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ON ABSOLUTE CONVERGENCE OF MULTIPLE
FOURIER INTEGRALS

E. LIFLYAND

ABSTRACT. New sufficient conditions for representation of a func-
tion of several variables as an absolutely convergent Fourier integral
are obtained in the paper.

1. INTRODUCTION
If

f(y) = / @)@z, g€ L(RY),
Rd

we write f € A(RY), with ||]ls = [lg][,(ze)-

The possibility to represent a function via the absolutely convergent
Fourier integral was studied by many mathematicians and is of im-
portance in various problems of analysis. For example, belonging of
a function m(z) to A(R?) makes it to be an L; — L; Fourier multi-
plier (or, equivalently, L., — L, Fourier multiplier); written m € M,
(m € My, respectively). One of such m-s attracted much attention in
50-70s (see, e.g., [3] and [10, Ch.4, 7.4], and references therein):

N «
cilel

(1.1) m(z) = e(x)W,

where 6 is a C* function on R?, which vanishes near zero, and equals
1 outside a bounded set, and «, 8 > 0. In is known that for d > 2:

I) If £ > 4 then m € My (M)

IT) If £ < 4 then m ¢ M;(M).
The first assertion holds true for d = 1 as well, while the second one
only when « # 1; however, the case a = d = 1 is obvious.
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Various sufficient conditions for absolute convergence of Fourier in-
tegrals were obtained by Titchmarsh, Beurling, Karleman, Sz.-Nagy,
Stein, and many others. One can find more or less comprehensive and
very useful survey on this problem in [9]. Let us mention also [7] and
a couple of recent papers [, [4].

New sufficient conditions of belonging to A(R?) are obtained in this
paper.

Let x and n be d-dimensional vectors with the entries either 0 or
1 only. The inequality of vectors is meant coordinate wise. Here and
in what follows DXf for y = 0 = (0,0,...,0) or x =1 = (1,1,...,1)
mean the function itself and the mixed derivative in each variable,
respectively, where

0
X —
o) = | I1 5 | 1@
Jxg=1

Let us give a multidimensional result we are going, in a sense, to
generalize (see [g]).

Theorem B. Let f € LY(RY). If all the mized derivatives (in the
distributional sense) DXf(z) € LP(R?), 0 < x < 1, where 1 < p < 2,
then f € A(R?).

After fixing certain notation and conventions we formulate the re-
sults. In the next section we give the proofs.

We shall denote absolute constants by ¢ or maybe by ¢ with various
subscripts, like ¢, ¢g, etc., while (...) will denote positive quantities
depending only on the arguments indicated in the parentheses.

Our main result reads as follows.

Theorem 1.1. Let f € Co(RY) and let f and its partial derivatives
D"f, 0 <n <1, be locally absolutely continuous on (R \ {0})¢ in each
variable.

a) Let DXf(x) € L, (RY), 1 < py < oo (it is allowed po = 1). If

(1.2) > 1. 241,

then f € A(R?).
b) If for the numbers py, ...,p*, 1 < p; < 00, 1 < pa, ..., Poa < 00,

(1.3) > 1. 201,
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then there exists a function f with DXf(x) € L, (R%), where each py
is one and only one of the above py, but f & A(RY).
As a corollary, we present a different proof of I).

Corollary 1.2. If 2 > 2, then m € A(R?).

The other corollary gives conditions on which exponent decay of a
function f and its derivatives ensures f € A(RY).

Corollary 1.3. If

N 1
(1.4) DX f(x)] < CW’

where v, > 0 for all x, 0 < x <1, and

(1.5) > > dt

0<x<1

then f € A(RY).

2. PROOFS

We give, step by step, proofs of the results formulated in Introduc-
tion. We need certain auxiliary results.

