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ON THE SPECTRAL THEORY FOR RICKART ORDERED
∗-ALGEBRAS

DMITRY SH. GOLDSTEIN, ALEXANDER A. KATZ, AND ROMAN B. SHKLYAR

Abstract. RO∗-algebras are defined and studied. For RO∗-algebra T , using
properties of partial order, it is established that the set of bounded elements
can be endowed with C∗-norm. The structure of commutative subalgebras of
T is considered and the Spectral Theorem for any self-adjoint element of T is
proven.

1. Introduction

The theory of AW ∗-algebras and Baer ∗-ring was introduced and intensively
studied by Kaplansky (see [7] and [8]). Those rings are defined axiomatically by an
annihilator condition and have a rich algebraic structure.

Let us recall some definitions:

Definition 1. A Baer ∗-ring is a ∗-ring A such that for any subset S of A, the right
annihilator of S is the principle right ideal generated by a projection (a self-adjoint
idempotent).

The projections in Baer ∗-rings form a lattice and admit a classical equivalence
relation. It has been proven that the set of all projections in a AW ∗-algebra forms
a complete lattice. A lot of important properties which are always fulfilled in
W ∗-algebras hold as well in the AW ∗−algebras (polar decomposition, properties
of partial isometries, etc.). A regular construction of measurable operators affil-
iated to a finite AW ∗−algebra has been done by Berberian. This construction
is executed in an elegant algebraic manner and the output can be interpreted as
an algebra of unbounded linear operators satisfying the annihilator condition. All
results mentioned above can be found in [4].

Rickart ∗-rings are σ-analogues of the Baer ∗-rings. Similarly to the Baer ∗-
rings, Rickart ∗-rings are defined by an annihilator condition, but in another, more
”modest” way:

Definition 2. A Rickart ∗-ring is a ∗-ring A such that for any element x of A the
right annihilator of x is the principle right ideal generated by a projection.

The structure of Rickart C∗-algebras was studied in details in the papers of
Kaplansky, Berberian, Maeda, Ara and the first author of the present paper (see
[1]-[6]). It turns out so that the basic properties such as the equivalence of the
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right and left projections, the polar decomposition and the σ-normality also hold
in Rickart C∗-algebras (see [1], [2], [4]).

Similarly to the AW ∗-case, a finite Rickart C∗-algebra A enjoys a regular embed-
ding into a ring of measurable operators (see [2] and for more details [6]). This ring
of measurable operators plays a crucial role in the proof of the polar decomposition
property in Rickart C∗-algebras.

In this paper we define more general objects which can be also interpreted as
the algebra of unbounded operators endowed with Rickart’s annihilator condition.
In the next section of the present paper we define RO∗-algebras and establish
their basic properties. Notice that in our axiomatic and technic we were strongly
influenced by Chilin’s work devoted to BO∗algebras (see [5]). In section 3 we prove
that the algebra of all bounded elements M of a RO∗-algebra can be endowed with
C∗-norm and that M is complete in that norm. Section 4 is devoted to commutative
RO∗-algebras and their Spectral theory.

2. Rickart ordered ∗-algebras

Let T be a Rickart ∗-algebra,

Th = {x ∈ T : x∗ = x},

K = {x =

n
∑

k=1

x∗
kxk} : xk ∈ T },

and

K =

{

x ∈ Th : x =
n
∑

i=1

x∗
i xi, for n ∈ N, xi ∈ T

}

.

We say that T satisfies the positive square root axiom (PSR) if for any x ∈ K
there exists

y ∈ K ∩ {x}′′ ,
such that

y2 = x,

where x′′ is a bicommutant of the element x.

Proposition 1. Let T be a Rickart ∗-algebra satisfying the (PSR)-axiom. Then K
is a proper cone.

Proof. The properties
K +K ⊂ K,

and
λK ⊂ K,

where λ ≥ 0, follow immediately from the definition of K.
Now, let

x ∈ K ∩ (−K).

