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NORM AND ANTI-NORM INEQUALITIES FOR POSITIVE

SEMI-DEFINITE MATRICES

JEAN-CHRISTOPHE BOURIN AND FUMIO HIAI

Abstract. Some subadditivity results involving symmetric (unitarily invariant) norms
are obtained. For instance, if g(t) =

∑m
k=0

akt
k is a polynomial of degree m with non-

negative coefficients, then, for all positive operators A, B and all symmetric norms,

‖g(A+B)‖1/m ≤ ‖g(A)‖1/m + ‖g(B)‖1/m.

To give parallel superadditivity results, we investigate anti-norms, a class of functionals
containing the Schatten q-norms for q ∈ (0, 1] and q < 0. The results are extensions
of the Minkowski determinantal inequality. A few estimates for block-matrices are
derived. For instance, let f : [0,∞) → [0,∞) be concave and p ∈ (1,∞). If fp(t)

is superadditive, then Tr f(A) ≥
(
∑m

i=1
fp(aii)

)1/p
for all positive m × m matrix

A = [aij ]. Furthermore, for the normalized trace τ , we consider functions ϕ(t) and
f(t) for which the functional A 7→ ϕ ◦ τ ◦ f(A) is convex or concave, and obtain a
simple analytic criterion.

1. Introduction

Let g(t) be a convex function on the positive half-line vanishing at 0. There exist
several matrix versions of the obvious superadditivity property g(a + b) ≥ g(a) + g(b).

It is less usual to mix convexity assumptions and subadditivity results. This paper
points out some matrix subadditivity inequalities involving convex functions such as the

first inequality stated in the abstract. In a parallel way, we also consider superadditivity

inequalities with concave functions, implying some estimate such as the second inequality
of the abstract. These lead us to study a wide class of functionals on the cone of positive

definite matrices, that we call anti-norms.
The next section surveys a short list of known subadditivity and superadditivity

inequalities. Section 3 introduces the class of anti-norms and Section 4 contains our
new results. Finally in Section 5, we discuss some simple convexity/concavity criteria

for a functional A 7→ ϕ ◦ τ ◦ f(A), where the range of f(t) is included in the domain of
ϕ(t) and τ is the normalized trace (τ(I) = 1).

By operator, we mean a linear operator on a finite-dimensional Hilbert space. We use
interchangeably the terms operator and matrix. Especially, a positive operator means a

positive (semi-definite) matrix. Consistently Mn denotes the set of operators on a space
of dimension n and M

+
n stands for its positive part. Though we confine to Mn, some

extensions to the infinte dimensional setting and operator algebras are possible.
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2. Concave functions and unitary orbits

Here we recall some recent subadditivity properties for concave functions, and sim-

ilarly superadditivity properties of convex functions. Section 4 will be devoted to our
new inequalities contrasting by involving convex functions and subadditivity properties,

or concave functions and superadditivity results. Given two Hermitian operators, the
relation X ≤ Y refers to the usual positive semi-definite ordering. From [1] we know:

Theorem 2.1. Let f : [0,∞) → [0,∞) be concave and A, B be positive operators.

Then, for some unitaries U, V ,

f(A+B) ≤ Uf(A)U∗ + V f(B)V ∗.

Thus, the obvious scalar inequality f(a+ b) ≤ f(a)+f(b) can be extended to positive

matrices A andB by considering elements in the unitary orbits of f(A) and of f(B). This
inequality via unitary orbits considerably improves the famous Rotfel’d trace inequality

for non-negative concave functions and positive operators,

Tr f(A+B) ≤ Tr f(A) + Tr f(B), (2.1)

and its symmetric norm version

‖f(A+B)‖ ≤ ‖f(A)‖+ ‖f(B)‖. (2.2)

By definition, a symmetric norm ‖ · ‖ on Mn satisfies the unitary invariance condition
‖A‖ = ‖UA‖ = ‖AU‖ for all A and all unitaries U .

We can employ Theorem 2.1 to get an inequality for positive block-matrices
[

A X
X∗ B

]

∈ M
+
n+m, A ∈ M

+
n , B ∈ M

+
m,

which nicely extend (2.2). Combined with a useful decomposition for elements in M
+
n+m

noticed in [4],
[

A X
X∗ B

]

= U

[

A 0
0 0

]

U∗ + V

[

0 0
0 B

]

V ∗ (2.3)

for some unitaries U, V ∈ Mn+m, Theorem 2.1 entails a recent theorem of Lee [9]:

Corollary 2.2. Let f(t) be a non-negative concave function on [0,∞). Then, given an

arbitrary partitioned positive semi-definite matrix,
∥

∥

∥

∥

f

([

A X
X∗ B

])
∥

∥

∥

∥

≤ ‖f(A)‖+ ‖f(B)‖

for all symmetric norms.

Applied to X = A1/2B1/2, Lee’s result yields the Rotfel’d inequalities (2.1) and (2.2).

In case of the trace norm, the above result may be restated as a trace inequality without
any non-negative assumption: For all concave function f(t) on the positive half-line and

for all positive block-matrices,

Tr f

([

A X
X∗ B

])

≤ Tr f(A) + Tr f(B).
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The case of f(t) = log t then gives Fisher’s inequality

det

[

A X
X∗ B

]

≤ detA detB.

Theorem 2.1 may be used to extend another classical (superadditivity and concavity)
property of the determinant, Minkowski’s inequality, stating that for A, B ∈ M

+
n ,

det1/n(A+B) ≥ det1/nA+ det1/nB. (2.4)

In fact, Theorem 2.1 is true for any monotone (i.e., non-decreasing or non-increasing)

and concave function on [0,∞) such that f(0) ≥ 0, see [1, Theorem 2.1]. Hence:

Corollary 2.3. Let g : [0,∞) → [0,∞) be convex with g(0) = 0 and let A, B be positive

operators. Then, for some unitaries U, V ,

g(A+B) ≥ Ug(A)U∗ + V g(B)V ∗.

