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Abstract

In this paper, we present a modular strategy which describeskey properties of the absolute
primary decomposition of an equidimensional polynomial ideal defined by polynomials with ra-
tional coefficients. The algorithm we design is based on the classical technique of elimination
of variables and colon ideals and uses a tricky choice of prime integers to work with. Thanks
to this technique, we can obtain the number of absolute irreducible components, their degree,
multiplicity and also the affine Hilbert function of the reduced components (namely, their initial
ideal w.r.t. a degree-compatible term ordering).

Introduction

In this paper we design an algorithm whose aim is quite simpleto state:
Given a set of polynomial rational equations which define an equidimensional algebraic setW of Cn,
we would like to get as many information as possible on theirreducible componentsof this algebraic
set.

We can rephrase the problem in algebraic language: given an ideal (with suitable hypothesis on
its dimension) in the polynomial ring overC[X] defined by rational generators, find all the possible
information about its primary components.

The problem is really simple to state and many authors lookedfor efficient strategies to get the
irreducible decomposition of an algebraic set: one can see for instance [8] and the references therein
to have an overlook of the different techniques. In many Computer Algebra Systems (CAS for short)
you can find routines computing the primary decomposition ofan ideal: the underlying algorithm is
often the one described in [13]. Nevertheless, the problem is really challenging since the existing
algorithms and implementations often focus on particular cases, e.g0-dimensional ideals (see for
instance [10]); for more general situations, also the best implemented algorithms (for instance, the
ones in [4] or [13]) may have unsatisfying time of execution and there may be problems of memory
allocation. In fact, the computations required to a personal computer to find a primary decomposition
are often quite heavy.
Our aim is to design an algorithm concerning the decomposition of an ideal which can give an output
in a reasonable time and with a limited use of memory.

The main computational tool that we use are modular computations, taking this technique from
the absolute factorization algorithm for bivariate polynomials presented in [3].
Recent papers about decomposition of algebraic sets (see for instance [12], [21]) focus on getting
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information about the irreducible components from a generic section with a linear space, namely they
bring back the problem to the study of a0-dimensional ideal.
In this paper we will bring back the problem of computing a primary decomposition to the problem
of computing an absolute factorization; this technique is in some sense "classical" ([16]), but not very
exploited because not efficient from the computational point of view; a powerful improvement of this
technique is in [4], where the authors avoid the use ofgenericprojections in order to compute the
equidimensional isoradical decomposition of an ideal, using as coefficient ringQ or a finite field of
positive characteristic. Our approach is instead to use generic projections (by a generic change of vari-
ables and projections on coordinate linear spaces) and exploit modular computations to move around
the computational difficulties, preserving a lot of data concerning the absolute primary decomposition
of the ideal. The output of our algorithm will not be the complete primary decomposition of the given
ideal, but it will return information concerning the components, such as number, degree, multiplicity
and, for reduced components, the affine Hilbert function.

In Section 1 we will show that once known information about one of the primary components of
the ideal, the same is known for other components too. We simply rephrase the definition of "con-
jugacy" for absolute factors of a multivariate polynomial with rational coefficients (see [5], Lemma
9.0.8), for primary components of an ideal generated by polynomials with rational coefficients. De-
gree, multiplicity and affine Hilbert function are "invariant by conjugacy", so if we obtain this in-
formation about a primary component, we actually have the same information for all the primary
components in its "conjugacy class", avoiding to repeat computations.

In Section 2 we show that, fixed an algebraic extensionL of Q, there are infinite prime integers
that implicitly define a homomorphism fromL to Z/pZ (more precisely, an inclusion ofL in Qp,
Lemma 2.3). This means that with a careful choice of a primep, we can reduce the coefficients of a
polynomial inL[X] modulop. Furthermore, infinite prime numbers preserve interestingproperties of
an ideal inL[X], namely the initial ideal with respect to some degree-compatible term ordering and,
as a consequence of this, the affine Hilbert function.
Summing up, we can choose a primep which allows modular computations inL (we can choose it
using Lemma 2.3). Only a finite number of primesp does not preserve the properties of the primary
components we are interested in, so we can assume that we are avoiding them by taking a “generic”
primep.

In Section 3 we present the exact strategy to obtain the primecomponents of an ideala. This
technique is mainly based on elimination of variables, in order to bring back the problem of primary
decomposition to a problem of factorization. This strategywas first investigated by Grete Hermann
in [16] and it is similar to the splitting techniques presented in [4], but we present it completely for
lack of an accessible reference on the whole strategy. Nevertheless, the technique of Section 3 is not
efficient from a computational point of view: first of all, projections are actually computed with a
generic change of coordinates and an elimination of variables performed by a Groebner Basis; then,
in order to obtain the reduced primary components, we compute a colon ideal; this is performed again
by an elimination Groebner Basis.

In Section 4 we try to gain in computational efficiency, even if we “lose” the exactness of Section
3. We will apply the modular results of Section 2 on the exact algorithms of Section 3. We compute
projections, factorizations and colon ideals modulo well-chosen prime integers; we do not get the
reduced primary components, but we obtain an algorithm (Algorithm 3) which can compute the initial
ideal of the reduced components ofa and give information about the non-reduced components.

Finally, in Section 5, we test our strategy on a simple example, a complete intersection ideal in
3 variables, getting the output of Algorithm 3 in a really reasonable time. The same ideal could
not be decomposed by other CAS in 1 hour (because of problems with memory allocation); obvi-
ously the comparison between our strategy and implemented primary decomposition algorithms is
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not complete, since Algorithm 3 does not return the absoluteprimary decomposition of the input
ideal. However this comparison enlightens promising performances of our strategy and this can be a
starting point for designing an efficient primary decomposition algorithm.

Notations

In what follows, we will work in a polynomial ringR with coefficients in a fieldK of characteristic
0: R = K[X1, . . . ,Xn] = K[X]. We will precise, when needed, ifK = Q, Q(α) orC.

Given an ideala ⊆ R we will consider its zero set inCn: W = V (a) = {P ∈ Cn|f(P ) = 0∀f ∈
a}.

1 Affine Hilbert Function and Conjugacy

In this section we introduce the main definitions concerningthe primary decomposition and the affine
Hilbert function of an ideala ⊆ R.
We show that some of the primary components of an ideala are very “similar” to each other, in the
sense that given a set of generators for a primary component,we can get a set of generators for another
primary component by means ofconjugacy, just like we do for the absolute factors of a polynomial
with rational coefficients ([5], Lemma 9.0.8). This allows us to avoid repeating the computation of
the affine Hilbert function for the conjugate components, since it is invariant by conjugacy.

For all the definitions and properties concerning primary decomposition, the main reference is
[1], Chapter 4.

Definition 1.1. A proper idealq in a ringR is primary if the following condition holds:

xy ∈ q andx /∈ q ⇒ y ∈ √
q.

Every prime ideal is obviously primary.

Proposition 1.2([1], Proposition 4.1). Let q be a primary ideal inR. Thenp =
√
q is the smallest

prime ideal containingq; we say thatq is p-primary.

Definition 1.3. Aprimary decompositionof an ideala inR is an expression ofa as a finite intersection
of primary ideals:

a =

r⋂

i=1

qi. (1.1)

If moreover

1. qi 6⊇
⋂

i 6=j qj ;

2. the prime idealspi =
√
qi are all distinct,

then the primary decomposition (1.1) is said to beminimal. Any primary decomposition can be
reduced to a minimal one (see [1], page 52).

Since we assume to work in a polynomial ringR with coefficients in a field, a minimal primary
decomposition always exists.

The factorization of a multivariate polynomial and the primary decomposition of a polynomial
ideal are very close to each other: indeed, the primary decomposition of a principal ideal corresponds

3



to computing the absolute factorization of the generator ofthe ideal. So we can look at the factoriza-
tion of a multivariate polynomial as a particular case of primary decomposition.
Thanks to this similarity, it is natural to extend the definition of degreeandmultiplicity of a factor to
a primary component. We can define them through theaffine Hilbert function([17], Section 5.6):

Definition 1.4. Leta be an ideal in the polynomial ringR standard graded.
We first define〈R≤i〉, the vector space generated by all the polynomials ofR of degree≤ i. The

K-vector space〈a≤i〉 is the vector subspace of〈R≤i〉 which consists of the polynomials ofa of degree
≤ i. Sincea≤i = R≤i ∩ a, we can view the vector spaceR≤i/a≤i as a vector subspace ofR/a.

The mapHF a
R/a : Z → Z defined by

HF a
R/a(i) = dimK(〈R≤i〉/〈a≤i〉) for i ∈ Z

is called theaffine Hilbert functionofR/a.

From Definition 1.4, it is natural to define the affine Hilbert series, polynomial, dimension and
the affine regularity index ofR/a. The definitions are similar to the analogous for the homogeneous
case; for all these definitions and their properties, we refer to [17], Section 5.6.

Definition 1.5. Leta be a proper ideal inR, consider its affine Hilbert polynomialHP a
R/a(t) ∈ Q[t].