Then
x = u∗u = −v∗v.

Thus it follows that
u∗u+ v∗v = 0.

There exist y, z ∈ Th such that
y2 = u∗u,
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z2 = v∗v,

and

y2 + z2 = 0.

Therefore,

y3 + yz2 = 0,

yz2 = −y3,

and

yz2 = z2y.

In just the same way we conclude that

y2z = zy2.

Hence,

y2z2 = yz2y = (zy∗)(zy) ∈ K.

There exists

a ∈
{

y2z2
}′′

,

such that

a = a∗ and a2 = y2z2.

Note that

y ∈
{

y2z2
}′′

,

and

ya = ay.

Further,

0 = y2(y2 + z2) = y2 + a2 = (y2 + ia)(y2 − ia).

Consequently,

y2 + ia = 0, and x = y2 = 0.

�

Remark 1. The cone K defines a partial order on the algebra T :

x ≤ y
def⇐⇒ y − x ∈ K.

Definition 3. We say that T satisfies the Fisher-Riesz axiom (FR) if the following
holds:

If a sequence {xn} ⊂ Th satisfies conditions

0 ≤ xn ≤ εn1,

such that
∞
∑

k=1

εk < ∞,

then there exists

sup
n
∑

k=1

xk ∈ Th.

Definition 4. Rickart ∗-algebra T is called RO∗-algebra if T satisfies the axioms
(PSR) and (FR).
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Definition 5. Let T be a RO ∗-algebra. A ∗-subalgebra B of T is called a RO∗-
subalgebra, if B is RO∗-algebra and

RPB(x) = RPT (x),

for all x ∈ B.

Remark 2. Recall that BO∗-algebra is Baer ∗-algebra satisfying the axioms (PSR)
and (FR) (see [5] for details).

Example 1. Let
X = [0, 1],

and let F be a σ-algebra of X that contains each subset

A ⊆ X,

such that either A or X\A is countable. Define T to be a ∗-algebra of all measurable
complex functions on (X,F ). It is easily seen that T is a RO∗-algebra which is not
BO∗-algebra.

3. The algebra of bounded elements in a RO∗-algebra

The order properties which are axiomatically defined on RO∗-algebra T allow
us to specify a set of bounded elements of T .

In arbitrary RO∗-algebra T we will extract some C∗-subalgebra which contains
all of bounded elements of T .

Definition 6. An element
a+ ib,

(a, b ∈ Th) is bounded, if there exists λ ≥ 0 such that

−λ1 ≤a, b ≤ λ1.

Proposition 2. The set of all bounded elements of a RO∗-algebra is a RO∗-
subalgebra. If

x∗x ≤ 1,

then
xx∗ ≤ 1.

Proof. Let us denote by M the set of all bounded elements of T . Let x, y ∈ M,

x = a+ ib, y = c+ id,

−λ1 ≤a, b ≤ λ1,

−µ1 ≤c, d ≤ µ1,

for some λ, µ ≥ 0. Obviously,

x+ y, x∗, αx ∈ M,

where α ∈ C. We will prove that xy is also bounded. It will be sufficient to prove
it for the case

x, y ∈ Th,

i.e.
x = a, y = c.

If
x, y ≥ 0,



SPECTRAL THEORY FOR RO∗-ALGEBRAS 5

then, since √
x ∈ {x}′′,

√
y ∈ {y}′′,

we have

xy ≥ 0.

Therefore, the inequalities

λ1+x ≥ 0 and λ1−x ≥ 0,

imply

x2 ≤ λ21.

In just the same way

y2 ≤ µ21.

Since

(x+ y)2 ≥ 0,

we have

−(x2 + y2) ≤ (xy + yx) ≤ (x2 + y2).

Consequently,

−(λ2 + y2)1 ≤ (xy + yx) ≤ (λ2 + µ2)1.

Similarly,

−(λ2 + y2)1 ≤ i(xy − yx) ≤ (λ2 + µ2)1.