This convexity version of Theorem 2.1 may then be used to refine (2.4) as

det1/ng(A+B) ≥ det1/ng(A) + det1/ng(B) (2.5)

for all A, B ∈ M
+
n and all non-negative convex functions g(t) vanishing at 0.

Minkowski’s inequality means thatX 7→ det1/n X is concave onM
+
n . By using another

estimate with unitary orbits, this concavity aspect of (2.4) can be generalized too. Recall
that a linear map Φ : Mn → Mm is called a unital positive linear map if Φ preserves

positivity and identity. Denote by Mn{Ω} the set of Hermitian operators in Mn with
spectra in an interval Ω ⊂ R. Then, we have from [4], [3]:

Theorem 2.4. Let Φ : Mn → Mm be a unital positive linear map, let f(t) be a concave
function on an interval Ω, and let A,B ∈ Mn{Ω}. Then, for some unitaries U, V ∈ Mm,

f(Φ(A)) ≥ UΦ(f(A))U∗ + V Φ(f(A))V ∗

2
.

If furthermore f(t) is monotone, then we can take U = V .

This statement for positive maps contains several Jensen type inequalities. The sim-

plest one is obtained by taking Φ : M2n → Mn,

Φ

([

A X
Y B

])

:=
A +B

2
.

With X = Y = 0, Theorem 2.4 then says: If A,B ∈ Mn{Ω} and f(t) is a concave

function on Ω, then, for some unitaries U, V ∈ Mn,

f

(

A+B

2

)

≥ 1

2

{

U
f(A) + f(B)

2
U∗ + V

f(A) + f(B)

2
V ∗

}

. (2.6)

If furthermore f(t) is monotone, then we can take U = V .

By combining (2.6) and (2.4) we obtain an extension of the concavity aspect of (2.4):
If f(t) is a non-negative concave function on Ω and if A,B ∈ Mn{Ω}, then

det1/nf

(

A+B

2

)

≥ det1/nf(A) + det1/nf(B)

2
. (2.7)
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As another example of combination of Theorem 2.1 and (2.3), we have [4]:

Corollary 2.5. Let f : [0,∞) → [0,∞) be concave and let A = [aij ] be a positive

operator on a space of dimension m. Then, for some rank one ortho-projections {Ei}mi=1,

f(A) ≤
m
∑

i=1

f(aii)Ei.

This refines the standard majorization inequality Tr f(A) ≤
∑m

i=1 f(aii). The next
sections propose some variations on this relation and other Minkowski type inequalities.

For a detailed background on majorization and unitarily invariant norms, see for instance
[2], [7], [10]. A proof of decomposition (2.3) will be given within the proof of Corollary

4.4 below for the convenience of the reader.

3. Anti-norms on positive operators

Symmetric norms on Mn can be defined by their restriction to the positive part M+
n .

The following axioms are required: (a) ‖A‖ = ‖UAU∗‖ for all unitary U ∈ Mn and all
A ∈ M

+
n ; (b) ‖λA‖ = λ‖A‖ for all real λ ≥ 0 and A ∈ M

+
n ; (c) for all A, B ∈ M

+
n ,

‖A‖+ ‖B‖ ≥ ‖A +B‖ ≥ ‖A‖.
Indeed, a symmetric norm on Mn satisfies (a)–(c), and conversely, if a functional ‖ · ‖ :

M
+
n → [0,∞) satisfies (a)–(c), then ‖X‖ := ‖ |X| ‖ for X ∈ Mn is a symmetric norm on

Mn as far as ‖ · ‖ is not identically zero.

The following definition then seems natural:

Definition 3.1. A functional on the cone M
+
n taking values in [0,∞), A 7→ ‖A‖!, is

called a symmetric anti-norm if the following two conditions are fulfilled:

1. It is homogeneous and concave (equivalently, superadditive), that is,

‖λA‖! = λ‖A‖! and ‖A+B‖! ≥ ‖A‖! + ‖B‖!
for all real λ ≥ 0 and all A, B ∈ M

+
n .

2. It is unitarily invariant (or symmetric), that is,

‖A‖! = ‖UAU∗‖!
for all unitaries U ∈ Mn and all A ∈ M

+
n .

For a general X ∈ Mn, we may define ‖X‖! = ‖ |X| ‖! and then obtain a symmetric
anti-norm on the whole space Mn. If furthermore ‖X‖! = 0 implies that X = 0, then

‖ · ‖! is called regular.

Similarly to the usual symmetric norms, symmetric anti-norms are defined by symmet-
ric anti-gauge functions on R

n
+ = [0,∞)n. ForA ∈ M

+
n we write λ(A) = (λ1(A), . . . , λn(A))

for the eigenvalue vector of A arranged in decreasing order with multiplicities.

Proposition 3.2. There is a bijective correspondence between the symmetric anti-norms
‖ · ‖! on Mn and the homogeneous and concave functions Φ! : R

n
+ → [0,∞) that are

invariant under coordinate permutations, determined by ‖A‖! = Φ!(λ(A)) for A ∈ M
+
n .
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Proof. The proof is similar to the usual symmetric norm case (see [7, 4.4.3] for example),
by using the Ky Fan majorization λ(A+B) ≺ λ(A)+λ(B) for A,B ∈ M

+
n . The details

are left to the reader. �

Example 3.3. The trace norm is an anti-norm! More generally for k = 1, . . . , n, we

define the Ky Fan k-anti-norm on Mn as the sum of the k smallest singular values, i.e.,

‖A‖{k} :=
k
∑

j=1

µn+1−j(A),

where µ1(A) ≥ · · · ≥ µn(A) are the singular values of A in decreasing order with

multiplicities. From the min-max principle, it is well-known that this functional is
concave. The anti-norm ‖ · ‖(k) is not regular except for k = n (the trace norm).

