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G-FANO THREEFOLDS, I

YURI PROKHOROV

Abstract. We classify Fano threefolds with only terminal sin-
gularities whose canonical class is Cartier and divisible by 2, and
satisfying an additional assumption that the G-invariant part of
the Weil divisor class group is of rank 1 with respect to an action
of some group G. In particular, we find a lot of examples of Fano
3-folds with ”many” symmetries.
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1. Introduction.

1.1. Let Y be an algebraic variety X over a field k and let G be a
group. Following works of Yu. I. Manin [Man67] we say that X is a
G-variety if the group G acts on X̄ := X ⊗k k̄, where k̄ is the algebraic
closure of k. Moreover, we assume that X , G and k satisfy one of the
following two conditions.
(a) Algebraic case. G is the Galois group of k̄ over k acting on X̄

through the second factor. The action of G on X is trivial.

The work was partially supported by the grant of Leading Scientific Schools, No.
4713.2010.1 and AG Laboratory HSE, RF government grant ag. 11.G34.31.0023.
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(b) Geometric case. The field k is algebraically closed, G is a finite
group, and the action of G on X is given by a homomorphism G →
Autk(X).
A G-morphism (resp. rationalG-map) of G-varieties is a k-morphism

(resp. k-rational map) commuting with the action of G in the geomet-
ric case. A projective G-morphism f : X → Z of normal G-varieties is
called G-Mori fiber space if X has at worst terminal GQ-factorial sin-
gularities, f∗OX = OZ , the relative invariant Picard group Pic(X/Z)G

is of rank 1, and the anticanonical divisor −KX is f -ample. In the
particular case where dimZ = 0, X is called a GQ-Fano variety. If
furthermore the canonical divisor is Cartier, then we say that X is
G-Fano variety.
Throughout this paper we assume that the ground field has charac-

teristic 0. The following is an easy consequence of the Minimal Model
Program [Mor88, 0.3.14] (cf. [Pro09b, 4.2]).

1.2. Proposition. Let V be a G-variety of dimension ≤ 3. The fol-

lowing are equivalent:

(i) κ(V ) = −∞,

(ii) V is geometrically uniruled,

(iii) V is G-birationally isomorphic to a variety X having a struc-

ture of G-Mori fiber space.

Birational classification of G-surfaces is developed very well [Man67],
[Isk80b]. In this and subsequent papers we consider G-Mori fiber spaces
X → Z, where dimX = 3 and Z is a point, i.e. the case of GQ-Fano
threefolds.

1.3. Let X be a G-Fano threefold. It is well-known that Pic(X) is
a finitely generated torsion free abelian group (see, e.g. [IP99, Prop.
2.1.2]). Consider the following composed object:

V(X) =
(
Cl(X),Pic(X), KX, ( , , )

)
,

where Pic(X) is regarded as a sublattice of Cl(X), KX ∈ Pic(X) is
the canonical class of X , and ( , , ) is the intersection form Pic(X)×
Pic(X) × Cl(X) → Z. Since the singularities of X are isolated cDV
[Rei87], Pic(X) is a primitive sublattice in Cl(X), i.e. the quotient
Cl(X)/Pic(X) is torsion free [Kaw88, 5.1]. Moreover, since ρ(X)G = 1,
we have

(1.3.1) Cl(X)G is a subgroup of rank 1 containing KX .

1.4. In this paper we give a classification of one class of Gorenstein G-
Fano threefolds. More precisely, we consider Fano threefolds such that
−KX = 2S for some ample Cartier divisor S. Then X is called a del
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Pezzo threefold (see 3.1). Smooth del Pezzo threefolds were classified
by Iskovskikh [Isk80a], see also [Fuj84], [IP99]. Singular ones were
discussed from different points of view in many works [Fuj86], [Shi89],
[Fuj90], [CJR08], [JP08]. We are interested basically in group actions
on terminal del Pezzo threefolds X and the structure of the lattice
Cl(X).

1.5. Let S be a smooth del Pezzo surface of degree d := K2
S. Then we

have Pic(S) = Z10−d. Define

∆ := {α ∈ Pic(S) | α2 = −2, α ·KS = 0}.
Then ∆ is a root system in (KS)

⊥ ⊗ R. Depending on d, ∆ is of the
following type ([Man86]):

d 1 2 3 4 5 6 7 8

∆ E8 E7 E6 D5 A4 A1 × A2 − A1

1.6. Now let X be a del Pezzo threefold. Let S ∈ |−1
2
KX | be a smooth

member [Sho79], [Shi89] and let ι : S →֒ X be the natural embedding.
Then S is a del Pezzo surface of degree d = −1

8
K3
X . It is easy to

show that the restriction map ι∗ : Cl(X) → Pic(S) is injective and
its cokernel is torsion free (see 3.10.3). Define the following subsets in
∆ ⊂ Pic(S):

∆′ := {α ∈ Pic(S) | α2 = −2, α ·KS = α · ι∗ Cl(X) = 0},
∆′′ := {α ∈ ι∗ Cl(X) | α2 = −2, α ·KS = 0}.

In other words,

∆′ = ∆ ∩ (ι∗Cl(X))⊥, ∆′′ = ∆ ∩ ι∗ Cl(X).

If ∆′ (resp. ∆′′) is non-empty, then it is a root subsystem in ∆. Assume
that X is a G-variety. Then the group G naturally acts on ι∗Cl(X)
and ∆′′ preserving the class of KS and the intersection form.
Our classification ofG-del Pezzo threefolds is by types of root systems

∆′ and ∆′′.

1.7. Theorem. Let X be a G-del Pezzo threefold and let d(X) :=
−1

8
K3
X . There are the following possibilities:
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r X X̄ Z ∆′ ∆′′ p s

d(X) = 1

1o 1 V1 − pt E8 − 0 21− h

2o 2 (5.2.6) − P1 D7 − 0 22− h

3o 2 (5.2.1) − P2 A7 − 0 22

4o 2 (5.2.12) V2 pt E7 A1 2 22− h, h ≤ 10

5o 3 (5.2.7) P1 D6 2A1 4 23− h

6o 3 (5.2.2) P2 A6 A1 2 23

7o 3 V3 pt E6 A2 6 23− h

8o 4 (5.2.3) P2 A5 A1 × A2 8 24

9o 4 V4 pt D5 A3 12 24− h, h ≤ 2

10o 5 (5.2.8) P1 D4 D4 24 25− h

11o 5 V5 pt A4 A4 20 25

12o 6 (5.2.5) P2 A3 D5 40 26

13o 7 8.1 V6 P2 A2 E6 72 27

14o 8 7.8 P3 pt A1 E7 126 28

d(X) = 2

15o 1 V2 − pt E7 − 0 10− h

16o 2 (5.2.7) − P1 D6 A1 0 11− h

17o 2 (5.2.2) − P2 A6 − 0 11

18o 2 (5.2.13) V3 pt E6 − 2 11− h, h ≤ 5

19o 3 4.2.1 − (P1)2 A5 A2 0 12

20o 3 (5.2.3) P2 A5 A1 2 12

21o 3 V4 pt D5 A1 4 12− h, h ≤ 2

22o 4 (5.2.8) P1 D4 3A1 8 13− h

23o 4 V5 pt A4 A2 6 13

24o 5 (5.2.5) P2 A3 A1 × A3 12 14

25o 6 8.1 V6 P2 A2 D5 20 15

26o 7 7.7 P3 pt A1 D6 32 16

d(X) = 3

27o 1 V3 − pt E6 − 0 ≤ 5

28o 2 (5.2.3) − P2 A5 A1 0 6

29o 3 9.4 (5.2.8) P1 D4 − 3 6 ≤ s ≤ 7

30o 5 8.1 V6 P2 A2 2A2 9 9
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r X X̄ Z ∆′ ∆′′ p s

31o 6 7.6 P3 pt A1 A5 15 10

d(X) = 4

32o 1 V4 − pt D5 − 0 ≤ 2

33o 2 (5.2.8) − P1 D4 − 0 1 ≤ s ≤ 3

34o 3 4.2.2 − (P1)2 A3 2A1 0 4

35o 4 8.1 V6 P2 A2 2A1 4 5

36o 5 7.5 P3 pt A1 A1 × A3 8 6

d(X) = 5

37o 1 V5 − pt A4 − 0 0

d(X) = 6

38o 2 V6 − P2 A2 A1 0 0

39o 3 (P1)3 − pt A1 A2 0 0

d(X) = 8

40o 1 P3 − pt − − 0 0

Here X̄/Z is a primitive birational model of X (see Theorem 3.10)

and h := h1,2(X̂), where X̂ is the standard resolution of X . For com-
pactness, we denote (P1)k := P1 × · · · × P1

︸ ︷︷ ︸

k

. For other notation we refer

to 2.1.

1.8. Remark. For d(X) ≤ 2 any del Pezzo threefold automatically has
G-structure (see Remark 3.4.1). So, in this case, 1o – 26o is a complete
list of del Pezzo threefolds with d(X) ≤ 2.

1.9. Remark. Singular three-dimensional cubics (without group ac-
tion) whose singularities are only nodes and their small resolutions were
classified in [FW]. There is the following correspondence between our
list and the classification in [FW]: 31o ←→ J15, 30o ←→ J14, 29o ←→
J11, 28o←→ J9, 27o←→ J1–J5.