2.1. Auxiliary results. One of the basic tools is the following result
(see Lemma 4 in [12] or Theorem 3 in [2]).

In order to formulate the next result, on which much in the proofs
of our new results is based on, we denote A, f(z) = Ay, ... u,f(z) =

d
I Du, f(z), where D, f is defined as
j=1

(2.1) Ay f(z) = f(a?+ujeg) — f(z — ujeg), 1<j<d.
Theorem C. Let f € Co(RY). If

o > lsd oo
S 3 2 s (< oo

§1=—00 Sq=—00

where the norm is that in Ly(RY), then f € A(R?).
In dimension one the second basic tools was the following Steklov-
Hardy type inequality (a partial case of the general result [5, Cor.3.14]):
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For F(s)>0and 1 <¢<@Q < o0

(2.2) ( / 7hF(s) ds Q dt) e e ( / Fot) dt) v

Here %+ % = 1. Similarly %+]% =1.
Though there are multivariate versions of general Steklov-Hardy in-
equality (see, e.g., [11I]), we need a simpler direct generalization of

22):

Lemma 2.1. For F(u) > 0,1 <k<d,and1 <qg<Q <0

x1+h Tr+hi Q@

1/Q
</ / / F(ut, ooy Upy Tha1, ooy Tg) dug...duy, dx)

R4 1—h1 T —hg

(2.3) < c(hl...hd)l/QH/q’(th...hd)—l(/ Fi(x) dx) 1/q.

Rd
Proof. The proof is inductive. For d = 1, the result holds true: (2.2).
Supposing that it is true for d — 1, d = 2,3, ..., let us prove (2.3)) with
k = d. Applying inductive assumption for the first d — 1 variables, we
obtain

z1+h1  Tgthg Q

1/Q
</ / / F(uy, ..., uq) duy...dug dxl...d:zd)

R4 1—h1  zg—hg

z1+h1  Td—1tha—1 z4+hg 9

_ (/{/ / / /F(ul,...,ud)dul...dud

R Rd-1 [z1—h1  xg_1—hg_124—hg

Q/Q 1/Q
dry...dxg_; } d:)sd)
rq+hyg q

< c(hl...hd_l)l/QH/q,(/{/ / F(x1,...,x4-1,uq) dugq

R Rd-1 a—ha

Qlq &1
d:z:l...dxd_l} d:vd) )
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Applying now the generalized Minkowski inequality with exponent
®/q > 1, we bound the right-hand side by, times a constant,

(Ed—l—hd Q

(hl...hd_l)l/QH/ql(/ {/ / F(xy, ..., 2q-1,uq) dug

Ri-1 R a—ha
q/Q 1/q
dl’d} dl’l...d:lfd_l) .

To obtain (Z3]), it remains again to make use of ([22)) for the d-th

variable.
Thp1t+hes1r  mgthg

If k < d, we just add the integration over [ ... [ , compen-
Tpr1—hrtr1  wa—hg

sate it with (2hgy1...2hg)~ ", and apply the proved version for k = d.

The proof is complete. O

2.2. Proof of Theorem [I.1]. Let us first prove b). Let us take m (see
Introduction) such that DXm(z) € L, (R?). Since for each k = x1+4...+
Xa there holds |DXm(x)| < c|a|#*#=D for |z| large, we must have,
assuming 5 —k(aw—1) > 0 for all k, the inequality (8 —k(a—1))p; > d
for (Z) numbers p;. Then

d
2 218 — (a—1) 3 k(}) .
Zi< - = :2%—(04—1)612[11'

“— Dk d

Choosing also # and « such that the right-hand side is smaller than
2971 we obtain

293 — (a0 — 1)d2%7" < d2771,

which is equivalent to IT). Therefore such m cannot be in A(R?).

