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ON ABSOLUTE CONVERGENCE OF MULTIPLE
FOURIER INTEGRALS

E. LIFLYAND

Abstract. New sufficient conditions for representation of a func-
tion of several variables as an absolutely convergent Fourier integral
are obtained in the paper.

1. Introduction

If

f(y) =

∫

Rd

g(x)ei(x,y)dx, g ∈ L1(R
d),

we write f ∈ A(Rd), with ||f ||A = ||g||L1(Rd).
The possibility to represent a function via the absolutely convergent

Fourier integral was studied by many mathematicians and is of im-
portance in various problems of analysis. For example, belonging of
a function m(x) to A(Rd) makes it to be an L1 → L1 Fourier multi-
plier (or, equivalently, L∞ → L∞ Fourier multiplier); written m ∈ M1

(m ∈ M∞, respectively). One of such m-s attracted much attention in
50-70s (see, e.g., [3] and [10, Ch.4, 7.4], and references therein):

m(x) = θ(x)
ei|x|

α

|x|β
,(1.1)

where θ is a C∞ function on R
d, which vanishes near zero, and equals

1 outside a bounded set, and α, β > 0. In is known that for d ≥ 2:
I) If β

α
> d

2
, then m ∈ M1(M∞).

II) If β
α
< d

2
, then m 6∈ M1(M∞).

The first assertion holds true for d = 1 as well, while the second one
only when α 6= 1; however, the case α = d = 1 is obvious.
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Various sufficient conditions for absolute convergence of Fourier in-
tegrals were obtained by Titchmarsh, Beurling, Karleman, Sz.-Nagy,
Stein, and many others. One can find more or less comprehensive and
very useful survey on this problem in [9]. Let us mention also [7] and
a couple of recent papers [1, 4].
New sufficient conditions of belonging to A(Rd) are obtained in this

paper.
Let χ and η be d-dimensional vectors with the entries either 0 or

1 only. The inequality of vectors is meant coordinate wise. Here and
in what follows Dχf for χ = 0 = (0, 0, ..., 0) or χ = 1 = (1, 1, ..., 1)
mean the function itself and the mixed derivative in each variable,
respectively, where

Dχf(x) =





∏

j:χj=1

∂

∂xj



 f(x).

Let us give a multidimensional result we are going, in a sense, to
generalize (see [8]).
Theorem B. Let f ∈ L1(Rd). If all the mixed derivatives (in the

distributional sense) Dχf(x) ∈ Lp(Rd), 0 < χ < 1, where 1 < p ≤ 2,
then f ∈ A(Rd).
After fixing certain notation and conventions we formulate the re-

sults. In the next section we give the proofs.
We shall denote absolute constants by c or maybe by c with various

subscripts, like c1, c2, etc., while γ(...) will denote positive quantities
depending only on the arguments indicated in the parentheses.
Our main result reads as follows.

Theorem 1.1. Let f ∈ C0(R
d) and let f and its partial derivatives

Dηf, 0 ≤ η < 1, be locally absolutely continuous on (R \ {0})d in each
variable.
a) Let Dχf(x) ∈ Lpχ(R

d), 1 < pχ < ∞ (it is allowed p0 = 1). If

∑

0≤χ≤1

1

pχ
> 2d−1,(1.2)

then f ∈ A(Rd).

b) If for the numbers p1, ..., p
2d, 1 ≤ p1 < ∞, 1 < p2, ..., p2d < ∞,

2d
∑

k=1

1

pk
< 2d−1,(1.3)
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then there exists a function f with Dχf(x) ∈ Lpχ(R
d), where each pχ

is one and only one of the above pk, but f 6∈ A(Rd).

As a corollary, we present a different proof of I).

Corollary 1.2. If β
α
> d

2
, then m ∈ A(Rd).

The other corollary gives conditions on which exponent decay of a
function f and its derivatives ensures f ∈ A(Rd).

