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Abstract

In this paper, we present a modular strategy which desckiégproperties of the absolute
primary decomposition of an equidimensional polynomiakiddefined by polynomials with ra-
tional coefficients. The algorithm we design is based on tassical technique of elimination
of variables and colon ideals and uses a tricky choice of @iimegers to work with. Thanks
to this technique, we can obtain the number of absolute uaide components, their degree,
multiplicity and also the affine Hilbert function of the remkd components (namely, their initial
ideal w.r.t. a degree-compatible term ordering).

Introduction

In this paper we design an algorithm whose aim is quite sirptate:
Given a set of polynomial rational equations which definegridimensional algebraic s#t” of C”,
we would like to get as many information as possible onittieglucible componentsf this algebraic
set.

We can rephrase the problem in algebraic language: givedeah fwith suitable hypothesis on
its dimension) in the polynomial ring ovél[X] defined by rational generators, find all the possible
information about its primary components.

The problem is really simple to state and many authors lod&eéfficient strategies to get the
irreducible decomposition of an algebraic set: one can@e@stancel[B] and the references therein
to have an overlook of the different techniques. In many QarpAlgebra Systems (CAS for short)
you can find routines computing the primary decompositioarofdeal: the underlying algorithm is
often the one described in [13]. Nevertheless, the probkeneally challenging since the existing
algorithms and implementations often focus on particubses, e.@-dimensional ideals (see for
instance[[10]); for more general situations, also the haglémented algorithms (for instance, the
ones in[[4] or[[18]) may have unsatisfying time of executiow ahere may be problems of memory
allocation. In fact, the computations required to a persomaputer to find a primary decomposition
are often quite heavy.

Our aim is to design an algorithm concerning the decompusitf an ideal which can give an output
in a reasonable time and with a limited use of memory.

The main computational tool that we use are modular comipatgttaking this technique from

the absolute factorization algorithm for bivariate polgrials presented in [3].
Recent papers about decomposition of algebraic sets (seestance([12],[[21]) focus on getting
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information about the irreducible components from a gersgttion with a linear space, namely they
bring back the problem to the study ofadimensional ideal.

In this paper we will bring back the problem of computing an@ary decomposition to the problem
of computing an absolute factorization; this technique isdme sense "classicall’ ([16]), but not very
exploited because not efficient from the computational tpafiiew; a powerful improvement of this
technique is in[[4], where the authors avoid the usgeiericprojections in order to compute the
equidimensional isoradical decomposition of an ideahaisis coefficient ring) or a finite field of
positive characteristic. Our approach is instead to usergeprojections (by a generic change of vari-
ables and projections on coordinate linear spaces) andierpbdular computations to move around
the computational difficulties, preserving a lot of datacgming the absolute primary decomposition
of the ideal. The output of our algorithm will not be the comtpl primary decomposition of the given
ideal, but it will return information concerning the compurts, such as number, degree, multiplicity
and, for reduced components, the affine Hilbert function.

In Sectior_1 we will show that once known information about @fithe primary components of
the ideal, the same is known for other components too. Welginephrase the definition of "con-
jugacy" for absolute factors of a multivariate polynomidthwrational coefficients (se€l[5], Lemma
9.0.8), for primary components of an ideal generated bymmtyials with rational coefficients. De-
gree, multiplicity and affine Hilbert function are “invaniaby conjugacy”, so if we obtain this in-
formation about a primary component, we actually have tmeesamformation for all the primary
components in its "conjugacy class", avoiding to repeatmaations.

In Section 2 we show that, fixed an algebraic extengiasf Q, there are infinite prime integers
that implicitly define a homomorphism frot to Z/pZ (more precisely, an inclusion df in Q,,
Lemmd2.B). This means that with a careful choice of a ppimae can reduce the coefficients of a
polynomial inL[X] modulop. Furthermore, infinite prime numbers preserve intereginogerties of
an ideal inL[X], namely the initial ideal with respect to some degree-cdiblgaterm ordering and,
as a consequence of this, the affine Hilbert function.

Summing up, we can choose a prim&vhich allows modular computations in (we can choose it
using Lemma 2]3). Only a finite number of primgsloes not preserve the properties of the primary
components we are interested in, so we can assume that weoidiang them by taking a “generic”
primep.

In Section[B we present the exact strategy to obtain the pcongponents of an ideal. This
technique is mainly based on elimination of variables, ileorto bring back the problem of primary
decomposition to a problem of factorization. This strate@s first investigated by Grete Hermann
in [16] and it is similar to the splitting techniques presshtn [4], but we present it completely for
lack of an accessible reference on the whole strategy. Neless, the technique of Sectldn 3 is not
efficient from a computational point of view: first of all, peations are actually computed with a
generic change of coordinates and an elimination of vaggapkrformed by a Groebner Basis; then,
in order to obtain the reduced primary components, we coenguablon ideal; this is performed again
by an elimination Groebner Basis.

In Sectior 4 we try to gain in computational efficiency, eviene “lose” the exactness of Section
[3. We will apply the modular results of Sectioh 2 on the exégporithms of Sectioh]3. We compute
projections, factorizations and colon ideals modulo wélbsen prime integers; we do not get the
reduced primary components, but we obtain an algorithmd@tigm[3) which can compute the initial
ideal of the reduced componentsménd give information about the non-reduced components.

Finally, in Sectiori b, we test our strategy on a simple examalcomplete intersection ideal in
3 variables, getting the output of Algorithim 3 in a really seaable time. The same ideal could
not be decomposed by other CAS in 1 hour (because of probldathsowvemory allocation); obvi-
ously the comparison between our strategy and implementathyy decomposition algorithms is



not complete, since Algorithiinl 3 does not return the absghiimary decomposition of the input
ideal. However this comparison enlightens promising peromces of our strategy and this can be a
starting point for designing an efficient primary decompiosialgorithm.

Notations

In what follows, we will work in a polynomial ringR with coefficients in a field of characteristic
0: R =K[Xy,..., X,] = K[X]. We will precise, when needed,if = Q, Q(«) or C.

Given an ideal C R we will consider its zero seti@”: # = V(a) = {P € C"|f(P) = 0Vf €
a}l.

1 Affine Hilbert Function and Conjugacy

In this section we introduce the main definitions concertimegprimary decomposition and the affine
Hilbert function of an ideah C R.
We show that some of the primary components of an idesk very “similar” to each other, in the
sense that given a set of generators for a primary comporerttan get a set of generators for another
primary component by means obnjugacy just like we do for the absolute factors of a polynomial
with rational coefficients [([5], Lemma 9.0.8). This allows @ avoid repeating the computation of
the affine Hilbert function for the conjugate componentsgsiit is invariant by conjugacy.

For all the definitions and properties concerning primargodeposition, the main reference is
[1], Chapter 4.

Definition 1.1. A proper idealq in a ring R is primaryif the following condition holds:

xy €qandz ¢ q =y € /1.
Every prime ideal is obviously primary.

Proposition 1.2([1], Proposition 4.1) Let q be a primary ideal inR. Thenp = ,/q is the smallest
prime ideal containingy; we say thay is p-primary.

Definition 1.3. Aprimary decompositioof an ideala in R is an expression af as a finite intersection
of primary ideals:

a=()a (1.1)
=1
If moreover
1 qi 2z 9
2. the prime idealp; = ,/q; are all distinct,

then the primary decompositioh_(11.1) is said to téimal. Any primary decomposition can be
reduced to a minimal one (s€e [1], page 52).

Since we assume to work in a polynomial rikgwith coefficients in a field, a minimal primary
decomposition always exists.

The factorization of a multivariate polynomial and the paitp decomposition of a polynomial
ideal are very close to each other: indeed, the primary dposition of a principal ideal corresponds



to computing the absolute factorization of the generatdhefideal. So we can look at the factoriza-
tion of a multivariate polynomial as a particular case ofraty decomposition.

Thanks to this similarity, it is natural to extend the defomtof degreeandmultiplicity of a factor to

a primary component. We can define them througheffiae Hilbert function[17], Section 5.6):

Definition 1.4. Leta be an ideal in the polynomial ring standard graded.

We first defin€ R<;), the vector space generated by all the polynomial®& @f degree< i. The
K-vector spacéa<;) is the vector subspace 6R<;) which consists of the polynomialsbf degree
< 4. Sincea<; = R<; N a, we can view the vector spaé&:;/a<; as a vector subspace &f/a.