ThedegreeofR/a is (dim(R/a))! · (lcoeff(HP a
R/a(t)).

We will often say “dimension and degree ofa”, meaning the dimension and degree ofR/a.
Finally, once defined the degree of an ideal, we can define the multiplicity of a primary compo-

nent. Here we state the algebraic definition, which corresponds to the intuitive idea that the multipli-
city counts “how many times” the primary component is repeated.

Definition 1.6. [[2], Definition 10] Let q ∈ R be ap-primary ideal. Then themultiplicity of q,
mult(qi), in p is deg(p)/deg(q).

We will often talk about the multiplicity of a primary component, implying that it is the multi-
plicity in its radical.

We now briefly recall how to explicitly compute the affine Hilbert function.
For a polynomial ringK[X], we will denote withTn the monoid of monomials inK[X] and with

X
I = Xi1

1 · · · ,Xin
n , ij ∈ N a monomial. A term ordering� onTn is degree compatibleif for any

couple of monomialsXI ,XJ

X
I � X

J ⇒ degXI ≤ degXJ .

Once fixed a term ordering� on Tn, for a polynomialg ∈ K[X], we denote withLM�(g) (or
simplyLM(g) if there is no ambiguity) the maximal monomial with respect to� appearing ing with
non-zero coefficient.
In the following Proposition,HFR/b is the Hilbert function for a homogeneous ideal.

Proposition 1.7. Let � be a degree compatible term ordering onTn. For everyi ∈ Z, we have
HF a

R/a(i) =
∑i

j=0HFR/LM�(a)(j). In particular, we haveHF a
R/a(i) = HF a

R/LM�(a)(i) for all
i ∈ Z.

Proof. See [17], Proposition 5.6.3.
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Proposition 1.7 gives us the practical way to compute the affine Hilbert function ofa: chosen
a degree compatible term ordering�, we can compute the initial ideal ofa and then we count the
number of elements in the vector spaceR/LM�(a)(j) for everyj ≤ i.

We now show with a few lemmas that, given an ideala defined by polynomials with rational
coefficients, the relation of the primary decomposition onQ[X] and the primary decomposition on
C[X] is similar to the relation between a rational and an absolutefactorization of a multivariate
polynomial with rational coefficients (as shown in [5], Lemma 9.0.8). In other words, there is a
conjugacy relation among some of the primary components.

Definition 1.8. Considera ideal inC[X] defined by a set of polynomials with rational coefficients.
Leta =

⋂s
j=1 qi, qi ∈ Q[X] be therational primary decompositionof a; qi (resp.V (qi)) is a rational

primary componentof a (resp. ofV (a)).
We then consider a primary decomposition inC[X] of each rational primary componentqi:

qi =

ri⋂

j=1

q
(j)
i ⊆ C[X].

If ri = 1, we say thatqi (resp.V (qi)) is apure rationalcomponent ofa (resp. ofV (a)).

Consider a non-pure rational componentqi of an ideala ⊆ R. Let Li be the smallest (w.r.t.
the degree of extension onQ) normal algebraic extension ofQ such thatq(1)i has a set of generators
in Li[X]; assume thatLi = Q(αi) and we denote withfj(αi,X) a polynomial in the chosen set
of generators ofqi; indeed, we can think of such a generator as a polynomial inQ[Z,X] with Z
evaluated inαi. Consider the Galois group ofLi overQ, Gi = Gal(Li/Q).

For everyσ ∈ Gi, starting fromq
(1)
i , with

√
q
(1)
i = p

(1)
i , we can define an ideal in the following

way

q
(1)
i = (f1(αi,X), . . . , fl(αi,X)) → σ(q

(1)
i ) = (f1(σ(αi),X), . . . , fl(σ(αi),X)).

Obviously, the definition ofσ(q(1)i ) is independent from the chosen set of generators ofq
(1)
i ; q(1)i and

σ(q
(1)
i ) have the same dimension; furthermore it is straightforwardthat the idealσ(q(1)i ) is σ(p(1)i )-

primary. Finally, ifτ, σ ∈ Gi, τ 6= σ, thenτ(q(1)i ) 6= σ(q
(1)
i ) andτ(p(1)i ) 6= σ(p

(1)
i ).

We now show that actually the idealsσ(q(1)i ) are the primary components ofqi in Q[X].

Lemma 1.9. Considerqi a non-pure rational component ofa ⊆ C[X] defined by polynomials with

rational coefficients,Li the smallest normal algebraic extension ofQ such thatq(1)i has a set of
generators inLi[X], G = Gal(Li/Q). The minimal primary decomposition ofqi is

qi =
⋂

σ∈Gi

σ
(
q
(1)
i

)
, (1.2)

and in particularri = #Gi = [Li : Q].

Proof. The idealσ(q(1)i ) is σ(p(1)i )-primary. So
⋂

σ∈G σ
(
q
(1)
i

)
is a primary decomposition of an

idealb.
Furthermore, it is a minimal primary decomposition. Indeed, thanks to the definition of the ideals

through the automorphism ofLi, all the associated primesσi(p
(1)
i ) are distinct; for what concerns

redundant primary components, for anyσ ∈ G, sinceLi is the minimal normal algebraic extension
containing a set of generators ofq

(1)
i , then there isf ∈ q

(1)
i such that

∏
τ 6=σ τ(f) is not inσ(q(1)i ).
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Using [1], Exercises 12 and 13 of Chapter 5, if we consider theassociated primes and the natural
homomorphismQ[X] → Li[X], then the set of prime ideals{pij} is the same as the set of prime

ideals ofLi[X] whose contraction ispi. ThenG acts transitively on the set{p(j)i }j=1,...,ri , that is

{p(j)i }j=1,...,ri = {σ(p(1)i )}σ∈G .

So
⋂

σ∈G σ
(
q
(1)
i

)
is a minimal primary decomposition ofqi; sinceqi is a primary ideal, all its

primary components inLi[X] have same dimension and there are no embedded components, soits
primary decomposition is unique and is exactly the one in (1.2).

Lemma 1.10. Considera ⊆ C[X], defined by a set of polynomials with rational coefficients, with no
embedded components. Then the minimal primary decomposition ofa is

a =

r⋂

i=1


 ⋂

σ∈Gi

σ
(
q
(1)
i

)

 . (1.3)

Proof. Since the idealsσ
(
q
(1)
i

)
are primary, we just need to show that the decomposition is minimal.

Condition 1 of Definition 1.3 about minimality is straightforward from Lemma 1.9.
For what concerns Condition 2, we just have to point out that if there is p̃ associated to two

different primary components ofa in C[X], σ
(
q
(1)
i

)
, σ ∈ Gi, andτ

(
q
(1)
j

)
, τ ∈ Gj , then we would

have two associated primes of the rational primary decomposition included in one other or equal.
But this contradicts the fact thata has no embedded components and the minimality of the rational
primary decomposition ofa.

Up to relabeling the automorphisms ofGal(Li/Q), we can rewrite (1.3) as

a =

r⋂

i=1




ri⋂

j=1

q
(j)
i


 , (1.4)

with ri = [Li : Q], q(j)i = σj

(
q
(1)
i

)
.

Definition 1.11. The primary decomposition (1.4) is theabsolute primary decompositionof a and for

i such thatri ≥ 2, we say thatq(j)i (resp.V (q
(j)
i )) is anabsolute componentof a (resp. ofV (a)).

If qi =
⋂ri

j=1 q
(j)
i , we say thatq(j)i andq(j

′)
i areconjugate, and that{q(j)i }j=1,...,ri is aconjugacy

class. Any number or property of an absolute component isinvariant by conjugacyif it is the same
for all the absolute components in the same conjugacy class.

From now on we will focus on a particular kind of ideals,equidimensionalones.

Definition 1.12. An ideala (resp. an algebraic setW ⊆ Cn) is equidimensionalif all of its primary
components (resp. all of its irreducible components) have the same dimension.

Thanks to [1], Corollary 4.11, ifa is equidimensional, all of its primary components are uniquely
determined and so in this case the primary decomposition is unique.

Furthermore, there is a wide class of ideals which are equidimensional: if we consider a complete
intersection ideala ∈ R generated byn− c polynomials, it is equidimensional. This can be seen as a
consequence of the Affine Dimension Theorem ([15], Chapter I, Proposition 7.1).

We can finally fix our purpose.
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Given a non-prime equidimensional ideala ⊆ C[X], generated by polynomials with
rational coefficients, we write its primary decomposition as in (1.4). Then for every
rational primary componentqi of a, we would like to find the numbersri, deg(q

(1)
i )and

mult(q
(1)
i ).

If mult(q
(1)
i ) = 1 (the primary component is reduced, and so it is prime) then wewould

also like to compute the affine Hilbert function ofR/q(1)i .

Remark 1.13. Thanks to Lemma 1.10, all the information concerning the primary componentq(1)i

(such as degree, multiplicity and affine Hilbert function ifthe component is prime) are the same for
all the conjugate componentsσ(q(1)i ), σ ∈ Gal(Li/Q), since we actually compute them by an initial
ideal, which is invariant by conjugacy.

