le Q < \infty$

$$\left(\int_{\mathbb{R}^d} \left[\int_{x_1-h_1}^{x_1+h_1} \dots \int_{x_k-h_k}^{x_k+h_k} F(u_1, \dots, u_k, x_{k+1}, \dots, x_d) du_1 \dots du_k \right]^Q dx \right)^{1/Q}$$
(2.3) $\leq c(h_1 \dots h_d)^{1/Q+1/q'} (h_{k+1} \dots h_d)^{-1} \left(\int F^q(x) dx \right)^{1/q}.$

Proof. The proof is inductive. For d=1, the result holds true: (2.2). Supposing that it is true for d-1, d=2,3,..., let us prove (2.3) with k=d. Applying inductive assumption for the first d-1 variables, we obtain

$$\left(\int_{\mathbb{R}^{d}} \left[\int_{x_{1}-h_{1}}^{x_{1}+h_{1}} \dots \int_{x_{d}-h_{d}}^{x_{d}+h_{d}} F(u_{1},...,u_{d}) du_{1}...du_{d} \right]^{Q} dx_{1}...dx_{d} \right)^{1/Q}$$

$$= \left(\int_{\mathbb{R}} \left\{ \int_{\mathbb{R}^{d-1}} \left[\int_{x_{1}-h_{1}}^{x_{1}+h_{1}} \dots \int_{x_{d-1}-h_{d-1}}^{x_{d-1}+h_{d-1}} \int_{x_{d}-h_{d}}^{x_{d}+h_{d}} F(u_{1},...,u_{d}) du_{1}...du_{d} \right]^{Q}$$

$$dx_{1}...dx_{d-1} \right\}^{Q/Q} dx_{d} \right)^{1/Q}$$

$$\leq c(h_{1}...h_{d-1})^{1/Q+1/Q'} \left(\int_{\mathbb{R}} \left\{ \int_{\mathbb{R}^{d-1}} \left[\int_{x_{d}-h_{d}}^{x_{d}+h_{d}} F(x_{1},...,x_{d-1},u_{d}) du_{d} \right]^{Q}$$

$$dx_{1}...dx_{d-1} \right\}^{Q/Q} dx_{d} \right)^{\frac{Q}{Q}\frac{1}{Q}}$$

$$dx_{1}...dx_{d-1} \right\}^{Q/Q} dx_{d} \right)^{\frac{Q}{Q}\frac{1}{Q}}.$$

Applying now the generalized Minkowski inequality with exponent $Q/q \geq 1$, we bound the right-hand side by, times a constant,

$$(h_{1}...h_{d-1})^{1/Q+1/q'} \left(\int_{\mathbb{R}^{d-1}} \left\{ \int_{\mathbb{R}} \left[\int_{x_{d}-h_{d}}^{x_{d}+h_{d}} F(x_{1},...,x_{d-1},u_{d}) du_{d} \right]^{Q} dx_{1}...dx_{d-1} \right\}^{q/Q} dx_{1}...dx_{d-1} \right)^{1/q}.$$

To obtain (2.3), it remains again to make use of (2.2) for the d-th variable.

If k < d, we just add the integration over $\int_{x_{k+1}-h_{k+1}}^{x_{k+1}+h_{k+1}} \dots \int_{x_d-h_d}^{x_d+h_d}$, compensate it with $(2h_{k+1}...2h_d)^{-1}$, and apply the proved version for k=d. The proof is complete.

2.2. **Proof of Theorem 1.1.** Let us first prove b). Let us take m (see Introduction) such that $D^{\chi}m(x) \in L_{p_{\chi}}(\mathbb{R}^d)$. Since for each $k = \chi_1 + ... + \chi_d$ there holds $|D^{\chi}m(x)| \leq c|x|^{-\beta+k(\alpha-1)}$ for |x| large, we must have, assuming $\beta - k(\alpha - 1) > 0$ for all k, the inequality $(\beta - k(\alpha - 1))p_j > d$ for $\binom{d}{k}$ numbers p_j . Then

$$\sum_{k=1}^{2^d} \frac{1}{p_k} < \frac{2^d \beta - (\alpha - 1) \sum_{k=1}^d k \binom{d}{k}}{d} = \frac{2^d \beta - (\alpha - 1) d 2^{d-1}}{d}.$$

Choosing also β and α such that the right-hand side is smaller than 2^{d-1} , we obtain

$$2^{d}\beta - (\alpha - 1)d2^{d-1} < d2^{d-1}$$

which is equivalent to II). Therefore such m cannot be in $A(\mathbb{R}^d)$.