The mapH Fp ) : Z — Z defined by

HF}%/a(Z') = dimg ((R<;)/(a<;)) fori e Z
is called theaffine Hilbert functionof R/a.

From Definition[ 1.4, it is natural to define the affine Hilbegriss, polynomial, dimension and
the affine regularity index of/a. The definitions are similar to the analogous for the homeges
case; for all these definitions and their properties, wer tef§L7], Section 5.6.

Definition 1.5. Leta be a proper ideal inR, consider its affine Hilbert ponnomi&Ysz/a(t) € QJt].
Thedegreeof R/ais (dim(R/a))! - (Icoeff(HPg/u(t)).

We will often say “dimension and degree &ff meaning the dimension and degreeRyfa.

Finally, once defined the degree of an ideal, we can define thgplicity of a primary compo-
nent. Here we state the algebraic definition, which cornedpdo the intuitive idea that the multipli-
city counts “how many times” the primary component is repdat

Definition 1.6. [[2], Definition 10] Let ¢ € R be ap-primary ideal. Then thenultiplicity of g,
mult(q;), in p is deg(p)/ deg(q).

We will often talk about the multiplicity of a primary compent, implying that it is the multi-
plicity in its radical.

We now briefly recall how to explicitly compute the affine Hiltb function.

For a polynomial ringK[X], we will denote withT™ the monoid of monomials ii&[X] and with
X! = Xfl e ,X,i",z'j € N a monomial. A term orderingg on T" is degree compatibld for any
couple of monomial¥X’, X’

X' < X7 = deg X! < degX”.

Once fixed a term ordering on T", for a polynomialg € K[X], we denote withL M<(g) (or
simply LM (g) if there is no ambiguity) the maximal monomial with respecktappearing iry with
non-zero coefficient.

In the following Proposition/ Fr,, is the Hilbert function for a homogeneous ideal.

Proposition 1.7. Let < be a degree compatible term ordering @tt. For everyi € Z, we have
HFg/u(z‘) = > o HFr/Lam_ (7). In particular, we haveHFg,/a(z') = HFp 10 (o) (i) for all
i €Z. -

Proof. Seel([17], Proposition 5.6.3. O



Proposition_1]7 gives us the practical way to compute thaeaffiilbert function ofa: chosen
a degree compatible term ordering we can compute the initial ideal afand then we count the
number of elements in the vector spaeeLM<(a)(j) for every;j < i.

We now show with a few lemmas that, given an idealefined by polynomials with rational
coefficients, the relation of the primary decomposition@X] and the primary decomposition on
C[X] is similar to the relation between a rational and an absdteorization of a multivariate
polynomial with rational coefficients (as shown In [5], Lerarf.0.8). In other words, there is a
conjugacy relation among some of the primary components.

Definition 1.8. Considera ideal in C[X] defined by a set of polynomials with rational coefficients.
Leta = ﬂjzl qi, 9; € Q[X] be therational primary decompositioof a; g; (resp.V(q;)) is arational
primary componentf a (resp. ofV (a)).

We then consider a primary decompositiondfX| of each rational primary componenj:

0 = (o € C[X.
j=1

If r;, = 1, we say thaty; (resp.V (g;)) is apure rationatomponent of (resp. ofV (a)).

Consider a non-pure rational compongntof an ideala C R. LetL; be the smallest (w.r.t.

the degree of extension @) normal algebraic extension @f such tha’rqz(l) has a set of generators
in L;[X]; assume thakL; = Q(«;) and we denote witty;(«;, X) a polynomial in the chosen set
of generators ofy;; indeed, we can think of such a generator as a polynomi&|i4, X] with Z
evaluated iry;. Consider the Galois group &f; overQ, G; = Gal(L;/Q).

For everyo € G;, starting fromqgl), with q§1) = pgl), we can define an ideal in the following
way

0tV = (fil@nX),..., fila, X)) = o(@) = (fi(o(e:), X), ..., filo (i), X))

Obviously, the definition o&(qgl)) is independent from the chosen set of generatorélb,fqgl) and
a(q§”) have the same dimension; furthermore it is straightforwhad the ideab(qgl)) is a(pgl))—
primary. Finally, ifr,o € G;, 7 # o, thenT(qgl)) # a(q§”) andT(pgl)) # o—(pgl)).

We now show that actually the ideai$q§1)) are the primary components gfin Q[X].

Lemma 1.9. Considerg; a non-pure rational component af C C[X] defined by polynomials with

rational coefficients]L; the smallest normal algebraic extension@fsuch thatqgl) has a set of
generators inL;[X], G = Gal(LL;/Q). The minimal primary decomposition gfis

ai= () o (a). (12)

o€eg;

and in particularr; = #G; = [L; : Q).

Proof. The ideala(qgl)) is a(pgl))-primary. SoN,eq 0 (q§1)> is a primary decomposition of an
ideal b.
Furthermore, it is a minimal primary decomposition. Indeédnks to the definition of the ideals

through the automorphism df;, all the associated primea(pgl)) are distinct; for what concerns
redundant primary components, for anye G, sincel; is the minimal normal algebraic extension
containing a set of generatorsqéf), then there i € ql(.l) such thaf ], ., 7(f) is not ina(ql(.l)).
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Using [1], Exercises 12 and 13 of Chapter 5, if we considera®ociated primes and the natural
homomorphismQ[X]| — L;[X], then the set of prime idealy;;} is the same as the set of prime

ideals ofLL;[X] whose contraction ip;. ThengG acts transitively on the se{tpﬁj)}j:17,,,7n, that is

j 1
P} =1, = {00} oeg-

SoN,eg @ (qgl)) is a minimal primary decomposition @f; sinceq; is a primary ideal, all its
primary components ifi.;[X] have same dimension and there are no embedded componeitts, so
primary decomposition is unique and is exactly the oné i#)(1. O

Lemma 1.10. Considera C C[X], defined by a set of polynomials with rational coefficienigh wo
embedded components. Then the minimal primary decongositi is

a= ﬂ N o (q§1>) . (1.3)

Proof. Since the ideals (ql.(l) ; are primary, we just need to show that the decomposition némnail.
Condition[1 of Definitio about minimality is straightfeard from Lemmaé_1]9.

For what concerns Conditidd 2, we just have to point out th#étére isp associated to two
different primary components ofin C[X], o q(l)), o € G;, andr qj(.l)>, T € G;, then we would

%
have two associated primes of the rational primary decoitiposncluded in one other or equal.
But this contradicts the fact thathas no embedded components and the minimality of the réationa

primary decomposition of. O

Up to relabeling the automorphisms @Gfl(L;/Q), we can rewrite[(1]3) as

0= ﬂ (ﬂ q§j>) , (1.4)

i=1 \j=1

with Ty = [LZ . Q], qij) = 0j (q§1)>

Definition 1.11. The primary decomposition_(1.4) is thbsolute primary decompositiafa and for
1 such thatr; > 2, we say thaqz(j) (resp.V(qE”)) is anabsolute componemt a (resp. ofV (a)).

If q; = ﬂ;;l ql(.j), we say thaqgj) andqgj’) areconjugate and that{qgj)}j:h,,m is aconjugacy
class Any number or property of an absolute componentigriant by conjugacyf it is the same
for all the absolute components in the same conjugacy class.

From now on we will focus on a particular kind of ideaggjuidimensionabnes.

Definition 1.12. An ideala (resp. an algebraic se#” C C"™) is equidimensionaif all of its primary
components (resp. all of its irreducible components) haeesame dimension.

Thanks to[[1], Corollary 4.11, ié is equidimensional, all of its primary components are ueigu
determined and so in this case the primary decompositioniigia.

Furthermore, there is a wide class of ideals which are eauedsional: if we consider a complete
intersection ideak € R generated by, — ¢ polynomials, it is equidimensional. This can be seen as a
consequence of the Affine Dimension Theoreml([15], Chapterdposition 7.1).

We can finally fix our purpose.



Given a non-prime equidimensional ideaC C[X], generated by polynomials with
rational coefficients, we write its primary decompositionia (1.4). Then for every
rational primary componeny; of a, we would like to find the numbers, deg(qgl))and
mult(qgl)).

If mult(qgl)) = 1 (the primary component is reduced, and so it is prime) themwwadd

also like to compute the affine Hilbert function Bf/qgl).