We hope that our result can be useful for applications to the clas-
sification of finite subgroups of the Cremona group Cr3(k) [Pro09b],
[Pro09a], and also the the birational classification of rational algebraic
threefolds over non-closed fields (cf. [Man67]).
The paper is organized as follows. In Sections 2 and 3 we collect

some known results. In Sections 4 and 5 we classify primitive del Pezzo
threefolds with rkCl(X) = 3 and 2, respectively. The results of §5 were
known earlier [JP08]. We give a short proof for the convenience of the
reader. Section 6 describes root systems ∆′ on del Pezzo threefolds. In
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Sections 7 and 8 we classify del Pezzo threefolds with rkCl(X) ≥ 8−d,
where d is the (half-canonical) degree of X . Section 9 is devoted to
the proof of Theorem 1.7. Finally, in Section 11, we discuss some open
questions.
Acknowledgements. This paper is an extended version of my

talk given at “Workshop on Moduli and Birational Geometry” at
POSTECH, Korea in August, 2010. I would like to thank POSTECH
for the support and hospitality. I also would like to acknowledge dis-
cussions that I have on this subject with I. Arzhantsev, I. Cheltsov, A.
Kuznetsov, K. Shramov and D. Timashev.

2. Preliminaries.

2.1. Notation. We work over an algebraically closed field of char-
acteristic 0. Throughout this paper X denotes a del Pezzo threefold
with at worst terminal Gorenstein singularities. Thus we can write
−KX = 2S, where S = SX is a ample Cartier divisor of S defined up
to linear equivalence. Everywhere below we use the following notation:

ρ = ρ(X) := rkPic(X);
Cl(X) is the Weil divisor class group;
r = r(X) := rkCl(X);
d = d(X) := S3 = −K3

X/8, the degree of X ;
p = p(X) is the number of planes on X ;
s = s(X) is the number of singular points of X under an addi-
tional assumption that X has at worst nodes;
V5 ⊂ P6 is a smooth del Pezzo threefold of degree 5 (see [Isk80a],
[IP99]);
V6 ⊂ P7 is a smooth del Pezzo threefold of degree 6 with ρ = 2,
see Theorem 3.5;
Vd, for d = 1, . . . , 4, is a del Pezzo threefold of degree d with
terminal factorial singularities (see Theorem 3.4).

2.2. Terminal singularities (see [Rei87]). Let (X,P ) be a germ of
a three-dimensional terminal singularity. Then (X,P ) is isolated, i.e,
Sing(X) = {P}. The index of (X,P ) is the minimal positive integer r
such that rKX is Cartier. If r = 1, then (X,P ) is Gorenstein. In this
case (X,P ) is analytically isomorphic to a hypersurface singularity of
multiplicity 2.
Let X be a threefold with Gorenstein terminal singularities. Then

any Weil Q-Cartier divisor is Cartier (see e.g. [Kaw88, Lemma 5.1]).
Equivalently, Cl(X) is a primitive sublattice in Pic(X).
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2.2.1. Theorem-Definition ([Kaw88, Corollary 4.5]). Let X be a

threefold with terminal singularities. Then there exists a projective bi-

rational morphism ξ : X̂ → X such that

(i) X̂ is normal and has only terminal Q-factorial singularities;

(ii) ξ is a crepant morphism, that is, KX̂ = ξ∗KX ;

(iii) ξ is small, that is, its exceptional locus does not contain any

divisors.

Such a morphism is called Q-factorialization of X. Any two Q-

factorializations of X are connected by a sequence of flops.

2.2.2. Theorem [Cut88]. Let X be a rationally connected threefold

with terminal factorial singularities. Assume that −KX = 2S for some

divisor S and ρ(X) > 1. Let f : X → Z be an extremal K-negative

contraction. Then one of the following holds:

(i) Z ≃ P1 and f is a quadric bundle, i.e. there is an embedding

X →֒ P(E ), where E is a rank 4 vector bundle on Z, so that

each fiber of f is a quadric in the fiber of P(E )/Z;
(ii) X is smooth, Z is a smooth rational surface, and X = P(E ),

where E is a rank 2 vector bundle on Z;
(iii) Z is a threefold with terminal factorial singularities and f is

blowup of a smooth point on Z.

2.3. Below we give some basic facts about Fano varieties.

2.3.1. Define the Fano index of a (possibly singular) Fano variety X
as follows:

qF (X) = sup{q | −KX ≡ qH, q ∈ Q, H is a Cartier divisor}.
The following fact is well-known (see e.g. [IP99, Th. 3.1.14]).

2.3.2. Proposition. Let X be a Fano variety with at worst log termi-

nal singularities.

(i) qF (X) ∈ Q and 0 < qF (X) ≤ dimX + 1.
(ii) If qF (X) = dimX + 1, then X ≃ PdimX .

(iii) If qF (X) = dimX, then X ≃ Q ⊂ PdimX+1 is a quadric.

If additionally X is Gorenstein, then qF (X) is an integer.

2.3.3. Remark. A very interesting invariant of a G-Fano variety is

the cone NE
1
(X) ⊂ Cl(X)⊗R of effective divisors. Let ξ : X ′ → X be

a small Q-factorialization. There are natural identifications Cl(X) =

Cl(X ′) and NE
1
(X) = NE

1
(X ′). The variety X ′ is a Mori dream space

[HK00]. Hence NE
1
(X) is a G-invariant polyhedral cone generated by

a finite number of effective divisors.
7



3. Generalities on del Pezzo threefolds

3.1. Definition. Let X be a projective variety X with at worst ter-
minal Gorenstein singularities.∗ We say that X is a del Pezzo variety

(resp. weak del Pezzo variety) if its anti-canonical class −KX is divisi-
ble by dimX − 1 and is ample (resp. nef and big).

Note that if X is a del Pezzo variety, then either X ≃ P3 or qF (X) = 2.

3.2. Theorem ([Fuj86]). Let X be a del Pezzo variety of dimension

≥ 3. Then d(X) ≤ 8. Moreover, if d(X) = 8, then X ≃ P3. If

d(X) = 7, then X ≃ P(OP2 ⊕ OP2(1)). If d(X) = 6, then ρ(X) = 2 or

3. If d(X) ≤ 5, then ρ(X) = 1.

Sketch of the proof. Assume for simplicity that dimX = 3. By
[Nam97] there exists a smoothing Xt, that is, a flat family Xt such
that X0 ≃ X and a general member Xt is a smooth del Pezzo threefold
with d(Xt) = d(X) and ρ(Xt) = ρ(X). Then assertions about Picard
number follows from the classification of smooth del Pezzo threefolds
[Fuj84], [Isk80a, ch. 2, Th. 1.1], [IP99]. If d(X) = 8 or 7, then X is
smooth by [Fuj86] and then we again can use the classification men-
tioned above. �

3.3. Lemma. Let X be a del Pezzo threefold. If X is factorial and

singular, then ρ(X) = 1.

Proof. Assume that ρ(X) > 1. Let fi : X → Z be all extremal contrac-
tions. If dimZi = 2, then by Theorem 2.2.2 the variety X is smooth, a
contradiction. Again by Theorem 2.2.2 each fi has a two-dimensional
fiber Fi. Since fi are extremal contractions, these fibers Fi do not
meet each other. In particular, this implies that dimZi 6= 1 for all i.
Therefore, all the contractions fi are birational and Fi are exceptional
divisors. Take an effective curve C ≡ (−nKX)

2. There is a decom-
position C ≡ ∑

αiℓi, where ℓi are corresponding extremal curves and
αi ≥ 0. For any j we have

0 < Fj · (−nKX)
2 = Fj · C = Fj ·

∑

αiℓi = Fj · αjℓj < 0,

a contradiction. �

3.4. Theorem ([Isk80a], [Shi89], [Fuj84],[Fuj86], [Fuj90]). Let X be

a del Pezzo variety of dimension n ≥ 3 and let S = − 1
d−1

KX .

(i) dim |S| = d(X) + 1.

∗In papers [Fuj90], [CJR08] authors considered del Pezzo varieties whose singu-
larities are more general than terminal.
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(ii) The linear system |S| is base point free (resp. very ample) for
d(X) ≥ 2 (resp. d(X) ≥ 3). If d(X) ≥ 4, then the image of

Xd(X) ⊂ Pd(X)+n−2 of X under the embedding given by |S| is
an intersection of quadrics.

(iii) If d(X) = 1, then the linear system |S| has a unique base point

which is a smooth point of X. In this case |S| defines a rational

map X 99K Pn−1 whose general fiber is an elliptic curve. The

variety X is isomorphic to a hypersurface of degree 6 in the

weighted projective space P(1n, 2, 3).
(iv) If d(X) = 2, then |S| defines a double cover X → Pn whose

branch locus B ⊂ Pn is a hypersurface of degree 4 with at worst

isolated singularities. The variety X is isomorphic to a hyper-

surface of degree 4 in P(1n+1, 2).
(v) If d(X) = 3, then X is isomorphic to a cubic in Pn+1.

(vi) If d(X) = 4, then X is isomorphic to a complete intersection

of two quadrics in Pn+2.

The del Pezzo threefolds with d(X) = 1 and d(X) = 2 have their
names: double Veronese cone and quartic double solid, respectively.