Corollary 1.3. If

|Dχf(x)| ≤ c
1

(1 + |x|)γχ
,(1.4)

where γχ > 0 for all χ, 0 ≤ χ ≤ 1, and

∑

0≤χ≤1

γχ > d2d−1,(1.5)

then f ∈ A(Rd).

2. Proofs

We give, step by step, proofs of the results formulated in Introduc-
tion. We need certain auxiliary results.

2.1. Auxiliary results. One of the basic tools is the following result
(see Lemma 4 in [12] or Theorem 3 in [2]).
In order to formulate the next result, on which much in the proofs

of our new results is based on, we denote ∆uf(x) = ∆u1,··· ,ud
f(x) =

d
∏

j=1

Duj
f(x), where Duj

f is defined as

∆uj
f(x) = f(x+ uje

0
j )− f(x− uje

0
j ), 1 ≤ j ≤ d.(2.1)

Theorem C. Let f ∈ C0(R
d). If

∞
∑

s1=−∞

· · ·

∞
∑

sd=−∞

2
1
2

∑d
j=1 sj‖∆ π

2s1
,··· , π

2sd
(f)‖2 < ∞,

where the norm is that in L2(R
d), then f ∈ A(Rd).

In dimension one the second basic tools was the following Steklov-
Hardy type inequality (a partial case of the general result [5, Cor.3.14]):
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For F (s) ≥ 0 and 1 < q ≤ Q < ∞

(∫

R





t+h
∫

t−h

F (s) ds





Q

dt

)1/Q

≤ ch1/Q+1/q′
(∫

R

F q(t) dt

)1/q

.(2.2)

Here 1
q
+ 1

q′
= 1. Similarly 1

p
+ 1

p′
= 1.

Though there are multivariate versions of general Steklov-Hardy in-
equality (see, e.g., [11]), we need a simpler direct generalization of
(2.2):

Lemma 2.1. For F (u) ≥ 0, 1 ≤ k ≤ d, and 1 < q ≤ Q < ∞

(
∫

Rd





x1+h1
∫

x1−h1

...

xk+hk
∫

xk−hk

F (u1, ..., uk, xk+1, ..., xd) du1...duk





Q

dx

)1/Q

≤ c(h1...hd)
1/Q+1/q′(hk+1...hd)

−1

(
∫

Rd

F q(x) dx

)1/q

.(2.3)

Proof. The proof is inductive. For d = 1, the result holds true: (2.2).
Supposing that it is true for d − 1, d = 2, 3, ..., let us prove (2.3) with
k = d. Applying inductive assumption for the first d− 1 variables, we
obtain

(
∫

Rd





x1+h1
∫

x1−h1

...

xd+hd
∫

xd−hd

F (u1, ..., ud) du1...dud





Q

dx1...dxd

)1/Q

=

(
∫

R

{
∫

Rd−1







x1+h1
∫

x1−h1

...

xd−1+hd−1
∫

xd−1−hd−1

xd+hd
∫

xd−hd

F (u1, ..., ud) du1...dud







Q

dx1...dxd−1

}Q/Q

dxd

)1/Q

≤ c(h1...hd−1)
1/Q+1/q′

(
∫

R

{
∫

Rd−1





xd+hd
∫

xd−hd

F (x1, ..., xd−1, ud) dud





q

dx1...dxd−1

}Q/q

dxd

)
q
Q

1
q

.
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Applying now the generalized Minkowski inequality with exponent
Q/q ≥ 1, we bound the right-hand side by, times a constant,

(h1...hd−1)
1/Q+1/q′

(
∫

Rd−1

{
∫

R





xd+hd
∫

xd−hd

F (x1, ..., xd−1, ud) dud





Q

dxd

}q/Q

dx1...dxd−1

)1/q

.

To obtain (2.3), it remains again to make use of (2.2) for the d-th
variable.

If k < d, we just add the integration over
xk+1+hk+1

∫

xk+1−hk+1

...
xd+hd
∫

xd−hd

, compen-

sate it with (2hk+1...2hd)
−1, and apply the proved version for k = d.