Remark 1.13. Thanks to Lemmia_1.110, all the information concerning thenpry componen(qz(l)
(such as degree, multiplicity and affine Hilbert functionhié component is prime) are the same for
all the conjugate componerﬁbﬁqgl)), o € Gal(LL;/Q), since we actually compute them by an initial
ideal, which is invariant by conjugacy.

2 Algebraic extensions ofQ) and modular computations

We are interested in preserving some properties of an ideaR = L[X] (L is a normal algebraic
extension ofQ) “modulo” a well-chosen prime integex First of all we need to establish how we can
compute an algebraic number modulo a primmand then we will see that in general the reduction
modulop of the coefficients of a polynomial ideal preserves the affiiibert function of the ideal
itself.

Leta = (f1,...,fs) € L[X] be an ideal.L is a normal algebraic extension @f of degree
s: L ~ Q(«), wherea is an algebraic number such that its minimal polynomig} (i) € Q[T],
degq(T) = sandq(T) = Y.;_,(T — 0i(«)) whereo; are the automorphism d&f fixing Q, o;(«) =
o, are the conjugates af overQ.

In the definition of a reduction of modulo awell-choserprime p, our aim is preserving some
features ofu.

We fix a set of generatory, . . ., fs) in Q(«)[X]. We multiply eachf; with a scalar; such that
¢ - fi € Z[a][X] and the coefficients af; - f; have g.c.d. (on the integers) equal to 1: we call such a
set of generators ifi[«o][X] primitive. We keep on writingf; for ¢; - f;.

We now consider a prime integersuch thay(7') splits inZ /pZ = F,, in the following way:

q(T) = S1(T) - S2(T)mod p, degS1(T) = 1,deg S2(T) = s—1, ged(S1(T), S2(T)) = 1. (2.1)

Thanks to Chebotarev’s Density Theorem {[22]), we know thate are infinite prime integefs
for which (2.1) holds.

Let 3, be the only root ofS;(T) in Z/pZ, 0 < B, < p —1: S1(B8,) = 0. We then define the
following map, from the ringZ[a] of Z to the finite fieldF, = Z/pZ:

Yp : Zla] = Fy
a— By (2.2)
a €Z—a modp.
This definition on the generators obviously extend to a hoorpiism of rings, well-defined

because of the choice pfand consequently ¢f,,.
We can then extend this homomorphism to the polynomials:

Up : Z[a][X] = Ry, = Fp[X]
f = Z CL[XI — f = Z¢p(a1)XI.
I I

7



If we considera = (fi,...,fs) € Q(«)[X], we can assume that the chosen generators are
primitive and are irZ[a][X]; we definea = (fi,..., fs) C R,.

Remark 2.1. Observe that the definition afis independent on the chosen set of generators of
ifa=(fi,....[s)=(fl,.... fj)then(fi,..., fs) = (fi,..., f) asideals inR,,.

Example 2.2. Consider the ideal
a=(3Y%?-2V3ZX,3YX —V3V2Z,2X% - V2Y) C C[X,Y, Z].

This set of generators has coefficients in the algebraicnside Q(\/i + \/5), which is normal,
[Q(v2 + v/3) : Q] = 4, the minimal polynomial of/2 + /3 is ¢(T) = T* — 1072 + 1.
Consider nowp = 23:

qT)=(T+21)-(T+12)-(T+2)-(T+11) mod p.

We consider the homomorphisfy such thawp(\/i+ \/5) = 21. With this definition of},, we have

that: 1, (v/2v/3) = 11,9, (v/2) = 5,9,(V/3) = 16.
Soa=(3Y?24+14ZX,3YX +127,2X? +18Y).

We can choose a primesatisfying [2.1) using the following lemma.

Lemma 2.3. [[8], Lemma 12] Letq(T") € Z[T] be a polynomial ang a prime number such that
dividesq(0), p does not divide the discriminant @f7") andp > deg(q(7T)).
Then there exists a root i@, of ¢(T"), considered as a polynomial i@, [T7].

We would like to understand in which cases computations haecalprime integep preserve the
affine Hilbert function of the ideal. From Propositiof 117, we can bring back our problem abaait th
choice of a primey preserving the affine Hilbert function to the choice of a “db@ preserving the
initial ideal (w.r.t. some term ordering) af

Assume that(gy, ..., gs) is a Groebner Basis af w.r.t. <, degree compatible term ordering,
and that these polynomials are primitive; we now choose ragpi satisfying [2.1) for the minimal
polynomial ofa. Then, we definé := (g1,...,3s) C Rp.

Proposition_LJ7 gives a necessary condition for a primegetg to preserve the affine Hilbert
function of a: if computations modulgp preserveHFg/u then they also preserveM<(a) with
respect to a degree-compatible term orderifig

We will show that a finite number of primesdoes not satisfy this necessary condition.

Lemma 2.4. Considera algebraic number o), [Q(«) : Q] = s, Ly, ..., Ly non-zero elements of
Zlal, L; = Zj;é ag.’)oﬂ'. There is a finite number of prime integersuch thaty,(L;) = 0 for some
T

Proof. We will proceed by contradiction.
Suppose that there are infinite prime integessich that/,, maps to zero at least one of the's.
In particular there is an indexsuch thatl; is mapped to zero by infinite maps. We can define the

polynomial L(T') = Y3 af)Tj.
If deg L(T) = 0, L(T) = L; is an integer and there is only a finite number/gfmappingL; to
zero, because there is only a finite numbep’sfdividing it.

We can then assume that= deg L(T") > 1. We consider a primg such that

Yp(Le) =0, p = IL(D)IIla(T)],



whereq(T') is the minimal polynomial ofy; we can choose suclpesince the set gf's we are looking
at is supposed to be infinite.

Observe that,(L;) = L(B,) mod p = 0. This means that both(7T) andq(T") can be divided by
(T — B,) modulop. But since we chosp > ||L(T)||*||¢(T)||¢, we can apply([23], Lemma 16.20:

deg (gcd(ﬂ(T),q(T))) > 1.
Sincedeg L(T)) < deg q(T), this contradicts the fact thatT) is irreducible. O

Lemma 2.5. Let a be an ideal inQ(«)[X], < a term ordering andz = {g¢1,...,g,} a Groebner
Basis ofa with respect to<, p a prime integer satisfyind (2.1) for the minimal polynoroétr.

If 4, does not map to 0 any of the coefficients of the leading mot®wofithe polynomials idx, then
G = {d1,...,4-} is a Groebner Basis af with respect to<.

Proof. SinceG is a system of generators for the ideathenG is a system of generators for
Considerg € a and its representation with respect to the bési@ventually multiplying forc € Z,
to eliminate the denominators):

,
g= Zaz‘gi, a; € R.
i=1

Then we have the corresponding representatiopwith respect to the basis:

,
g=>_ g
=1

We have thatlL M (§) = max;—1,. {LM(a;g;)}, where the fnax” is taken with respect tex.
SinceLM (a;g;) = LM (a;)LM(g;) for everyi and, does not map to zero the coefficients of

the leading monomials of the polynomials in the Groebnershage immediately havd. M (g) €

(LM (31),...,LM(gs)) and so( is a Groebner Basis far. O

Theorem 2.6. Leta be an ideal inR = Q(«)[X]. Then for a finite number of prime integerswe
have that
HFp, (i) # HFg 5(1) for somei.

Proof. We fix a degree compatible term orderiggnd consider the Groebner Ba6ls= {g1,...,,9,}
of a. Thanks to Propositio[E‘I].HFg/a(i) # HFﬁp/a(i) for somes only if the initial ideal ofa dif-
fers froma.

We apply LemmaZ2]5: there is only a finite number of primessich that the initial ideals af anda
are different. O

Corollary 2.7. There is a finite number of prime integepssuch that the affine Hilbert function
and dimension ofi and a differ. If a is a primary component of some ideal, the same holds for the
multiplicity of a anda.

3 An exact strategy: Elimination of Variables and Colon Ideds

In this section, we will present an exact technique, whiamlgimes elimination of variables, absolute
factorization and computation of colon ideals and givespttimary decomposition of an ideal.

This technique is intuitive and immediate from the georagboint of view: the elimination of
variables geometrically corresponds to projection on slimear space.



The use of projections reduces the problem of decomposiraigatiraic set to a multivariate factor-
ization; this was first showed at the beginning of the XX-thtoey (seel[16]). After that, Seidenberg
in [20] used a more rigorous formalism then Hermann’s toldisa which ideal operation can be
actually computed, depending also on the features of thapoiial ring we are working on.