3.4.1. Remark. Let X be a del Pezzo variety of degree 1 (resp. 2).
Then there is a finite of degree 2 morphism ϕ : X → P(1n, 2) (resp.
ϕ : X → Pn). The corresponding natural Galois involution X → X
is called Bertini (resp. Geiser) involution. Therefore, any del Pezzo
variety X with d(X) ≤ 2 is a G-del Pezzo.

3.5. Theorem ([Fuj84], [IP99]). Let X be a smooth del Pezzo threefold

with d(X) = 6. Then either X ≃ P1×P1×P1 or X ≃ V6 ⊂ P7, where V6
is unique up to isomorphism and can be realized by one of the following

ways:

(i) a divisor of bidegree (1, 1) in P2 × P2,

(ii) PP2(TP2), where TP2 is the tangent bundle on P2,

(iii) the variety of full flags F(P2) on P2.

3.6. Del Pezzo threefolds of degree 1 ([Isk80a], [Shi89], [Fuj84],
[Fuj86], [Fuj90]). Let X be a del Pezzo threefold of degree 1. The
half-anticanonical map φ : X 99K P2 has a unique base point P which
must be a smooth point of X and the anticanonical map ψ : X → P6

is a finite morphism of degree 2 whose image is the Veronese cone
V4 ≃ P(13, 2). Here ψ(P ) = O := (0, 0, 0, 1) and ψ−1(O) = P . The
branch divisor B ⊂ P(13, 2) is a surface of weighted degree 6 such that

9



B 6∋ O. Thus we have the following diagram.

X
φ

��@
@@

@@
@@

@
ψ

{{ww
ww

ww
ww

w

P(13, 2)
p //_______ P2

where p is the projection from O.

3.7. Proposition (see [IP99]). Let X be a smooth del Pezzo threefold.

Then the Hodge number h1,2(X) is given by the following table:

d(X) 1 2 3 4 5 6 7 8

h1,2(X) 21 10 5 2 0 0 0 0

3.8. Definition. Let X be a weak del Pezzo threefold and let S =
−1

2
KX . An irreducible surface Π ⊂ X is called a plane if S2 · Π = 1

and in case d(X) = 1 the base point of |S| does not lie on Π.

3.8.1. Lemma. Let X be a del Pezzo threefold. If Π ⊂ X is a plane,

then Π ≃ P2 and OΠ(S) = OP2(1).

Proof. The statement is obvious if d(X) ≥ 3 because the divisor S
is very ample in this case. If d(X) = 2, then |S| defines a double
cover ϕ : X → P3 so that ϕ(Π) is a projective plane on P3. Thus
ϕ|Π : π → ϕ(Π) ≃ P2 is a finite birational morphism, so it is an
isomorphism. Finally if d(X) = 1, then |S| defines a rational map
ϕ : X 99K P2 so that its restriction to Π is a morphism which must be
finite and birational. As above we get Π ≃ P2. �

3.8.2. Lemma. If Π ⊂ X is a plane, then there is a Q-factorialization

ξ : X̂ → X such that for the proper transform Π̂ of Π we have Π̂ ≃ P2

and OΠ̂(Π̂) ≃ OP2(−1). Therefore, Π̂ is contractible, i.e. there is a

birational contraction X̂ → X ′ of Π̂ to a smooth point. Conversely, if

ξ : X̂ → X is a Q-factorialization and Π̂ ⊂ X̂ is an irreducible surface

such that Π̂ ≃ P2 and OΠ̂(Π̂) ≃ OP2(−1), then f(Π̂) is a plane on X.

Proof. Let Π ⊂ X be a plane. Take a Q-factorialization ξ : X̂ → X
so that Π̂ is f -nef. One can do it by performing flops over X . Assume
that Π̂ is nef. Then by the base point free theorem the linear system
|nΠ̂| is base point free for n≫ 0. Hence |nΠ| has no fixed components.
Since X has at worst isolated singularities, by adjunction we have

KΠ = (−2S +Π)|Π ≥ −2S|Π,
a contradiction.
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Thus Π̂ is not nef. Then there is a K-negative extremal ray R such
that Π̂ · R < 0. Since KX̂ is divisible by 2, from the classification of

extremal rays (Theorem 2.2.2) we see that Π̂ is contractible to a smooth

point, Π̂ ≃ P2 and OΠ̂(Π̂) ≃ OP2(−1).
The converse statement is obvious. �

3.8.3. Lemma. Let X be a del Pezzo threefold and let S ∈ |−1
2
KX | be a

smooth member. Let l ∈ Pic(S) be an element such that l2 = l·KS = −1
(the class of a line L ⊂ S). Assume that l ∈ ι∗Cl(X), where ι : S →֒ X
is the embedding. Then there exists a unique plane Π ⊂ X such that

ι∗Π = l (i.e., Π ∩ S = L).

Proof. Denote by Π any divisor whose class coincides with ι∗l. Let
ξ : X̂ → X be a Q-factorialization as in Lemma 3.8.2, let Ŝ := ξ−1(S),

and let Π̂ be the proper transform of Π. By Shokurov’s adjunction
theorem the pair (X̂, Π̂) is purely log terminal (PLT). Hence, by the
Kawamata-Viehweg vanishing [Fuk97]

H1(X̂,OX̂(Π̂− Ŝ)) = H1(X̂,OX̂(Ŝ +KX̂ + Π̂)) = 0.

Then one can see from the exact sequence

0 −→ OX̂(Π̂− Ŝ) −→ OX̂(Π̂) −→ OŜ(ι
∗l) −→ 0

that H0(X̂,OX̂(Π̂)) 6= 0, so we may assume that both Π̂ and Π are
effective. Since S2 · Π = 1, Π is a plane. Finally, if there is another
plane Π′ such that ι∗Π′ = l, then Π ∼ Π′ and OΠ̂(Π̂) = OΠ̂(Π̂

′) is
positive, a contradiction. �

3.8.4. Definition. We say that a del Pezzo threefold X is imprimitive

if it contains at least one plane. Otherwise we say that X is primitive.

The following two theorems are easy consequences of [CJR08, Prop.
2.8].

3.9. Theorem. Let X be a primitive weak del Pezzo threefold with

at worst terminal Gorenstein singularities. Let ξ : X̂ → X be a Q-

factorialization. Then there exists a K-negative Mori contraction f :
X̂ → Z such that one of the following holds:

(i) Z is a point, ρ(X̂) = 1, X is factorial, and ξ is an isomor-

phism;

(ii) Z ≃ P2, ρ(X̂) = 2, and f is a P1-bundle, i.e. X̂ is smooth and

X̂ = PP2(E ), where E is a rank-2 vector bundle on P2;

(iii) Z ≃ P1, ρ(X̂) = 2, and f is a quadric bundle, i.e. any fiber of

f is an irreducible quadric in P3;

(iv) Z ≃ P1 × P1, ρ(X̂) = 3, and f is a P1-bundle.

11



Proof. Almost all the statements are proved in [CJR08, Prop. 2.8]. We
have to show only that Z 6≃ F2. Indeed, if dimZ = 2, then for a general
member S̄ ∈ |−1

2
KX̄ |, the restriction f |S̄ : S̄ → Z is birational. Hence

Z is a del Pezzo surface. �

3.10. Theorem. Let X be an imprimitive del Pezzo threefold with at

worst terminal Gorenstein singularities. Then there exists a diagram

(3.10.1) X̂
σ //

ξ

��~~
~~

~~
~

X̄
f

��?
??

??
??

?

X Z

where

(i) ξ is a Q-factorialization;

(ii) X̂ is an weak del Pezzo threefold with at worst terminal facto-

rial singularities;

(iii) σ is a blowup in smooth distinct points P1, . . . , Pn ∈ X̄;

(iv) d(X) = d(X̂) = d(X̄) + n;
(v) X̄ is a primitive weak del Pezzo threefold with ρ(X̄) ≤ 2, thus

X̄ is described by (i)-(iii) of Theorem 3.9.

3.10.2. Corollary. Let X be a del Pezzo threefold. Then r(X) +
d(X) ≤ 9.

Proof. We have 9 ≥ ρ(X̄) + d(X̄) = ρ(X̂) + d(X̂) = r(X) + d(X). �

3.10.3. Corollary. Let X be a weak del Pezzo threefold and let

S ∈ |−1
2
KX | be a smooth element. Then the restriction map Cl(X)→

Pic(S) is injective and its cokernel is torsion free.