On the other hand,

xy =
(xy + yx)

2
− i

(

1

2i

)

(xy − yx),

hence, xy ∈ M.
Thus, M is a ∗-subalgebra of T.
Let now x ∈ M,

RM (x) = {y ∈ M : xy = 0} ,
be a right annihilator of x. There exists a projection

e ∈ M,

such that

R(x) = {x ∈ T : xy = 0} = eT.

It’s clear that

RM (x) = R(x) ∩M.

On the other hand,

0 ≤ e ≤ 1,

therefore e ∈ M, and

RPM (x) = RPT (x).

If

x ∈ M ∩K,

then there exists

y ∈ K ∩ {x}′′ ,
such that

y2 = x.
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Since

−1− y2 ≤ 2y ≤ 1+y2,

we have

− (1+ x)

2
≤ y ≤ (1+ x)

2
,

i.e. y is a bounded element. Thus, M satisfies (PSR).
Let now a sequence {xn}n∈N satisfies conditions

0 ≤ xn ≤ εn1,

and
∞
∑

n=1

εn < +∞.

Obviously,
k
∑

n=1

xn ≤
(

k
∑

n=1

εn

)

1 ≤
(

∞
∑

n=1

εn

)

1,

for all k ∈ N. Then

0 ≤ sup

k
∑

n=1

xn ≤
(

∞
∑

n=1

εn

)

1,

i.e., the algebra M satisfies the axiom (RF). �

Theorem 1. Let T be a RO∗-algebra, M denotes a subalgebra of all bounded el-
ements of T. Then there exists a norm on M such that M is (relatively to this
norm) a C∗-algebra.

Proof. Define

‖x‖ = inf {λ ≥ 0 : −λ1 ≤x ≤ λ1} .
One can easily check that ‖·‖ is a norm on Mh. We will prove that (Mh, ‖·‖) is a
Banach space. Let

{xn}n∈N ⊂ Mh,

∞
∑

n=1

xn < +∞.

Let us denote

an = ‖xn‖ 1+ xn, bn = ‖xn‖ 1− xn.

Then

xn =
1

2
(an − bn) ,

‖an‖ ≤ 2 ‖xn‖ ,
‖bn‖ ≤ 2 ‖xn‖ .

Therefore

0 ≤ an ≤ 2 ‖xn‖1, 0 ≤ bn ≤ 2 ‖xn‖1.
Because of axiom the (RF) axiom, there exist

sup
n

k
∑

n=1

an = a, and sup
n

k
∑

n=1

bn = b.
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Since
n
∑

k=1

ak ≤ 2

∞
∑

k=1

‖xk‖1,

we have inequalities

0 ≤ a ≤ 2
∞
∑

k=1

‖xk‖ 1,

i.e. a ∈ M . In just the same way we obtain the fact that b ∈ M .
We will prove now that

||a−
k
∑

n=1

an|| → 0, when k → ∞.

In fact,
∥

∥

∥

∥

∥

a−
k
∑

n=1

an

∥

∥

∥

∥

∥

= sup
s≥k

(

s
∑

i=1

an −
k
∑

n=1

an

)

= sup
s≥k

s
∑

n=k+1

an

Note that

0 ≤
s
∑

n=k+1

an ≤
(

2

∞
∑

n=k+1

||xn||
)

1.

Hence

a−
k
∑

n=1

an ≤
(

2

∞
∑

n=k+1

||xn||
)

1,

and
∥

∥

∥

∥

∥

a−
k
∑

n=1

an

∥

∥

∥

∥

∥

≤ 2

∞
∑

n=k+1

||xn|| → 0,

as k → ∞. In the analogous way
∥

∥

∥

∥

∥

b−
k
∑

n=1

bn

∥

∥

∥

∥

∥

→ 0,

as k → ∞.
Now,

k
∑

n=1

xn =
1

2

k
∑

n=1

(an − bn) →
1

2
(a− b) ,

as k → ∞. Thus, (Mh, ‖·‖) is a Banach space.
The next claim is to prove that the cone

K ∩M,

is closed in the norm ‖·‖ Let x ∈ K, and

‖x‖ ≤ 1.