Example 3.4. Let q ∈ (0, 1). The Schatten q-norms (or q-quasi-norms) on Mn

‖A‖q :=
(

n
∑

j=1

µq
j(A)

)1/q

are symmetric regular anti-norms. The terminology Schatten q-anti-norms allows to
distinguish with the norm case (q > 1). See Proposition 3.7 below for the proof of a

more general result.

The next two examples are related to the classical geometric and harmonic means.
These anti-norms are not regular.

Example 3.5. The Minkowski functional A 7→ det1/nA is a symmetric anti-norm on
M

+
n . This follows from the previous example by noticing that det1/nA = limq→0 n

−1/q‖A‖q.

Example 3.6. The harmonic anti-norm on Mn is defined by

‖A‖−1 :=

(

n
∑

j=1

µ−1
j (A)

)−1

if A is invertible, and vanishes on non-invertible operators. More generally for r < 0,

‖A‖r :=
(

n
∑

j=1

µr
j(A)

)1/r

is a symmetric anti-norm of Schatten type with negative exponent. Concavity of these

functions may be checked by arguing as in the next proof or from Proposition 3.2 and

the fact that the function a ∈ (0,∞)n 7→
(
∑n

i=1 a
r
i

)1/r
is concave for r < 0.

Proposition 3.7. Let A 7→ ‖A‖! be a symmetric anti-norm on M
+
n . Then, so is also

A 7→ ‖Aq‖1/q! for any q ∈ (0, 1).

Proof. The functional A 7→ ‖Aq‖1/q! is homogeneous; let us check that it is also super-

additive. Let A, B ∈ M
+
n and suppose ‖Aq‖1/q! = ‖Bq‖1/q! = 1. Since t 7→ tq is operator

concave, we have, for all λ ∈ (0, 1),

(λA+ (1− λ)B)q ≥ λAq + (1− λ)Bq
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so that

‖(λA+ (1− λ)B)q‖! ≥ ‖λAq + (1− λ)Bq‖! ≥ λ‖Aq‖! + (1− λ)‖Bq‖! = 1.

Hence,

‖(λA+ (1− λ)B)q‖1/q! ≥ 1. (3.1)

Now, for general X, Y ∈ M
+
n with ‖X‖!, ‖Y ‖! > 0, set

A =
X

‖Xq‖1/q!

, B =
Y

‖Y q‖1/q!

and pick

λ =
‖Xq‖1/q!

‖Xq‖1/q! + ‖Y q‖1/q!

.

Then (3.1) yields that

‖(X + Y )q‖1/q! ≥ ‖Xq‖1/q! + ‖Y q‖1/q! ,

which also holds if ‖Xq‖! or ‖Y q‖! vanishes. �

Example 3.8. For k = 1, . . . , n, the functional

∆k(A) :=

(

k
∏

j=1

µn+1−j(A)

)1/k

is a symmetric anti-norm on Mn. Indeed, if A ≥ 0, ∆k(A) = min det1/k AS , where the
minimum runs over the k-dimensional subspaces S and AS stands for the compression

onto S. Hence, given A ,B ≥ 0,

∆k(A+B) = min det1/k(A +B)S = min det1/k(AS +BS)

and Minkowski’s inequality implies ∆k(A+B) ≥ ∆k(A) + ∆k(B).

The geometric and harmonic means, (a, b) 7→
√
ab and (a, b) 7→ 2(a−1 + b−1)−1, are

homogeneous concave functions on the pairs of positive numbers. Hence:

Proposition 3.9. If ‖ · ‖∗ and ‖ · ‖◦ are two symmetric anti-norms, then so are their

geometric mean
√

‖ · ‖∗‖ · ‖◦ and harmonic mean 2(‖ · ‖−1
∗ + ‖ · ‖−1

◦ )−1.

Indeed, more generally, if m is any homogeneous and jointly concave mean on non-

negative numbers (this is the case for operator means [8]), then ‖ · ‖∗m ‖ · ‖◦ is also a
symmetric anti-norm in the above situation.

Example 3.10. Given an non-decreasing sequence 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn, the maps

A 7→
n
∑

k=1

wkµk(A) and A 7→
(

n
∏

k=1

µwk

k (A)

)
1

w1+···+wn

are symmetric anti-norms on Mn. Indeed, positive sums and weighted geometric means

of anti-norms are still symmetric anti-norms, and Examples 3.3 and 3.8 are used.

We now turn to a few consequences of the previous section. Corollary 2.3 implies:
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Corollary 3.11. Let g : [0,∞) → [0,∞) be convex, g(0) = 0, and let A, B ∈ M
+
n .

Then, for all symmetric anti-norms,

‖g(A+B)‖! ≥ ‖g(A)‖! + ‖g(B)‖!.

In case of the trace norm, this is the convex function version of Rotfel’d inequality

(2.1). The convexity requirement on g(t) cannot be relaxed to a mere superadditivity
assumption; indeed take for s, t > 0,

A =
1

2

[

s
√
st√

st t

]

, B =
1

2

[

s −
√
st

−
√
st t

]

,

and observe that the trace inequality ‖g(A+B)‖1 ≥ ‖g(A)‖1+ ‖g(B)‖1 combined with
g(0) = 0 means that g(t) is convex. For the functional of Example 3.5, we recapture

(2.5) and, with g(t) = t, Minkowski’s inequality.
Symmetric anti-norms behave well for positive linear maps between matrix spaces.