For simplicity, let us give a two-dimensional proof of **a**). First of all, this allows us to use much simpler notation. On the one hand, we will denote the derivatives by merely f_1 , f_2 , and f_{12} . On the other hand, we will correspondingly denote p_{χ} by p_0 , p_1 , p_2 , and p_{12} . Analogously, we will denote Δ_{12} , Δ_1 , and Δ_2 . The two-dimensional version of the sum in Theorem C can be expressed as the 4 sums

(2.4)
$$\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} 2^{-k/2} 2^{-l/2} + \sum_{k=1}^{\infty} \sum_{l=0}^{\infty} 2^{-k/2} 2^{l/2} + \sum_{k=0}^{\infty} \sum_{l=1}^{\infty} 2^{k/2} 2^{l/2} + \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{k/2} 2^{l/2}.$$

The second and third sums are estimated in absolutely the same way, therefore we will estimate only on of them.

Let us start with the first sum. We have

$$\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} 2^{-k/2} 2^{-l/2} \left(\int_{\mathbb{D}^2} |\Delta_{12} f(x,y)|^2 \, dx \, dy \right)^{1/2}.$$

Here $\Delta_{12}f(x,y) = f(x+h(-k),y+h(-l)) - f(x+h(-k),y-h(-l)) - f(x-h(-k),y+h(-l)) + f(x-h(-k),y-h(-l))$, with $h(q) = \pi 2^{-q}$. For this sum, Δ_1 and Δ_2 will be used with the same steps. In what follows, we will use the steps h(k) or h(-k) when $2^{k/2}$ or $2^{-k/2}$, respectively, are summed up; the same for $h(\pm l)$.

Now, we represent the inner integral as

$$\int_{\mathbb{R}^{2}} |\Delta_{12} f(x,y)|^{1/2} \left| \int_{x-h(-k)}^{x+h(-k)} \Delta_{2} f_{1}(u,y) du \right|^{1/2} \\
\times \left| \int_{y-h(-l)}^{y+h(-l)} \Delta_{1} f_{2}(x,v) dv \right|^{1/2} \left| \int_{x-h(-k)}^{x+h(-k)} \int_{y-h(-l)}^{y+h(-l)} f_{12}(u,v) du dv \right|^{1/2} dx dy.$$

Further, we apply Hölder's inequality with 4 parameters $2p_0$, $2q_1 \ge 2p_1$, $2q_2 \ge 2p_2$, and $2q_{12} \ge 2p_{12}$ satisfying

(2.5)
$$\frac{1}{2p_0} + \frac{1}{2q_1} + \frac{1}{2q_2} + \frac{1}{2q_{12}} = 1.$$

This is possible because of (1.2) for d = 2. We obtain 4 norms, the first one is dominated by $||f||_{p_0}^{1/4}$. We then apply Lemma 2.1 to the next 3 norms with the exponents q_1 and p_1 , q_2 and p_2 , q_{12} and p_{12} , respectively. The bound for the sum in question will then be, times a constant,

$$\begin{split} \sum_{k=1}^{\infty} \sum_{l=1}^{\infty} 2^{-k/2} 2^{-l/2} (2^{k/2} 2^{l/2})^{(\frac{1}{2q_1} + \frac{1}{2p'_1}) + (\frac{1}{2q_2} + \frac{1}{2p'_2}) - \frac{1}{2} + (\frac{1}{2q_{12}} + \frac{1}{2p'_{12}})} \\ \times \|f\|_{p_0}^{1/4} \|f_1\|_{p_1}^{1/4} \|f_2\|_{p_2}^{1/4} \|f_{12}\|_{p_{12}}^{1/4}. \end{split}$$

We thus have $2^{-k/2}$ (and $2^{-l/2}$) in the power

$$1 - \left[\left(\frac{1}{2q_1} + \frac{1}{2p'_1} \right) + \left(\frac{1}{2q_2} + \frac{1}{2p'_2} \right) - \frac{1}{2} + \left(\frac{1}{2q_{12}} + \frac{1}{2p'_{12}} \right) \right]$$

$$= \left[1 - \frac{1}{2q_1} - \frac{1}{2q_2} - \frac{1}{2q_{12}} \right] - 1 + \frac{1}{2p_1} + \frac{1}{2p_2} + \frac{1}{2p_{12}}.$$

By (2.5), the expression in the brackets on the right is $\frac{1}{2p_0}$, and by (1.2) the whole right-hand side is positive. Therefore, the sums converge, as required.