Then
0 ≤ x ≤ 1,

0 ≤ 1− x ≤ 1,

‖1− x‖ ≤ 1.

Conversely, if x ∈ Mh,
‖x‖ ≤ 1,
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‖1− x‖ ≤ 1,

then

1− x ≤ 1,

x ≥ 0.

Thus,

{x ∈ K : ‖x‖ ≤ 1} = {x ∈ Mh : ‖x‖ ≤ 1, ‖1− x‖ ≤ 1} .
Let

xn ≥ 0,

lim
n→∞

xn = x.

Then

lim
n→∞

‖xn‖ = ‖x‖ .
It is easy to see that there exists

λ > 0,

such that

‖λxn‖ ≤ 1.

Since

λxn ≥ 0,

we have that

‖1− λxn‖ ≤ 1.

Obviously,

‖λx‖ ≤ 1,

and

‖1− λx‖ ≤ 1.

Therefore

λx ∈ K,

and

x ∈ K.

Thus,

K ∩Mh,

is closed in (Mh, ‖·‖) . Assume now that

x ∈ M,

x 6= 0,

and

y = −x∗x.

Then

y 6= 0,

and

y /∈ K.

By the Hahn-Banach Theorem there exists a continuous functional ϕ on Mh which
is non-negative on K and

ϕ(y) < 0.
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We now extend the functional ϕ up to a functional on M in the usual linear
manner:

ϕ(a+ ib) = ϕ(a) + iϕ(b),

for any a, b ∈ Mh. Therefore ϕ is the state on M, i.e.

ϕ(x∗x) > 0,

and we can put

ϕ(1) = 1.

Let πϕ be a representation of a ∗-algebra M in the algebra of all bounded linear
operators on some Hilbert space Hϕ (the Gelfand-Naimark-Segal construction). It
is well known that for all x ∈ M the following inequality is valid:

ϕ(y∗x∗xy) ≤ ‖x∗x‖ϕ(y∗y).
Hence πϕ(x) is a bounded linear operator on Hϕ, that is, πϕ is a ∗-representation
of M into the ∗-algebra B(Hϕ).

Now, let

π =
⊕

ϕ∈Φ

πϕ,

be a direct sum of the all states on M , where Φ denotes the set of all states on M .

Then Φ is a faithful representation of M into the algebra B

(

⊕

ϕ∈Φ

Hϕ

)

. It is clear

now that the norm

q(x) = ‖π(x)‖ ,
induces the norm ‖·‖ on Mh. �

4. Commutative RO∗-algebras and the Spectral Theorem

In this section we describe the structure of commutative RO∗-algebras and prove
the Spectral Theorem for self-adjoint element of a RO∗-algebra.

Theorem 2. Let T be a commutative RO∗-algebra. Then Th is a conditionally
σ-complete lattice.

Proof. Assume that x ∈ Th and x is non-comparable with 0. There exists

y ≥ 0,

such that

y2 = x2.

Put

a =
1

2
(y + x) ,

and

b =
1

2
(y − x) .

Since x is non-comparable with 0, we can conclude that a, b 6= 0.
Note that

b ∈ r(b + x),

and

a ∈ r(x − a).
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Because T is Rickart ∗-algebra, there exist projections e and f, such that

r(x + b) = eT,

and
r(a− x) = fT.

Obviously,
xe = ye,

xf = −yf,

and
(1− e) (1− f) = 0.

Therefore,
f − ef = 1− e,

and
ye− x = −x(1− e) = −x(f − ef) = y(f − ef) ≥ 0.

Thus,
ye ≥ x.

Now, let
d ∈ Th,

d ≥ 0,

and
d ≥ x.

