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Abstract

In many compressed sensing applications, linear programming (LP) has been used to reconstruct
a sparse signal. When observation is noisy, the LP formulation is extended to allow an inequality
constraint and the solution is dependent on a parameter §, related to the observation noise level.
Recently, some researchers also considered quadratic programming (QP) for compressed sensing
signal reconstruction and the solution in this case is dependent on a Lagrange multiplier 8. In this
work, we investigated the relation between 0 and [ and derived an upper and a lower bound on [
in terms of 4. For a given §, these bounds can be used to approximate 3. Since § is a physically
related quantity and easy to determine for an application while there is no easy way in general to
determine (3, our results can be used to set 8 when the QP is used for compressed sensing. Our results
and experimental verification also provide some insight into the solutions generated by compressed
sensing.

1. Introduction

In many compressed sensing applications, signal reconstruction is carried out by solving a linear
programming (LP) problem [I]. When observation is noiseless, the LP problem is:

(LP) :  min||u||y subject to Au =b (1)

where u is the signal to be reconstructed (n-dim vector, sufficiently sparse), A is an m x n sampling
matrix, with m < n, b is the observation (an m-dim vector), and the minimization is with respect
to u. When the observation is noisy (with bounded noise), the LP formulation is extended to

(LPn) :  min||ul|y subject to ||Au — b||3 < 62 (2)

where 6% is a bound on noise power, or noise level. Although strictly speaking this is no longer a
linear programming problem (it is still a convex optimization problem), because its relation to eqn
(??) and for the sake of simplicity, we will still refer to it as a part of the LP problem (LPn).

In some work, a quadratic programming (QP) problem, with
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has been considered for compressed sensing. For example, Fuchs [2, B] and Troop [4] used the
QP formulation to study the theoretical properties of the solutions of various compressed sensing
problems. Similarly, Chen et al. (e.g., see [5]) used a QP-type formulation in several papers for
compressed sensing based 3D CT (computer tomography) [in their case, the 1 norm is replaced by
total variation (TV)]. Finally, the QP problem is closely related to (in fact equivalent to) the Lasso
procedure [6] which is widely used in statistics, pattern recognition, and data mining,.

Given the LP and QP formulations, a natural question is: when are they the same, i.e., producing
the same results? When the observation is noiseless, Fuchs [2] showed that the QP becomes the same
as the LP when 3 — 07 (i.e., from the right). When the observation is noisy, Fuchs [3] pointed out
that for a given noise bound 62 in the LPn, there exists a 8 > 0 for the QP such that the resulting
QP is the same as the LPn, i.e., they produce the same solutions; in fact, this can be established
through the theory of duality [7]. However, Fuchs also mentioned that it is difficult to find an explicit
(e.g., an analytic) relation between this 8 and the 62 in LPn. This means that when a QP algorithm
is used in practice for compressed sensing, such as in the previously mentioned 3D CT and Lasso
applications, it may not actually be performing compressed sensing (as defined by the LPn) since,
in these applications, it is unclear how to find the “right” 3. Indeed, in practice S is often selected
experimentally. However, as illustrated in Fig. 1 (figures are all at the end of the paper), for a given
compressed sensing problem with a given noise level (62), the solution from the QP is dependent
on parameter 5 and most of the time, it is not the same as that from the LPn (this is illustrated
through the QP’s reconstruction error for various (3 values).

In this paper, we attempt to find an analytic relation between 3 and §2 (or equivalently, between
B and ¢). Such a relation is useful in three respects. First, it may allow us to gain more insight
into the relation between the LP and the QP problems, thereby more insight into the nature of
the solution of the compressed sensing problem. Second, if in practice we want to use the QP or
Lasso for some reason (e.g., familiarity, easier implementation, or faster speed) as an algorithm for
compressed sensing, we can obtain or estimate the appropriate 5 from §, which, as the noise level,
is a physical parameter and usually readily available. Finally, many signal/image processing and
computer vision problems are solved by a Bayesian formulation where an energy function related
to the posterior probability distribution is minimized. Usually, the energy function is a sum of two
terms: the first is related to the observation model and is similar to, or the same as, the first term in
QP [see eqn ([B])] and the second is related to prior constraints and is similar to the second term in the
QP. The two terms are “balanced” by a parameter § just like that in the QP formulation. In many
such Bayesian applications, selecting the value of § is a problem and there is no analytic/theoretical
guidance. Our work sheds light on this problem and could potentially be used to find a solution.

