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Abstract

In many compressed sensing applications, linear programming (LP) has been used to reconstruct
a sparse signal. When observation is noisy, the LP formulation is extended to allow an inequality
constraint and the solution is dependent on a parameter δ, related to the observation noise level.
Recently, some researchers also considered quadratic programming (QP) for compressed sensing
signal reconstruction and the solution in this case is dependent on a Lagrange multiplier β. In this
work, we investigated the relation between δ and β and derived an upper and a lower bound on β
in terms of δ. For a given δ, these bounds can be used to approximate β. Since δ is a physically
related quantity and easy to determine for an application while there is no easy way in general to
determine β, our results can be used to set β when the QP is used for compressed sensing. Our results
and experimental verification also provide some insight into the solutions generated by compressed
sensing.

1. Introduction

In many compressed sensing applications, signal reconstruction is carried out by solving a linear
programming (LP) problem [1]. When observation is noiseless, the LP problem is:

(LP) : min||u||1 subject to Au = b (1)

where u is the signal to be reconstructed (n-dim vector, sufficiently sparse), A is an m×n sampling
matrix, with m ≪ n, b is the observation (an m-dim vector), and the minimization is with respect
to u. When the observation is noisy (with bounded noise), the LP formulation is extended to

(LPn) : min||u||1 subject to ||Au− b||22 ≤ δ2 (2)

where δ2 is a bound on noise power, or noise level. Although strictly speaking this is no longer a
linear programming problem (it is still a convex optimization problem), because its relation to eqn
(??) and for the sake of simplicity, we will still refer to it as a part of the LP problem (LPn).

In some work, a quadratic programming (QP) problem, with

(QP) : min

{

1

2
||Au− b||22 + β||u||1

}

(3)
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has been considered for compressed sensing. For example, Fuchs [2, 3] and Troop [4] used the
QP formulation to study the theoretical properties of the solutions of various compressed sensing
problems. Similarly, Chen et al. (e.g., see [5]) used a QP-type formulation in several papers for
compressed sensing based 3D CT (computer tomography) [in their case, the l1 norm is replaced by
total variation (TV)]. Finally, the QP problem is closely related to (in fact equivalent to) the Lasso
procedure [6] which is widely used in statistics, pattern recognition, and data mining.

Given the LP and QP formulations, a natural question is: when are they the same, i.e., producing
the same results? When the observation is noiseless, Fuchs [2] showed that the QP becomes the same
as the LP when β → 0+ (i.e., from the right). When the observation is noisy, Fuchs [3] pointed out
that for a given noise bound δ2 in the LPn, there exists a β > 0 for the QP such that the resulting
QP is the same as the LPn, i.e., they produce the same solutions; in fact, this can be established
through the theory of duality [7]. However, Fuchs also mentioned that it is difficult to find an explicit
(e.g., an analytic) relation between this β and the δ2 in LPn. This means that when a QP algorithm
is used in practice for compressed sensing, such as in the previously mentioned 3D CT and Lasso
applications, it may not actually be performing compressed sensing (as defined by the LPn) since,
in these applications, it is unclear how to find the “right” β. Indeed, in practice β is often selected
experimentally. However, as illustrated in Fig. 1 (figures are all at the end of the paper), for a given
compressed sensing problem with a given noise level (δ2), the solution from the QP is dependent
on parameter β and most of the time, it is not the same as that from the LPn (this is illustrated
through the QP’s reconstruction error for various β values).

In this paper, we attempt to find an analytic relation between β and δ2 (or equivalently, between
β and δ). Such a relation is useful in three respects. First, it may allow us to gain more insight
into the relation between the LP and the QP problems, thereby more insight into the nature of
the solution of the compressed sensing problem. Second, if in practice we want to use the QP or
Lasso for some reason (e.g., familiarity, easier implementation, or faster speed) as an algorithm for
compressed sensing, we can obtain or estimate the appropriate β from δ, which, as the noise level,
is a physical parameter and usually readily available. Finally, many signal/image processing and
computer vision problems are solved by a Bayesian formulation where an energy function related
to the posterior probability distribution is minimized. Usually, the energy function is a sum of two
terms: the first is related to the observation model and is similar to, or the same as, the first term in
QP [see eqn (3)] and the second is related to prior constraints and is similar to the second term in the
QP. The two terms are “balanced” by a parameter β just like that in the QP formulation. In many
such Bayesian applications, selecting the value of β is a problem and there is no analytic/theoretical
guidance. Our work sheds light on this problem and could potentially be used to find a solution.