Let us now prove the finiteness of the sum

$$\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{k/2} 2^{l/2} \left(\int_{\mathbb{R}^2} |\Delta_{12} f(x,y)|^2 dx dy \right)^{1/2}.$$

We remind that the steps here are h(k) and h(l). In this case we represent the inner integral as

$$\int_{\mathbb{R}^{2}} |\Delta_{12} f(x,y)|^{\frac{(1-\delta)^{2}}{2}} \left| \int_{x-h(-k)}^{x+h(-k)} \Delta_{2} f_{1}(u,y) du \right|^{\frac{1-\delta^{2}}{2}}$$

$$\left| \int_{y-h(-l)}^{y+h(-l)} \Delta_{1} f_{2}(x,v) dv \right|^{\frac{1-\delta^{2}}{2}} \left| \int_{x-h(-k)}^{x+h(-k)} \int_{y-h(-l)}^{y+h(-l)} f_{12}(u,v) du dv \right|^{\frac{(1+\delta)^{2}}{2}} dx dy.$$

This is true for any $\delta \in (0,1)$, and the sum of the exponents is 2. Applying similarly Hölder's inequality, this time with the parameters $\frac{(1-\delta)^2}{2p_0}$, $2q_1 \geq 2p_1$, $2q_2 \geq 2p_2$, and $2q_{12} \geq 2p_{12}$ satisfying

(2.6)
$$\frac{(1-\delta)^2}{2p_0} + \frac{1}{2q_1} + \frac{1}{2q_2} + \frac{1}{2q_{12}} = 1.$$

We again obtain 4 norms, the first one is dominated by $||f||_{p_0}^{(1-\delta)^2/4}$. We then apply Lemma 2.1 to the next 3 norms with the exponents

 $(1 - \delta^2)q_1$ and p_1 , $(1 - \delta^2)q_2$ and p_2 , $(1 + \delta)^2q_{12}$ and p_{12} , respectively. The bound for the sum in question will then be, times a constant,

$$\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} 2^{k/2} 2^{l/2} (2^{-k/2} 2^{-l/2})^{(\frac{1}{2q_1} + \frac{1-\delta^2}{2p'_1}) + (\frac{1}{2q_2} + \frac{1-\delta^2}{2p'_2}) - \frac{1-\delta^2}{2}} + (\frac{1}{2q_{12}} + \frac{(1+\delta)^2}{2p'_{12}})$$

$$\times \|f\|_{p_0}^{(1-\delta)^2/4} \|f_1\|_{p_1}^{(1-\delta^2)/4} \|f_2\|_{p_2}^{(1-\delta^2)/4} \|f_{12}\|_{p_{12}}^{(1+\delta)^2/4}.$$

We thus have $2^{k/2}$ (and $2^{l/2}$) in the power

$$1 - \left[\left(\frac{1}{2q_1} + \frac{1 - \delta^2}{2p'_1} \right) + \left(\frac{1}{2q_2} + \frac{1 - \delta^2}{2p'_2} \right) - \frac{1 - \delta^2}{2} + \left(\frac{1}{2q_{12}} + \frac{(1 + \delta)^2}{2p'_{12}} \right) \right]$$

$$= \left[1 - \frac{1}{2q_1} - \frac{1}{2q_2} - \frac{1}{2q_{12}} \right] - 1 - \delta + \frac{1 - \delta^2}{2p_1} + \frac{1 - \delta^2}{2p_2} + \frac{(1 + \delta)^2}{2p_{12}}.$$

By (2.6), the expression in the brackets on the right is $\frac{(1-\delta)^2}{2p_0}$. We must have the final expression

$$\frac{(1-\delta)^2}{2p_0} + \frac{1-\delta^2}{2p_1} + \frac{1-\delta^2}{2p_2} + \frac{(1+\delta)^2}{2p_{12}} - 1 - \delta$$

to be negative. We cannot use (1.2) immediately as above: the choice of δ is in order. Since for $\delta = 1$ the inequality $\frac{4}{2p_{12}} < 2$ is true (we remind that $1 < p_{12} < \infty$), one can choose by continuity certain $\delta < 1$ to continue keeping the inequality true. This completes the proof of the case in question.