The proof is complete. �

2.2. Proof of Theorem 1.1. Let us first prove b). Let us take m (see
Introduction) such thatDχm(x) ∈ Lpχ(R

d). Since for each k = χ1+...+

χd there holds |Dχm(x)| ≤ c|x|−β+k(α−1) for |x| large, we must have,
assuming β−k(α−1) > 0 for all k, the inequality (β−k(α−1))pj > d

for
(

d
k

)

numbers pj . Then

2d
∑

k=1

1

pk
<

2dβ − (α− 1)
d
∑

k=1

k
(

d
k

)

d
=

2dβ − (α− 1)d2d−1

d
.

Choosing also β and α such that the right-hand side is smaller than
2d−1, we obtain

2dβ − (α− 1)d2d−1 < d2d−1,

which is equivalent to II). Therefore such m cannot be in A(Rd).

For simplicity, let us give a two-dimensional proof of a). First of all,
this allows us to use much simpler notation. On the one hand, we will
denote the derivatives by merely f1, f2, and f12. On the other hand, we
will correspondingly denote pχ by p0, p1, p2, and p12. Analogously, we
will denote ∆12, ∆1, and ∆2. The two-dimensional version of the sum
in Theorem C can be expressed as the 4 sums
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∞
∑

k=1

∞
∑

l=1

2−k/22−l/2 +

∞
∑

k=1

∞
∑

l=0

2−k/22l/2

+

∞
∑

k=0

∞
∑

l=1

2k/22−l/2 +

∞
∑

k=0

∞
∑

l=0

2k/22l/2.(2.4)

The second and third sums are estimated in absolutely the same way,
therefore we will estimate only on of them.
Let us start with the first sum. We have

∞
∑

k=1

∞
∑

l=1

2−k/22−l/2

(
∫

R2

|∆12f(x, y)|
2 dx dy

)1/2

.

Here ∆12f(x, y) = f(x+h(−k), y+h(−l))−f(x+h(−k), y−h(−l))−
f(x−h(−k), y+h(−l))+f(x−h(−k), y−h(−l)), with h(q) = π2−q. For
this sum, ∆1 and ∆2 will be used with the same steps. In what follows,
we will use the steps h(k) or h(−k when 2k/2 or 2−k/2, respectively, are
summed up; the same for h(±l).
Now, we represent the inner integral as

∫

R2

|∆12f(x, y)|
1/2

∣

∣

∣

∣

x+h(−k)
∫

x−h(−k)

∆2f1(u, y) du

∣

∣

∣

∣

1/2

×

∣

∣

∣

∣

y+h(−l)
∫

y−h(−l)

∆1f2(x, v) dv

∣

∣

∣

∣

1/2∣
∣

∣

∣

x+h(−k)
∫

x−h(−k)

y+h(−l)
∫

y−h(−l)

f12(u, v) du dv

∣

∣

∣

∣

1/2

dx dy.

Further, we apply Hölder’s inequality with 4 parameters 2p0, 2q1 ≥
2p1, 2q2 ≥ 2p2, and 2q12 ≥ 2p12 satisfying

1

2p0
+

1

2q1
+

1

2q2
+

1

2q12
= 1.(2.5)

This is possible because of (1.2) for d = 2. We obtain 4 norms, the first

one is dominated by ‖f‖
1/4
p0 . We then apply Lemma 2.1 to the next 3

norms with the exponents q1 and p1, q2 and p2, q12 and p12, respectively.
The bound for the sum in question will then be, times a constant,
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∞
∑

k=1

∞
∑

l=1

2−k/22−l/2(2k/22l/2)
( 1
2q1

+ 1
2p′1

)+( 1
2q2

+ 1
2p′2

)− 1
2
+( 1

2q12
+ 1

2p′12
)

×‖f‖1/4p0 ‖f1‖
1/4
p1 ‖f2‖

1/4
p2 ‖f12‖

1/4
p12 .