2 Algebraic extensions ofQ and modular computations

We are interested in preserving some properties of an ideala in R = L[X] (L is a normal algebraic
extension ofQ) “modulo” a well-chosen prime integerp. First of all we need to establish how we can
compute an algebraic number modulo a primep and then we will see that in general the reduction
modulop of the coefficients of a polynomial ideal preserves the affineHilbert function of the ideal
itself.

Let a = (f1, . . . , fs) ⊆ L[X] be an ideal.L is a normal algebraic extension ofQ of degree
s: L ≃ Q(α), whereα is an algebraic number such that its minimal polynomial isq(T ) ∈ Q[T ],
deg q(T ) = s andq(T ) =

∑s
i=1(T − σi(α)) whereσi are the automorphism ofL fixing Q, σi(α) =

αi are the conjugates ofα overQ.
In the definition of a reduction ofa modulo awell-chosenprimep, our aim is preserving some

features ofa.
We fix a set of generators(f1, . . . , fs) in Q(α)[X]. We multiply eachfi with a scalarci such that

ci · fi ∈ Z[α][X] and the coefficients ofci · fi have g.c.d. (on the integers) equal to 1: we call such a
set of generators inZ[α][X] primitive. We keep on writingfi for ci · fi.

We now consider a prime integerp such thatq(T ) splits inZ/pZ = Fp in the following way:

q(T ) = S1(T ) · S2(T )mod p, degS1(T ) = 1,deg S2(T ) = s− 1, gcd(S1(T ), S2(T )) = 1. (2.1)

Thanks to Chebotarev’s Density Theorem ([22]), we know thatthere are infinite prime integersp
for which (2.1) holds.

Let βp be the only root ofS1(T ) in Z/pZ, 0 ≤ βp ≤ p − 1: S1(βp) = 0. We then define the
following map, from the ringZ[α] of Z to the finite fieldFp = Z/pZ:

ψp : Z[α] → Fp

α 7→ βp

a ∈ Z 7→ a mod p.

(2.2)

This definition on the generators obviously extend to a homomorphism of rings, well-defined
because of the choice ofp and consequently ofβp.

We can then extend this homomorphism to the polynomials:

ψp : Z[α][X] → Rp = Fp[X]

f =
∑

I

aIX
I 7→ f̃ =

∑

I

ψp(aI)X
I .
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If we considera = (f1, . . . , fs) ⊆ Q(α)[X], we can assume that the chosen generators are
primitive and are inZ[α][X]; we definẽa = (f̃1, . . . , f̃s) ⊆ Rp.

Remark 2.1. Observe that the definition ofã is independent on the chosen set of generators ofa:
if a = (f1, . . . , fs) = (f ′1, . . . , f

′
l ) then(f̃1, . . . , f̃s) = (f̃ ′1, . . . , f̃

′
l ) as ideals inRp.

Example 2.2. Consider the ideal

a = (3Y 2 − 2
√
3ZX, 3Y X −

√
3
√
2Z, 2X2 −

√
2Y ) ⊆ C[X,Y,Z].

This set of generators has coefficients in the algebraic extensionQ(
√
2 +

√
3), which is normal,

[Q(
√
2 +

√
3) : Q] = 4, the minimal polynomial of

√
2 +

√
3 is q(T ) = T 4 − 10T 2 + 1.

Consider nowp = 23:

q(T ) = (T + 21) · (T + 12) · (T + 2) · (T + 11) mod p.

We consider the homomorphismψp such thatψp(
√
2+

√
3) = 21. With this definition ofψp, we have

that: ψp(
√
2
√
3) = 11, ψp(

√
2) = 5, ψp(

√
3) = 16.

Soã = (3Y 2 + 14ZX, 3Y X + 12Z, 2X2 + 18Y ).

We can choose a primep satisfying (2.1) using the following lemma.

Lemma 2.3. [[3], Lemma 12] Letq(T ) ∈ Z[T ] be a polynomial andp a prime number such thatp
dividesq(0), p does not divide the discriminant ofq(T ) andp > deg(q(T )).
Then there exists a root inQp of q(T ), considered as a polynomial inQp[T ].

We would like to understand in which cases computations modulo a prime integerp preserve the
affine Hilbert function of the ideala. From Proposition 1.7, we can bring back our problem about the
choice of a primep preserving the affine Hilbert function to the choice of a “good” p preserving the
initial ideal (w.r.t. some term ordering) ofa.

Assume that(g1, . . . , gs) is a Groebner Basis ofa w.r.t. �, degree compatible term ordering,
and that these polynomials are primitive; we now choose a primep satisfying (2.1) for the minimal
polynomial ofα. Then, we definẽa := (g̃1, . . . , g̃s) ⊆ Rp.

Proposition 1.7 gives a necessary condition for a prime integer p to preserve the affine Hilbert
function of a: if computations modulop preserveHF a

R/a then they also preserveLM�(a) with
respect to a degree-compatible term ordering�.

We will show that a finite number of primesp does not satisfy this necessary condition.

Lemma 2.4. Considerα algebraic number onQ, [Q(α) : Q] = s, L1, . . . , LN non-zero elements of

Z[α], Li =
∑s−1

j=0 a
(i)
j αj . There is a finite number of prime integersp such thatψp(Li) = 0 for some

i.

Proof. We will proceed by contradiction.
Suppose that there are infinite prime integersp such thatψp maps to zero at least one of theLi’s.

In particular there is an index̃ı such thatLı̃ is mapped to zero by infinite mapsψp. We can define the

polynomialL̃(T ) =
∑s−1

j=0 a
(̃ı)
j T

j.

If deg L̃(T ) = 0, L̃(T ) = Lı̃ is an integer and there is only a finite number ofψp mappingLı̃ to
zero, because there is only a finite number ofp’s dividing it.

We can then assume thatd = deg L̃(T ) ≥ 1. We consider a primep such that

ψp(Lı̃) = 0, p ≥ ‖L̃(T )‖s‖q(T )‖d,
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whereq(T ) is the minimal polynomial ofα; we can choose such ap since the set ofp’s we are looking
at is supposed to be infinite.
Observe thatψp(Lı̃) = L̃(βp) mod p = 0. This means that both̃L(T ) andq(T ) can be divided by
(T − βp) modulop. But since we chosep ≥ ‖L̃(T )‖s‖q(T )‖d, we can apply [23], Lemma 16.20:

deg
(
gcd(L̃(T ), q(T ))

)
≥ 1.

Sincedeg L̃(T ) < deg q(T ), this contradicts the fact thatq(T ) is irreducible.

Lemma 2.5. Let a be an ideal inQ(α)[X], � a term ordering andG = {g1, . . . , gr} a Groebner
Basis ofa with respect to�, p a prime integer satisfying (2.1) for the minimal polynomialof α.
If ψp does not map to 0 any of the coefficients of the leading monomials of the polynomials inG, then
G̃ = {g̃1, . . . , g̃r} is a Groebner Basis of̃a with respect to�.

Proof. SinceG is a system of generators for the ideala, thenG̃ is a system of generators forã.
Considerg ∈ a and its representation with respect to the basisG (eventually multiplying forc ∈ Z,
to eliminate the denominators):

g =

r∑

i=1

aigi, ai ∈ R.

Then we have the corresponding representation ofg̃ with respect to the basis̃G:

g̃ =
r∑

i=1

ãig̃i.

We have thatLM(g̃) = maxi=1,...,r{LM(ãig̃i)}, where the “max” is taken with respect to�.
SinceLM(ãig̃i) = LM(ãi)LM(g̃i) for everyi andψp does not map to zero the coefficients of

the leading monomials of the polynomials in the Groebner basis, we immediately haveLM(g̃) ∈
(LM(g̃1), . . . , LM(g̃s)) and soG̃ is a Groebner Basis for̃a.

Theorem 2.6. Let a be an ideal inR = Q(α)[X]. Then for a finite number of prime integersp, we
have that

HF a
R/a(i) 6= HF a

Rp/ã
(i) for somei.

Proof. We fix a degree compatible term ordering� and consider the Groebner BasisG = {g1, . . . , , gr}
of a. Thanks to Proposition 1.7,HF a

R/a(i) 6= HF a
Rp/ã

(i) for somei only if the initial ideal ofa dif-
fers fromã.
We apply Lemma 2.5: there is only a finite number of primesp such that the initial ideals ofa andã
are different.

Corollary 2.7. There is a finite number of prime integersp such that the affine Hilbert function
and dimension ofa and ã differ. If a is a primary component of some ideal, the same holds for the
multiplicity ofa and ã.

3 An exact strategy: Elimination of Variables and Colon Ideals

In this section, we will present an exact technique, which combines elimination of variables, absolute
factorization and computation of colon ideals and gives theprimary decomposition of an ideal.

This technique is intuitive and immediate from the geometric point of view: the elimination of
variables geometrically corresponds to projection on somelinear space.