The rest of the paper is organized as follows. In Section 2, we derive some analytic relations
between β and δ and in Section 3, we verify and illustrate some of these relations experimentally.
Finally, in Section 4, we provide conclusions.

2. Analytic Results

In this section, we derive two relations between β and δ, one in inequalities and the other in an
equality.
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2.1. Inequality Relations

Suppose for a noise level or bound δ2, the LPn problem of eqn (2) has a sparse solution. Then, as
described in Section 1, there is a β > 0 such that for this β, the solution of the QP problem of (3)
is the same as that of the LPn. Let x be this “common” solution and suppose it has k non-zero
components. According to Fuchs [2, 3], this solution must satisfy the following condition (can also
be viewed as part of the KKT condition [7])

ĀT (b− Āx̄) = βsgn(x̄) (4)

where x̄ is the “reduced solution vector,” made up by the non-zero components of x, Ā is a m × k
matrix made up by the columns of matrix A corresponding to x̄, and sgn(·) is the usual sign function
that for a scalar t

sgn(t) =

{

−1, if t < 0
+1, if t > 0

(5)

while for a vector v, sgn(v) is applied component-by-component, leading to a vector of +1s and −1s.
Now, taking the l2 norm square on both sides of (4), we have

(b− Āx̄)T (ĀĀT )(b− Āx̄) = β2||sgn(x̄)||2 = β2k (6)

where we used the fact that

||sgn(x̄)||2 = (
√
k)2 = k (7)

Note that ĀĀT is a m×m correlation matrix and is semi positive definite. Hence, its eigenvalues
are non-negative. Denoting the largest among these as λmax and using the relation between matrix
norm and maximum eigenvalues [8], we have

(b− Āx̄)T (ĀĀT )(b− Āx̄) ≤ λmax||b− Āx̄||2 (8)

Because of eqn (6), we can also write this as

β2k ≤ λmax||b− Āx̄||2 (9)

As described previously, x̄ (and x) is also a solution of the LPn problem, it satisfies the inequality
constraint of eqn (2). In fact, based on the results in the Appendix, this solution achieves equality

||b− Āx̄||2 = δ2 (10)

Hence, we have
β2k ≤ λmaxδ

2 (11)

That is,

β ≤
√

λmax

k
δ (12)

Given δ, this provides an upper bound on β. In practice, we could also use this upper bound as an
approximation to β with
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β ≃
√

λmax

k
δ (13)

As demonstrated in Section 3, this approximation can often be quite good. Finally, it is interesting
to note that if we let δ → 0+, the LPn problem becomes the LP problem. In this case, the upper
bound suggests that β → 0+, reproducing Fuch’s noiseless result for the relation between β and δ
(see Section 1).

Using the techniques for deriving the above upper bound, we can also derive a lower bound. How-
ever, since ĀĀT is semi positive definite rather than positive definite, this is slightly less straightfor-
ward and requires some approximations. Specifically, since Ā is an m×k matrix and since generally,
m > k (in practice, m is usually on the order of 5k [1]), the rank of matrix ĀĀT is at most k.
Since ĀĀT is an m×m matrix, it has at most k non-zero eigenvalues. Assume this to be the case
and denote the smallest non-zero eigenvalue be denoted as λmin. Let the eigenvectors of ĀĀT be
e1, e2, . . . , em, where they are ordered according to the value of their eigenvalues, e1 for λmax, ek
for λmin, and ek+1, . . . , em for 0 eigenvalue. Since b − Āx̄ is an m-dimensional vector, it can be
represented by e1, e2, . . . , em, with

b− Āx̄ =
m
∑

i=1

αiei (14)

where αi are representation coefficients. From this, we have

(b−Āx̄)T (ĀĀT )(b−Āx̄) =

( m
∑

i=1

αiei

)T

(ĀĀT )

( m
∑

i=1

αiei

)

=
m
∑

i=1

λiα
2
i =

k
∑

i=1

λiα
2
i ≥ λmin

k
∑

i=1

α2
i . (15)

Now, we find an estimate of
∑

k

i=1 α
2
i
. First we notice that the larger sum

m
∑

i=1

α2
i = ||b− Āx̄||2. (16)