The next two corollaries follow from Theorem 2.4. Recall that Mn{Ω} stands for the
set of Hermitian operators with spectra in an interval Ω. From (2.6) we have:

Corollary 3.12. Let f : Ω → [0,∞) be concave and let A, B ∈ Mn{Ω}. Then, for all
symmetric anti-norms,

∥

∥

∥

∥

f

(

A+B

2

)
∥

∥

∥

∥

!

≥
∥

∥

∥

∥

f(A) + (B)

2

∥

∥

∥

∥

!

≥ ‖f(A)‖! + ‖f(B)‖!
2

.

Given a contraction Z ∈ Mn, there exists some K ∈ Mn such that Z∗Z +K∗K = I.
By using the unital positive map from M2n to Mn

[

A X
Y B

]

7→ Z∗AZ +K∗BK,

and letting X = Y = B = 0, we infer from Theorem 2.4:

Corollary 3.13. Let f : Ω → [0,∞) be concave, 0 ∈ Ω, let A ∈ Mn{Ω} and let Z ∈ Mn

be a contraction. Then, for all symmetric anti-norms,

‖f(Z∗AZ)‖! ≥ ‖Z∗f(A)Z‖!. (3.2)

It is a matrix version of the obvious scalar inequality f(za) ≤ zf(a) for z ∈ [0, 1],

a ∈ Ω. In case of the trace norm, it was noticed by Brown and Kosaki [6]. If f(t) is non-
negative, concave andmonotone on Ω, Theorem 2.4 shows that (3.2) holds for symmetric

norms too. If f(t) is non-negative and operator concave on Ω, then f(Z∗AZ) ≥ Z∗f(A)Z
so that once again (3.2) holds for symmetric norms too. However, it would be surprising

if (3.2) were true in general for symmetric norms; thus an explicit counterexample would

be desirable.
If Ω = [0,∞) and if Z is no longer a contraction, but, in an opposite way, an expan-

sive operator (i.e., its inverse is a contraction), then one might expect that a reverse
inequality

‖f(Z∗AZ)‖! ≤ ‖Z∗f(A)Z‖! (3.3)

holds. This is not true, as shown by simple counterexamples, for the anti-norms of

Example 3.3, except for the trace norm. In fact the symmetric norm version of (3.3)
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holds, see [5] and references therein. Nevertheless (3.3) might be true for Schatten
q-anti-norms, q ∈ (0, 1).

Like symmetric norms, symmetric anti-norms are functions of the singular values
as stated in Proposition 3.2. However, the notion of symmetric anti-norms is more

flexible than that of symmetric norms as it is illustrated by Proposition 3.9 and the
sample of previous examples. Thus, one cannot expect for symmetric anti-norms a set

of inequalities as rich as in the symmetric norm case. For instance, (3.3) collapses for
general anti-norms. The next section is successful in giving a few anti-norm estimates.

4. subadditivity and superadditivity

The class of convex and subadditive functions s : [0,∞) → [0,∞) is small; such a

function is a sum s(t) = at + b(t) for some a ≥ 0 and some non-increasing convex
function b(t) ≥ 0. Hence, the inequality for positive A, B,

Tr s(A+B) ≤ Tr s(A) + Tr s(B)

is trivial. Most of convex functions g : [0,∞) → [0,∞) are far from being subadditive;
if g(0) = 0, they are automatically superadditive. To obtain subadditivity results, we

will assume that composing g(t) with t 7→ tq for some q ∈ (0, 1) yields a subadditive
function. A parallel approach yields superadditivity results for anti-norms.

Theorem 4.1. Let g, f : [0,∞) → [0,∞), 0 < q < 1 < p, and let A, B ∈ M
+
n .

(1) If g(t) is convex and gq(t) is subadditive, then for all symmetric norms,

‖g(A+B)‖q ≤ ‖g(A)‖q + ‖g(B)‖q. (4.1)

(2) If f(t) is concave and f p(t) is superadditive, then for all symmetric anti-norms,

‖f(A+B)‖p! ≥ ‖f(A)‖p! + ‖f(B)‖p! . (4.2)

Note that (4.1) generalizes the fact that X 7→ ‖ |X|1/q‖q is a norm on Mn. Indeed,

standard majorizations extend (4.1) to Mn as follows: Let g : [0,∞) → [0,∞) be convex
and increasing, and let q ∈ (0, 1). If gq(t) is subadditive, then the map X 7→ ‖g(|X|)‖q
is subadditive on Mn. Similarly, (4.2) is an extension of Proposition 3.7.

To prove (4.2) we will need a Ky Fan principle for anti-norms. Recall that the Ky

Fan principle for symmetric norms on M
+
n states that ‖A‖ ≤ ‖B‖ for all symmetric

norms if and only if the eigenvalues of A are weakly majorized by those of B, that is,

‖A‖(k) ≤ ‖B‖(k) for the Ky Fan k-norms, 1 ≤ k ≤ n. We express it by writing A ≺w B.
By using the notation A ≺w B we mean that ‖A‖[k] ≥ ‖B‖[k] for every anti-norm of

Example 3.3.

Lemma 4.2. Let A, B ∈ M
+
n . If A ≺w B, then ‖A‖! ≥ ‖B‖! for all symmetric anti-

norms.
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Proof. Denote by λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) the eigenvalues of A arranged in
decreasing order. By assumption,

λn(A) ≥ λn(B),

λn(A) + λn−1(A) ≥ λn(B) + λn−1(B),

...