Proof. Clearly the assertion is invariant under taking small modifica-
tions. In view of construction (3.10.1), it is sufficient to prove that the
restriction map Cl(X̄)→ Pic(S̄) is injective and its cokernel is torsion
free, where S̄ = σ(S). Thus we may assume that X is a primitive fac-
torial weak del Pezzo threefold. The assertion is obvious if ρ(X) = 1.
Assume that ρ(X) = 2. Then ρ(Z) = 1. Let Θ be the ample generator
of Pic(Z). The group Cl(X) is generated by f ∗Θ and the class of S.
Recall that Z is either P1 or P2. Hence f ∗Θ|S is either a conic or the
pull-back of a line on P2, respectively. It is easy to see that f ∗Θ|S and
−KS ∼ S|S generate a rank 2 primitive sublattice in Pic(S). The case
ρ(X) = 3 can be treated similarly. �
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4. Primitive del Pezzo threefolds with r(X) = 3

4.1. Lemma. Let X be a primitive del Pezzo threefold with r(X) = 3
and let F = |F | be a complete one-dimensional linear system (pen-
cil) of Weil divisors without fixed components. There is a small Q-

factorialization ξ : X̂ → X such that the proper transform F̂ of F on

X̂ is base point free and defines a fibration f : X̂ → P1. Moreover, f
factors through a (not unique) P1-bundle contraction

(4.1.1) f : X̂
f1−→ P1 × P1 f2−→ P1

Proof. Take a Q-factorialization ξ : X̂ → X so that F̂ is ξ-nef (one can

get it by performing flops over X). Then F̂ is nef. Indeed, otherwise

there is a K-negative extremal ray R such that F̂ · R < 0. Since F̂
has no fixed components, R must define a flipping contraction. On the
other hand, KX is Cartier, a contradiction [Mor88, Th. 6.2]. Thus

F̂ is nef. Then F̂ defines a contraction to a (rational) curve by the

base point free theorem. Further, since r(X) = 3, we have ρ(X̂) = 3.
Running the MMP over P1 we obtain f1. �

4.1.2. Remark-definition. In notation of (4.1.1), another ruling on
P1 × P1 defines another pencil F ′ on X . In this situation, we say that
pencils F and F ′ are conjugate. Thus there is one-to-one correspon-
dence between

(i) the set of pairs of conjugate pencils F , F ′ and
(ii) the set of Q-factorializations X ′ → X together with a structure

of P1-bundle f ′ : X̂ ′ → P1 × P1.

4.1.3. Corollary. The cone of effective divisors NE
1
(X) is generated

by classes of pencils F as in Lemma 4.1.

Proof. Let ξ : X̂ → X be a small Q-factorialization. The cone NE
1
(X̂)

is generated by a finite number of effective divisors Di (see e.g. [HK00]

and Remark 2.3.3). Running Di-MMP on X̂ , after a number of flops,
we get a P1-bundle over P1 × P1 (because X is primitive). This shows
that Di must coincide with some F . �

4.2. Theorem. Let X be a primitive del Pezzo threefold with r(X) = 3.
Let {Fi} be the set of all pencils as in Lemma 4.1. Then there are the

following possibilities for {Fi}, where we draw the graph for {Fi} so

that every two elements are connected by an edge if and only if they are

conjugate.
13



4.2.1. d(X) = 2

S−F1+F2•
lllllllll

SSSSSSSSS

•
F2

•
2S−F1

•
F1

RRRRRRRRR
•

2S−F2

kkkkkkkkk

•
S+F1−F2

4.2.2. d(X) = 4
F1• F2•
•

S−F2

•
S−F1

4.2.3. d(X) = 6

S−F1−F2•
lllllllll

RRRRRRRRR

•
F1

•
F2

In the last case X ≃ P1 × P1 × P1.

Proof. Let F1 and F2 be two conjugate pencils and let ξ : X̂ → X be
the corresponding small Q-factorialization. Clearly, we have

F2
1 ≡ F2

2 ≡ 0, F1 · F2 · S = 1, S2 · F1 = S2 · F2 = 2.

For any j, write Fj ∼ aS + b1F1 + b2F2, where a ≥ 0. Then

(4.2.4)
0 = F2

j · S = a2d+ 4a(b1 + b2) + 2b1b2,

2 = Fj · S2 = ad+ 2(b1 + b2),

where d := d(X). Therefore,

b1 + b2 = 1
2
(2− ad),

b1b2 = 1
2
a(ad− 4).

Since this system has an integer solution in b1, b2, the discriminant

1

4
(2− ad)2 − 2a(ad− 4) =

1

4

(
4− a(8− d)(ad− 4)

)

must be a square and ad must be even. Assuming a > 0 (i.e. Fj 6= F1,
F2), we get ad = 8, 6, 4, or 2. Hence, up to permutation of b1 and b2,
there are the following solutions with a > 0:

d = 1, (a, b1, b2) = (4,−1, 0), (4, 0,−1);
d = 2, (a, b1, b2) = (1,−1, 1), (1, 1,−1), (2,−1, 0), (2, 0,−1);

14



d = 4, (a, b1, b2) = (1,−1, 0), (1, 0,−1);
d = 6, (a, b1, b2) = (1,−1,−1).

Note that if Fj and Fk are conjugate, then Fj · Fk · S = 1. From this
one can see that for each Fj there are exactly two divisors in {Fi} that
conjugate to Fj. Moreover, if d 6= 1, then conjugacy relations are given
by graphs in 4.2.1, 4.2.2, 4.2.3. In the case d = 1 we get the following
(disconnected) graph:

F1• F2• 4S−F1• 4S−F2•
Hence there are only two extremal K-negative contractions on X̂ . On

the other hand, the cone NE
1
(X̂) has at least three extremal rays, a

contradiction. �

4.3. Remark. Let X be a primitive del Pezzo threefold with r(X) = 3

and d(X) = 2 or 4. Let ξ : X̂ → X be a Q-factorialization. Then

X̂ ≃ P(E ), where E is a stable rank two vector bundle on Z = P1× P1

with c1(E ) = 0, c2(E ) = 6− d(E ).

4.3.1. Example. If d(X) = 2, an example of such E can be obtained
as a restriction of the null-correlation bundle N from P3 to Z, where
Z ⊂ P3 is the Segre embedding. Recall that the null-correlation bundle
is defined by the exact sequence

0 −→ OP3 −→ ΩP3(2) −→ N (1) −→ 0.

Its projectivization Y := P(N ) is a Fano fourfold of index 2 [SW90].
This Y has also a structure of P1-bundle over a smooth three-
dimensional quadric. Let X̂ = P(E ) = π−1(Z), where π : Y → P3

is the natural projection. Then X̂ is a weak del Pezzo threefold of type
4.2.2.

Examples of del Pezzo threefolds of type 4.2.1 can be constructed
similarly by restricting to Z ⊂ P3 rank two stable vector bundles F

with c1 = 0, c2 = 2 [Har78, §9].
Another way to show existence of del Pezzo threefolds of types 4.2.2

and 4.2.1 is by writing down explicit equations:

4.3.2. Example. Let X ⊂ P5 is given by the equations
{

x1x3 − x2x4 + a3,4x3x5 + a3,6x3x6 + a4,5x4x5 + a4,6x4x6 = 0

x1x5 − x2x6 + b3,4x3x5 + b3,6x3x6 + b4,5x4x5 + b4,6x4x6 = 0

where ai,j, bi,j are sufficiently general constants. Then X is a del Pezzo
threefold having exactly 4 nodes. By Corollary 10.6.2 r(X) ≥ 3. On
the other hand, by results of 7.5 and §8 below r(X) = 3. Finally, two

15



quadrics x5 = x6 = x1x3 − x2x4 = 0 and x3 = x4 = x1x5 − x2x6 = 0
determine two conjugate pencils. Therefore, X is of type 4.2.2.

5. Del Pezzo threefolds with r(X) = 2

The results of this section are contained in [JP08]. We give a short
self-contained proof for the convenience of the reader.

5.1. Let X be a del Pezzo threefold with r(X) = 2. There exists the
following diagram:

X̂
f

����
��

��
�

ξ ��?
??

??
??

?
//_______ X̂+

ξ+~~||
||

||
|| f+

!!C
CC

CC
CC

C

Z X Z+

where ξ, ξ+ are small Q-factorializations, X̂ 99K X̂+ is a flop, and
f , f+ are K-negative extremal contractions. We may assume that
dimZ ≥ dimZ+. Let S = −1

2
KX and let Ŝ = h∗S. Let M (resp. M+)

be the ample generator of Pic(X) (resp. Pic(X+)). Put L := f ∗M and

L+ := f+∗M+. Let L′ be the proper transform of L+ on X̂ . If f is
birational, then E ⊂ X̂ denotes the f -exceptional divisor. Similarly, if
f+ is birational, then E ′ ⊂ X̂ is the proper transform of f+-exceptional
divisor. Only one such a solution has a = 0. Hence the case d = 1 is
impossible and for d = 6 we have X ≃ P1 × P1 × P1.

5.1.1. Remark. If in the above notation d(X) ≤ 2, then by 3.4.1
there is a natural (Bertini or Geiser) involution τ : X → X . In this

case, we can take X̂+ ≃ X̂ and ξ+ = τ ◦ ξ. Therefore, Z ≃ Z+ and f+

has the same type as f .

The following theorem was proved (in much stronger form) in [JP08].
For convenience of the reader we provide a short proof.

5.2. Theorem. In the above notation there are the following possibil-

ities.

f f+ d Pic(X̂) s

(5.2.1) P1-bundle P1-bundle 1 L+ L′ ∼ 6Ŝ 22

(5.2.2) 2 L+ L′ ∼ 3Ŝ 11

(5.2.3) 3 L+ L′ ∼ 2Ŝ 6

(5.2.4) 6 L+ L′ ∼ Ŝ 0

(5.2.5) P1-bundle quadric bundle 5 L+ L′ ∼ Ŝ 1
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f f+ d Pic(X̂) s

(5.2.6) quadric bundle quadric bundle 1 L+ L′ ∼ 4Ŝ ≤ 22

(5.2.7) 2 L+ L′ ∼ 2Ŝ ≤ 11

(5.2.8) 4 L+ L′ ∼ Ŝ ≤ 3

(5.2.9) birational P1-bundle 4 E + L′ ∼ Ŝ 3

(5.2.10) 7 E + 2L′ ∼ Ŝ 0

(5.2.11) birational quadric bundle 3 E + L′ ∼ Ŝ 4, 5, 6

(5.2.12) birational birational 1 E + E ′ ∼ 2Ŝ 12 ≤ s ≤ 22

(5.2.13) 2 E + E ′ ∼ Ŝ 6 ≤ s ≤ 11

Here in the 5th column we indicate relations between L, L′, E, and E ′

in Pic(X̂).