Hence, from eqn (10) we have

m
∑

i=1

α2
i = δ2 (17)

Furthermore, we notice that b − Āx̄ = b − Ax = w is the noise. Assume the noise is white (i.e.,
uncorrelated), on average α2

i
are roughly the same [12], at δ2/m. Hence, we have

k
∑

i=1

α2
i ≃

k

m
δ2 (18)

Now, combine eqns (6), (15), and (18), we have

λmin

k

m
δ2 ≤ β2k (19)

That is,
√

λmin

m
δ ≤ β (20)
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This provides a lower bound on β for a given δ.
The only problem left now is to find the eigenvalues λmin and λmax. In general these eigenvalues

are dependent on the specifics of the A matrix, such as which columns correspond to the non-zero
elements of x. However, there is an important case of practical importance where these eigenvalues
can be found relatively easily. This is the widely used case where A is an i.i.d. Gaussian random
matrix. In this case, it has been shown in previous work [9, 1] that the smallest and the largest
eigenvalues for ĀĀT are asymptotically

λmin ≃ mσ2(1−√
γ)2, λmax ≃ mσ2(1 +

√
γ)2, (21)

where m is the number of rows in A and Ā, σ2 is the variance of each component of A (and Ā),
γ = k/m (recall that k is the dimension of x̄, also the number of columns of Ā). Plugging these into
the bounds of eqns (12) and (20), we then have

(1−√
γ)σδ ≤ β ≤ (1 +

√
γ)σ

√

k/m
δ (22)

When a compressed sensing application uses a Gaussian random sampling matrix, the inequality of
(22) can be used to find the range of, or estimate, β from a given δ2.

2.2. An Equality Relation

If we add an additional assumption to the derivations in Section 2.1, we can obtain an equality
relation between δ and β. Specifically, if we assume that in eqn (4) the k × k matrix ĀT Ā is
invertible, as Fuchs did in his papers [2, 3], then eqn (4) becomes

x̄ = (ĀT Ā)−1(ĀT b− βsgn(x̄)) (23)

and this provides a solution to the QP problem. As we mentioned previously, when β matches δ,
this solution is the same as that of the LPn. Furthermore, it can be shown that the solution of the
LPn must satisfy the inequality with equality (see Appendix). Hence, the solution of (23) should
satisfy

||Āx̄− b||22 = δ2 (24)

or
x̄T ĀT Āx̄− 2bT Āx̄+ ||b||2 = δ2 (25)

where we have dropped the subscript 2.
Plugging the right hand side of (23) into (25) and denoting sgn(x̄) as vector c to simplify notation,

the first term of (25) becomes

x̄T ĀT Āx̄ = [(ĀT Ā)−1(ĀT b− βc)]T ĀT Ā[(ĀT Ā)−1(ĀT b− βc)]

= (ĀT b− βc)T [(ĀT Ā)−1]T (ĀT Ā)[(ĀT Ā)−1(ĀT b− βc)]

= [(ĀT b)T − βcT ][(ĀT Ā)−1(ĀT b− βc)]

= bT Ā(ĀT Ā)−1ĀT b+ cT (ĀT Ā)−1cβ2 − 2bT Ā(ĀT Ā)−1cβ (26)

where we have used the fact that ĀT Ā is symmetrical and so is its inverse, i.e., [(ĀT Ā)−1]T =
(ĀT Ā)−1.
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Similarly, for the second term of (25), we have

−2bT Āx̄ = −2bT Ā[(ĀT Ā)−1(ĀT b− βc)]

= −2bT Ā(ĀT Ā)−1ĀT b+ 2bT Ā(ĀT Ā)−1cβ (27)

Combine this and the results of (26) into (25), we have

||Āx̄− b||2 = −bT Ā(ĀT Ā)−1ĀT b+ cT (ĀT Ā)−1cβ2 + ||b||2 = δ2 (28)

where the terms linear in β (26) and (27) canceled each other. From this, we can find β in terms of
δ as:

β =

√

δ2 − ||b||2 + bT Ā(ĀT Ā)−1ĀT b

cT (ĀT Ā)−1c
(29)

Although this equality provides a more explicit relation between β and δ2, in practice it is more
difficult to use than the inequalities of Section 2.1 since c and Ā are generally not known before QP
and LP are performed.