For simplicity, let us give a two-dimensional proof of a). First of all,
this allows us to use much simpler notation. On the one hand, we will
denote the derivatives by merely fi, fo, and fi5. On the other hand, we
will correspondingly denote p, by po, p1, p2, and pi2. Analogously, we
will denote A9, A, and Ay. The two-dimensional version of the sum
in Theorem C can be expressed as the 4 sums
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o0

2—k/22—l/2 + ZZ2—]€/22[/2
=1

k=1 =0

00
k=1
oo

(2.4) +Z§:2k/22—l/2 + ii2k/22l/2‘

k=0 =1 k=0 1=0

l

The second and third sums are estimated in absolutely the same way;,
therefore we will estimate only on of them.
Let us start with the first sum. We have

0o 0 1/2
Z Z 2~k/2g71/2 ( / Ao f(z,y)|? da dy) .
k=1 1=1 R2

Here Aipf(z,y) = f(z+h(—k),y+h(=1)) = f(z+ h(=k),y = (1)) —
fle—h(=k),y+h(=1))+ f(x—h(=k),y—h(=1)), with h(q) = 7279 For
this sum, Ay and A, will be used with the same steps. In what follows,
we will use the steps h(k) or h(—k when 2%/2 or 27%/2 respectively, are
summed up; the same for h(=£l).

Now, we represent the inner integral as

z+h(—k)

/ Ao fi(u,y) du

x—h(—k)

1/2

/ A ()]
RZ

y+h(-1) z+h(—k) y+h(=1)

/ Ay fo(z,v) dv / fia(u,v) du dv

y—h(=1) z—h(—k) y—h(-1)

1/2 1/2

dz dy.

Further, we apply Holder’s inequality with 4 parameters 2pg, 2q; >
2p1, 2q2 > 2po, and 2q12 > 2pio satisfying

1 1 1 1
(2.5) b — =1
2p0 21 292 2quo

This is possible because of (L2) for d = 2. We obtain 4 norms, the first
one is dominated by || f H}#. We then apply Lemma 2] to the next 3
norms with the exponents ¢; and py, g2 and ps, 12 and pyo, respectively.

The bound for the sum in question will then be, times a constant,
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S5 o Mgt gkl e e ) e g )

k=1 l=1

o i A R Y A [
We thus have 27%/2 (and 27%/2) in the power

1 1 1 1 1 1 1
1 — —+ —) F (— + — =+ (= +
[(2Q1 2p'y (2612 229,2) 2 (26112 20’15 )]
1 1 1 1 1 1
= [1——————]—1+——|———|——.

2py 2po 2p12

By (2.3]), the expression in the brackets on the right is 2p , and by (L2)
the whole right-hand side is positive. Therefore, the sums converge, as
required.

Let us now prove the finiteness of the sum

0o 00 1/2
Zz2k/z2l/2(/‘A12f(xay)|2d$dy) .

k=0 1=0 R?

We remind that the steps here are h(k) and h(l). In this case we rep-
resent the inner integral as

z+h(—k) 1_s2
(1-6)2 T2
Ao f(x,y)| 2 Ay fi(u,y) du
R2 z—h(—k)
y+h(=1) 1-62  z+h(=k) y+h(=1) (146)2

2

/ Asfola,v) du / / f12(u,v)dudv‘2d:cdy.

y—h(=1) x—h(=k) y—h(-1)

This is true for any 0 € (0,1), and the sum of the exponents is 2.
Applying similarly Holder’s inequality, this time with the parameters

(12_19?2’ 2¢1 > 2p1, 2q2 > 2po, and 2¢ip > 2py satistying

G=9r, 1 1 1 _
2po 21 2g2  2qi2 '

(2.6)