9



The use of projections reduces the problem of decomposing analgebraic set to a multivariate factor-
ization; this was first showed at the beginning of the XX-th century (see [16]). After that, Seidenberg
in [20] used a more rigorous formalism then Hermann’s to establish which ideal operation can be
actually computed, depending also on the features of the polynomial ring we are working on.
The computation of a colon ideal geometrically correspondsto take off the points of an algebraic set
from another one. This relation between the “difference” ofvarieties and colon ideals is well-known
too (see [7], Chapter 4, §4).

The strategy of elimination of variables and computation ofquotient ideals is also used in [4]. The
authors in [4] can move around the computational effort of using genericprojections (in the sense of
Definition 3.2) by using another powerful tool, which is the relation between flatness and variation
of staircases. Thanks to the study of the flatness of the variation of the staircases, they can split the
ideal according to the splitting of the projection, even if it is not a generic one; they repeat the process
for the ideals obtained by splitting and at each step they have the dimension or the multiplicity of the
ideals decreasing, so their algorithm terminates. The algorithm in [4] has different variants and can
give the strict, isoradical and reduced equidimensional decomposition of a polynomial ideal inQ[X]
(see [4], Introduction, for the different kind of decompositions).
Unfortunately, even if in [4] the proofs are given for a fieldk, with suitable properties thatQ has, the
implementation of the algorithm in CoCoAdeals only withQ or a finite field as coefficient fields, so
this algorithm is not used in a CAS for the computation of an absolute primary decomposition (see
Section 5).

Although the basic idea of the technique we are going to use iswell-known, for lack of a complete
and accessible reference on the whole strategy relating thealgebraic and geometrical point of view ,
we will present it in an exhaustive way.

The decomposition algorithm that we can obtain using these techniques (Algorithm 1) is exact
but not useful in practice: the computations needed are quite long and hard to perform. Anyway, we
will investigate this method in details since later (Section 4) we will modify this strategy giving up
the exact computations in order to gain velocity in computations, but preserving some information
about the irreducible and reduced components, namely theiraffine Hilbert Function.

First of all, we now investigate some properties of the projection of varieties. For the omitted
proofs, see [21].

Definition 3.1. A linear projectionis a surjective affine map:

π : Cn → Cm

P = (x1, . . . , xn) ∈ Cn 7→ (L1(P ), . . . , Lm(P )) withLi(X) = ai0 +

n∑

j=1

aijXj .
(3.1)

In a similar way, we can define a linear projection to projective space, considering

πL : Pn \ L→ Pm

P = [x0 : x1 : . . . : xn] 7→ [L0(P ) : L1(P ) : . . . : Lm(P )], Li(X) =
n∑

j=0

aijXj .
(3.2)

L ⊆ Pn is the point of intersection of the linear equationsLi and it is thecenterof the projection.
Two projectionsπ1 andπ2 fromPn to Pm are equivalentif they have the same centerL.

We now consider a projectionπ : Cn → Cm and we restrict it to an equidimensional algebraic
setW of Cn with dimensionc. It is not always true thatπW is proper: for instance, the projection of

10



the hyperbola defined by the ideal(XY − 1) on theX-axis is theY -axis without the origin; with this
particular choice of the linear space to project on, the restriction of π to the hyperbola is not proper.

Proposition 3.2([21], Lemma 5.1). Let W be a closed algebraic set ofCn all of whose irreducible
components are of dimensionc. For a general linear projectionπ : Cn → Cm, m ≥ c + 1, the map
πW is proper and generically one-to-one.
In particular π(W ) is a closed algebraic set ofCm of degree equal to the degree ofW .

Corollary 3.3. Let W be an equidimensional algebraic set of dimensionc in Cn. For a general
projectionπ : Cn → Cc+1, the following hold:

1. if Wi andWj are two distinct irreducible components ofW , thenπ(Wi) 6= π(Wj);

2. W is irreducible if and only if the polynomial definingπ(W ) is absolutely irreducible;

3. if D(T1, . . . , Tc) is the polynomial defining the projectionπ(W ) and we consider its absolute
factorizationD = Dm1

1 · · ·Dms
s , thens is exactly the number of distinct irreducible compo-

nents ofW ,mi is the multiplicity of the componentWi anddegDi its degree.

We now assume thatW is an equidimensional algebraic set of dimensionc defined by the ideal
a ⊆ C[X], a = (F1, . . . , Fr), Fi ∈ Q[X]; we further assume that we performed a generic linear
change of coordinates with integer coefficients; in this waywe can consider the projections on linear
spaces defined by equations of kindXi = 0 to be generic.

We consider the projectionπ1 : Cn → H1, with H1 the linear space of dimensionc + 1 defined
by the equationXc+2 = · · · = Xn = 0. We callZ1 the projection of the algebraic setW onH1. This
is a hypersurface inH1 and its decomposition is equivalent to the absolute factorization of the multi-
variate polynomialD1(X1, . . . ,Xc+1) ∈ Q[X] definingZ1 on the linear spaceH1. Furthermore, the
components ofZ1 are in one-to-one correspondence with the irreducible components ofW .

If D1 = Dm1
11 · · ·Dms

1s ,D
mj

1j ∈ C[X], is the absolute factorization ofD1, each factorD1j defines
in Cn a ruled surface, a cylinder, containing the componentWj .
Algebraically, thanks to the generic change of coordinatesand to Corollary 3.3, ifa =

⋂
qj , then there

is only one absolute factorD1j in the absolute factorization ofD1 such thatD
mj

1j ∈ qj . Furthermore,
for m < mj,Dm

1j /∈ qj .
We can then start considering the ideala + (D

mj

1j ). But V (a + (D
mj

1j )) contains not only the

componentWj, but also the points of the setsV (D
mj

1j ) ∩ Wk for k 6= j.

Thinking of the corresponding varietiesV (qi) andV (D
mj

1j ), we can classify the primary compo-

nents of the ideala+ (D
mj

1j ) as follows:

• a primary component of dimensionc, which is the primary componentqi such thatD
mj

j ∈ qi

(and in this case we writei = j). Obviously in this caseqj+(D
mj

1j ) = qj andpj+(D1j) = pj ;

• other primary components of dimension< c whenV (qi) ∩ V (D
mj

1j ) is non-empty and it does
not contain the componentWj .

Finally, the ideala+(D
mj

1j ) defines the componentWj with some extra components of dimension
< c. In order to avoid these extra components, we can repeat the same steps with(n − c − 1) more
generic projectionsπk from Cn onto the linear spacesHk, defined by equations of kindXi = 0,
thanks to the chosen generic coordinates (see also Section 3.1 for more details). If we consider
πk(W ) = Zk, the polynomial definingZk onHk is again a rational multivariate polynomialDk in
c+1 variables. We compute its absolute factorization and we obtain another cylinder containingWj ,
defined by the factorDkj.

11



Actually, in the absolute factorizations of the polynomialsDk there may be several factors with
the same degrees and multiplicity. For instance, this happens when one of the componentsWj is a
non-pure rational one (see Definition 1.8). This can give ambiguity in matching the factors of the
polynomialsDk whose zero set contains the componentWj .

In order to match the factors defining the cylinders containing the same component, we can look
at the Hilbert dimension of the ideala+ (

∑c+1
k=1(D

mj

kj )). This dimension isc if and only if all of the

setsV (D
mj

kj ) contain the same irreducible component ofW ; this follows from Corollary 3.3, 1.
In order to find the correct matchings, we will not compute theHilbert dimensions of the idealsa+

(
∑c+1

k=1(D
mj

kj )) for every possible(n−c)-uple of factors; we will compute the Hilbert dimension only
for the matchings such that all the factorsDkj have the same degree and multiplicity. Furthermore,
we get an almost certain probabilistic check by consideringa generic section with a linear space of
dimensionn − c: that is, we can look for the matchings such that the ideala + (

∑c+1
k=1(D

mj

kj )) with
(n− c) variables evaluated in some integer values is zero-dimensional and nonempty (see Algorithm
2).

Once matched the absolute factors found through the projections,{Dkj}j=1,...,c (after re-indexing
of the factors), the ideal

aj := a+ (

c+1∑

k=1

(D
mj

kj )) (3.3)

is “almost” the primary ideal corresponding to the component Wj: there are some embedded compo-
nents left, which geometrically are inWj ∩ Wl, for l 6= j.

Lemma 3.4. Consider(n − c) projectionsπi fromCn to Cc+1, pairwise not equivalent. If there are
pointsP1, P2 ∈ Cn such that

πi(P1) = πi(P2) ∀i = 1, . . . , n− c,

thenP1 = P2.

Proof. We writeπk(P ) = (L
(k)
1 (P ), . . . , L

(k)
c+1(P )) with L(k)

i (X) = a
(k)
i0 +

∑n
j=1 a

(k)
ij Xj . Remark

that since a projection is a surjective map,L
(k)
i 6= L

(k)
j , 1 ≤ i < j ≤ c+ 1; furthermore, we will be

interested in the matrix whose lines are the vectors
(
a
(k)
ij

)
j=1,...,n

for k = 1, . . . n−c, i = 1, . . . , c+1.