It remains to prove the finiteness of the sum

$$\sum_{k=1}^{\infty} \sum_{l=0}^{\infty} 2^{-k/2} 2^{l/2} \left(\int_{\mathbb{R}^2} |\Delta_{12} f(x,y)|^2 dx dy \right)^{1/2},$$

with the steps h(-k) and h(l) now. In this case we represent the inner integral as

$$\int_{\mathbb{R}^{2}} |\Delta_{12} f(x,y)|^{\frac{1-\delta}{2}} \left| \int_{x-h(-k)}^{x+h(-k)} \Delta_{2} f_{1}(u,y) du \right|^{\frac{1-\delta}{2}}$$

$$\left| \int_{y-h(-l)}^{y+h(-l)} \Delta_{1} f_{2}(x,v) dv \right|^{\frac{1+\delta}{2}} \left| \int_{x-h(-k)}^{x+h(-k)} \int_{y-h(-l)}^{y+h(-l)} f_{12}(u,v) du dv \right|^{\frac{1+\delta}{2}} dx dy.$$

This is true for any $\delta \in (0,1)$, and the sum of the exponents is 2. Applying similarly Hölder's inequality, this time with the parameters $\frac{1-\delta}{2p_0}$, $2q_1 \geq 2p_1$, $2q_2 \geq 2p_2$, and $2q_{12} \geq 2p_{12}$ satisfying

(2.7)
$$\frac{1-\delta}{2p_0} + \frac{1}{2q_1} + \frac{1}{2q_2} + \frac{1}{2q_{12}} = 1.$$

We again obtain 4 norms, the first one is dominated by $||f||_{p_0}^{(1-\delta)/4}$. We then apply Lemma 2.1 to the next 3 norms with the exponents $(1-\delta)q_1$ and p_1 , $(1+\delta)q_2$ and p_2 , $(1+\delta)q_{12}$ and p_{12} , respectively. The bound for the sum in question will then be, times a constant,

$$\sum_{k=1}^{\infty} 2^{-k/2} (2^{k/2})^{(\frac{1}{2q_1} + \frac{1-\delta}{2p'_1}) + (\frac{1}{2q_2} + \frac{1+\delta}{2p'_2}) - \frac{1+\delta}{2} + (\frac{1}{2q_{12}} + \frac{1+\delta}{2p'_{12}})}$$

$$\sum_{l=0}^{\infty} 2^{l/2} (2^{-l/2})^{(\frac{1}{2q_1} + \frac{1-\delta}{2p'_1}) + (\frac{1}{2q_2} + \frac{1+\delta}{2p'_2}) - \frac{1-\delta}{2} + (\frac{1}{2q_{12}} + \frac{1+\delta}{2p'_{12}})}$$

$$\|f\|_{p_0}^{(1-\delta)/4} \|f_1\|_{p_1}^{(1-\delta)/4} \|f_2\|_{p_2}^{(1+\delta)/4} \|f_{12}\|_{p_{12}}^{(1+\delta)/4}.$$

To ensure the convergence of both sums, we arrive at the inequality

$$(2.8) 1 < \frac{1-\delta}{2p_0} + \frac{1-\delta}{2q_1} + \frac{1+\delta}{2q_2} + \frac{1+\delta}{2q_{12}} < 1+\delta$$

to be valid for certain δ . The left inequality follows from the estimates in k, while the right one from estimates in l. Recording the sum in the left-hand side of (1.2) as $1 + \epsilon$, $0 < \epsilon < 1$, we can rewrite (2.8) as

$$(2.9) 0 < \epsilon - \delta A + \delta B < \delta,$$

with obvious meaning for A and B. We note meantime that 0 < A, B < 1 and A + B = 1.