Proof. First we consider the case where X is primitive, i.e. both f and
f+ are of fiber type. Write L′ ∼ aŜ + bL. Clearly, a > 0. Since L′ is
not ample, b ≤ 0. Since L′ and Ŝ generate Pic(X̂), we have b = −1.
Let n := dimZ and n′ := dimZ+. Further,

Ŝ3 = d, Ŝ2 · L = n+ 1, Ŝ · L2 = n− 1, L3 = 0

and similarly

Ŝ2 · L′ = n′ + 1, Ŝ · L′2 = n′ − 1.

This gives us

n′ + 1 = Ŝ2 · L′ = ad− (n+ 1), ad = n+ n′ + 2.

On the other hand, by Remark 5.1.1 d ≥ 3 whenever n 6= n′. This gives
us the possibilities (5.2.1) – (5.2.8) in our table.
Assume that f is birational. If Z ≃ P3, then we get the case 5.2.10.

Thus we may assume that E and S ∼ L−E generate Pic(X̂). Assume

that f+ is of fiber type. As above, L′ ∼ aŜ −E and n′ + 1 = Ŝ2 · L′ =
ad−1. So, ad = n′+2 ≤ 4. On the other hand, by Remark 5.1.1 d ≥ 3.
Hence a = 1 and d = n′ + 2. This gives us (5.2.9) and (5.2.11).

Finally assume that both f and f+ are birational. Since Pic(X̂) =

Z · Ŝ⊕Z ·E = Z · Ŝ⊕Z ·E ′ and dim |E ′| = 0, we can write E ′ ∼ aŜ−E.
Hence,

1 = E ′ · Ŝ2 = (aŜ − E) · Ŝ2 = ad− 1, ad = 2.

We get cases (5.2.12) and (5.2.13). �
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5.3. Corollary. Let X be a del Pezzo threefold with r(X) = 1. Assume

that X is singular. Then d(X) ≤ 4. If d(X) = 4, then every singular

point P ∈ X is rs-nondegenerate (see 10.1). Moreover, λ(X,P ) =
ν(X,P ) and

∑

P λ(X,P ) ≤ 2.

Proof. Let P ∈ X be a sufficiently general point. Let σ : X̃ → X be
the blowup of P , let E := σ−1(P ), and let S̃ be the proper transform of

S = −1
2
KX . Write −KX̃ = 2σ∗S − 2E = 2S̃. Since the linear system

|S̃| is base point free and big, X̃ is a weak del Pezzo threefold with at
worst factorial terminal singularities, ρ(X̃) = 2, and d(X̃) = d(X)− 1.
If d(X) ≥ 5, then by Theorem 5.2 we have only one possibility 5.2.9.

But then both X̃ and X are smooth. If d(X) = 4, then we have case
5.2.11. In this case any singularity P̃ ∈ X̃ is analytically isomorphic
to the hypersurface singularity given by x1x2 + x23 + xn4 = 0. Then
λ(X̃, P̃ ) = ν(X̃, P̃ ) = ⌊n/2⌋. The last inequality follows by Proposition
10.6 �

5.4. By [JP08] all the cases in the table do occur†. Below we give
explicit examples of some del Pezzo threefolds with r(X) = 2.

5.4.1. Case 5.2.3. X = X3 ⊂ P4 is given by an equation of the form

(x1x4 − x2x3)ℓ1 + (x22 − x1x3)ℓ2 + (x23 − x1x3)ℓ3 = 0,

where ℓi(x1, . . . , x5) are linear forms.

5.4.2. Case 5.2.5 (cf. 7.4 and 8.3.) Let Y be the blowup of P1 × P2

along a smooth curve C of bidegree (2, 1). Then Y is a Fano threefold
with −K3

Y = 38 and ρ(Y ) = 3 [MM82]. Let S ⊂ P1 × P1 be a (unique)

effective divisor of bidegree (0, 1) containing C and let S̃ be the proper

transform of S on Y . Then S̃ ≃ S ≃ P1 × P2 and OS̃(S̃) is of type

(−1,−1). Therefore, there exists a contraction ϕ : Y → X , where ϕ(S̃)
is a node. Here X is a quintic del Pezzo threefold as in 5.2.5.

5.4.3. Case 5.2.7. X ⊂ P(14, 2) is given by the equation

x25 = (x1x2 − x3x4)2 + (x1x2 − x3x4)q1(x1, . . . , x4) + q2(x1, . . . , x4)
2,

where q1 and q2 are sufficiently general quadratic forms.

5.4.4. Case 5.2.8. X ⊂ P5 is given by the equations

x1x2 + x3x4 + x25 + x6l1(x1, . . . x6) = x1x3 + x6l2(x1, . . . x6) = 0,

where li are linear forms. It is easy to see that X contains two singular
quadrics Q1 = {x6 = x1 = x3x4 + x25 = 0} and Q2 = {x6 = x3 =
x1x2 + x25 = 0}. They generate two pencils. Hence X is of type 5.2.8.
For general choice of li the variety X has exactly one node.

†There is a typographical error in [JP08, Th. 3.6]: the case c2(F) = 6 exists.
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5.4.5. Case 5.2.9. X ⊂ P5 is given by the equations

x3x4 − x25 + x6l1(x1, . . . x6) = x1x4 − x2x5 + x6l2(x1, . . . x6) = 0,

where li are sufficiently general linear forms. Its singular locus consists
of three points

{x3 = x4 = x5 = x6 = l1 = 0}, {x2 = x4 = x5 = x6 = x3l2 − x1l1 = 0}
and X contains the plane {x4 = x5 = x6 = 0}.
5.4.6. Case 5.2.11. Let X ⊂ P4 be given by the following equation:

x1u(x1, x2, x3, x4, x5) + x2v(x1, x2, x3, x4, x5) = 0,

where u and v are quadratic forms. This cubic contains the plane
Π := {x1 = x2 = 0} and for sufficiently general u and v the singular
locus consists of four nodes. The projection from Π gives us a quadric
bundle structure on X̂ (which is blowup of Π). For some special choices
of u and v the cubic X can have one or two extra (factorial) singular
points (see [FW]) and r(X) = 2.

5.4.7. Case 5.2.12. X ⊂ P(13, 2, 3) is given by the equation

x25 = x34 + x24φ2 + x4φ4 + φ2
3,

where φi(x1, x2, x3) are sufficiently general homogeneous forms of degree
i.

5.4.8. Case 5.2.13. X ⊂ P(14, 2) is given by the equation

x25 = x1φ3(x1, . . . , x4) + q(x1, . . . , x4)
2,

where φ3 and q are sufficiently general homogeneous forms of degree 3
and 2, respectively.

6. Root systems

6.1. Let X be a del Pezzo threefold of degree d = d(X). In this section
we study the image of the restriction map ι∗ : Cl(X)→ Pic(S), where
S ∈ |−1

2
KX | is a smooth member contained into the smooth locus of

X and ι : S →֒ X is an embedding. Define ∆ and ∆′ as in 1.5. If X
is imprimitive, we apply construction (3.10.1) with all corresponding
notation. In the primitive case, to unify notation, we put σ = id.
Note that S does not pass through singular points of X . Thus we

may identify S and Ŝ = ξ−1(S). Let S̄ := σ(S). Then S̄ is a smooth del
Pezzo surface, S̄ ∈ |−1

2
KX̄ | and σS : S → S̄ is a blowup of r(X)− r(X̄)

distinct points. Define ∆̄ and ∆̄′ for S̄ as in 1.5.
19



6.2. Theorem. (i) In the above notation the image ι∗ Cl(X) is the

orthogonal complement to ∆′. In particular,

(6.2.1) rk∆′ + rkCl(X) + d(X) = 10.

(ii) We have ∆′ = σ∗
S∆̄

′.

(iii) According to possibilities for Z we have the following cases:

(a) If Z is a point (i.e. ρ(X̄) = 1), then ∆̄′ = ∆̄. Here ∆̄′ is of

type E8, E7, E6, D5, A4, A1 in cases d(X̄) = 1, 2, 3, 4, 5, and
8, respectively.

(b) If Z ≃ P2, then ∆̄′ = {α ∈ ∆̄ | α · f ∗KZ = 0}. Here ∆̄′ is of

type Am (recall that d(X̄) = 1, 2, 3, 5, or 6).
(c) If Z ≃ P1, then ∆̄′ = {α ∈ ∆̄ | α · C = 0}, where C is a conic

on S̄. Here ∆̄′ is of type Dm (recall that d(X̄) = 1, 2, or 4).‡

(d) If X ≃ (P1)3, then ∆′ is the subsystem A1 in ∆ ≃ A1 × A2.

(e) If X is of type 4.2.1 or 4.2.2, then ∆′ is of type A5 or A3,

respectively.

Proof.