It is a matrix with(n− c)(c+1) lines andn columns; since the chosen projections are pairwise non-
equivalent, this matrix has maximal rank:(n− c)(c+1) ≥ n for all 0 ≤ c ≤ n−1, so the considered
matrix has rankn.

P1 andP2 have the same image underπj if and only if L(j)
i (P1) = L

(j)
i (P2), i = 1, . . . , c + 1.

We obtain(n− c) · (c+ 1) equations of kind

n∑

j=1

a
(k)
ij (x

(1)
j − x

(2)
j ) = 0, P1 = (x

(1)
j )j=1,...,n, P2 = (x

(2)
j )j=1,...,n.

The unique solution to this system of equations is the trivial one, since the matrix associated to the

linear system is exactly
(
a
(k)
ij

)
whose rank isn, and so we have thatP1 = P2.

Corollary 3.5. ConsiderW equidimensional algebraic set of dimensionc in Cn and W1 and W2

irreducible components ofW . If P1 ∈ W1 andP2 ∈ W2 are such that

πi(P1) = πi(P2),

for (n− c) generic projectionsπi : Cn → Cc+1, thenP1 = P2 is a point inW1 ∩ W2.
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Thanks to Lemma 3.4 and the one-to-one correspondence between the components ofW and the
components ofπ(W ), for a general projectionπ, if we consider the idealaj as in (3.3),V (aj) is Wj ;
however the polynomials inaj vanish on the points ofWk ∩ Wl, l 6= j, with multiplicity higher than
mult(Wj).

So, for the moment, we have an ideal such that its zero set contains the irreducible componentWj

but there are some embedded components; we now show that the points of these embedded compo-
nents are also contained in the zero set of the singular locusof aj (Definition 3.6).
Considering again primary decompositions, for what concernsaj we have that:

aj = a+ (

c+1∑

k=1

(D
mj

kj )) = qj ∩ (

v⋂

i=1

bi) (3.4)

wherebi is a primary ideal of dimension< c. Geometrically, the primary componentsbi correspond
to the irreducible component ofWj ∩Wk, j 6= k. These components are in thesingular locusof R/a.

Here we just recall the algebraic definition of singular locus and the useful Jacobian criterion.

Definition 3.6. Let a be an ideal inR = K[X], K perfect field,a = (f1, . . . , fs). A prime idealp
containinga is in thesingular locusofR/a if the localization ofR/a at p is not a regular local ring.

With an abuse of notation, we will say “singular locus ofa” for the singular locus ofR/a.

Proposition 3.7([11], Corollary 16.20). Let a be an ideal inK[X], K perfect field,a is equidimen-
sional with dimensionc, a = (f1, . . . , fs). LetJ be the ideal generated by the(n−c)×(n−c)-minors
of the Jacobian matrix(∂fi/∂Xj). ThenJ defines the singular locus ofa: a primep containsJ if
and only ifp is in the singular locus ofa.

We can then compute easily the equations defining the singular locus ofa:

• Compute the jacobian matrix ofa;

• Compute{Ml}, the(n− c)× (n− c) minors of the jacobian matrix;

• The singular locus ofa is defined by(Ml).

We are then interested in consideringaj and removing the “embedded” primary components
which contains the singular locus ofa. We can do this for the idealsaj containing a reduced compo-
nent, that is the ones obtained from irreducible factors of multiplicity 1.

In general, fora1, a2 ideals in a ringR:

(a1 : a2) = {f ∈ R|f · a2 ⊆ a1}

If we consider an ideal generated by a single elementf of R, we will simply write (a : f) instead of
(a : (f)).

Lemma 3.8([1], Lemma 4.4.). Letq be ap-primary ideal,f an element ofR. Then

1. if f ∈ q then(q : f) = (1);

2. if f /∈ q then(q : f) is p-primary, and therefore
√

(q : f) = p;

3. if f /∈ p then(q : f) = q.

13



Proposition 3.9. In the previous setting, ifDij are factors of multiplicity one in the factorizations of
the polynomialsDi, suchDij ∈ qj , aj = a+(

∑c+1
k=1(Dkj)) andM is a(n−c)×(n−c) minor of the

Jacobian matrix ofa, then(aj :M) is exactlypj , the prime ideal defining the irreducible component
Wj of W = V (a).

Proof. Consider the primary decomposition ofaj :

aj = a+ (

c+1∑

k=1

(Dkj)) = qj ∩ (

v⋂

i=1

bi)

whereqj is the only component of dimensionc, while bi are embedded components of dimension
< c. These embedded components correspond to the intersectionof Wj with the other irreducible
components ofa. Furthermore, since the factorsDkj have multiplicity one in the factorizations of the
Di, this means (Corollary 3.3) that

√
qj = qj , that isqj is a prime component, so we can writepj for

qj .
This means that ifM is an equation of the singular locus ofa, thenM ∈ bi for i = 1, . . . , v and

so (bi : M) = (1). On the other hand,pj is the only primary (and prime) component ofaj which
does not contain the singular locus: so(pj :M) = pj .

So

aj :M = (pj :M) ∩
(

v⋂

i=1

(bi :M)

)
= pj .

Remark 3.10. Proposition 3.9 applies only for components of multiplicity 1 (that is, for factors in
the absolute factorization of multiplicity 1).
In fact, if we consider an idealaj = a+(

∑n
k=1(D

mj

kj )),mj ≥ 2, we have that this ideal contains the
singular locus ofa, soM ∈ aj and (using Lemma 3.8),(aj :M) = (1).

For components of multiplicity> 1, we may “clean up” at least some of the embedded compo-
nents of the idealaj in the following way:

• we use the described strategy for the components of multiplicity one, obtaining the set of
prime ideals{pi1 , . . . , piv} which are the ideals for the irreducible and reduced components
{Wi1 , . . . ,Wiv}

• since we cannot use the colon ideal with respect to a generator of the singular locus, we then
compute

b := (· · · ((aj : fi1) : fi2) · · · : fiv),
for fij ∈ pij .

In this way, we can “clean” part of the points of the embedded components. For the remaining
ones, for any component of multiplicity> 1 we should consider the absolute factorsD1j of D1 not
contained in this primary component, and compute again some“nested” colon ideals, starting from
b, with respect to theD1j .

3.1 Algorithms

In this section we will summarize the strategy of elimination of variables and colon ideals, writing
down the main algorithm for primary decomposition (Algorithm 1) and an auxiliary one to match
(n− c)-uplesD

mj

1j , . . . ,D
mj

cj (Algorithm 2).
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In order to consider(n − c) projectionsπi : Cn → Cc+1 (pairwise non-equivalent) and compute
the polynomialsDi which is zero onπi(W ), at the beginning of Algorithm 1 we perform a generic
change of affine coordinates and then use projections on “coordinate” affine linear spaces, namely
linear spaces defined by equations of kindXj = 0. While in the previous section we used “H” for
the coordinate affine linear space, we will now use “H” to denote the set of indexes of the variables
Xj to eliminate to obtain the projection of the curve:

Xj = 0, j ∈ H = {j1, . . . , jn−c−1} ⊆ 1, . . . , n = [n]. (3.5)

We can always find(n− c) sets of indexesHi, i = 1, . . . , n− c, such thatHl 6= Hm for everyl 6= m.
If H = {j1, . . . , jn−c−1}, we write{Xl}l∈[n]\H for {Xl1 , . . . ,Xlc+1}, with [n]\H = {l1, . . . , lc+1}.

The actual computation of the polynomialDi is obtained by the computation of a Groebner Basis
with respect to an elimination term ordering.
If we consider the set of indexesH as in (3.5), we can compute a Groebner Basis which elimi-
nates froma the variablesXj , j ∈ H; from now on we will denote such a Groebner Basis with
GBelim(H)(a), or, if we fixHi, i = 1, . . . , n− c, we simply writeGBelim(i)(a). ThenDi is the only
generator ofGBelim(i)(a) such that

Di ∈ GBelim(i)(a) ∩Q[Xl]l∈[n]\Hi
(3.6)

We will always assume thatH1 = {c+ 2, . . . , n}.

In Algorithm 2, in order to match the absolute factors corresponding to the same component, we
use the fact that if an algebraic set has dimension< c, then its general section with a linear space of
dimension(n − c) is empty; this means that ifb is an ideal of dimension< c, then the affine Hilbert
Dimension ofb with (n − c) variables evaluated in integer values is generically−1. Furthermore,
thanks to the generic change of coordinates, we can evaluatethe variables in 0.

Thanks to the results of Section 1, we can modify Algorithm 1 and 2 and avoid repeating the com-
putations for conjugate primary components. We present theAlgorithms without this for simplicity
and also because they will not actually be used in this form.

Indeed, Algorithm 1 is exact, but in practice the computations are too heavy: the main computa-
tional difficulties are at Step 2 (because of the computationof the Groebner Basis), Step 3 (because
of the multivariate absolute factorization) and Step 8 (because of the computation of the colon ideal)
of Algorithm 1.