λn(A) + λn−1(A) + · · ·+ λ1(A) ≥ λn(B) + λn−1(B) + · · ·+ λ1(B).

Hence, replacing λ1(B) with λ1(B) + r for some r ≥ 0, we may obtain a majorization

A ≺ C

where C is the diagonal matrix C = diag(λ1(B) + r, λ2(B), · · · , λn(B)). We then have
some unitaries {Ui}mi=1 and some non-negative scalars {αi}mi=1 of sum 1 (we may take

m = n, see [11]) such that

A =

m
∑

i=1

αiUiCU∗
i

so that by concavity and unitary invariance of anti-norms, ‖A‖! ≥ ‖C‖! ≥ ‖B‖!. �

We turn to the proof of the theorem.

Proof of Theorem 4.1. Let A↓ denote the diagonal matrix listing the eigenvalues of A

arranged in decreasing order.
(1) From the Ky-Fan majorization

A +B ≺ A↓ +B↓ (4.3)

and the convexity of g(t) we infer the weak majorization

g(A+B) ≺w g(A↓ +B↓),

that is,

g(A+B) ≺w (gq(A↓ +B↓))1/q.

By the subadditivity assumption gq(A↓ + B↓) ≤ gq(A↓) + gq(B↓) combined with the

previous weak-majorization, we obtain

g(A+B) ≺w {gq(A↓) + gq(B↓)}1/q.
Thus

‖g(A+B)‖ ≤ ‖{gq(A↓) + gq(B↓)}1/q‖
so that

‖g(A+B)‖q ≤ ‖{gq(A↓) + gq(B↓)}1/q‖q

≤ ‖g(A)‖q + ‖g(B)‖q,
where the last step follows from the well-known fact that X 7→ ‖X1/q ‖q is concave on
M

+
n (this may also be proved in a similar way to Proposition 3.7).

(2) From the majorization (4.3) and the concavity of f(t) we infer the super-majorization

f(A+B) ≺w f(A↓ +B↓),
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that is,

f(A+B) ≺w {f p(A↓ +B↓)}1/p.
Combine this with the superadditivity assumption f p(A↓ + B↓) ≥ f p(A↓) + f p(B↓) to

obtain

f(A+B) ≺w {f p(A↓) + f p(B↓)}1/p.
Thus, by Lemma 4.2,

‖f(A+B)‖! ≥ ‖{f p(A↓) + f p(B↓)}1/p‖!,
and applying Proposition 3.7 yields the result. �

The most important special case of (4.1) is:

Corollary 4.3. Let g(t) =
∑m

k=0 akt
k be a polynomial of degree m with all non-negative

coefficients. Then, for all positive operators A, B and all symmetric norms,

‖g(A+B)‖1/m ≤ ‖g(A)‖1/m + ‖g(B)‖1/m.

Proof. It suffices to show that if g(t) =
∑m

k=0 akt
k is a polynomial of degree m with

non-negative coefficients, then g1/m(t) is subadditive (on the positive half-line). To this
end, note that for u ∈ (0, 1), we have g1/m(ut) ≥ ug1/m(t) so that t 7→ g1/m(t)/t is non-

increasing (this decreasing property of w(t)/t is called quasi-concavity for w(t)). Thus
for all positive reals a, b,

g1/m(a) ≥ a

a+ b
g1/m(a+ b) and g1/m(b) ≥ b

a+ b
g1/m(a+ b)

so that

g1/m(a) + g1/m(b) ≥ g1/m(a+ b).

�

The assumptions of Corollary 4.3 do not ensure that A 7→ ‖g1/m(A)‖ is subadditive
on M

+
n . Indeed, for a non-negative function h(t) vanishing at 0, the subadditivity of

A 7→ ‖h(A)‖1, the trace norm, implies that h(t) is convex. A lot of polynomial g(t) in
Corollary 4.3 may satisfy g(0) = 0 and g1/m(t) is not convex; for instance, if m = 3 and

g(t) = t+ t3.
Another example satisfying the assumptions of Theorem 4.1 (1), with q = 1/2, is

g(t) = t + (t− 1)+,

where (t− 1)+ := max{0, t− 1}. Again, this follows from the fact that
√

g(t) is quasi-
concave.

Let q ∈ (0, 1). If g1, g2 : [0,∞) → [0,∞) are convex functions such that gq1(t) and
gq2(t) are quasi-concave, then g1 + g2 shares the same properties. This provides a sub-

class, closed under sum, of the class of functions satisfying the assumptions of Theorem
4.1 (1).

Thus, there are several examples of functions g(t) for which Theorem 4.1 (1) and its
corollaries below are available.

Now we turn to some applications of (4.1) to block-matrices.
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Corollary 4.4. Let g : [0,∞) → [0,∞) be convex, g(0) = 0, and let q ∈ (0, 1). If gq(t)
is subadditive, then

∥

∥

∥

∥

g

([

A X
X∗ B

])
∥

∥

∥

∥

≤ (‖g(A)‖q + ‖g(B)‖q)1/q

for all partitioned positive operators and all symmetric norms.

Proof. The corollary is a straightforward consequence of the combination of (4.1) with

the decomposition (2.3) in M
+
n+m,

[

A X
X∗ B

]

= U

[

A 0
0 0

]

U∗ + V

[

0 0
0 B

]

V ∗

for some unitaries U, V ∈ Mn+m. To prove this, factorize positive matrices as a square

of positive matrices,
[

A X
X∗ B

]

=

[

C Y
Y ∗ D

] [

C Y
Y ∗ D

]

and observe that it can be written as
[

C 0
Y ∗ 0

] [

C Y
0 0

]

+

[

0 Y
0 D

] [

0 0
Y ∗ D

]

= T ∗T + S∗S.