The computation of a colon ideal geometrically correspdndake off the points of an algebraic set
from another one. This relation between the “differenceVanieties and colon ideals is well-known
too (seel[7], Chapter 4, §4).

The strategy of elimination of variables and computatioguadtient ideals is also used [ [4]. The
authors in[[4] can move around the computational effort afgigenericprojections (in the sense of
Definition[3.2) by using another powerful tool, which is theation between flatness and variation
of staircases. Thanks to the study of the flatness of theti@riaf the staircases, they can split the
ideal according to the splitting of the projection, evernt i§inot a generic one; they repeat the process
for the ideals obtained by splitting and at each step theg & dimension or the multiplicity of the
ideals decreasing, so their algorithm terminates. Theriéihgo in [4] has different variants and can
give the strict, isoradical and reduced equidimensionebagosition of a polynomial ideal i@[X]
(seel[4], Introduction, for the different kind of decompmsis).

Unfortunately, even if in[4] the proofs are given for a fiégldwith suitable properties th&} has, the
implementation of the algorithm in CoCoAdeals only wighor a finite field as coefficient fields, so
this algorithm is not used in a CAS for the computation of asaftite primary decomposition (see
Sectiorb).

Although the basic idea of the technique we are going to uselisknown, for lack of a complete
and accessible reference on the whole strategy relatinglgiedraic and geometrical point of view ,
we will present it in an exhaustive way.

The decomposition algorithm that we can obtain using theskniques (Algorithni]l) is exact
but not useful in practice: the computations needed are dpritg and hard to perform. Anyway, we
will investigate this method in details since later (Seciff) we will modify this strategy giving up
the exact computations in order to gain velocity in compaoitest, but preserving some information
about the irreducible and reduced components, namelyaffaie Hilbert Function.

First of all, we now investigate some properties of the pripm of varieties. For the omitted
proofs, see [21].

Definition 3.1. Alinear projections a surjective affine map:

T:C"—=C™

n
. 3.1
P=(z1,...,20) € C" = (Ly(P),..., Ln(P))  with Li(X) = ai, + Y _ a;; X;. (3.1)
j=1
In a similar way, we can define a linear projection to projeetispace, considering
7w PP\ L —P"
(3.2)

P=lwg:ay:...ian] = [Lo(P) : Li(P) i ... Lin(P)], Li(X) =Y ay, X;.
7=0

L C P" is the point of intersection of the linear equatiohsand it is thecenterof the projection.
Two projectionsr; andm, fromP™ to P™ are equivalentf they have the same centér

We now consider a projection : C* — C™ and we restrict it to an equidimensional algebraic
setw of C™ with dimensione. It is not always true that,, is proper: for instance, the projection of
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the hyperbola defined by the idga{'Y — 1) on the X -axis is theY -axis without the origin; with this
particular choice of the linear space to project on, theiddtn of = to the hyperbola is not proper.

Proposition 3.2([21]], Lemma 5.1) Let # be a closed algebraic set 6" all of whose irreducible
components are of dimensienFor a general linear projectionr : C* — C™, m > ¢ + 1, the map
my IS proper and generically one-to-one.

In particular 7(#") is a closed algebraic set @ of degree equal to the degree’#f.

Corollary 3.3. Let # be an equidimensional algebraic set of dimensioim C™. For a general
projectiont : C* — C¢*+1, the following hold:

1. if #; and#; are two distinct irreducible components#f, thenn (%;) # = (#;);
2. W isirreducible if and only if the polynomial defining #") is absolutely irreducible;

3. if D(T1,...,T.) is the polynomial defining the projectiorn(’#") and we consider its absolute
factorizationD = D' --- D7, thens is exactly the number of distinct irreducible compo-
nents of#’, m; is the multiplicity of the componet#; anddeg D; its degree.

We now assume tha” is an equidimensional algebraic set of dimenstatefined by the ideal
a C CX], a = (F,...,F), F; € Q[X]; we further assume that we performed a generic linear
change of coordinates with integer coefficients; in this waycan consider the projections on linear
spaces defined by equations of kikg = 0 to be generic.

We consider the projection; : C* — Hy, with H; the linear space of dimensient 1 defined

by the equationX.,» = --- = X,, = 0. We call Z, the projection of the algebraic s&t on H;. This
is a hypersurface iif; and its decomposition is equivalent to the absolute fazation of the multi-
variate polynomialD; (X1, ..., X.1+1) € Q[X] defining Z; on the linear spac#&. Furthermore, the

components of; are in one-to-one correspondence with the irreducible comapts of#.

If Dy = Di}*--- DﬁS,DEf € C[X], is the absolute factorization @, each factorD; defines
in C™ a ruled surface, a cylinder, containing the compor#¢nt
Algebraically, thanks to the generic change of coordinatesto Corollary 313, ift = () q;, then there
is only one absolute factdp; in the absolute factorization @p; such thatDZL? € q;. Furthermore,
form < My, D?}' ¢ q;-

We can then start considering the ideal- (D;’;j). But V(a + (D{’;j)) contains not only the
component/;, but also the points of the se\té(DE.j) N # for k # 7.

Thinking of the corresponding varietié§(q;) andV(DEj), we can classify the primary compo-

nents of the ideat + (Dy’) as follows:

e a primary component of dimensiafwhich is the primary component such thatD;”j € q;
(and in this case we write= j). Obviously in this casg; + (D{’;.f) = qj andp; + (D) = pj;

e other primary components of dimensienc whenV (g;) N V(Dﬁj) is non-empty and it does
not contain the compone;.

Finally, the ideab + (DE.J') defines the compone#; with some extra components of dimension
< ¢. In order to avoid these extra components, we can repeatthe steps witlin — ¢ — 1) more
generic projectionsr;, from C™ onto the linear spaceH, defined by equations of kind; = 0,
thanks to the chosen generic coordinates (see also Sécfiofor3more details). If we consider
(W) = Z, the polynomial defininggy, on Hy, is again a rational multivariate polynomialy, in
c+ 1 variables. We compute its absolute factorization and waiolztnother cylinder containing;,
defined by the factoD;,;.

11



Actually, in the absolute factorizations of the polynoridl, there may be several factors with
the same degrees and multiplicity. For instance, this happéhen one of the componerit; is a
non-pure rational one (see Definitibn]1.8). This can give igmity in matching the factors of the
polynomialsD;, whose zero set contains the comporigft

In order to match the factors defining the cyIinders contgjrthe same component, we can look

at the Hilbert dimension of the ideal+ ( zﬂl(D,C )). This dimension is: if and only if all of the

setsV (D, ki 7) contain the same irreducible componentf this follows from Corollary 3.3, 1.

In order to find the correct matchings, we will not computehfilbert dimensions of the idealst
( z+11(D ki 7)) for every possiblén — c)-uple of factors; we will compute the Hilbert dimension only
for the matchings such that all the factdg; have the same degree and multiplicity. Furthermore,
we get an almost certain probabilistic check by consideamggneric section with a linear space of
dimensionn — ¢: that is, we can look for the matchings such that the ideal( z“l(Dk )) with
(n — ¢) variables evaluated in some integer values is zero-diraeasand nonempty (see Algorithm
2).

Once matched the absolute factors found through the piofec{ Dy };—1. ... . (after re-indexing

of the factors), the ideal
c+1

a; i=a+ (> (D)) (3.3)

k=1
is “almost” the primary ideal corresponding to the compdriéh there are some embedded compo-
nents left, which geometrically are #f; N %, for | # j.

Lemma 3.4. Consider(n — ¢) projectionsr; from C" to C¢*!, pairwise not equivalent. If there are
points Py, P, € C" such that

mi(P) =m(Py) Yi=1,...,n—c¢,
thenP, = P,.
Proof. We write 7, (P) = (Lgk)(P) Lé’fl( )) with Lgk)(X) = a4 > i1 U X Remark
that since a projection is a surjective maiék =+ Lg.k), 1<i<j<c+ 1, furthermore, we will be
interested in the matrix whose lines are the vec( ; )) fork=1,...n—c,i=1,...,c+1.