3. Experimental Verification

In this section, we provide some experimental (simulation) results that verify and illustrate the
inequality relations between δ and β derived in Section 2.1. In each experiment, we picked a LPn
problem with a given noise level δ2 [see eqn (2)] and formed a corresponding QP problem [see eqn
(3)]. Then, the QP problem was solved for a range of βs and from the resulting solutions, we would
try to identify the best β corresponding to the δ since, according to the theory of duality, the best
β should result in the same solution as that of the LPn with δ2. From this, we could see if, or how
well, the best β satisfies the upper and lower bounds derived in Section 2.1. Next, we describe the
specific steps in our experiments.

3.1. Experiment Steps

Each experiment consists of the following steps:

1. Generate a sparse random n-dimensional signal x∗.

2. Generate a noisy observed signal b = Ax∗+w, where A is an m×n Gaussian random sampling
matrix with m < n and component variance σ2 and w is an m-dimensional additive white
Gaussian noise vector with variance σ2

w.

3. Reconstruct x∗ by solving the LPn problem with δ2 set to δ2 = mσ2
w. Denote the resulting

solution as x̂(δ).

4. Reconstruct x∗ by solving the QP problem with a range of βs. Denote the resulting solution
as x̂(β).

5. Compare the minimum obtained by LPn, i.e., ||x̂(δ)||, and the maximum of the dual function
obtained by QP, g(β) (more details later).
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6. Compare the normalized reconstruction errors (i.e., ||x∗− x̂||2/||x∗||) obtained by LPn and QP
(x̂ could be either x̂(δ) or x̂(β)).

7. Find “the best β” (that produces the same QP solution as the LPn solution) and compare this
β with the bounds in eqns (12) and (20).

We now explain each of these steps in some detail. In Step 1, the original random sparse signal
x∗ was obtained from examples provided/generated by the L1 Magic software [10] (which uses these
to illustrate the workings of compressed sensing algorithms). Specifically, in our experiments x∗

is a sparse random vector of dimension n = 256 and its non-zero components consists of k = 24
randomly placed +1s and -1s (also randomly chosen), as shown in Fig. 2.

In Step 2, the noisy observed signal b was generated using a m× n Gaussian random sampling
matrix A with m = 100 and component variance σ2 = 1; for the additive noise w, we used a white
Gaussian noise with variance σ2

w (whose value is different in different experiments, more details
later). Some typical noisy observed signals are also shown in Fig. 2.

In Step 3, the LPn problem was solved with a log barrier algorithm in L1 Magic and in Step 4,
the QP problem was solved with the L1 Regularization software developed by Kim et al [11].

In Step 5, what we are really doing is to use results of the duality theory [7] to find the best β.
Specifically, for the LPn problem, one can define a dual function

g(λ) = infu

{

||u||1 + λ(||Au− b||22 − δ2)

}

(30)

Because the LPn satisfies the strong duality condition (see [7]), we have

||x̂||1 ≥ g(λ) for all λ ≥ 0 (31)

where x̂ is the solution of the LPn problem and equality is achieved at the best λ, denoted as λ0,
with

λ0 = argmax g(λ) and ||x̂||1 = g(λ0) (32)

Now, the dual function g(λ) can be linked to the QP solution: we can re-write it as

g(λ) = infu

{

||u||1 + λ

(

||Au− b||22 − δ2
)}

= 2λinfu

{

1

2
||Au− b||22 +

1

2λ
||u||1

}

− λδ2 (33)

where the infx{·} is the QP solution with 1/2λ = β . In this way, whenever a QP problem with
β is solved, we can compute a corresponding g(λ) with λ = 1/2β. In this sense, we can write
(re-parameterize) g(λ) as g(β) and the strong duality of eqn (32) can be re-written in terms of β as

β0 = argmax g(β) and ||x̂||1 = g(β0) (34)

where β0 is the best β (which makes the QP having the same solution as that of the LP).
Finally, Steps 6 and 7 are relatively straightforward and we will discuss our experimental results

next.
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3.2. Experimental Results

Some typical experimental results are shown in Figs. 3-14. In Fig. 3, the observation noise variance
is σ2

w = 0.0225, corresponding to an SNR of 30dB (low noise) and a noise bound of δ2 = mσ2
w =

100 × 0.0225 = 2.25. Fig. 3 contains information obtained in Step 5, i.e., the minimum achieved
by the LPn (||x̂||1), the re-parametized dual function g(β), and the upper and lower bounds for β
we derived in Section 2.1. Note that since the minimum achieved by PLn is a number (constant)
while the dual function is a function of β, we presented the former as a constant line. Similarly, the
bounds are numbers, i.e., specific values of β, hence are presented as vertical lines.