Then, use the fact that T ∗T and S∗S are unitarily congruent to

TT ∗ =

[

A 0
0 0

]

and SS∗ =

[

0 0
0 B

]

.

�

Of course, a version of this corollary holds for partitioned operators in m2 blocks. In

particular, in case of the trace norm and an m×m matrix:

Corollary 4.5. Let g : [0,∞) → [0,∞) be convex, g(0) = 0, and let q ∈ (0, 1). If gq(t)

is subadditive, then

Tr g(A) ≤
(

m
∑

i=1

gq(aii)

)1/q

for all positive m×m matrix A = [aij ].

Corollary 4.5 is unusual as it reverses the standard majorization inequality

Tr g(A) ≥
m
∑

i=1

g(aii).

Corollary 4.4 is understood with the natural convention that a symmetric norm ‖ · ‖
on Mn+m induces a symmetric norm on Mn, denoted with the same symbol, by setting
for all A ∈ Mn,

‖A‖ :=

∥

∥

∥

∥

[

A 0
0 0

]
∥

∥

∥

∥

.

In the opposite way, starting from a symmetric norm ‖ · ‖ on Mn, we can extend it to a

symmetric norm ‖ · ‖∧ on Mn+m by setting for all A ∈ Mn+m,

‖A‖∧ := ‖A∧‖



12 JEAN-CHRISTOPHE BOURIN AND FUMIO HIAI

where A∧ denotes the n×n diagonal matrix whose entries down to the diagonal are the
n largest singular values of A. With this convention, we may remove the assumption

g(0) = 0 in Corollary 4.4:

Corollary 4.6. Let g : [0,∞) → [0,∞) be convex and q ∈ (0, 1). If gq(t) is subadditive,

then
∥

∥

∥

∥

g

([

A X
X∗ B

])
∥

∥

∥

∥

∧

≤ (‖g(A)‖q + ‖g(B)‖q)1/q

for all positive operators partitioned in blocks of same size and all symmetric norms.

The remaining part of this section deals with consequences of (4.2).

Corollary 4.7. Let f(t) = a1t+ a2t
1/2 + · · ·+ amt

1/m with all non-negative ak’s. Then,
for all positive operators A, B and all symmetric anti-norms,

‖f(A+B)‖m! ≥ ‖f(A)‖m! + ‖f(B)‖m! .

Proof. The proof is similar to that of Corollary 4.3: One first checks that t 7→ fm(t)/t

is increasing on (0,∞) (this property is called quasi-convexity). �

Another example satisfying to the assumptions of (4.2), with p = 2, is

f(t) = t− (t− 1)+
2

.

This follows from the fact that f 2(t) is quasi-convex.
Let p ∈ (1,∞). If f1, f2 : [0,∞) → [0,∞) are concave functions such that f p

1 (t) and

f p
2 (t) are quasi-convex, then f1 + f2 shares the same properties. This provides a sub-
class, closed under sum, of the class of functions satisfying the assumptions of Theorem

4.1 (2). Furthermore, under the above assumptions,
√

f1(t)f2(t) is also concave and

{
√

f1(t)f2(t)}p is quasi-convex. Thus, this sub-class of concave functions with quasi-
convex p-powers is invariant for both arithmetic and geometric means.

The next corollary is an extension on Minkowski’s inequality (when h(t) = t).

Corollary 4.8. Let h : [0,∞) → [0,∞) be superadditive. Assume that h(t) is strictly

positive and C2 on (0,∞) and that (log h(t))′′ < 0 for all t > 0 (hence h(t) is strictly
log-concave). Then, for all positive operators A, B on an n-dimensional space,

det1/nh(A+B) ≥ det1/nh(A) + det1/nh(B).

Proof. We may assume that A, B and A+B are invertible, thus with spectra lying on
a compact interval [a, b] ⊂ (0,∞). There exists a q ∈ (0, 1) small enough to ensure that

exp{q log h(t)} = hq(t) is concave on [a, b]. Indeed, this is obvious since

(hq(t))′′ = qhq(t)
(

q{(log h(t))′}2 + (log h(t))′′
)

.

Note that to apply Theorem 4.1 (2) to the operators A, B and some function f(t), it

suffices to have concavity of f(t) on [a, b] and superadditivity of f p(t) on [a,∞). Thus,
we may apply Theorem 4.1 (2) to f(t) = hq(t) and p = 1/q ∈ (1,∞). This proves the

corollary. �



NORM AND ANTI-NORM INEQUALITIES FOR POSITIVE SEMI-DEFINITE MATRICES 13

Corollary 4.9. Let f : [0,∞) → [0,∞) be concave and p ∈ (1,∞). If f p(t) is superad-
ditive, then, for all partitioned positive operators and all Schatten r-anti-norms,

∥

∥

∥

∥

f

([

A X
X∗ B

])
∥

∥

∥

∥

r

≥ (‖f(A)‖pr + ‖f(B)‖pr)
1/p

.

This can be extended to all anti-norms ‖ · ‖! on Mn+m with the convention that it
induces an anti-norm on Mn by replacing A ∈ Mn with A⊕ 0 ∈ Mn+m.

Corollary 4.10. Let f : [0,∞) → [0,∞) be concave and p ∈ (1,∞). If f p(t) is
superadditive, then

Tr f(A) ≥
(

m
∑

i=1

f p(aii)

)1/p

for all positive m×m matrix A = [aij ].