: o . J=Loon o —
Itis a matrix with(n — ¢)(c + 1) lines andn columns; since the chosen projections are pairwise non-

equivalent, this matrix has maximal ranl — c)(c+1) > nforall 0 < ¢ < n—1, so the considered
matrix has ranka. ' '

Py and P, have the same image undey if and only if LZ(])(Pl) = LZ(])(PQ), i=1,...,c+ 1.
We obtain(n — ¢) - (¢ + 1) equations of kind

1 2
Za ; )) 0, P= (xg ))j Lo Po=(z g ))jzl,...,n-
The unique solution to this system of equations is the friig, since the matrix associated to the

linear system is exactlfaﬁ?) whose rank is:, and so we have thdt, = P. O

Corollary 3.5. Consider?”” equidimensional algebraic set of dimensiein C™ and #; and #,
irreducible components o¢'. If P, € #7 and P, € #5 are such that

mi(P1) = mi(P2),

for (n — c) generic projectionsr; : C* — C*t1, thenP; = P, is a point in#4 N #5.
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Thanks to Lemmg_3l4 and the one-to-one correspondence doetive components o and the
components ofr(%’), for a general projectiom, if we consider the ideal; as in [3.3),V (a;) is #;;
however the polynomials in; vanish on the points o}, N %}, | # j, with multiplicity higher than
mult(%;).

So, for the moment, we have an ideal such that its zero setiosrthe irreducible componeit;
but there are some embedded components; we now show thatitiie pf these embedded compo-
nents are also contained in the zero set of the singular lofcws(Definition[3.6).

Considering again primary decompositions, for what cameey we have that:

c+1 v

g =a+ () (D7) =a;N([b:) (3.4)

k=1 i=1

whereb; is a primary ideal of dimensior c. Geometrically, the primary componertiscorrespond
to the irreducible component &} N %}, j # k. These components are in thiegular locusof R/a.
Here we just recall the algebraic definition of singular amd the useful Jacobian criterion.

Definition 3.6. Leta be an ideal inR = K[X], K perfect field,a = (fi1,..., fs). A prime idealp
containinga is in thesingular locusof R/a if the localization ofR/a at p is not a regular local ring.

With an abuse of notation, we will say “singular locusatffor the singular locus of?/a.

Proposition 3.7 ([11], Corollary 16.20) Leta be an ideal inK[X], K perfect field,a is equidimen-
sional with dimensiom, a = (f1, ..., fs). LetJ be the ideal generated by tlte—c) x (n—c)-minors
of the Jacobian matriXdf;/0X;). ThenJ defines the singular locus af a primep contains.J if

and only ifp is in the singular locus od.

We can then compute easily the equations defining the sinijpdas ofa:
e Compute the jacobian matrix af

e Compute{M;}, the(n — ¢) x (n — ¢) minors of the jacobian matrix;
e The singular locus of is defined by(M;).

We are then interested in considering and removing the “embedded” primary components
which contains the singular locus @f We can do this for the ideals containing a reduced compo-
nent, that is the ones obtained from irreducible factors wiiplicity 1.

In general, for, as ideals in a ringk:

(a1 :ag) ={f €R|f az Car}

If we consider an ideal generated by a single elenfeoft R, we will simply write (a : f) instead of

(a: (f))-

Lemma 3.8([1], Lemma 4.4.) Letq be ap-primary ideal, f an element oR. Then
1. if feqthen(q: f) = (1);
2. if f ¢ qthen(q : f)is p-primary, and therefora/(q : f) = p;
3. iff¢pthen(q: f) =q.
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Proposition 3.9. In the previous setting, iD;; are factors of multiplicity one in the factorizations of
the polynomialsD;, suchD;; € q;, a; = a+( e 1(Dy;)) and M is a(n —c) x (n—c) minor of the
Jacobian matrix ofi, then(a; : M) is exactlyp], the prime ideal defining the irreducible component
Wiof W =V(a).

Proof. Consider the primary decomposition of

c+1 v
a; =a+ (Z(Dk])) =q; N (ﬂ b;)
k=1 i=1

whereq; is the only component of dimensian while b; are embedded components of dimension
< c¢. These embedded components correspond to the intersetti¢h with the other irreducible
components ofi. Furthermore, since the factal,; have multiplicity one in the factorizations of the
D;, this means (Corollary 3.3) thatq; = q;, that isq; is a prime component, so we can witefor
q;-

This means that ifi/ is an equation of the singular locusafthenM € b; fori =1,...,v and
so (b; : M) = (1). On the other hand; is the only primary (and prime) component ©f which
does not contain the singular locus: ($9 : M) = p;.

So .
aj: M= (pj: M)N (ﬂ(bi : M)) = p;.

i=1
O

Remark 3.10. Proposition[3.9 applies only for components of multipiclt (that is, for factors in
the absolute factorization of multiplicity 1).
In fact, if we consider an ideal; = a+ (3", _( ), m; > 2, we have that this ideal contains the
singular locus of1, soM € a; and (using Lemnﬁﬁa 8)q; : M) =(1).

For components of multiplicity- 1, we may “clean up” at least some of the embedded compo-
nents of the idead; in the following way:

e we use the described strategy for the components of mdaityplbne, obtaining the set of
prime ideals{yp;,,...,p;, } which are the ideals for the irreducible and reduced compisie

{%17-"7%1;}

e since we cannot use the colon ideal with respect to a geneddtiihe singular locus, we then
compute

b= (- ((aj: fir): fin) -2 fin)s
for fij € Pi;-
In this way, we can “clean” part of the points of the embeddednponents. For the remaining
ones, for any component of multiplicity 1 we should consider the absolute factdps; of D; not

contained in this primary component, and compute again sorasted” colon ideals, starting from
b, with respect to thé; ;.

3.1 Algorithms

In this section we will summarize the strategy of eliminatiaf variables and colon ideals, writing
down the main algorithm for primary decomposition (Algbnit[1) and an auxiliary one to match
(n —c)-uplesD, ..., D7/ (Algorithm[2).
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In order to conside(n — c) projectionsr; : C* — C**! (pairwise non-equivalent) and compute
the polynomialsD; which is zero onr;(#'), at the beginning of Algorithrh]1 we perform a generic
change of affine coordinates and then use projections orrdowe” affine linear spaces, namely
linear spaces defined by equations of kikig = 0. While in the previous section we usedl™ for
the coordinate affine linear space, we will now ug€’'to denote the set of indexes of the variables
X to eliminate to obtain the projection of the curve:

ijo, jEH:{jl,...,jn_c_l}g1,...,n:[n]. (35)

We can always findn — ¢) sets of indexe${;,i = 1,...,n — ¢, such thatd; # H,, for everyl # m.
If H = {jl, .. 7jn—c—1}s we Write{Xl}le[n]\H for {le ... 7ch+1}’ with [n] \H = {ll, . 7lc+1}-

The actual computation of the polynomil is obtained by the computation of a Groebner Basis
with respect to an elimination term ordering.
If we consider the set of indexed as in [3.5), we can compute a Groebner Basis which elimi-
nates froma the variablesX;, j € H; from now on we will denote such a Groebner Basis with
G Bejim(m) (@), or, if we fix H;, i = 1,...,n — ¢, we simply writeG B.;,,(;y (a). ThenD; is the only
generator oty By, ;) (a) such that

D; € GBeim(i) (@) N Q[X1]igmp\ (3.6)

We will always assume thdf; = {c+2,...,n}.

In Algorithm[Z, in order to match the absolute factors cquogsling to the same component, we
use the fact that if an algebraic set has dimension then its general section with a linear space of
dimension(n — c) is empty; this means that ifis an ideal of dimensior: ¢, then the affine Hilbert
Dimension ofb with (n — ¢) variables evaluated in integer values is generically Furthermore,
thanks to the generic change of coordinates, we can evah&tariables in 0.

Thanks to the results of Sectibh 1, we can modify Algoritinmd[A and avoid repeating the com-
putations for conjugate primary components. We presenftherithms without this for simplicity
and also because they will not actually be used in this form.

Indeed, Algorithnil is exact, but in practice the computatiare too heavy: the main computa-
tional difficulties are at Stelp 2 (because of the computatioihe Groebner Basis), Steép 3 (because
of the multivariate absolute factorization) and Step 8 duse of the computation of the colon ideal)
of Algorithm[1.

In the next section we show that we can perform all these ctatipus modulo a well-chosen
prime integerp, obtaining Algorithm[B. Its output is no more exact, in these that it does not
return the ideals of the reduced components, but it returfiosrnation about the ideals of the reduced
components, in particular their initial ideal and affinebdift functions.