From the results of Fig. 3, we can make two observations. First, the experimental results agrees
with the prediction of the duality theory. That is, the g(β) curve is always below the ||x̂||1 line and for
the “best” β, the curve approaches the line. Second, the best β falls in an interval predicted/defined
by our upper and lower bounds (almost right in the middle of the interval). This is very encouraging.

Fig. 4 compares the normalized reconstruction errors (see Step 6) for the LPn and QP. The
former is a number, presented as a horizontal line while the latter is a function of β, hence is a curve.
At the “best” β [i.e., when eqn (34) is satisfied or, when the curve meets the straight line in Fig.
3], the QP and LP have the same reconstruction errors. Hence, looking at reconstruction errors of
QP and LP provides another potential way1 to identifying the “best” β, as can be seen in Fig. 4;
for the “best” β, the QP has the same reconstruction error as that of LP. From Fig. 4, we can also
observe that β can have a strong effect on reconstruction error. Finally, we note that the best β
does not necessarily lead to minimum reconstruction error for QP since the best β is best in the
sense of duality theory (providing the same solution as that of LPn), not in the sense of minimum
reconstruction error. Currently, it is not obvious as to how to find the best β in this latter sense.

To ensure that our results in Figs. 3 and 4 are no accidents, we repeated that experiment 100
times (each time with a new random sparse signal, random sampling matrix, and additive noise
vector) and averaged their results. These are shown in Figs 5 and 6. As can be seen, the nature of
the results are the same as that of Fig. 3 and 4.

Finally, we repeated the experiment for Figs. 3-6 for a higher noise level, with σ2
w = 0.2025,

corresponding to an SNR of 20dB (heavy noise) and a noise level of δ2 = 100× 0.2025 = 20.25. The
results are presented in Figs. 7-10. The nature of the results is the same as that of Figs. 3-6: our
derived bounds worked well. Furthermore, compared with Figs 3-6, we can see that as the noise
reduces (from 20dB to 30dB SNR), the bounds and the best β move to the left, agreeing with the
theoretical prediction that the best β → 0+ when the noise level reduces to 0.

Appendix

Consider the solution to the ℓ1 minimization problem

(P1) min ‖u‖1 subject to ‖Au− b‖2 ≤ δ.

First we note that if ‖b‖2 ≤ δ, then x̂ = 0 is the solution to (P1). To avoid this trivial case, we
assume ‖b‖2 > δ.

The following result belongs to a well-known result in convex optimization, known as the maxi-
mum principle. We include it here for the reader’s convenience. Plus, our proof is specialized to the
(P1) problem.

1Sometimes, the normalized QP error curve can intersect the LP error line at more than one β, in this case, we

need to rely on the dual function to identify the best β.
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Maximum Principle: Let x̂ be a minimizer of (P1) and if x̂ 6= 0, then

‖Ax̂− b‖2 = δ.

Proof: In fact, since x̂ 6= 0, we may assume x̂(i0) 6= 0 for some i0 (x(i) is the ith component of x).
Suppose x̂ is not on the boundary, then

d = δ − ‖Ax̂− b‖2 > 0.

Choose a small t such that |x̂(i0) − t| < |x̂(i0)| and ‖A(x̂ − x̂′)‖2 < d ( here x̂′(i) = x̂(i) for i 6= i0
and x̂′(i0) = x̂(i0)− t), we get a contradiction because ‖Ax̂′− b‖2 < δ and ‖x̂′‖1 < ‖x̂‖1. This proves
the maximum principle.
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Figure 9: Experiment in Figs. 7 and 8 Repeated 100 Times: Averaged Minimum from LP and
Averaged Dual Function from QP.

−3 −2 −1 0 1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n
o
rm

(x̂
−

x
∗
)/

n
o
rm

(x
∗
)

log
2
β

 

 

QP with different β
LP

lower bound

upper bound

Figure 10: Experiment in Figs. 7 and 8 Repeated 100 Times: Averaged Reconstruction Errors from
LP and QP.
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