In the next section we show that we can perform all these computations modulo a well-chosen
prime integerp, obtaining Algorithm 3. Its output is no more exact, in the sense that it does not
return the ideals of the reduced components, but it returns information about the ideals of the reduced
components, in particular their initial ideal and affine Hilbert functions.

This will be possible observing that the computations of thetroublesome steps of Algorithm
1 are actually obtained through Groebner Basis and that a good choice ofp preserves along the
computations the initial monomials of the polynomials in the Groebner Basis and so the Hilbert
functions of the ideals.

15



Algorithm 1: Exact Decomposition of an equidimensional algebraic set

Data: a ∈ Q[X1, . . . ,Xn], a of pure dimensionc
Result: The number of irreducible components, their degrees and multiplicities.
If the multiplicity of the componentWj is 1, a system of generators of the idealI(Wj); if the
multiplicity of the component is≥ 2, the equations of(n− c) hypersurfaces “isolating” the
component from the other ones.

1 Preprocessing:Perform a generic affine change of coordinates on the generators ofa;
2 Compute(n− c) polynomials, eliminating froma the set of variables corresponding to the set

of indexesHi, i = 1, . . . , n− c: Di is the only generator ofGBelim(i)(a) with the property
(3.6),i = 1, . . . , n − c ;

3 Perform the absolute factorization ofDi, i = 1, . . . , n− c
Di = Dm1

i1 · · ·Dms

is , i = 1, . . . , n− c ;
4 Match theDij ’s through Algorithm 2 in such a way that (after re-numberingof the factors)
aj = a+ (

∑n−c
k=1(Dkj)) contains the componentWj ;

5 Compute the Jacobian matrix ofa and a minor of size(n− c)× (n− c),M ;
6 for i from1 to s do
7 if mi is 1 then

8 Computea(M)
j the quotient ideal ofaj with M : a(M)

j := aj : (M);

9 end
10 end
11 Return:
12 for j = 1, . . . , s: degD1j degree of the component,mj multiplicity of the component;
13 if mj ≥ 2, aj ideal isolating the component;

14 if mj = 1, a(M)
ij = I(Wj).
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Algorithm 2: Matching of factors through Hilbert Dimension

Data: a and the absolute factors{Dij}i=1,...,n−c

j=1,...,s
, obtained at Step 3 of Algorithm 1.

Result: After relabeling the polynomials for the indexj, L := [(D
mj

ij )i=1,...,n−c)]j=1,...,s with
V (a+ (

∑n
i=1(Dij))) containing the componentWj of V (a) for everyj = 1, . . . , s.

1 L := empty list;
2 for j from1 to s do
3 Consider a(n− c)-uple(Dij)i=1,...,n−c s.t.degDij = dj andmij = mj∀i;
4 Compute the Hilbert Dimensionh of the ideala+ (

∑n
i=1(Dij)) with (n− c) variables

evaluated in 0;
5 if h=0 then
6 add the(n− c)-uple(D

mj

ij ) to the listL;

7 else
8 go back to Step 3 and change(n− c)-uple;
9 end

10 end
11 Re-number the factors ofDi in such a way that the(n− c)-uples inL are of the form

(D
mj

1j , . . . D
mj

n−c,j);

12 Return: L

4 Modular Algorithms

We use the results of Section 2 on the exact decomposition strategy presented in Section 3. We
develop an algorithm which takes as input an ideala with generators inQ[X], defining an equidimen-
sional algebraic setW in Cn of dimensionc, and gives as output the number of primary components,
their degrees, multiplicities and the affine Hilbert function of the components of multiplicity 1.

Remark 4.1. We did not present a non-modular version of Algorithm 4, since all the algorithms
presented in Section 3.1 are not actually used. We insert this further procedure to avoid useless
computations in the calling of Algorithm 5 in Step 9 of Algorithm 3.

17



Algorithm 3: Modular Algorithm for affine Hilbert Function

Data: a = (F1, . . . , Fm), Fi ∈ Q[X1, . . . ,Xn], a equidimensional with dimensionc
Result: The degree and multiplicity of the primary components ofa; for primary components

of multiplicity 1, their initial ideal with respect to a degree compatible term ordering.
1 Preprocessing:Perform a generic integer change of coordinates ona, with coefficients inZ;
2 Fix (n− c) different coordinate linear spaces of dimensionc+ 1, defined by set of indexesHi,
i = 1, . . . , n− c;

3 ComputeD1(0, . . . , 0,Xc+1) as the only generator ofGBelim(1)(a|X1=0,...,Xc=0) respecting
(3.6);

4 Compute the rational factorization:D1(0, . . . , 0,Xc+1) = d
(1)
1 (Xc+1)

m1 · · · d(1)s (Xc+1)
ms ;

5 for j from 1 tos do

6 Choose a prime integerpj dividing d(1)j (0);

7 ComputeDi mod pj as the only polynomial inGBelim(i)(a) mod p respecting (3.6),
i = 1, . . . , n− c;

8 Compute the modular factorizationsDi mod pj, i = 1, . . . , n− c;

9 Apply Algorithm 4 to the rational factord(1)j (Xc+1) and the modular factors ofD1,

obtaining the set of modular factorsDj of D1;

10 ChooseD(1)

jk̃
mod pj ∈ Dj of minimal degree such thatrj =

deg d
(1)
j

degD
(1)

jk̃

∈ Z;

11 if rj ≥ 2 then

12 Apply Algorithm 5 to match the modular factorD(1)

jk̃
with D(i)

jk̃
modular factor ofDi,

obtainingã(j)i = a+
∑n−c

i=1 (D
(i)

jk̃
)mj mod pj (after re-labeling of the factors);

13 if mj is 1 then
14 Compute the Jacobian matrix ofa mod pj and a minor of size(n− c)× (n− c),

M̃ ;

15 Compute(ã(j)i : M̃) mod pj;
16 end
17 end
18 end
19 Return: s number of rational components
20 for everyj = 1, . . . , s
21 rj number of non-rational components constituting the rational componentqj
22 degD

(1)

jk̃
degree of each non-rational component ofqj

23 mj multiplicity of the non-rational component

24 if mj = 1, pj and(ã(j)i : M̃) mod pj ideal having the same initial ideal and same Hilbert
function asq1j

25 if mj ≥ 2, p andD(i)

jk̃
, i = 1, . . . , n− c, image modulop of (n − c) a polynomial contained in

q
j
i but not in the other absolute components ofa;
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Algorithm 4: Partition of modular factors
Data: d(Xc+1) ∈ Q[Xc+1], an integerp dividing d(0) and

D(X1, . . . ,Xc+1) =
∏l

i=1Di(X1, . . . ,Xc+1)
mi mod p such that

d(Xc+1) | D(0, . . . , 0,Xc+1) mod p
Result: A set containing the modular factors ofd(Xc+1) mod p

1 A := empty list,i := 1, δ := 1;
2 while i ≤ l do
3 mi := multiplicity of d(Xc+1) in the rational factorization ofD(0, . . . , 0,Xc+1);
4 if Di(0, . . . , 0,Xc+1) mod p dividesd(Xc+1) mod p then
5 addDi(X1, . . . ,Xc+1) mod p toA;
6 δ = δ ·Di(0, . . . , 0,Xc+1) mod p;
7 if δ = d(Xc+1) mod p then
8 i := l + 1;
9 end

10 end
11 i := i+ 1;
12 end
13 Return: A

Algorithm 5: Matching of modular factors through affine Hilbert Dimension

Data: D(1)
i modular factor ofD1(X1, . . . ,Xc+1) and{D(j)

k mod p}j=2,...,n−c

k=1,...,m
modular

factors ofDj

Result: ãji = a+
∑n−c

j=1(D
(j)
i )mi mod p with Hilbert dimensionc

1 Consider a(n− c− 1)-uple(D(j)
k )j=2,...,n−c such thatdeg(D(j)

k ) = deg(D
(1)
i ) andmk = mi ;

2 Computeh =Hilbert Dimension ofa+D
(1)
i +

∑n−c
j=2(D

(j)
k )mk mod p with (n− c) variables

evaluated to 0;
3 if h = 0 then

4 renumber the modular factor puttingD(j)
i := D

(j)
k

5 else
6 go back to Step 1 and change(n− c)-uple.
7 end

8 Return: ãji = a+ (
∑n−c

j=1 D
(j)
i )mi mod p.
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4.1 Proof of Algorithm 3

We apply the results of Section 2 to the decomposition strategy explained in Section 3 and to the Al-
gorithms of Section 3.1. Again, we deal with an equidimensional polynomial ideala = (F1, . . . , Fm)
with dimensionc, Fi ∈ Q[X]. The key point of Algorithm 3 is the choice of a prime integerpi which

gives a “modular image” of the algebraic numberαi s.t.q(j)i ⊆ Q(αi)[X]. For all the notations used,
we refer to Section 3.1, Algorithms 3, 4 and 5.