This will be possible observing that the computations of titeeiblesome steps of Algorithm
[ are actually obtained through Groebner Basis and that d ghoice ofp preserves along the
computations the initial monomials of the polynomials ir tBroebner Basis and so the Hilbert
functions of the ideals.
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Algorithm 1: Exact Decomposition of an equidimensional algebraic set

Data: a € Q[X1,..., X,], a of pure dimension

Result The number of irreducible components, their degrees artiplizities.

If the multiplicity of the componen¥; is 1, a system of generators of the idéa¥; ); if the
multiplicity of the component i$> 2, the equations ofn — ¢) hypersurfaces “isolating” the
component from the other ones.

1 Preprocessing:Perform a generic affine change of coordinates on the gemerata;

© 00 N o O

10
11
12
13

14

Compute(n — ¢) polynomials, eliminating frona the set of variables corresponding to the set
of indexesH;, i = 1,...,n — c: D; is the only generator o B.;;,,(;) (a) with the property
@8),i=1,....n—c;

Perform the absolute factorization b%,i=1,...,n —¢

D;=D}"---D*, i=1,...,n—c;

Match theD;;'s through Algorithni2 in such a way that (after re-numberafghe factors)

a; = a+ (3 ;_7(Dy;)) contains the componet#;;

Compute the Jacobian matrix @and a minor of siz¢n — ¢) x (n —¢), M ;

for i from1 to s do

if m; is 1then
| Computes'"” the quotient ideal of; with M a'™ .= a; : (M);

end
end
Return:
forj =1,...,s: deg Dy; degree of the component;; multiplicity of the component;
if m; > 2, a; ideal isolating the component;
it m; =1,al") = 1(#;).
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Algorithm 2: Matching of factors through Hilbert Dimension
Data: a and the absolute facton{sDij}i;l,I,,n,c, obtained at Stefp 3 of Algorithid 1.
71=1,...,s
Result After relabeling the polynomials for the index L := [(DZ.”)Z-:L,,,,n,c)]j:lws with
V(a+ (327 ,(Dij))) containing the componen; of V(a) for everyj =1,...,s.
1 L :=empty list;
2 for j from1 to s do

3 | Consider gn — c)-uple (D;;)i=1,.. n—c S:t.deg D;; = d; andm;; = m;Vi;

4 | Compute the Hilbert Dimensioh of the ideala + (3", (D;;)) with (n — ¢) variables
evaluated in 0;

5 if h=0 then

6 | add the(n — ¢)-uple (D;}”) to the listL;

7 else

8 \ go back to Stepl3 and change — c)-uple;

9 end

10 end

11 Re-number the factors db; in such a way that thén — ¢)-uples inL are of the form

(DY} 5Dy )

12 Return: L

4 Modular Algorithms

We use the results of Sectidh 2 on the exact decompositiategtr presented in Sectigh 3. We
develop an algorithm which takes as input an ideaith generators ifQ[X], defining an equidimen-
sional algebraic se#” in C™ of dimensionc, and gives as output the number of primary components,
their degrees, multiplicities and the affine Hilbert functiof the components of multiplicity 1.

Remark 4.1. We did not present a non-modular version of Algorithm 4, esialt the algorithms
presented in Sectidn 3.1 are not actually used. We insestfthither procedure to avoid useless
computations in the calling of Algorithii 5 in Sfelp 9 of Algiam[3.
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Algorithm 3: Modular Algorithm for affine Hilbert Function

Data: a = (Fi,..., Fp), F; € Q[ X1, ..., X,], a equidimensional with dimension
Result The degree and multiplicity of the primary components;dbr primary components
of multiplicity 1, their initial ideal with respect to a degg compatible term ordering.
1 Preprocessing:Perform a generic integer change of coordinates,amith coefficients irz;
2 Fix (n — ¢) different coordinate linear spaces of dimension 1, defined by set of indexed;,
1=1,....,n—g;
3 ComputeD; (0,...,0, X.11) as the only generator & B.;;,,(1)(a|x, =o,... x.=0) respecting
3.6);
4 Compute the rational factorizatiod; (0, ...,0, X.11) = d§1>(xc+1)m1 ---dgl)(XcH)ms;
5 for j from 1 tos do
6 Choose a prime integer; dividing d§_1)(0);
7 ComputeD; mod p; as the only polynomial it B.;,,;) (¢) mod p respecting[(36),
1=1,...,n—c
8 Compute the modular factorizatioi$ mod p;,i=1,...,n —c;
9 Apply Algorithm[4 to the rational factodgl) (Xc+1) and the modular factors db,,
obtaining the set of modular factof®; of Dy;

10 ChooseDJ(,g mod p; € D; of minimal degree such that = m €7
J

11 if r; > 2then

12 Apply Algorithm[5 to match the modular fact(ﬂj(,g with DEQ modular factor ofD;,
obtainingagj) =a+ Z?:‘f(D](,g) i mod p; (after re-labeling of the factors);

13 if m; is 1then

14 Compute the Jacobian matrix @f mod p; and a minor of siz¢n — ¢) x (n —¢),

M;

15 Compute(@?) : M) mod p;;

16 end

17 end

18 end

19 Return: s number of rational components

20 foreveryj =1,...,s

21 r; number of non-rational components constituting the raticomponenty;
22 deg Dﬁ) degree of each non-rational component pf

23 m; multiplicity of the non-rational component
()

24 if mj = 1, p; and(a\”) : M) mod p; ideal having the same initial ideal and same Hilbert

function asq,

25 ifmj >2,p andD](_%), i=1,...,n — ¢, image modulg of (n — ¢) a polynomial contained in

q/ but not in the other absolute componentsipf
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Algorithm 4: Partition of modular factors

Data: d(X.4+1) € Q[X.+1], an integep dividing d(0) and
D(X1,..., Xer1) = [I'e, Di(X1, ..., Xe11)™ mod p such that
d(Xc+1) | D(O,...,0,Xc41) mod p

Result A set containing the modular factorsd@ifX.,;) mod p

1 A:=emptylistii:=1,6:=1;

2 while7 <l do

3 | m,; := multiplicity of d(X.41) in the rational factorization aD(0,...,0, X.y1);

4 if D;(0,...,0,X.11) mod p dividesd(X.,1) mod p then

5 addD;(Xy,...,X.y1) mod pto A4;

6 0=20-D;(0,...,0,X.41) mod p;

7 if 6 =d(X.+1) mod pthen

8 | =141

9 end

10 end

11 1:=1+1;

12 end

13 Return: A

Algorithm 5: Matching of modular factors through affine Hilbert Dimemnsio

Data: Dgl) modular factor ofD; (X1, ..., Xc41) and{D,gj) mod p};—s, . .. modular
k=1,...m

factors ofD;
Result &/ = a + Z?;f(ij))mi mod p with Hilbert dimensionc
1 Consider gn —c — 1)—up|e(D,(j'))j:g,m?n_c such tha’deg(D,(j)) = deg(Dgl)) andmy, = m; ;
2 Computeh =Hilbert Dimension ofa + Dfl) + Z?;f(D,gj))mk mod p with (n — ¢) variables
evaluated to O;

3 if h = 0then

4 | renumber the modular factor puttiig!’’ := DY’
5 else

6 | go back to Stepl1 and change — c)-uple.

7 end

s Return: &/ = a + DYy DZ(]))"” mod p.
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4.1 Proof of Algorithm

We apply the results of Sectidh 2 to the decomposition gfyageplained in Sectionl 3 and to the Al-
gorithms of Sectioh 3]1. Again, we deal with an equidimensi@olynomial ideak = (F1, ..., F,,)
with dimensione, F; € Q[X]. The key point of Algorithni B3 is the choice of a prime integewhich

gives a “modular image” of the algebraic numbers.t. qgj) C Q(«y)[X]. For all the notations used,
we refer to Section 311, Algorithnis$ 3, 4 and 5.

We will now follow the steps of Algorithrhl3 in order to show thiagives a correct output.

In Sted1 of AlgorithniB, as in Algorithinl 1, we perform a gecerhange of coordinates; thanks
to this, the projections on the "coordinate" linear spadekrensionc + 1 are “generic” in the sense
of Propositior_3.2: the components of the projected algelset are in one-to-one correspondence
with the components of the algebraic set itself (see als@l@oy [3.3). Furthermore, consider on
one hand the absolute factors of the polynomial whose zdr ghe projected algebraic set and
on the other one the primary components of the ideal defiiagtgebraic set: factors and primary
components are in one-to-one correspondence and the agegteeultiplicity of a factor is the degree
and multiplicity of the corresponding primary componenttfie sense of Definitidn_1.5 ahd 11..6).