The rest of the paper is organized as follows. In Section 2, we derive some analytic relations
between 8 and § and in Section 3, we verify and illustrate some of these relations experimentally.
Finally, in Section 4, we provide conclusions.

2. Analytic Results

In this section, we derive two relations between S and 4, one in inequalities and the other in an
equality.



2.1. Inequality Relations

Suppose for a noise level or bound §2, the LPn problem of eqn (2] has a sparse solution. Then, as
described in Section 1, there is a § > 0 such that for this 3, the solution of the QP problem of (3]
is the same as that of the LPn. Let x be this “common” solution and suppose it has k non-zero
components. According to Fuchs [2], 3], this solution must satisfy the following condition (can also
be viewed as part of the KKT condition [7])

AT (b~ Az) = Bsgn(7) (4)

where Z is the “reduced solution vector,” made up by the non-zero components of z, A is a m x k
matrix made up by the columns of matrix A corresponding to Z, and sgn(-) is the usual sign function
that for a scalar t

-1, ift<0
sgn(t) = { +1, ift>0 (5)

while for a vector v, sgn(v) is applied component-by-component, leading to a vector of +1s and —1s.
Now, taking the [y norm square on both sides of (), we have

(b— Az)T(AAT)(b — Az) = B2jsgn(@)|[2 = B2 (6)
where we used the fact that

Isen(@)|* = (Vk)* =k (7)

Note that AAT is a m x m correlation matrix and is semi positive definite. Hence, its eigenvalues
are non-negative. Denoting the largest among these as A, and using the relation between matrix
norm and maximum eigenvalues [§], we have

(b— Az)T (AAT)(b — AZ) < Ao b — Az||? (8)
Because of eqn ([6]), we can also write this as

ﬁzk S Amax||b_ﬁj||2 (9)

As described previously, Z (and z) is also a solution of the LPn problem, it satisfies the inequality
constraint of eqn (2)). In fact, based on the results in the Appendix, this solution achieves equality

b — Az||? = 62 (10)
Hence, we have
Bk < Apazd? (11)
That is,
)\ma:c
p < ’ J (12)

Given ¢, this provides an upper bound on 3. In practice, we could also use this upper bound as an
approximation to 8 with



B~ jfxé (13)

As demonstrated in Section 3, this approximation can often be quite good. Finally, it is interesting
to note that if we let § — 07, the LPn problem becomes the LP problem. In this case, the upper
bound suggests that 3 — 0T, reproducing Fuch’s noiseless result for the relation between 3 and §
(see Section 1).

Using the techniques for deriving the above upper bound, we can also derive a lower bound. How-
ever, since AA” is semi positive definite rather than positive definite, this is slightly less straightfor-
ward and requires some approximations. Specifically, since A is an m x k matrix and since generally,
m > k (in practice, m is usually on the order of 5k [I]), the rank of matrix AA” is at most k.
Since AAT is an m x m matrix, it has at most k non-zero eigenvalues. Assume this to be the case
and denote the smallest non-zero eigenvalue be denoted as \;,. Let the eigenvectors of AAT pe

€1,€2,...,em, where they are ordered according to the value of their eigenvalues, e; for Aqz, €k
for Amin, and exi1,..., e, for 0 eigenvalue. Since b — AZ is an m-dimensional vector, it can be
represented by eq,es,...,e,, with
m
— AT = Z w;e; (14)
i=1

where «; are representation coefficients. From this, we have

m m k k
(b—Az)T(AAT)(b—A (Z%&) (AAT) (Zaie,) = Z)\ia? = Z)\ia? > )\mmZa?. (15)
i=1 i=1 i=1 i=1