We thus have 2−k/2 (and 2−l/2) in the power

1 − [(
1

2q1
+

1

2p′1
) + (

1

2q2
+

1

2p′2
)−

1

2
+ (

1

2q12
+

1

2p′12
)]

= [1−
1

2q1
−

1

2q2
−

1

2q12
]− 1 +

1

2p1
+

1

2p2
+

1

2p12
.

By (2.5), the expression in the brackets on the right is 1
2p0

, and by (1.2)
the whole right-hand side is positive. Therefore, the sums converge, as
required.
Let us now prove the finiteness of the sum

∞
∑

k=0

∞
∑

l=0

2k/22l/2
(
∫

R2

|∆12f(x, y)|
2 dx dy

)1/2

.

We remind that the steps here are h(k) and h(l). In this case we rep-
resent the inner integral as

∫

R2

|∆12f(x, y)|
(1−δ)2

2

∣

∣

∣

∣

x+h(−k)
∫

x−h(−k)

∆2f1(u, y) du

∣

∣

∣

∣

1−δ2

2

∣

∣

∣

∣

y+h(−l)
∫

y−h(−l)

∆1f2(x, v) dv

∣

∣

∣

∣

1−δ2

2
∣

∣

∣

∣

x+h(−k)
∫

x−h(−k)

y+h(−l)
∫

y−h(−l)

f12(u, v) du dv

∣

∣

∣

∣

(1+δ)2

2

dx dy.

This is true for any δ ∈ (0, 1), and the sum of the exponents is 2.
Applying similarly Hölder’s inequality, this time with the parameters
(1−δ)2

2p0
, 2q1 ≥ 2p1, 2q2 ≥ 2p2, and 2q12 ≥ 2p12 satisfying

(1− δ)2

2p0
+

1

2q1
+

1

2q2
+

1

2q12
= 1.(2.6)

We again obtain 4 norms, the first one is dominated by ‖f‖
(1−δ)2/4
p0 .

We then apply Lemma 2.1 to the next 3 norms with the exponents
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(1 − δ2)q1 and p1, (1 − δ2)q2 and p2, (1 + δ)2q12 and p12, respectively.
The bound for the sum in question will then be, times a constant,

∞
∑

k=0

∞
∑

l=0

2k/22l/2(2−k/22−l/2)
( 1
2q1

+ 1−δ2

2p′1
)+( 1

2q2
+ 1−δ2

2p′2
)− 1−δ2

2
+( 1

2q12
+ (1+δ)2

2p′12
)

× ‖f‖(1−δ)2/4
p0

‖f1‖
(1−δ2)/4
p1

‖f2‖
(1−δ2)/4
p2

‖f12‖
(1+δ)2/4
p12

.

We thus have 2k/2 (and 2l/2) in the power

1 − [(
1

2q1
+

1− δ2

2p′1
) + (

1

2q2
+

1− δ2

2p′2
)−

1− δ2

2
+ (

1

2q12
+

(1 + δ)2

2p′12
)]

= [1−
1

2q1
−

1

2q2
−

1

2q12
]− 1− δ +

1− δ2

2p1
+

1− δ2

2p2
+

(1 + δ)2

2p12
.

By (2.6), the expression in the brackets on the right is (1−δ)2

2p0
. We must

have the final expression

(1− δ)2

2p0
+

1− δ2

2p1
+

1− δ2

2p2
+

(1 + δ)2

2p12
− 1− δ

to be negative. We cannot use (1.2) immediately as above: the choice
of δ is in order. Since for δ = 1 the inequality 4

2p12
< 2 is true (we

remind that 1 < p12 < ∞), one can choose by continuity certain δ < 1
to continue keeping the inequality true. This completes the proof of
the case in question.
It remains to prove the finiteness of the sum

∞
∑

k=1

∞
∑

l=0

2−k/22l/2
(
∫

R2

|∆12f(x, y)|
2 dx dy

)1/2

,

with the steps h(−k) and h(l) now. In this case we represent the inner
integral as

∫

R2

|∆12f(x, y)|
1−δ
2

∣

∣

∣

∣

x+h(−k)
∫

x−h(−k)