In Sted 2 we fix'n — ¢) distinct “coordinate” linear spaces; (as explained in Sectidn 3.1). Using
projections on these linear spaces, we would like to appytéichniques for absolute factorization
developed in[[B], but we have to be careful because we do nat diae of the main hypothesis: the
Input of the Abs-Fact Algorithm presented in [3] igationally irreducible polynomial. This is not
our case, this is why in Step 3 of the algorithm we compute eauigite factorization.

Indeed, assume that we are able to comgtethe only polynomial in the first 4+ 1 variables of
G Bejim(1)(a). This multivariate polynomial in general is not rationaityeducible; furthermore it is
not advantageous to compute the multivariate rationabferettion of D .

We rely on Hilbert’s Irreducibility Theorem: for infinite ieger specialization of variables, a ratio-
nally irreducible factor of the polynomidD; stays rationally irreducible. This means that if

Di(X1, .o Xer1) = dS) (X1, Xed)™ - dD(X0, -, Xepn)™ € QX0 -, X
then for infinitez, . .., z. € Z the rational factorization oD, (z1, ..., z., X.4+1) is exactly
Dy (561, ey Loy Xc+1) = dgl) (561, vy Loy Xc+1)m1 cee dgl) (Il, e, T, Xc+1)ms S @[Xchl].

Thanks to the generic change of coordinates of the PremiogeStep, we can take, = --- =

z. = 0. In order to compute this rational univariate factorizatthout computingD; (X1, ..., Xc41),
in Sted ¥ we simply specializevariables off1, ..., F,, and then compute the elimination Groebner
Basis:

Dy(0,...,0,Xct1) € GBepiny (alx,=o0,... X,=0)-

Since we are considering a generic projection, a ratiomtdfaf D, (X1, ..., X.1) corresponds
to a rational component of the algebraic ¥&t= V (a) (in the sense of Definition_1.8), while each
absolute factor of corresponds to an irreducible component

Once computed in Stép 4 the univariate rational factovmative then proceed in order to “break”
the non-rational components.

We consider thg-th factor of the rational factorization dp,, that isdgl)(XcH) which has multi-
plicity m;. If the corresponding factoi§1)(X1, ..., Xc41) of the univariate rational factorization of
Dy(X1,...,X.+1) is not absolutely irreducible, then its absolute factorgeheoefficients in some
algebraic extensiof(«;). Using [3], Lemma 11, we can assume that the algebraic erteQigc;)

is generically generated by the evaluation of one absohdif in a point with integer coordinates.
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Thanks to the generic change of coordinates, we will chgose . ,0) € Z°1,

We choose an integer primsg dividing d;(0) (Stepl6) applying Lemmia_2.3 and, relying on ran-
domness, we assume that the chosen pgimeill preserve the initial ideal of the Groebner Basis
we will compute along the “FOR” loop (as in Lemrha2.5). Thaméd emmal2.B, if we factor
Di(X1,...,Xc+1) modulo this primep;, the rationally irreducible factat§1)(X1, ooy Xet1) splits

(if it is not absolutely irreducible). The homomorphisip, of (2.2) is implicitly defined.

Actually we do not comput®; (X1, ..., X.11): in fact, in Step7 we compute directly the modular
elimination Groebner Basis and then the modular factadmat(Sted B). In Stepl 9 we group the

modular factors corresponding dé)l) (X¢41) using Algorithm( 4.

If the rational factordg.l)(Xl, ..., Xc41) is absolutely irreducible, then it does not further split
modulop;, that isr;, the number of modular factors dfl), is exactlyl. In this case, we can stop
here and repeat the loop for the next rational factor.

If dg.l)(Xl, ..., Xc41) is absolutely reducible, thery > 2 (thanks to the choice gf; according
to Lemmd2.B): in Step 10 we choose a modular factor among tiafmg minimal degree which
dividesdeg d( )( Xc+1); we assume that this factorB( )(Xl,... Xet1)-

In Step 12 we look for the correspondlng modular factoD@;‘z = 2,...,n — c¢. Using Algorithm
B, we obtain the |dea& =a+y ( )mJ mod p; with Hilbert d|men5|onc Corollary[2.T
certifies tha&’ = ¢, (al).

Once deflned in StdﬂZ the |de%I (re-ordering the indexes) with affine Hilbert dimensigrif
the multiplicity m; is 1, we can keep on following Steps 5 dnd 8 of Algornﬁ}n 1: wmpate the
Jacobian Matrix oft mod p; and consider one of it§: — ¢) x (n — ¢)- -minors, M. We compute the
colon ideal ofi with M. Let M be the(n — c) x (n — c) minor of the Jacobian matrix afs.t. M

mod p; = M.

We need to show that for infinite pr|m¢§ the colon ideal modulg)J has the same affine Hilbert
function of the colon ideal iQ(a;)[ X1, . .., X,], thatisy,, (a~ M) = (a% M).
First of all, observe that’ and the correspondlng non-modular ideahave the same Hilbert func-
tion for all but a finite number of prime integers (thanks tedre ).

Furthermore, we can assume that we compute Jacobian matriara a minorM/ and then reduce
modulop;. For what concerns the colon ideal, the actual computasigreiformed using a Groebner
Basis (se€ [7], Chapter 4, 84, Theorem 11 for the detailss Mieans that again we can apply Lemma
[2.9 and so there is only a finite number of primesuch that),,, (a~ M) and(a~ M) differ.

Remark 4.2. Actually, Algorithm(B is a Las-Vegas one, just like the AbstFAlgorithm of [3]: in
fact, in the Preprocessing Step, we have to assume that #féctents for the generic change of
coordinates are taken in a finite s6te Z.

We shall then modify the Preprocessing Step of Algorithmd3asert a small loop in Stdp 110, in
order to stop the execution and go back to the Preprocesdieg,  we cannot define € Z (see
Abs-Fact Algorithm ofi[3]).

We can also compute the “minimal ” rational algebraic extemsL, = Q(«;) containing a
set of generators of the ideal. We can apply thd. L method developed in[3]. Unluckily, we
do not have a technique to estimate the needed level of ancule can just try to compute the
minimal polynomial which definds; with increasing levels of accuracy and stop when we get the
same polynomiaj(7’) with 2 different levels of accuracy.
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5 Tricks on an example

The data and Mapile files of the examples we are going to disresavailable at
https://sites.google.com/site/cristinabertone/eXasior-modular-decomposition

We now test our algorithm on a quite simple example (see teeDféicompositionClcurveDe-
greed8.my

We consider a complete intersection ideal_ C[X,Y, Z] generated by two polynomials with
rational coefficientsF’, G € Q[X,Y, Z], of degree 8 each, rationally irreducible.
We constructed this c.i. curve in such a way that we know thi&$ non trivial primary compo-
nents, in particular it has a rational primary componentaafrde 14, that splits in 2 absolute primary
components of degree 8 each, generated by polynomi@$2)[X,Y, Z].

The complete intersection curde= V (a) has degree 48 (one can see this, for instance, using a
generic plane section and counting points with multipficit
Sincea is generated by 2 polynomials, we can use resultants instealimination Groebner Basis
to compute the elimination of variables. We perform a genkmear change of coordinates and we
compute

r:= Resz(F(0,Y,2),G(0,Y, Z)),

which has degree 48 and factors over the rationals (in lessltsecond) as:
° dgl)(Y) factor of degree 14 and multiplicity 1;
° d(zl)(Y) factor of degree 4 and multiplicity 1;
o dgl)(Y) factor of degree 22 and multiplicity 1;
° dff) (Y') factor of degree 2 and multiplicity 2;

. d(51)(Y) factor of degree 1 and multiplicity 4.

So, using Definition 118, the complete intersectiomas 5 rational componengs, three of them with
multiplicity 1, with degrees given bgeg dgl)(Y) (thanks to Corollary_313).