Now, we find an estimate of Z ", . First we notice that the larger sum

m

> a? = b~ Azl (16)

Hence, from eqn (I0) we have

i ol = a7

Furthermore, we notice that b — AZ = b — Az = w is the noise. Assume the noise is white (i.e.,
uncorrelated), on average a? are roughly the same [12], at 4% /m. Hence, we have

k
k
Yoai~—4° (18)
P m
Now, combine eqns (@), (I5), and (I8]), we have
k
)\min_62 < /82k (19)
m
That is,
>\min
6< 8 (20)
m



This provides a lower bound on 3 for a given 6.

The only problem left now is to find the eigenvalues A,,in, and Apqz. In general these eigenvalues
are dependent on the specifics of the A matrix, such as which columns correspond to the non-zero
elements of z. However, there is an important case of practical importance where these eigenvalues
can be found relatively easily. This is the widely used case where A is an i.i.d. Gaussian random
matrix. In this case, it has been shown in previous work [J, [I] that the smallest and the largest
eigenvalues for AAT are asymptotically

>\min = m0'2(1 - ﬁ)27 )\max = m0-2(1 + ﬁ)27 (21)

where m is the number of rows in A and A, o2 is the variance of each component of A (and A),
v = k/m (recall that k is the dimension of Z, also the number of columns of A). Plugging these into
the bounds of eqns (I2) and (20), we then have

(1= F)os < B < %5 (22)

When a compressed sensing application uses a Gaussian random sampling matrix, the inequality of
([22) can be used to find the range of, or estimate, 3 from a given 6.

2.2. An Equality Relation

If we add an additional assumption to the derivations in Section 2.1, we can obtain an equality
relation between 0 and 3. Specifically, if we assume that in eqn (@) the k x k matrix ATA is
invertible, as Fuchs did in his papers [2 3], then eqn (@) becomes

T = (ATA)"Y(ATb — Bsgn(z)) (23)
and this provides a solution to the QP problem. As we mentioned previously, when 8 matches 9,
this solution is the same as that of the LPn. Furthermore, it can be shown that the solution of the
LPn must satisfy the inequality with equality (see Appendix). Hence, the solution of (23) should
satisfy

1Az — b|[3 = o° (24)
or
T AT Az — 2v" Az + ||b||* = 62 (25)
where we have dropped the subscript 2.

Plugging the right hand side of (23]) into (25]) and denoting sgn(z) as vector ¢ to simplify notation,
the first term of (25]) becomes

Tl AT Az = [(ATA)7Y (AT — Be)|T AT A[(AT A) =1 (ATb — Be))

= (ATb = o) [(AT AT (AT (AT A) T (ATH - Bo)]

= [(AT6)" — B [(AT A) "1 (ATb - Bo)]

=T A(ATA) L ATy 4 (AT A)Lep? — 20T A(AT A)~Lep (26)
where we have used the fact that AT A is symmetrical and so is its inverse, i.e., [(ATA)71)T =
(AT A)-1,



Similarly, for the second term of (25]), we have

—2bT Az = —20T A[(AT A)~Y(ATb — Be)]
= 26T A(ATA) T AT + 26T A(AT A) " ep (27)

Combine this and the results of (26]) into (25]), we have

|Az — b]|? = —bT A(ATA) ATy + T(AT A)~ep? + ||b]|? = 62 (28)

where the terms linear in 8 (26]) and (27)) canceled each other. From this, we can find § in terms of
0 as:

2 _ 2 T A( AT AN\—1 AT
B:\/a |[b]|2 + bT A(AT A)—L AT (20)

AT A) e
Although this equality provides a more explicit relation between 3 and 62, in practice it is more

difficult to use than the inequalities of Section 2.1 since ¢ and A are generally not known before QP
and LP are performed.