6.3. Assume that X is primitive. Then X̂ = X̄ and σ = id. All the
statements are obvious if r(X) = 1. We assume that r(X) ≥ 2. Let
f : X → Z be an extremal K-negative contraction. Let S ∈ |−1

2
KX |

be a smooth member. Denote by δ : S → Z the restriction of f
to S. Since f : X → Z is an extremal contraction, the image of
ι∗ : Pic(X) → Pic(S) is generated by δ∗ Pic(Z) and −KS = −1

2
KX |S.

Clearly, f : S → Z is surjective. Fix a standard basis in Pic(S) [Dol,
ch. 8]:

h, e1, . . . , en,

where n = 9− d and

h2 = 1, e2i = −1, ei · ej = 0 for i 6= j.

Since ι∗ Pic(X) is generated by δ∗ Pic(Z) and −KS, we have

∆′ = {α ∈ ∆ | α · δ∗ Pic(Z) = 0}.
6.3.1. Case Z ≃ P2 and f is a P1-bundle. Then f : S → P2 is the
blowup of n = 9 − d points and we can choose the basis h, e1, . . . , en
so that h = f ∗OP2(1) and e1, . . . , en are f -exceptional. In this case,
ι∗ Pic(X) is generated by h and KS. Hence ∆′ = {α ∈ ∆ | α · h = 0}.
Then ∆′ = {ei−ej | i 6= j} is a root subsystem of rank n−1 generated
by e1 − e2,. . . ,en−1 − en. Thus ∆

′ is of type An−1.

‡Cases (b) and (c) overlap for X with d(X) = 5.
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6.3.2. Case Z ≃ P1, i.e. f is a quadric bundle. Then n ≥ 4 and
δ : S → P1 is a conic bundle. Let C be a fiber. By changing the basis
h, e1, . . . , en we may assume that C ∼ h − e1. Then ∆′ = {α ∈ ∆ |
α · C = 0}, i.e. ∆′ consists of the following elements:

• ei − ej , i, j > 1, i 6= j.
• ±(h− e1 − ei − ej), i, j > 1, i 6= j.

Simple roots can be taken as follows:

h− e1 − e2 − e3, e2 − e3, . . . , en−1 − en.

Hence ∆′ is of type Dn−1 if n ≥ 5 and A3 if n = 4.

6.3.3. Case Z ≃ P1 × P1 and f is a P1-bundle. Let ℓi := Fi|S.
Then we may assume that ℓ1 ∼ h− e1, ℓ2 ∼ h− e2. ∆

′ consists of the
following elements:

• ei − ej , i, j > 2, i 6= j.
• ±(h− e1 − e2 − ei), i > 2.

Simple roots can be taken as follows:

h− e1 − e2 − e3, e3 − e4, . . . , en−1 − en.

Thus ∆′ is of type An−2.

This proves our theorem in the case where X is primitive.

6.4. Now consider the case where X is imprimitive. Obviously, the
statement of (iii) follows from 6.3. There is a birational contraction

σ : X̂ → X̄ , where X̄ is primitive and σ is a composition of blowups
of smooth points. Let E1, . . . , El be σ-exceptional divisors and let ei =
Ei∩S for i = 1, . . . , l, l = r(X)− r(X̄). By the above, the statement of
our theorem holds for X̄ with root system ∆̄′ ⊂ ∆̄ ⊂ Pic(S̄). We have
a commutative diagram

Pic(S̄) � �
σ∗
S // Pic(S) ≃ Pic(S̄)⊕∑l

i=1 ei · Z

Cl(X̄) � � σ∗ //

ῑ∗

OO

Cl(X)

ι∗

OO

≃ Cl(X̄)⊕∑l
i=1Ei · Z

ῑ∗

OO

Now it is easy to see that ι∗ Cl(X)⊥ ⊂ σ∗
S Pic(S̄). Therefore,

σ∗

S∆̄
′ ⊂ ∆ ∩ ι∗Cl(X)⊥ ⊂ ∆ ∩ σ∗

S Pic(S̄).

On the other hand, σ∗
S∆̄

′ ⊃ ∆ ∩ σ∗
S Pic(S̄). Hence, σ∗

S∆̄
′ = ∆ ∩

ι∗Cl(X)⊥. This proves (ii). As a consequence we have that the left
hand side of (6.2.1) is preserved under birational contractions σ. By
6.3 the equality (6.2.1) holds for primitive del Pezzo threefolds. Thus
(6.2.1) holds for imprimitive ones as well. This proves (i).
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7. Del Pezzo threefolds with maximal r(X)

Recall that r(X) + d(X) ≤ 9 by Corollary 3.10.2. In this section we
study del Pezzo threefolds with r(X) + d(X) = 9.
We say that points P1, . . . , Pn ∈ P3 are in general position if no three

of them lie on one line and no four of them lie on one plane.

7.1. Theorem. Let X be a del Pezzo threefold with r(X) + d(X) = 9.
Assume that X 6≃ P1 × P1 × P1. Then

(i) X can be obtained by applying construction (3.10.1) to P3 ≃
V8 ⊂ P9 where σ is the blowup of n := r(X) − 1 points

P1, . . . , Pn ∈ V8 in general position.

(ii) Singular points of X are images of proper transforms of

(a) lines passing through Pi and Pj, i 6= j,
(b) twisted cubics passing through six distinct points

Pi1 , . . . , Pi6 (see Claim 7.1.2 below).
(iii) If all the singularities of X are nodes, then s(X) = 28, 16, 10,

6, 3, 1 in cases d(X) = 1, 2, 3, 4, 5, 6, respectively.
(iv) If d(X) ≥ 2, then all the singularities of X are nodes.

Conversely, assume that X is a del Pezzo threefold whose singularities

are at worst nodes and assume that s(X) = 28, 16, 10, 6, 3, 1 in cases

d(X) = 1, 2, 3, 4, 5, 6, respectively. Then d(X) + r(X) = 9.

Note that in the case d(X) = 1 the statement of (iv) is wrong: one
can easily construct X having only 27 singular points, where one of
them is not a node.

7.1.1. Corollary. Let X be a del Pezzo threefold with r(X)+d(X) = 9.
If d(X) ≥ 3 and d(X) 6= 6, then X is unique up to isomorphism. If

d(X) = 2 (resp. d(X) = 1), then X belongs to a 3-dimensional (resp.
6-dimensional) family. There are exactly two isomorphism classes of

Pezzo threefolds with d(X) = 6, r(X) = 3.

Proof. (i) If X is primitive, then either X ≃ P1 × P1 × P1 or X ≃ P3

by Theorems 3.2, 4.2, and 5.2. Thus we assume that X is imprimitive
and d(X) ≤ 7. We use notation of Theorem 3.10. Run construction
(3.10.1) in such a way that n is maximal possible. On the last step
we get a primitive weak del Pezzo threefold X̄ with ρ(X̄) = 9− d(X̄).

Moreover, if ρ(X̄) = 3, then n = 0, ρ(X̂) = r(X) = 3, and d(X) = 6.
By Theorem 4.2 we have X ≃ P1 × P1 × P1. On the other hand, by
Theorem 5.2 ρ(X̄) 6= 2. Hence ρ(X̄) = 1, d(X̄) = 8, and then X̄ ≃ P3.

It remains to show that the centers P1, . . . , Pn of the blowup X̂ →
X̄ ≃ P3 are in general position. Indeed, if distinct points Pi, Pj, Pk
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lie on a line L ⊂ P3, then for its proper transform L′ on X̂ we have
−KX̂ · L′ = −KP3 · L − 3 · 2 < 0, a contradiction. Similarly, if four
distinct points Pi, Pj, Pk, Pl lie on a plane D ⊂ P3, then then for its

proper transform D̂ on X̂ we have K2
X̂
· D̂ = K2

P3 ·D− 4 · 4 = 0. Hence

D̂ is contracted by the anticanonical map, a contradiction. This proves
(i).
(ii) Let P ∈ X be a singular point. Then ξ−1(P ) is a curve. Let

Ĉ ⊂ ξ−1(P ) be a component and let C̄ := σ(Ĉ) ⊂ X̄ . There are

two members Ŝ ′, Ŝ ′′ ∈ |−1
2
KX̂0
| such that C ( Ŝ ′ ∩ Ŝ ′′. Then C̄ (

S̄ ′ ∩ S̄ ′′, where S̄ ′, S̄ ′′ ⊂ X̂0 = P3 are proper transforms of Ŝ ′ and Ŝ ′′.
Therefore, deg C̄ ≤ 3 and C̄ is not a plane cubic. If deg C̄ = 2, then
C̄ is a conic and it must contain four distinct points from P1, . . . , Pn.
This contradicts our assumption that P1, . . . , Pn are in general position.
Therefore, C̄ is either a line or a twisted cubic. This proves (ii).
(iii) follows by Corollary 10.6.2.
(iv) If d(X) ≥ 3, then X is unique up to isomorphism and the state-

ment (iv) can be checked directly (see 7.3-7.6 below). Let d(X) = 2
the ξ-exceptional set consists of proper transforms of lines Li,j passing
through pairs of distinct points Pi, Pj and one twisted cubic C passing
through P1, . . . , P6. Moreover, the lines Li,j meet C transversally. By
blowing the points P1, . . . , P6 up we get these curves disjointed. Thus
ξ is a small resolution whose exceptional set is a disjointed union of 16
smooth rational curves.
The last assertion follows by Corollary 10.6.2. �

7.1.2. Claim. Let P1, . . . , P6 ∈ P3 be a points in general position.

Then there exists a twisted cubic curve C = C3 ⊂ P3 containing

P1, . . . , P6. This curve is unique.