We again obtain 4 norms, the first one is dominated by || f H(1 /4,
We then apply Lemma Iﬂ] to the next 3 norms with the exponents
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(1 —6%)q and py, (1 — 62)g2 and py, (1 + 6)%qi2 and pya, respectively.
The bound for the sum in question will then be, times a constant,

o [o¢] 2
S5 obfagag-kiay e H i - )
k=0 [=0
2 2
< LAIST A ANGT A LIS fual S

We thus have 2¢/2 (and 2/2) in the power

1 1-42 1 1-48 1-6 1 (1467

1 - [(— + (5 + -
( 2¢1 2p'y ) (292 2p'y ) 2 2q12 2p'15 )
1 1 1 1—6 1-0% (149)
= l-————-——]-1-0+ + +( )
20 2¢2 2q12 2p1 2p2 2p12
By (2.0), the expression in the brackets on the right is “5—-. We must

have the final expression

(1—62 1-6 1-8 (140
+ + +
2po 2p 2po 2p12

to be negative. We cannot use (L2]) immediately as above: the choice
of § is in order. Since for § = 1 the inequality 21% < 2 is true (we

—1-9

remind that 1 < pja < 00), one can choose by continuity certain § < 1
to continue keeping the inequality true. This completes the proof of
the case in question.

It remains to prove the finiteness of the sum

k=1 1=0

oo o0 1/2
Zzz—k/zzm( [ s sy
RZ

with the steps h(—k) and hA(l) now. In this case we represent the inner
z+h(—k) 1-5

2

/ A2.]01 (u7 y) du

integral as
/\Amf(x,y)\T
R2 z—h(—k)

y+h(=1) 145 z+h(—k) y+h(—1

/ Alfg(x,v)dv‘ 2 ' / / Fio(u, v) dudv &

y—h(=1) z—h(—k) y—h(-1)

dz dy.
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This is true for any 0 € (0,1), and the sum of the exponents is 2.
Applying similarly Holder’s inequality, this time with the parameters
2p() 2([1 > 2p1, QQQ > 2p2, and 2Q12 > 2p12 Satlsfylng

1—0 1 1 1

I S
2p0 21 2q2  2quio

(2.7)

We again obtain 4 norms, the first one is dominated by || f|| C=0/% e
then apply Lemma 2Tl to the next 3 norms with the exponents (1—0)g¢
and p1, (1 + d)ge and ps, (1 + 6)g12 and pia, respectively. The bound
for the sum in question will then be, times a constant,

4 AESy 14 1 4 148
E 2= k/2 2k/2)(2q1 2p1)+(2q2 2p2) 2 +(2q12+2p’12)
k=1

$ 3t Al Bl
=0
ISP AN el fal

P12

To ensure the convergence of both sums, we arrive at the inequality

1—6 1—6 140 149
2.8 1< + + + <149
(28) 2po 2q 2¢2 2q12
to be valid for certain d. The left inequality follows from the estimates
in k, while the right one from estimates in /. Recording the sum in the

left-hand side of (L2) as 1 +¢, 0 < € < 1, we can rewrite (2.8)) as

(2.9) 0<e—-0A+0B <,

with obvious meaning for A and B. We note meantime that 0 < A, B <
land A+ B=1.

1) Let first B > A. In this case the left inequality in (2.9]) holds au-
tomatically, we discuss the right one It is equivalent to the inequality
52— < 1, and such 4 does exist.

) When B < A, both mequahtles should be justified. The right one
is treated as above. The left one is equivalent to ¢ < 55— If the
value on the right is not smaller than 1, the needed inequality holds
true for any 0 < 1. If it is smaller than one, it suffices to take d just
a little bit smaller than 55—, but such that it is still greater than
2A—€"

3) Of course, the situation when A = B is trivial.
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The proof is complete.

2.3. Proof of Corollary 1.2l The result, in fact, follows from Corol-
lary [[.3] and estimates for the derivatives of m as in the proof of b) of
the theorem.

2.4. Proof of Corollary [1.3l Let us rewrite (LT as

Z T = d2t e

0<x<1

For each y, let us choose p, so that v,p, = d + 53. Then

d 2d
Z i > 271 e

ox<1  Px

Since

there holds

d
— > q2%-1
0<y<1 Px

This is equivalent to (LZ), and hence f € A(R?).
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