We will now follow the steps of Algorithm 3 in order to show that it gives a correct output.
In Step 1 of Algorithm 3, as in Algorithm 1, we perform a generic change of coordinates; thanks

to this, the projections on the "coordinate" linear spaces of dimensionc+1 are “generic” in the sense
of Proposition 3.2: the components of the projected algebraic set are in one-to-one correspondence
with the components of the algebraic set itself (see also Corollary 3.3). Furthermore, consider on
one hand the absolute factors of the polynomial whose zero set is the projected algebraic set and
on the other one the primary components of the ideal defining the algebraic set: factors and primary
components are in one-to-one correspondence and the degreeand multiplicity of a factor is the degree
and multiplicity of the corresponding primary component (in the sense of Definition 1.5 and 1.6).

In Step 2 we fix(n−c) distinct “coordinate” linear spacesHi (as explained in Section 3.1). Using
projections on these linear spaces, we would like to apply the techniques for absolute factorization
developed in [3], but we have to be careful because we do not have one of the main hypothesis: the
Input of the Abs-Fact Algorithm presented in [3] is arationally irreduciblepolynomial. This is not
our case, this is why in Step 3 of the algorithm we compute a univariate factorization.
Indeed, assume that we are able to computeD1, the only polynomial in the firstc + 1 variables of
GBelim(1)(a). This multivariate polynomial in general is not rationallyirreducible; furthermore it is
not advantageous to compute the multivariate rational factorization ofD1.
We rely on Hilbert’s Irreducibility Theorem: for infinite integer specialization ofc variables, a ratio-
nally irreducible factor of the polynomialD1 stays rationally irreducible. This means that if

D1(X1, . . . ,Xc+1) = d
(1)
1 (X1, . . . ,Xc+1)

m1 · · · d(1)s (X1, . . . ,Xc+1)
ms ∈ Q[X1, . . . ,Xc+1]

then for infinitex1, . . . , xc ∈ Z the rational factorization ofD1(x1, . . . , xc,Xc+1) is exactly

D1(x1, . . . , xc,Xc+1) = d
(1)
1 (x1, . . . , xc,Xc+1)

m1 · · · d(1)s (x1, . . . , xc,Xc+1)
ms ∈ Q[Xc+1].

Thanks to the generic change of coordinates of the Preprocessing Step, we can takex1 = · · · =
xc = 0. In order to compute this rational univariate factorization without computingD1(X1, . . . ,Xc+1),
in Step 7 we simply specializec variables ofF1, . . . , Fm and then compute the elimination Groebner
Basis:

D1(0, . . . , 0,Xc+1) ∈ GBelim(1)(a|X1=0,...,Xc=0).

Since we are considering a generic projection, a rational factor ofD1(X1, . . . ,Xc+1) corresponds
to a rational component of the algebraic setW = V (a) (in the sense of Definition 1.8), while each
absolute factor of corresponds to an irreducible component.

Once computed in Step 4 the univariate rational factorization, we then proceed in order to “break”
the non-rational components.
We consider thej-th factor of the rational factorization ofD1, that isd(1)j (Xc+1) which has multi-

plicity mj. If the corresponding factord(1)j (X1, . . . ,Xc+1) of the univariate rational factorization of
D1(X1, . . . ,Xc+1) is not absolutely irreducible, then its absolute factors have coefficients in some
algebraic extensionQ(αj). Using [3], Lemma 11, we can assume that the algebraic extension Q(αj)
is generically generated by the evaluation of one absolute factor in a point with integer coordinates.
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Thanks to the generic change of coordinates, we will choose(0, . . . , 0) ∈ Zc+1.
We choose an integer primepj dividing dj(0) (Step 6) applying Lemma 2.3 and, relying on ran-
domness, we assume that the chosen primepj will preserve the initial ideal of the Groebner Basis
we will compute along the “FOR” loop (as in Lemma 2.5). Thanksto Lemma 2.3, if we factor
D1(X1, . . . ,Xc+1) modulo this primepj , the rationally irreducible factord(1)j (X1, . . . ,Xc+1) splits
(if it is not absolutely irreducible). The homomorphismψpj of (2.2) is implicitly defined.
Actually we do not computeD1(X1, . . . ,Xc+1): in fact, in Step 7 we compute directly the modular
elimination Groebner Basis and then the modular factorizations (Step 8). In Step 9 we group the
modular factors corresponding tod(1)j (Xc+1) using Algorithm 4.

If the rational factord(1)j (X1, . . . ,Xc+1) is absolutely irreducible, then it does not further split

modulopj, that isrj, the number of modular factors ofd(1)j , is exactly1. In this case, we can stop
here and repeat the loop for the next rational factor.
If d(1)j (X1, . . . ,Xc+1) is absolutely reducible, thenrj ≥ 2 (thanks to the choice ofpj according
to Lemma 2.3): in Step 10 we choose a modular factor among themhaving minimal degree which
dividesdeg d(1)j (Xc+1); we assume that this factor isD(1)

jk̃
(X1, . . . ,Xc+1).

In Step 12 we look for the corresponding modular factor ofDi, i = 2, . . . , n − c. Using Algorithm
5, we obtain the ideal̃aj

k̃
= a +

∑n−c
i=1 (D

(i)

jk̃
)mj mod pj with Hilbert dimensionc. Corollary 2.7

certifies that̃aj
k̃
= ψpj(a

j

k̃
).

Once defined in Step 12 the idealã
j

k̃
(re-ordering the indexes) with affine Hilbert dimensionc, if

the multiplicity mj is 1, we can keep on following Steps 5 and 8 of Algorithm 1: we compute the
Jacobian Matrix ofa mod pj and consider one of its(n− c)× (n− c)-minors,M̃ . We compute the
colon ideal of̃aj

k̃
with M̃ . LetM be the(n − c)× (n − c) minor of the Jacobian matrix ofa s.t.M

mod pj = M̃ .
We need to show that for infinite primespj the colon ideal modulopj has the same affine Hilbert

function of the colon ideal inQ(αj)[X1, . . . ,Xn], that isψpj (a
j

k̃
:M) = (ãj

k̃
: M̃).

First of all, observe that̃aj
k̃

and the corresponding non-modular ideala
j

k̃
have the same Hilbert func-

tion for all but a finite number of prime integers (thanks to Theorem 2.6).
Furthermore, we can assume that we compute Jacobian matrix of a and a minorM and then reduce
modulopj. For what concerns the colon ideal, the actual computation is performed using a Groebner
Basis (see [7], Chapter 4, §4, Theorem 11 for the details). This means that again we can apply Lemma
2.5 and so there is only a finite number of primespj such thatψpj (a

j

k̃
:M) and(ãj

k̃
: M̃ ) differ.

Remark 4.2. Actually, Algorithm 3 is a Las-Vegas one, just like the Abs-Fact Algorithm of [3]: in
fact, in the Preprocessing Step, we have to assume that the coefficients for the generic change of
coordinates are taken in a finite setS ∈ Z.

We shall then modify the Preprocessing Step of Algorithm 3 and insert a small loop in Step 10, in
order to stop the execution and go back to the Preprocessing Step, if we cannot define arj ∈ Z (see
Abs-Fact Algorithm of [3]).

We can also compute the “minimal ” rational algebraic extension Li = Q(αi) containing a
set of generators of the idealai. We can apply theLLL method developed in [3]. Unluckily, we
do not have a technique to estimate the needed level of accuracy. We can just try to compute the
minimal polynomial which definesLi with increasing levels of accuracy and stop when we get the
same polynomialq(T ) with 2 different levels of accuracy.
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5 Tricks on an example

The data and Maple files of the examples we are going to discussare available at
https://sites.google.com/site/cristinabertone/examples-for-modular-decomposition

We now test our algorithm on a quite simple example (see the file DecompositionCIcurveDe-
gree48.mw).

We consider a complete intersection ideala ⊆ C[X,Y,Z] generated by two polynomials with
rational coefficients,F,G ∈ Q[X,Y,Z], of degree 8 each, rationally irreducible.
We constructed this c.i. curve in such a way that we know that it has non trivial primary compo-
nents, in particular it has a rational primary component of degree 14, that splits in 2 absolute primary
components of degree 8 each, generated by polynomials inQ(

√
2)[X,Y,Z].

The complete intersection curveC = V (a) has degree 48 (one can see this, for instance, using a
generic plane section and counting points with multiplicity).
Sincea is generated by 2 polynomials, we can use resultants insteadof elimination Groebner Basis
to compute the elimination of variables. We perform a generic linear change of coordinates and we
compute

r := ResZ(F (0, Y, Z), G(0, Y, Z)),

which has degree 48 and factors over the rationals (in less than 1 second) as:

• d
(1)
1 (Y ) factor of degree 14 and multiplicity 1;

• d
(1)
2 (Y ) factor of degree 4 and multiplicity 1;

• d
(1)
3 (Y ) factor of degree 22 and multiplicity 1;

• d
(1)
4 (Y ) factor of degree 2 and multiplicity 2;

• d
(1)
5 (Y ) factor of degree 1 and multiplicity 4.

So, using Definition 1.8, the complete intersectiona has 5 rational componentsqi, three of them with
multiplicity 1, with degrees given bydeg d(1)i (Y ) (thanks to Corollary 3.3).