Proof. Let Q be a quadratic cone with vertex at P1 containing
P2, . . . , P6. Then Q ≃ P(1, 1, 2) and dim |OP(1,1,2)(3)| = 5. Hence there
exists a member C ∈ |OP(1,1,2)(3)| passing through P2, . . . , P6. Clearly,
C passes also through the vertex P1. Then C ⊂ Q ⊂ P3 is a curve of
degree 3 and it is irreducible because P1, . . . , P6 are in general position.
Assume that there are two twisted cubics C, C ′ passing through

P1, . . . , P6. Since C is an intersection of three quadrics, there exists a
quadric Q containing both C and C ′. If Q is singular, then Cl(Q) ≃ Z.
Hence, on Q we have C · C ′ = 9/2. On the other hand, C ∩ C ′ ⊃
{P1, . . . , P6}, a contradiction. If Q is smooth, then Q ≃ P1×P1 and we
may assume that C is of bidegree (1, 2). Then C · C ′ < 2 degC ′ = 6.
Again we have a contradiction. �

By Theorem 6.2 we have the following.
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7.1.3. Corollary. Let X be a del Pezzo threefold with r(X) = 9−d(X)
and d(X) ≤ 5. Then the image of ι∗ : Cl(X) → Pic(S) is a sublattice

orthogonal to some root α ∈ ∆, i.e. ∆′ = {±α}. Moreover, ∆′′ is of

type E7, D6, A5, A1×A3, A2 in cases d(X) = 1, 2, 3, 4, 5, respectively.

7.1.4. Corollary. Let X be a del Pezzo threefold with r(X) = 9−d(X)
and d(X) ≤ 4.

(i) If d(X) 6= 2, then the image of the natural map G→ Aut(∆′′)
is contained into the Weyl group W(∆′′).

(ii) If d(X) ≤ 3 and k is algebraically closed (i.e. we are in the

geometric case), then the map G→ Aut(∆′′) is an embedding.

Proof. (i) Similar to [Man67, Ch. 4, 26.5]. If d(X) = 1, then ∆′′ is of
type E7 and Aut(∆′′) = W(∆′′) [Ser87]. For d(X) = 3 and 4 the group
Aut(∆′′) is a direct product of W(∆′′) and ± id. If the image of G is not
contained in W(∆′′), then the element τ := − id can be expressed as gw,
where g ∈ G and w ∈W(∆′′). Note that any reflection s ∈W(∆′′) can
be extended to an element Aut(ι∗Cl(X)). Hence, the action of τ can
be extended to an action on ι∗Cl(X) so that τ(KS) = gw(KS) = KS.
Let E be a plane on X and let e be the class ι∗(E). Then

τ(e) = τ
(
1
d
KS + e

)
− 1

d
τ(KS) = −

(
1
d
KS + e

)
− 1

d
KS = −2

d
KS − e.

In particular, 2/d must be integral, a contradiction.
(ii) Let G0 be the kernel of the mapG→ Aut(∆′′). Then G0 acts triv-

ially on Cl(X). In particular, the diagram (3.10.1) is G0-equivariant.
Thus G0 acts on X̄ = P3 so that there are ≥ 5 fixed points in gen-
eral position, the images of σ-exceptional divisors. Then G0 must be
trivial. �

7.2. Theorem. Let X be a del Pezzo threefold with r(X) + d(X) = 9.

Assume that X 6≃ P1 × P1 × P1. Let Π ⊂ X is a plane, let Π̂ ⊂ X̂ be

its proper transform, and let Π̄ = σ(Π̂) ⊂ X̄ = P3. Then Π̄ is of one

of the following types:

(i) Π̄ is one of the points Pi, Π̂ is σ-exceptional;
(ii) Π̄ is a plane passing through three of the points Pi;
(iii) Π̄ is quadratic cone passing through six of the points Pi so that

one of them is the vertex of the cone;

(iv) (only for d(X) = 1) Π̄ is cubic surface passing through all the

points Pi so that four of them are double points;

(v) (only for d(X) = 1) Π̄ is quartic surface passing through all

the points Pi so that all of them are double points and one of

them is a triple point.

The number of planes on X is given by the following table:
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d(X) 7 6 5 4 3 2 1

p(X) 1 2 4 8 15 32 126

Proof. It is easy to see that all the subvarieties Π described in (i)-(v) are
planes. So the number of planes is at least the number indicated in the
table. On the other hand, for any plane Π ⊂ X , the intersection Π∩ S
is a line whose class in Pic(S) is orthogonal to the root α ∈ Pic(S) (see
Corollary 7.1.3). Define E := {e ∈ Pic(S) | e2 = KS ·e = −1, e·∆′ = 0}.
Thus the number of planes is at most |E|.
Let h, e1, . . . , e9−d be a standard basis of Pic(S). Since cases n ≤ 3

are trivial, we may assume that n ≥ 4. Then the Weil group W(∆)
transitively acts on ∆ [Dol, 8.2.14] and we can take it so that α =
e1 − e2. Now it is easy to compute E (cf. [Dol]). For example, for
d = 6 we have E = {e3, h − e1 − e2}, and for d = 5 we have E =
{e4, e4,h− e1− e2,h− e3− e4}. Other cases are similar. For d = 1 we
also can observe that E = ∆′′ +KS and apply Corollary 7.1.3. �

Below we describe del Pezzo threefolds X with r(X) + d(X) = 9
explicitly and give examples. These threefolds were studied extensively
in classical literature (see, e.g., [SR85, ch VIII, §2]). We assume that
X is singular (otherwise X ≃ P3, V7, or P

1 × P1 × P1).

7.3. Sextic del Pezzo threefold. Let X ⊂ P2 × P2 be given by
the equation x1y1 + x2y2 = 0. Then X is a del Pezzo threefold with
d(X) = 6 and r(X) = 3. The singular locus consists of one node.

7.4. Quintic del Pezzo threefold (cf. [Tod30]). Let X ⊂ Gr(2, 5)
be an intersection of three general Schubert subvarieties of codimension
one. Then X is a del Pezzo threefold with d(X) = 5 and r(X) = 4.
The singular locus consists of three nodes.

7.5. Quartic del Pezzo threefold. Let X ⊂ P5 be an intersection of
two quadrics having 6 isolated singular points. Then in some coordinate
system X can be given by the equations

(7.5.1) x21 − x22 = x23 − x24 = x25 − x26.
In [SR85, ch VIII, 2.31] this variety is called the tetrahedral quartic

threefold. By Corollary 10.6.2 r(X) = 5. The variety X contains 8
planes

Πǫ1,ǫ2,ǫ3 = {x1 + ǫ1x2 = x3 + ǫ2x4 = x5 + ǫ3x6 = 0},
where ǫi = ±1. Clearly,

dimΠǫ1,ǫ2,ǫ3 ∩ Πǫ′
1
,ǫ′
2
,ǫ′
3
= −1 + 1

2

∑

|ǫi + ǫ′i|.
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Therefore, for each plane Π = Πǫ1,ǫ2,ǫ3 there is exactly 3 planes Π′ such
that Π ∩ Π′ is a point and exactly 3 planes Π′ such that Π ∩ Π′ is a
line. Note that there are two 4-tuples of planes such that planes in each
tuple meet each other only by subsets of dimension ≤ 0:

{Π+++, Π+−−, Π−+−, Π−−+}, {Π−−−, Π−++, Π+−+, Π++−}.
The involution

τ : (x1, x2, x3, x4, x5, x6) 7−→ (x1,−x2, x3,−x4, x5,−x6)
interchanges these 4-tuples. Hence τ induces a birational (cubo-cubic)
involution on P3. In [Hud27, Ch. XIV, §14, P. 301] it is denoted by
Ttet. Note however that Cl(X)τ 6≃ Z, i.e. X is not τ -minimal. X is
minimal with respect to the whole automorphism group.

7.6. Segre cubic. If d(X) = 3, then X is can be given by

(7.6.1) X = Xs
3 =

{
6∑

i=1

xi =
6∑

i=1

x3i = 0

}

⊂ P4 ⊂ P5.

This cubic satisfies many remarkable properties (see [SR85, ch VIII,
2.32]) and is called the Segre cubic. For example, any cubic hypersurface
in P4 has at most ten isolated singular points, this bound is sharp and
achieved exactly for the Segre cubic (up to projective isomorphism).
The symmetric group S6 acts on Xs

3 in the standard way. Moreover,
it is easy to show that Aut(Xs

3) = S6, so the natural map Aut(Xs
3)→

W(∆′′) is an isomorphism.

7.7. Quartic double solid. Let X be a del Pezzo threefold of degree
2. Let φ : X → P3 be the map the half-anticanonical map. Then
φ is a double cover whose branch locus B ⊂ P3 is a quartic having
16 singular points. It is well-known that such a quartic must be a
Kummer surface, so the singularities of B and X are at worst nodes
[Hud05], [Nik75] (see also [Jes16]). The singular points ofX correspond
to 15 lines Lij passing through pairs of points Pi, Pj and one twisted
cubic passing through all points P1, . . . , P6. The threefold X contains
32 planes [SR85, ch VIII, 2.33]. For each such a plane Π the image
π(Π) is a plane touching B along a conic.