Then
d = de + d(1− e) ≥ ede ≥ exe = ye.

This yields
ye = sup {x,0} = x ∨ 0.

We have showed that Th is a vector lattice.
To prove the conditional σ-completeness let us consider an increasing sequence

{xn}, where
xn ≥ 0

and
xn ≤ v.

The element
w =

√

v2 + 1+ v,

has an inverse
w−1 =

√

v2 + 1− v.

The sequence
{

w−1xnw
−1
}

is increasing and bounded by w−1. It is easy to see
that

w−1 ≤ 1.

Thus
w−1xnw

−1 ∈ Mh.

By Theorem 1 M is a Rickart C∗-algebra, consequently, Mh is a conditionally
σ-complete lattice (see, for example, [1]). Therefore, there exists

x = sup
{

w−1xnw
−1
}

.

It is clear that
wxw = sup {xn} ,
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belongs to Th. �

Corollary 1. Let T be a commutative RO∗-algebra. Then Th is Kσ-space.

Theorem 3. Let T be a RO∗-algebra and let B be some maximal commutative
subalgebra of T . Then B is a RO∗-subalgebra of T .

Proof. The proof that B is a Rickart ∗-algebra is analogous to [5]. Further, let

x ∈ KB =

{

n
∑

i=1

x∗
i xi : xi ∈ B, where i = 1, 2, ..., n

}

.

There exists
y ∈ KB ∩ {x}′′ ,

such that
y2 = x.

Thus the algebra B satisfies the(PSR) axiom. To prove the (RF) axiom, we take

xn ∈ B,

0 ≤ xn ≤ εn1,

and
∞
∑

k=1

εk < ∞.

One can see there exists

x = sup

n
∑

k=1

xk,

in Th. Since

x ≤
(

∞
∑

k=1

εk

)

1,

we can conclude that x belongs to the Rickart C∗-algebra of bounded elements of
T . We have seen above (Theorem 1) that

‖x− sn‖ → 0,

as n → ∞, where

sn =

n
∑

k=1

xk,

and therefore
x ∈ (B ∩M)

′
.

Now let
a ∈ Bh,

and
a ≥ 0.

Then
y =

√

x2 + 1− x ≥ a+ 1,

and y is invertible. Notice that

0 ≤ y−1 ≤ 1,

and
0 ≤ y−1ay−1 ≤ y−1.
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Thus
y−1ay−1 ∈ B ∩M.

Since
y−1 ∈ B ∩M,

we have
xy−1 = y−1x.

Therefore
y−1xay−1 = y−1axy−1,

and
xa = ax.

As any element c ∈ B is linear combination of positive ones, we obtain that

xc = cx.

Since B is a maximal one we can conclude that x ∈ B.
To finish the proof, notice that

x = sup sn,

in Th. Hence
x = sup sn,

in Bh. Thus B is a RO∗-algebra. �

Now we can proceed to formulate the main result of this section.

Theorem 4 (Spectral Theorem). Let T be a RO∗-algebra, x ∈ Th. There exists a
unique family of projections {eλ}λ∈R

satisfying the following properties:
(a)

eλ ≤ eµ if λ ≤ µ;

(b)
inf eλ = 0;

(c)
sup eλ = 1;

(d)
sup
µ<λ

eµ = eλ;

(e)
eλ · x ≤ λeλ, e⊥

λ

· x ≥ λe⊥

λ

.

Moreover, for all ε > 0 there exists δ > 0 such that
∥

∥

∥

∥

∥

x−
n
∑

i=1

ξi (λi − λi−1)

∥

∥

∥

∥

∥

< ε,

for any partition
{λi}∞i=0 ,

of the real line with
sup (λi − λi−1) < δ,

and
ξi ∈ [λi−1, λi] .

Proof. One obtains the proof by using the classical proof of the Spectral Theorem
for Kσ-spaces in [9], and previous results of this section. �
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