3. Experimental Verification

In this section, we provide some experimental (simulation) results that verify and illustrate the
inequality relations between § and 3 derived in Section 2.1. In each experiment, we picked a LPn
problem with a given noise level §2 [see eqn ()] and formed a corresponding QP problem [see eqn
@B))]. Then, the QP problem was solved for a range of s and from the resulting solutions, we would
try to identify the best 8 corresponding to the ¢ since, according to the theory of duality, the best
3 should result in the same solution as that of the LPn with §2. From this, we could see if, or how
well, the best [ satisfies the upper and lower bounds derived in Section 2.1. Next, we describe the
specific steps in our experiments.

3.1. Experiment Steps

Each experiment consists of the following steps:

1. Generate a sparse random n-dimensional signal z*.

2. Generate a noisy observed signal b = Az* +w, where A is an m x n Gaussian random sampling
matrix with m < n and component variance o2 and w is an m-dimensional additive white

Gaussian noise vector with variance o2,

2

3. Reconstruct z* by solving the LPn problem with §2 set to 6> = mo?2. Denote the resulting

solution as %(4).

4. Reconstruct z* by solving the QP problem with a range of 8s. Denote the resulting solution

as z(f).

5. Compare the minimum obtained by LPn, i.e., ||#(J)||, and the maximum of the dual function
obtained by QP, g(8) (more details later).



6. Compare the normalized reconstruction errors (i.e., ||z* — Z||2/||z*||) obtained by LPn and QP
(Z could be either #(6) or &(5)).

7. Find “the best 57 (that produces the same QP solution as the LPn solution) and compare this
B with the bounds in eqns (I2]) and (20]).

We now explain each of these steps in some detail. In Step 1, the original random sparse signal
x* was obtained from examples provided/generated by the L1 Magic software [10] (which uses these
to illustrate the workings of compressed sensing algorithms). Specifically, in our experiments x*
is a sparse random vector of dimension n = 256 and its non-zero components consists of k = 24
randomly placed +1s and -1s (also randomly chosen), as shown in Fig. 2.

In Step 2, the noisy observed signal b was generated using a m x n Gaussian random sampling
matrix A with m = 100 and component variance o2 = 1; for the additive noise w, we used a white
Gaussian noise with variance o2, (whose value is different in different experiments, more details
later). Some typical noisy observed signals are also shown in Fig. 2.

In Step 3, the LPn problem was solved with a log barrier algorithm in L1 Magic and in Step 4,
the QP problem was solved with the L1 Regularization software developed by Kim et al [I1].

In Step 5, what we are really doing is to use results of the duality theory [7] to find the best .
Specifically, for the LPn problem, one can define a dual function

9 = int,{ lull + A(}4u - bl - 87)} (30)
Because the LPn satisfies the strong duality condition (see [7]), we have

[|Z][1 > g(A) forall A>0 (31)

where Z is the solution of the LPn problem and equality is achieved at the best A\, denoted as Ay,
with
Ao = argmaxg(A) and ||Z]]1 = g(Xo) (32)

Now, the dual function g(\) can be linked to the QP solution: we can re-write it as
1 1
9 = intu{ lully + Al u— b1 - ) } = 22t {51 du— BB + Sllull f -2 (33)

where the inf,{-} is the QP solution with 1/2A\ = 8 . In this way, whenever a QP problem with
B is solved, we can compute a corresponding g(\) with A = 1/25. In this sense, we can write
(re-parameterize) g(A) as g(3) and the strong duality of eqn ([B2]) can be re-written in terms of 5 as

fo = argmax g(8) and |[|Z|[1 = g(Bo) (34)

where fj is the best § (which makes the QP having the same solution as that of the LP).
Finally, Steps 6 and 7 are relatively straightforward and we will discuss our experimental results
next.