∆2f1(u, y) du

∣

∣

∣

∣

1−δ
2

∣

∣

∣

∣

y+h(−l)
∫

y−h(−l)

∆1f2(x, v) dv

∣

∣

∣

∣

1+δ
2
∣

∣

∣

∣

x+h(−k)
∫

x−h(−k)

y+h(−l)
∫

y−h(−l)

f12(u, v) du dv

∣

∣

∣

∣

1+δ
2

dx dy.
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This is true for any δ ∈ (0, 1), and the sum of the exponents is 2.
Applying similarly Hölder’s inequality, this time with the parameters
1−δ
2p0

, 2q1 ≥ 2p1, 2q2 ≥ 2p2, and 2q12 ≥ 2p12 satisfying

1− δ

2p0
+

1

2q1
+

1

2q2
+

1

2q12
= 1.(2.7)

We again obtain 4 norms, the first one is dominated by ‖f‖
(1−δ)/4
p0 . We

then apply Lemma 2.1 to the next 3 norms with the exponents (1−δ)q1
and p1, (1 + δ)q2 and p2, (1 + δ)q12 and p12, respectively. The bound
for the sum in question will then be, times a constant,

∞
∑

k=1

2−k/2(2k/2)
( 1
2q1

+ 1−δ
2p′1

)+( 1
2q2

+ 1+δ
2p′2

)− 1+δ
2

+( 1
2q12

+ 1+δ
2p′12

)

∞
∑

l=0

2l/2(2−l/2)
( 1
2q1

+ 1−δ
2p′1

)+( 1
2q2

+ 1+δ
2p′2

)− 1−δ
2

+( 1
2q12

+ 1+δ
2p′12

)

‖f‖(1−δ)/4
p0 ‖f1‖

(1−δ)/4
p1 ‖f2‖

(1+δ)/4
p2 ‖f12‖

(1+δ)/4
p12 .

To ensure the convergence of both sums, we arrive at the inequality

1 <
1− δ

2p0
+

1− δ

2q1
+

1 + δ

2q2
+

1 + δ

2q12
< 1 + δ(2.8)

to be valid for certain δ. The left inequality follows from the estimates
in k, while the right one from estimates in l. Recording the sum in the
left-hand side of (1.2) as 1 + ǫ, 0 < ǫ < 1, we can rewrite (2.8) as

0 < ǫ− δA + δB < δ,(2.9)

with obvious meaning for A and B. We note meantime that 0 < A,B <
1 and A+B = 1.
1) Let first B > A. In this case the left inequality in (2.9) holds au-

tomatically, we discuss the right one. It is equivalent to the inequality
ǫ

2A−ǫ
< δ. Since A > ǫ, there holds ǫ

2A−ǫ
< 1, and such δ does exist.

2) When B < A, both inequalities should be justified. The right one
is treated as above. The left one is equivalent to δ < ǫ

2A−1−ǫ
. If the

value on the right is not smaller than 1, the needed inequality holds
true for any δ < 1. If it is smaller than one, it suffices to take δ just
a little bit smaller than ǫ

2A−1−ǫ
, but such that it is still greater than

ǫ
2A−ǫ

.

3) Of course, the situation when A = B is trivial.
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The proof is complete.

2.3. Proof of Corollary 1.2. The result, in fact, follows from Corol-
lary 1.3 and estimates for the derivatives of m as in the proof of b) of
the theorem.

2.4. Proof of Corollary 1.3. Let us rewrite (1.5) as

∑

0≤χ≤1

γχ = d2d−1 + ǫ.

For each χ, let us choose pχ so that γχpχ = d+ ǫ
2d
. Then

∑

0≤χ≤1

d+ ǫ/2d

pχ
> d2d−1 + ǫ.

Since

∑

0≤χ≤1

ǫ/2d

pχ
< ǫ,

there holds

∑

0≤χ≤1

d

pχ
> d2d−1.

This is equivalent to (1.2), and hence f ∈ A(Rd).
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