Corollary 4.10 is unusual as it reverses the standard majorization inequality

Tr f(A) ≤
∑

i

f(aii)

that has been strengthened in Corollary 2.5.

5. Convexity and concavity criteria for trace functionals

Let τ := (1/n)Tr denote the normalized trace on Mn. In the preceding section
we have studied functionals on M

+
n of the type X 7→ ‖h(X)‖r or X 7→ ‖h(X)‖r! and

obtained superadditivity or subadditivity results according to that hr(x) is superadditive
or subadditive. We may also address the question of convexity/concavity properties of

these functionals. In case of the trace norm, this leads us to consider conditions on
functions ϕ(t) ensuring that A 7→ ϕ◦τ ◦f(A) is convex (resp., concave) on M

+
n whenever

ϕ◦f(t) is convex (resp., concave) on [0,∞). In this section we will treat the question in
the setting of a general interval Λ ⊂ R. Let Dn{Ξ} denote the diagonal part of Mn{Ξ}
for an interval Ξ.

Proposition 5.1. Let ϕ(t) be a strictly increasing continuous function on an interval

Λ and Ξ := ϕ(Λ). If the functional A 7→ ϕ ◦ τ ◦ ϕ−1(A) is convex (resp., concave) on
Mn{Ξ}, or on Dn{Ξ}, then ϕ is necessarily concave (resp., convex) on Λ.

Proof. The assumption of convexity (resp., concavity) on Dn{Ξ} means the following
condition:

(c′) The n-variable function

(x1, . . . , xn) ∈ Ξn 7→ ϕ

(

1

n

n
∑

i=1

ϕ−1(xi)

)

is convex (resp., concave).

Thus, we may show that convexity condition (c′) implies the concavity of ϕ (the other
case is similar). For ~x = (x1, . . . , xn) ∈ Ξn we use the notations τ(~x) := n−1

∑n
i=1 xi

and ϕ−1(~x) := (ϕ−1(x1), . . . , ϕ
−1(xn)). Consider the cyclic permutations ~x(0) := ~x
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and ~x(k) := (xk+1, . . . , xn, x1, . . . , xk) for k = 1, 2, . . . , n − 1. Since n−1
∑n

k=0 ~x
(k) =

(τ(~x), . . . , τ(~x)), we have

τ(~x) = ϕ ◦ τ ◦ ϕ−1

(

1

n

n−1
∑

k=0

~x(k)

)

≤ 1

n

n−1
∑

k=0

ϕ ◦ τ ◦ ϕ−1(~x(k)) = ϕ ◦ τ ◦ ϕ−1(~x).

Since ϕ−1 is increasing on Ξ, we have ϕ−1 ◦ τ(~x) ≤ τ ◦ ϕ−1(~x), which means that ϕ−1 is
convex on Ξ, hence ϕ is concave on Λ. �

The above proposition shows that the concavity or convexity of ϕ(t) is necessary to
state our criteria in the next theorem. Thus, there is no serious loss of generality by

assuming that ϕ(t) is smooth with the strictly negative or positive second derivative.

This assumption yields a simple analytic criterion.

Theorem 5.2. Let ϕ(t) be a continuous function on an interval Λ and Ξ := ϕ(Λ).
Assume that ϕ(t) is C2 on Λ◦, the interior of Λ, and that ϕ′(t) > 0 and ϕ′′(t) < 0

(resp., ϕ′′(t) > 0) on Λ◦. Then the following conditions are equivalent:

(a) The function ϕ′(t)/ϕ′′(t) is convex (resp., concave) on Λ◦.
(b) The functional A 7→ ϕ ◦ τ ◦ ϕ−1(A) is convex (resp., concave) on Mn{Ξ}.
(c) The functional A 7→ ϕ ◦ τ ◦ ϕ−1(A) is convex (resp., concave) on Dn{Ξ}.
(d) For any interval Ω and any function f : Ω → Λ such that ϕ ◦ f(t) is convex

(resp, concave), the functional A 7→ ϕ ◦ τ ◦ f(A) is convex (resp., concave) on
Mn{Ω}.

Proof. We prove the convexity case in (a)–(d). First, assume only that ϕ(t) is a strictly

increasing continuous function on Λ, and we show that each of (b), (c), and (d) are
equivalent to condition (c′) in the proof of Proposition 5.1. It is obvious that (d) ⇒ (b)

⇒ (c) ⇔ (c′). To prove (c′) ⇒ (d), let f be as stated in (d). Then f = ϕ−1 ◦ ϕ ◦ f
is automatically convex on Ω since ϕ−1 is increasing and convex on Ξ as shown in the

proof of Proposition 5.1. Let A,B ∈ Mn{Ω}. By the Ky Fan majorization (A+B)/2 ≺
(A↓ +B↓)/2 in the same notation as in the proof of Theorem 4.1, we have

f

(

A+B

2

)

≺w f

(

A↓ +B↓

2

)

= ϕ−1 ◦ ϕ ◦ f
(

A↓ +B↓

2

)

≤ ϕ−1

(

ϕ ◦ f(A↓) + ϕ ◦ f(B↓)

2

)

so that, by using (c′),

ϕ ◦ τ ◦ f
(

A+B

2

)

≤ ϕ ◦ τ ◦ ϕ−1

(

ϕ ◦ f(A↓) + ϕ ◦ f(B↓)

2

)

≤ ϕ ◦ τ ◦ f(A↓) + ϕ ◦ τ ◦ f(B↓)

2

=
ϕ ◦ τ ◦ f(A) + ϕ ◦ τ ◦ f(B)

2
.