- 1) Let first B > A. In this case the left inequality in (2.9) holds automatically, we discuss the right one. It is equivalent to the inequality $\frac{\epsilon}{2A-\epsilon} < \delta$. Since $A > \epsilon$, there holds $\frac{\epsilon}{2A-\epsilon} < 1$, and such δ does exist.
- 2) When B < A, both inequalities should be justified. The right one is treated as above. The left one is equivalent to $\delta < \frac{\epsilon}{2A-1-\epsilon}$. If the value on the right is not smaller than 1, the needed inequality holds true for any $\delta < 1$. If it is smaller than one, it suffices to take δ just a little bit smaller than $\frac{\epsilon}{2A-1-\epsilon}$, but such that it is still greater than $\frac{\epsilon}{2A-\epsilon}$.
 - 3) Of course, the situation when A = B is trivial.

The proof is complete.

- 2.3. **Proof of Corollary 1.2.** The result, in fact, follows from Corollary 1.3 and estimates for the derivatives of m as in the proof of \mathbf{b}) of the theorem.
- 2.4. **Proof of Corollary 1.3.** Let us rewrite (1.5) as

$$\sum_{\mathbf{0} \le \chi \le \mathbf{1}} \gamma_{\chi} = d2^{d-1} + \epsilon.$$

For each χ , let us choose p_{χ} so that $\gamma_{\chi}p_{\chi}=d+\frac{\epsilon}{2^{d}}.$ Then

$$\sum_{0 \le \chi \le 1} \frac{d + \epsilon/2^d}{p_{\chi}} > d2^{d-1} + \epsilon.$$

Since

$$\sum_{0 \le \gamma \le 1} \frac{\epsilon/2^d}{p_{\chi}} < \epsilon,$$

there holds

$$\sum_{\mathbf{0} \le \chi \le \mathbf{1}} \frac{d}{p_{\chi}} > d2^{d-1}.$$

This is equivalent to (1.2), and hence $f \in A(\mathbb{R}^d)$.

References

- [1] E.S. Belinsky, M.Z. Dvejrin, M.M. Malamud, Multipliers in L_1 and estimates for systems of differential operators, Russ. J. Math. Phys. 12(2005), 6–16.
- [2] O.V. Besov, Hörmander's theorem on Fourier multipliers, Trudy Mat. Inst. Steklov 173(1986), 164–180 (Russian). - English transl. in Proc. Steklov Inst. Math., 4 (1987), 4–14.
- [3] Ch. Fefferman, Inequalities for Strongly Singular Convolution Operators, Acta Math. 124(1970), 9–36.
- [4] M. Girardi, L. Weis, Operator-valued Fourier multiplier theorems on Besov spaces, Math. Nachr. **251**(2006), 34–51.
- [5] A. Kufner, L.E. Persson, Weighted Inequalities of Hardy Type, World Scientific, 2003.
- [6] E. Liflyand, R. Trigub, Known and new results on absolute integrability of Fourier integrals, Preprint CRM 859, 2009, 29 p.
- [7] J. PEETRE, New thoughts on Besov spaces, Duke Univ. Math. Series, No.1. Math. Dept. Duke Univ. Durham, N.C., 1976.

- [8] S.G. Samko, The spaces $L_{p,r}^{\alpha}(\mathbb{R}^n)$ and hypersingular integrals, Studia Math. **61** (1977), 193–230 (Russian).
- [9] S. G. Samko, G. S. Kostetskaya, Absolute integrability of Fourier integrals. Vestnik RUDN (Russian Peoples Friendship Univ.), Math. 1(1994), 138–168.
- [10] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- [11] V.D. Stepanov, E.P. Ushakova, On boundedness of acertain class of Hardy-Steklov type operators in Lebesgue spaces, Banach J. Math. Anal. 4 (2010), 28 - 52.
- [12] R. M. Trigub, Absolute convergence of Fourier integrals, summability of Fourier series, and polynomial approximation of functions on the torus, Izv. Akad. Nauk SSSR, Ser.Mat. 44(1980), 1378–1408 (Russian). - English translation in Math. USSR Izv. **17**(1981), 567–593.
- [13] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Appoximation of Functions, Kluwer, 2004.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, 52900 RAMAT-GAN, ISRAEL

E-mail address: liflyand@math.biu.ac.il