We can proceed in the following way: for each rational factord
(1)
i (Y ), we choose a prime number

pi dividing d(1)i (0), except fori = 5: indeed, we do not look for a prime dividingd(1)5 (0), since this
rational component will not further split. We then compute the projections on the coordinate plane
modulopi, i = 1, . . . , 4. Then we compute the modular polynomial describing the projection of
the curve for each primepi and its modular factorization. We know thatpi forces the rational factor
corresponding tod(1)i (Y ) to split (if it is absolutely reducible). We check whether there is a primepj
between the chosen ones such that it forces all of the rational factors: if we find one, we can perform
all of the computations modulo this prime. If not, we can in any case choose to compute modulo
“some” of the primespi: if pi andpj both give the desired splitting for thei-th andj-th rational
factor, then we can compute the corresponding ideals modulopi (and not usepj).

For the ideala, we see thatp = 89 give the desired splitting for all of the 4 rational factors which
may be absolute reducible. So we will compute only modulo 89.

The computations ofD1(X,Z) = ResY (F,G) mod p, D2(X,Y ) = ResZ(F,G) mod p and
their modular factorization take less than 4 seconds each.

All of the rational factors further split modulop in 2 factors. So we compute the initial ideal
(and affine Hilbert function) for one of the two absolute components of degrees 7, 2 and 11. The

22



other absolute components have multiplicity> 1, so we do not perform on them Steps 14 and 15 of
Algorithm 3.

Performing Algorithm 3 (including the matching of the factors through Algorithm 5), we then
obtain the initial ideals:

• deg q
(1)
1 = 7, intlex(q

(1)
1 ) = (X3, Y 7,X2Z2,X2Y,XY 3,XZ5XY 2Z2XY Z3);

• deg q
(1)
2 = 2, intlex(q

(1)
2 ) = (X,Y 2);

• deg q
(1)
3 = 11, intlex(q

(1)
3 ) =

= (X3, Y 11,XZ9,X2Y 2,XY 2,X2Z3,XY 4Z,X2Y Z2,XY 3Z3,XY 2Z5,XY Z7).

Finally, we use the techniques of the Abs-Fact Algorithm of [3] to compute the polynomial
q(T ) ∈ Z[T ] which defines the algebraic extension containing the coefficients of a set of genera-
tors for the absolute primary components. However we do not have an a priori bound on the size of
the coefficients ofq(T ), as pointed out in Remark 4.2). We perform an Hensel Lifting of a modular
univariate factor until a quite high level of accuracy (in this case, untilp512); we then construct dif-
ferent candidates for the minimal polynomial, starting with accuracyp16, until two different levels of
accuracy give the same polynomial.

For accuracyp64, we see that the minimal polynomial “stabilizes”:

q(T ) = 26301054375T 2 − 214355874045600T ++436754388124393216

Obviously, sincedeg q(T ) = 2, we can easily find a better presentation of the extensionQ(α) com-
puting the roots ofq(T ): we obtain that the extension ofQ we need can be generated by

√
2.

Summing up, we obtained that the complete intersection curve a = (F,G) ⊆ Q[X,Y,Z] has the
rational primary decomposition

a = q1 ∩ q2 ∩ q3 ∩ q4 ∩ q5

with deg q1 = 14, deg q2 = 4, deg q3 = 22, deg q4 = 2 anddeg q5 = 1 and multiplicitiesm1 =
m2 = m3 = 1,m4 = 2,m5 = 4.

Each of the rational primary ideals with multiplicity 1 further decomposes as

qi = q
(1)
i ∩ q

(2)
i ,

with q
(j)
i ⊆ Q(

√
2)[X,Y,Z], q(2)i = σ

(
q
(1)
i

)
, whereσ(

√
2) = −

√
2.

The whole computation took less than 15 minutes on a home-usepersonal computer, without any
problem with memory allocation.

We point out that it is not that obvious to obtain this kind of information about the decomposition
of the ideala. For instance, one may use one of the most popular Computer Algebra System, Maple
[18].
We tried to use the Maple commandPrimaryDecomposition (whose algorithm is based on
[13]), which gives as an output the primary decomposition ofthe ideala. As input, we also gave
the algebraic extension of the rationals in which one can findthe generators of the absolute pri-
mary decomposition ofa, namelyQ(

√
2). Even with this further information about the decom-

position (which is not a priori known from the only knowledgeof the rational generators ofa),
PrimaryDecomposition in Maple caused a problem with memory allocation (reaching about
2.3 GB), after computing for more than 1 hour.
For what concerns other computer algebra systems, we also tried Singular ([14]), another computer
algebra system for polynomial computations. We tried to obtain the rational primary decomposition
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of a usingprimdecGTZ and the primary decomposition overQ[X,Y,Z] usingabsprimdecGTZ
(which are based on [13], the algorithms are described in [9]). In both cases we stopped the compu-
tations after 2 hours, without obtaining the primary decomposition.
The CAS CoCoA([6]) has a commandPrimaryDecomposition to decompose only monomial
square-free ideals. It also has a command calledEquiIsoDecwhich computes an equidimensional
isoradical decomposition ofa, i.e. a list of equidimensional idealsb1, . . . , bk such that the radical of
a is the intersection of the radicals ofb1, . . . , bk. This command is based on the algorithm presented
in [4] and it works only usingQ or finite fields as coefficient ring. Nevertheless,EquiIsoDec could
not give the output on our example after more than two hours computing.

Although for the moment we cannot really compare our algorithm with the above ones mentioned,
we can see that the problem we are facing is challenging and that our modular strategy may move
around the computational problems of primary decomposition. Nevertheless, we cannot give com-
plete comparaison for the moment, since we cannot compute the complete primary decomposition
nor a reduced decomposition: using Algorithm 3 we get several interesting data about the absolute
primary components of an equidimensional ideal. Indeed, these data may be useful as a guide or a
bound for numerical algorithms, such as the ones in [12] or [21].

Furthermore, the technique taken from [3] to construct the algebraic extension containing the co-
efficients of a set of generators of a primary component, could be used with other algorithms: for
instance, one can see the exampleDecompositionCIcurveDegree36.mw. With our modular strategy,
we obtain not only the initial ideal of all of the absolute primary components of a complete intersec-
tion in Q[X,Y,Z] generated by 2 polynomials both of degree 6, but also thatQ(

√
2) contains the

coefficients of the generators of these components.
If we ask Maple to compute the primary decomposition of this ideal, again it does not reach the result
after one hour of computation. But if we pass to the commandPrimaryDecomposition also
the information that the primary components are insideQ(

√
2)[X,Y,Z], then we obtain the primary

decomposition in less than 3 minutes.
This example suggests that we may combine at least a part of our strategy (for instance, the

construction of the “splitting” field) with an existing algorithm (such as the one implemented in
Maple), in order to obtain a complete result.

Conclusions and future work

In this paper we designed an algorithm which, given a set of polynomials with rational coefficients
defining an equidimensional ideala, returns the initial ideal of each absolute prime componentof
a. Furthermore it also returns information concerning non-reduced primary components, such as
their number, degree, multiplicity. The main ingredients of the algorithm are the classical technique
of projection and the use of computations modulo well-chosen primes, as done in [3] in order to
decompose a bivariate polynomial. The obtained results seem promising, mostly for what concerns
complete intersections and more precisely, for curves inC3.

A further step is to implement this algorithm in a Computer algebra System, for instance in
Mathemagix [19]. Mathemagix is a free computer algebra system under development, which has
available libraries for algebraic computation (such as large numbers, polynomials and others) for
exact and approximate computation. This should make Mathemagix particularly suitable as a bridge
between symbolic computation and numerical analysis.

Our final aim is actually to design an algorithm which uses projections with modular techniques
and can return the complete absolute primary decompositionof the ideal given as input. The main
obstacle to this is the absence of a tool similar to Hensel’s Lifting (see for instance [23], Chapter 15,
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Section 4), which allows lifting a modular factorization toa rational one; we would need a general-
ization of this in order to lift the modular decomposition ofan ideal.

Our next task is then to develop such a tool, design and implement a primary decomposition
algorithm and compare its efficiency with other implementedroutines. With this tool, we may be able
to obtain a complete decomposition for the reduced part of anequidimensional ideal.

Other possible improvements of the algorithm are dealing with a non-equidimensional ideala and
computing also non-reduced primary components; for the first part we will have to choose whether
dealing only with the top-dimensional part ofa or studying also smaller components; for the second
one, if we will be able to compute these non-reduced primary components, then we will also be able
to compute a radical decomposition (see [4]).

We are hopeful that our techniques are competitive, since atthis moment we can already get a lot
of information concerning the absolute decomposition of anideal, in a reasonable time with a limited
use of memory, while other CAS cannot really deal with the primary decomposition of the same ideal
(see Section 5). So, even if at the moment the results of our method are partial and cannot be directly
compared to the performances of other softwares, we believethat this method is on the right path to
get an efficient primary decomposition algorithm.
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