Hence it has been proved that (b)–(d) and (c′) are equivalent.
Next, assume that ϕ(t) is smooth as stated in the theorem with ϕ′′(t) < 0, and

we prove the equivalence between (c′) and (a). Let ti ∈ Λ◦ and si := ϕ(ti) ∈ Ξ◦ for
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1 ≤ i ≤ n. For every xi ∈ R, 1 ≤ i ≤ n, one can directly compute the second derivative

d2

du2
ϕ

(

1

n

n
∑

i=1

φ−1(si + uxi)

)
∣

∣

∣

∣

∣

u=0

= ϕ′′

(

1

n

n
∑

i=1

ti

)(

1

n

n
∑

i=1

xi

ϕ′(ti)

)2

− ϕ′

(

1

n

n
∑

i=1

ti

)(

1

n

n
∑

i=1

ϕ′′(ti)x
2
i

ϕ′(ti)3

)

.

Hence condition (c′) is satisfied if and only if
(

1

n

n
∑

i=1

xi

ϕ′(ti)

)2

≤ ϕ′
(

1
n

∑n
i=1 ti

)

ϕ′′
(

1
n

∑n
i=1 ti

)

(

1

n

n
∑

i=1

ϕ′′(ti)x
2
i

ϕ′(ti)3

)

(5.1)

holds for all ti ∈ Λ◦ and xi ∈ R. If this holds, then letting xi := ϕ′(ti)
2/ϕ′′(ti) gives,

thanks to ϕ′(t)/ϕ′′(t) < 0,

1

n

n
∑

i=1

ϕ′(ti)

ϕ′′(ti)
≥ ϕ′

(

1
n

∑n
i=1 ti

)

ϕ′′
(

1
n

∑n
i=1 ti

) ,

which means that ϕ′(t)/ϕ′′(t) is convex on Λ◦. Conversely, if ϕ′(t)/ϕ′′(t) is convex on
Λ◦, then we have (5.1) as follows:

(

1

n

n
∑

i=1

xi

ϕ′(ti)

)2

=

(

1

n

n
∑

i=1

ϕ′(ti)
1/2

{−ϕ′′(ti)}1/2
· {−ϕ′′(ti)}1/2xi

ϕ′(ti)3/2

)2

≤ ϕ′
(

1
n

∑n
i=1 ti

)

ϕ′′
(

1
n

∑n
i=1 ti

)

(

1

n

n
∑

i=1

ϕ′′(ti)x
2
i

ϕ′(ti)3

)

by using the Schwarz inequality. Thus (c′) follows.

The concavity case is similarly proved, or else one can reduce the assertion to the
convexity case by considering −ϕ(−t) on −Λ and −f(t) on Ω. �

For given functions ϕ on Λ and f : Ω → Λ, if we define ϕ̃(t) := ϕ(−t) on −Λ and

f̃(t) := −f(t) on −Λ, then ϕ̃ ◦ f̃ = ϕ ◦ f and ϕ̃ ◦ τ ◦ f̃ = ϕ ◦ τ ◦ f on Ω. By taking

account of these, we see that Theorem 5.2 holds true also when the assumption ϕ′(t) > 0
is replaced with ϕ′(t) < 0.

The following examples are applications of Theorem 5.2:

Example 5.3. When ϕ(t) = log t on (0,∞), ϕ′(t) > 0, ϕ′′(t) < 0 and ϕ′(t)/ϕ′′(t) = −t.

Hence, if f : Ω → R is convex, then log τ
(

ef(A)
)

(also logTr ef(A)) is convex on Mn{Ω}.
In particular, log Tr eA is called the pressure of A = A∗ and its convexity in A is well-
known.

Example 5.4. In case of ϕ(t) = et on R, ϕ′(t)/ϕ′′(t) = 1. Hence, if f : Ω → (0,∞) is

concave, then det1/n f(A) = exp τ(log f(A)) is concave on Mn{Ω}. By continuity this
is true if f is non-negative and concave on Ω; hence (2.7) is recaptured.

Example 5.5. When ϕ(t) = tr on [0,∞) with r ∈ (0,∞)\{1}, ϕ′(t)/ϕ′′(t) = (r−1)−1t.

Hence, ‖f(A)‖1/r = {Tr f(A)1/r}r is convex (resp., concave) on Mn{Ω} if r ∈ (0, 1)
(resp., r ∈ (1,∞)) and f : Ω → [0,∞) is convex (resp., concave). We thus have

the convexity of Schatten norms and the concavity of Schatten anti-norms involving
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a convex/concave function f(t). A stronger statement has been obtained in Corollary
3.12.

Finally, we state an abstract version of Theorem 4.1. In fact, in case of ϕ(t) = tr,

combined with Proposition 3.7 and its norm version, it becomes the superadditivity part
(when r ∈ (1,∞)) of Theorem 4.1 and its subadditivity version (when r ∈ (0, 1)). The

proof is essentially the same as that of Theorem 4.1.

Proposition 5.6. Let ϕ be a strictly increasing continuous function from [0,∞) onto

itself. Let ‖ · ‖ (resp., ‖ · ‖!) be a symmetric norm (resp., anti-norm) and Φ (resp.,
Φ!) be the corresponding gauge (resp., anti-gauge, see Proposition 3.2) function on R

+
n .

Assume that the n-variable function ϕ◦Φ◦ϕ−1(~x) (resp., ϕ◦Φ!◦ϕ−1(~x)) is convex (resp.,

concave) on R
n
+. Then for any convex (resp., concave) function f : [0,∞) → [0,∞) such

that ϕ ◦ f is subadditive (resp., superadditive), the functional A 7→ ϕ(‖f(A)‖) (resp.,

ϕ(‖f(A)‖!)) is subadditive (resp., superadditive) on M
+
n .
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