We can proceed in the following way: for each rational fadgé?(Y), we choose a prime number
p; dividing d§”(0), except fori = 5: indeed, we do not look for a prime dividin@l)(o), since this
rational component will not further split. We then compute projections on the coordinate plane
modulop;, i = 1,...,4. Then we compute the modular polynomial describing thegot@mn of
the curve for each primg; and its modular factorization. We know thatforces the rational factor
corresponding t@lgl)(Y) to split (if it is absolutely reducible). We check whetheeth is a prime;
between the chosen ones such that it forces all of the ratiactars: if we find one, we can perform
all of the computations modulo this prime. If not, we can ity @ase choose to compute modulo
“some” of the primes;: if p; andp; both give the desired splitting for theth andj-th rational
factor, then we can compute the corresponding ideals mggylnd not use;).

For the ideah, we see thap = 89 give the desired splitting for all of the 4 rational factorkigh
may be absolute reducible. So we will compute only modulo 89.

The computations oD, (X, Z) = Resy(F,G) mod p, D2(X,Y) = Resz(F,G) mod p and
their modular factorization take less than 4 seconds each.

All of the rational factors further split modulp in 2 factors. So we compute the initial ideal
(and affine Hilbert function) for one of the two absolute caments of degrees 7, 2 and 11. The
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other absolute components have multiplicityl, so we do not perform on them Steéps 14 15 of
Algorithm[3.

Performing Algorithn{B (including the matching of the factahrough Algorithnib), we then
obtain the initial ideals:

o degq\V =7, inyea () = (X3,Y7, X222, X2V, XY3, X Z°XY2 22 XY 73);

L4 deg qy) =2, intlea&(qgl)) = (X> YQ);
o degglV =11, ingea(al)) =
= (X3, YW, X279 X2Y?, XY? X223, XY*Z, X2V 22, XY3 23, XY?2 25, XY Z7).

Finally, we use the technigues of the Abs-Fact Algorithm[2jf o compute the polynomial
q(T) € Z[T] which defines the algebraic extension containing the caoefiie of a set of genera-
tors for the absolute primary components. However we do aet lan a priori bound on the size of
the coefficients ofy(T"), as pointed out in Remalk4.2). We perform an Hensel Liftihg omodular
univariate factor until a quite high level of accuracy (imstoase, untip®'?); we then construct dif-
ferent candidates for the minimal polynomial, startinghwdtcuracy'®, until two different levels of
accuracy give the same polynomial.

For accuracy®*, we see that the minimal polynomial “stabilizes”:

q(T) = 26301054375 T% — 214355874045600 T' + +436754388124393216

Obviously, sinceleg ¢(T') = 2, we can easily find a better presentation of the exten8iom) com-
puting the roots of(7'): we obtain that the extension @ we need can be generated .

Summing up, we obtained that the complete intersectioneaurr (F,G) C Q[X, Y, Z] has the
rational primary decompaosition

a=q1MNqg2M4q3MgsNgs
with deg q1 = 14, degqs = 4, degqs = 22, degqqs = 2 anddegqs = 1 and multiplicitiesm, =
mo =mg =1, my = 2, ms = 4.
Each of the rational primary ideals with multiplicity 1 fagr decomposes as

1 2
qi:qﬁ)ﬂqﬁ),

with ) € Q(v2)[X,Y, 2], ¢ =& (q§1>), whereo (v2) = —v/2.
The whole computation took less than 15 minutes on a hom@ersenal computer, without any
problem with memory allocation.

We point out that it is not that obvious to obtain this kind mfiormation about the decomposition
of the ideala. For instance, one may use one of the most popular Compugehdd System, Maple
[18].

We tried to use the Maple commamt i mar yDeconposi ti on (whose algorithm is based on
[13]), which gives as an output the primary decompositiorihef ideala. As input, we also gave
the algebraic extension of the rationals in which one can tfivedgenerators of the absolute pri-
mary decomposition ofi, namelyQ(y/2). Even with this further information about the decom-
position (which is not a priori known from the only knowledgé the rational generators af),
Pri mar yDeconposi ti on in Maple caused a problem with memory allocation (reachibpgué
2.3 GB), after computing for more than 1 hour.

For what concerns other computer algebra systems, we &soSimngular ([14]), another computer
algebra system for polynomial computations. We tried t@ivbthe rational primary decomposition
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of a usingpr i ndecGTZ and the primary decomposition ov@f X, Y, Z] usingabspr i ndecGIZ
(which are based on [13], the algorithms are described|n [A]both cases we stopped the compu-
tations after 2 hours, without obtaining the primary decosifion.

The CAS CoCoA([6]) has a commarit i mar yDeconposi ti on to decompose only monomial
square-free ideals. It also has a command cddfgali | soDec which computes an equidimensional
isoradical decomposition af, i.e. a list of equidimensional ideals, .. ., by such that the radical of

a is the intersection of the radicals bf, .. ., by. This command is based on the algorithm presented
in [4] and it works only using) or finite fields as coefficient ring. Neverthelegsui | soDec could

not give the output on our example after more than two houmspeaing.

Although for the moment we cannot really compare our algoritvith the above ones mentioned,
we can see that the problem we are facing is challenging aidbtir modular strategy may move
around the computational problems of primary decompasitidevertheless, we cannot give com-
plete comparaison for the moment, since we cannot compatedimplete primary decomposition
nor a reduced decomposition: using Algorithin 3 we get séweteresting data about the absolute
primary components of an equidimensional ideal. Indeeskdldata may be useful as a guide or a
bound for numerical algorithms, such as the ones in [12] &}.[2

Furthermore, the technigue taken fram [3] to construct thelaaic extension containing the co-
efficients of a set of generators of a primary component,ccbel used with other algorithms: for
instance, one can see the exampkrompositionClcurveDegree36.mWith our modular strategy,
we obtain not only the initial ideal of all of the absoluteméry components of a complete intersec-
tion in Q[X,Y, Z] generated by 2 polynomials both of degree 6, but also@faf2) contains the
coefficients of the generators of these components.

If we ask Maple to compute the primary decomposition of ttieal, again it does not reach the result
after one hour of computation. But if we pass to the commRndmar yDeconposi ti on also
the information that the primary components are in€ide/2)[X, Y, Z], then we obtain the primary
decomposition in less than 3 minutes.

This example suggests that we may combine at least a partradtaiegy (for instance, the
construction of the “splitting” field) with an existing algthm (such as the one implemented in
Maple), in order to obtain a complete result.

Conclusions and future work

In this paper we designed an algorithm which, given a set bfnponials with rational coefficients
defining an equidimensional idea] returns the initial ideal of each absolute prime comporaént
a. Furthermore it also returns information concerning neddced primary components, such as
their number, degree, multiplicity. The main ingredientshe algorithm are the classical technique
of projection and the use of computations modulo well-chogemes, as done in[3] in order to
decompose a bivariate polynomial. The obtained results ggemising, mostly for what concerns
complete intersections and more precisely, for curve&’in

A further step is to implement this algorithm in a Computegedra System, for instance in
Mathemagix [[19]. Mathemagix is a free computer algebraesgstinder development, which has
available libraries for algebraic computation (such agdanumbers, polynomials and others) for
exact and approximate computation. This should make Matheaparticularly suitable as a bridge
between symbolic computation and numerical analysis.

Our final aim is actually to design an algorithm which usegegmtions with modular techniques
and can return the complete absolute primary decompodifidhe ideal given as input. The main
obstacle to this is the absence of a tool similar to Henséltsg (see for instance [23], Chapter 15,

24



Section 4), which allows lifting a modular factorizationdaaational one; we would need a general-
ization of this in order to lift the modular decompositionaof ideal.

Our next task is then to develop such a tool, design and imgiéra primary decompaosition
algorithm and compare its efficiency with other implementadines. With this tool, we may be able
to obtain a complete decomposition for the reduced part efcaidimensional ideal.

Other possible improvements of the algorithm are dealing whnon-equidimensional ideabnd
computing also non-reduced primary components; for thedag we will have to choose whether
dealing only with the top-dimensional part @br studying also smaller components; for the second
one, if we will be able to compute these non-reduced primargpgonents, then we will also be able
to compute a radical decomposition (see [4]).

We are hopeful that our techniques are competitive, sinttdsatmoment we can already get a lot
of information concerning the absolute decomposition afi@al, in a reasonable time with a limited
use of memory, while other CAS cannot really deal with thenaily decomposition of the same ideal
(see Sectionl5). So, even if at the moment the results of othradere partial and cannot be directly
compared to the performances of other softwares, we belmatehis method is on the right path to
get an efficient primary decomposition algorithm.
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