3.2. Experimental Results

Some typical experimental results are shown in Figs. 3-14. In Fig. 3, the observation noise variance
is 02 = 0.0225, corresponding to an SNR of 30dB (low noise) and a noise bound of §? = mo?2 =
100 x 0.0225 = 2.25. Fig. 3 contains information obtained in Step 5, i.e., the minimum achieved
by the LPn (||Z||1), the re-parametized dual function g(f), and the upper and lower bounds for S
we derived in Section 2.1. Note that since the minimum achieved by PLn is a number (constant)
while the dual function is a function of 3, we presented the former as a constant line. Similarly, the
bounds are numbers, i.e., specific values of 5, hence are presented as vertical lines.

From the results of Fig. 3, we can make two observations. First, the experimental results agrees
with the prediction of the duality theory. That is, the g(3) curve is always below the ||#||; line and for
the “best” /3, the curve approaches the line. Second, the best /3 falls in an interval predicted/defined
by our upper and lower bounds (almost right in the middle of the interval). This is very encouraging.

Fig. 4 compares the normalized reconstruction errors (see Step 6) for the LPn and QP. The
former is a number, presented as a horizontal line while the latter is a function of 8, hence is a curve.
At the “best” 8 [i.e., when eqn (34]) is satisfied or, when the curve meets the straight line in Fig.
3], the QP and LP have the same reconstruction errors. Hence, looking at reconstruction errors of
QP and LP provides another potential Wa to identifying the “best” [, as can be seen in Fig. 4;
for the “best” 3, the QP has the same reconstruction error as that of LP. From Fig. 4, we can also
observe that 8 can have a strong effect on reconstruction error. Finally, we note that the best g
does not necessarily lead to minimum reconstruction error for QP since the best 5 is best in the
sense of duality theory (providing the same solution as that of LPn), not in the sense of minimum
reconstruction error. Currently, it is not obvious as to how to find the best § in this latter sense.

To ensure that our results in Figs. 3 and 4 are no accidents, we repeated that experiment 100
times (each time with a new random sparse signal, random sampling matrix, and additive noise
vector) and averaged their results. These are shown in Figs 5 and 6. As can be seen, the nature of
the results are the same as that of Fig. 3 and 4.

Finally, we repeated the experiment for Figs. 3-6 for a higher noise level, with o2 = 0.2025,
corresponding to an SNR of 20dB (heavy noise) and a noise level of 62 = 100 x 0.2025 = 20.25. The
results are presented in Figs. 7-10. The nature of the results is the same as that of Figs. 3-6: our
derived bounds worked well. Furthermore, compared with Figs 3-6, we can see that as the noise
reduces (from 20dB to 30dB SNR), the bounds and the best § move to the left, agreeing with the
theoretical prediction that the best 8 — 0 when the noise level reduces to 0.

Appendix

Consider the solution to the ¢; minimization problem
(Py) min|ull; subject to |Au— 0|2 <.

First we note that if ||blj2 < d, then & = 0 is the solution to (P;). To avoid this trivial case, we
assume |[|b||2 > 6.

The following result belongs to a well-known result in convex optimization, known as the maxi-
mum principle. We include it here for the reader’s convenience. Plus, our proof is specialized to the
(Py) problem.

'Sometimes, the normalized QP error curve can intersect the LP error line at more than one §, in this case, we
need to rely on the dual function to identify the best .



Maximum Principle: Let & be a minimizer of (P;) and if & # 0, then
|AZ —bl|2 = 6.

Proof: In fact, since & # 0, we may assume Z(ig) # 0 for some iy (z(7) is the ith component of x).
Suppose Z is not on the boundary, then

d=05—||AZ — b2 > 0.

Choose a small ¢ such that |Z(ig) — t| < |Z(i0)| and ||A(Z — 2')||2 < d ( here #/(i) = (i) for i # io
and 7' (i) = #(ig) —t), we get a contradiction because ||AZ' —b||2 < § and [|Z/||1 < ||#]|1. This proves
the maximum principle.
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Figure 1: QP’s Reconstruction Results as a Function of 5. Curve: QP’s reconstruction error as a
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Figure 2: A Sparse Random Signal and its Noisy Observation. Top: the sparse random signal,
bottom: the noisy observed signal with an SNR of 20dB.
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