7.7.1. Example. Let S ⊂ P3 be a surface given by the equation
x40+x

4
1+x

4
2+x

4
3−4x0x1x2x3 = 0. Then the singular locus of S consists

of 16 isolated points which can be obtained from (
√
−1,
√
−1,−1, 1),

(−1,−1, 1, 1), and (1, 1, 1, 1) by permutation of coordinates. It is easy
to check that these points are simple nodes. Let X → P3 be a double
cover branched along S.

26



7.8. Double Veronese cone. We use notation of 3.6. Assume for
simplicity that the singularities of X are at worst nodes. Then B is a
surface having exactly 28 points of type A1. Conversely if B ⊂ P(13, 2)
is a surface of degree 6 whose singularities are exactly 28 points of type
A1, then the double cover of P(13, 2) with branch divisor B is a del
Pezzo threefold with d(X) = 1 and r(X) = 8. See [DO88] for more
detailed treatment and more references.

7.8.1. Example. Let C ⊂ P2 is given by the equation f = x41+x
4
2+x

4
3.

Then the dual curve C∗ is given by f ∗ = (x41 + x42 + x43)
3 − 27x41x

4
2x

4
3.

It is easy to check that the discriminant of the polynomial h(t) =
t3 − (x41 + x42 + x43)t + 2x21x

2
2x

2
3 is equal to 4f ∗. The last poly-

nomial defines a surface B ⊂ P(13, 2) of degree 6 having 28 sin-
gular points (±1,±1,±1, 1), (

√
−1,
√
−1,±1, 1), (

√
−1,±1,

√
−1, 1),

(±1,
√
−1,
√
−1, 1), (0, 1, 4

√
−1, 0), (1, 0, 4

√
−1, 0), ( 4

√
−1, 1, 0, 0).

7.9. Corollary. Let X be a del Pezzo threefold such that d(X)+r(X) =
9 and d(X) 6= 5, 6, 7. Then X is a G-del Pezzo threefold with respect

to some group G.

8. Del Pezzo threefolds with r(X) = 8− d(X)

Let, as above, V6 ⊂ P7 be a smooth del Pezzo threefold of de-
gree 6 and let fi : V6 → P2, i = 1, 2 be P1-bundles. We say that
points P1, . . . , Pn ∈ V6 are in general position if so are the points
fi(P1), . . . , fi(Pn) ∈ P2 for i = 1 and 2.

8.1. Theorem. Let X be a del Pezzo threefold with r(X) + d(X) = 8.
Then

(i) X can be obtained by applying construction (3.10.1) to V6 ⊂ P7

where σ is the blowup of from n := 6−d(X) points P1, . . . , Pn ∈
V6 in general position.

(ii) Singular points of X are images of proper transforms of

(a) curves of bidegree (0, 1) and (1, 0) passing through one of

the points Pi;
(b) curves of bidegree (1, 1) passing through two of the points

Pi;
(c) curves of bidegree (2, 2) passing through four of the points

Pi;
(d) (only for d(X) = 1) curves of bidegree (2, 3) and (3, 2)

passing through all the points Pi.
(iii) If all the singularities of X are nodes, then s(X) = 27, 15, 9,

5, 2, 0 in cases d(X) = 1, 2, 3, 4, 5, 6, respectively.
(iv) If d(X) ≥ 2, then all the singularities of X are nodes.
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Conversely, assume that X is a del Pezzo threefold whose singularities

are at worst nodes and assume that s(X) = 27, 15, 9, 5, 2, 0 in cases

d(X) = 1, 2, 3, 4, 5, 6, respectively. Then d(X) + r(X) = 8.

Proof. Run construction (3.10.1) so that n is maximal possible. On the
last step we get a primitive weak del Pezzo threefold X̄ with ρ(X̄) = 8−
d(X̄) < 8. Moreover, if ρ(X̄) = 3, then n = 0, ρ(X̂) = r(X) = 3, and
d(X) = 5. This is impossible by Theorem 4.2. Therefore, ρ(X̄) = 2 and
d(X̄) = 6. By Theorem 5.2 we have only one possibility: X̄ ≃ V6. �

8.1.1. Corollary. Let X be a del Pezzo threefold with r(X)+d(X) = 8.
If d(X) ≥ 5, then X is unique up to isomorphism. There are exactly

two isomorphism classes of del Pezzo threefolds with d(X) = r(X) = 4.

Proof. Indeed, in the case d(X) = 4 two non-isomorphic del Pezzo
threefolds X are obtained by blowing up a couple of points correspond-
ing to flags (L1, P1), (L2, P2) ∈ F(P2) = V6 such that either L1∩L2 6= Pi
or L1 ∩ L2 = Pi. �

Similar to Theorem 7.2 one can prove the following.

8.2. Theorem. Let X be a del Pezzo threefold with r(X) + d(X) = 8.

Let Π ⊂ X is a plane, let Π̂ ⊂ X̂ be its proper transform, and let

Π̄ = σ(Π̂) ⊂ X̄ = V6. Then Π̄ is of one of the following types:

(i) Π̄ is one of the points Pi, Π̂ is σ-exceptional;
(ii) fj(Π̄) is a line for j = 1 or 2, and Π̄ contains two of the points

Pi;
(iii) Π̄ is an element of |−1

2
KV6 | passing through four of the points

Pi so that one of them is a double point;

(iv) (only for d(X) = 1) fj(Π̄) is a conic for j = 1 or 2, and Π̄
contains all the points Pi;

(v) (only for d(X) = 1) Π̄ is an element of |−KV6 | passing through

all of the points Pi so that all of them are double points and

one of them is triple;

(vi) (only for d(X) = 1) Π̄ is an element of |−KV6 − f ∗
j OP2(1)|,

where j = 1 or 2, passing through all of the points Pi so that

three of them are double points.

The number of planes on X is given by the following table:

d(X) 6 5 4 3 2 1

p(X) 0 1 4 9 20 72

8.2.1. Corollary. Let X be a del Pezzo threefold with r(X) = 8−d(X)
and d(X) ≤ 5. Then in some standard basis of Pic(S) the image of ι∗ :
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Cl(X)→ Pic(S) is a sublattice orthogonal to roots e1−e2, e2−e3 ∈ ∆,

i.e. ∆′ = {±e1 ∓ e2, ±e2 ∓ e3, ±(h− e1 − e2 − e3)}. Moreover, ∆′′ is

of type E6, D5, 2A2, 2A1 in cases d(X) = 1, 2, 3, 4, respectively.

8.2.2. Corollary. Let X be a del Pezzo threefold with r(X) = 8−d(X)
and d(X) ≤ 2. If k is algebraically closed (i.e. we are in the geometric

case), then the map G→ Aut(∆′′) is an embedding.

Now we give some examples.

8.3. Quintic del Pezzo threefold (cf. [Tod30]). Let X ⊂ Gr(2, 5)
be an intersection of two general Schubert subvarieties of codimension
one and one general hyperplane section. ThenX is a del Pezzo threefold
with d(X) = 5 and r(X) = 3. The singular locus consists of two nodes.

8.4. Quartic del Pezzo threefold. Let X ⊂ P5 be given by the
equations

x21 + x1x3 + x2x5 = x1x3 + x23 + x4x6 = 0.

Then X is a del Pezzo threefold of degree 4 containing exactly 5 nodes.
By Corollary 10.6.2 r(X) ≥ 4. On the other hand, X is not of type 7.5
because s(X) < 6. Hence r(X) = 4.

8.5. Cubic hypersurface. Let X ⊂ P5 be given by the equation

x1x2ℓ(x1 . . . , x5) + (x3x4 + x1x2)x5 = 0,

where ℓ is a sufficiently general linear form. Then X is a cubic del
Pezzo threefold with s(X) = 9, r(X) = 5, and p(X) = 9 (cf. [FW,
J14]).

8.6. Quartic double solid. Let Y be a hypersurface in P4 given by
{s1 = 4s4− s22 = 0} ⊂ P5, where sk =

∑
xki . This famous hypersurface

is called Igusa quartic. The singular locus of Y consists of 15 lines.
Consider a general hyperplane section B := Y ∩ P3. Then B is a
quartic having 15 nodes (cf. [Jes16]). Let X → P3 be a double cover
with branch divisor B. Then X is a del Pezzo threefold of degree 2
with s(X) = 15 and r(X) = 6.

8.7. Corollary (cf. [Tod30], [Fuj86]). Let X be a del Pezzo threefold

of degree 5. Then the singularities of X are at worst nodes and one of

the following holds:

(i) X ≃ V5, a smooth del Pezzo quintic threefold;

(ii) s(X) = 1, r(X) = 2, p(X) = 0, and X is of type 5.4.2;
(iii) s(X) = 2, r(X) = 3, p(X) = 1, and X is of type 7.4;
(iv) s(X) = 3, r(X) = 4, p(X) = 4, and X is of type 8.3.

Proof. Assertions (iii) or (iv) follows by the results of this and previous
sections. If r(X) = 2, then we have case (ii) by Theorem 5.2. Finally,
if X is factorial, then it is smooth by Corollary 5.3. �
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9. G-del Pezzo threefolds

9.1. In this section we prove Theorem 1.7. We use notation of 6.1.
Furthermore we assume that X is a G-del Pezzo threefold. Thus
Cl(X)G ≃ Z. By Theorem 5.2 we may assume that r(X) ≥ 3.

9.2. Lemma. In the above notation, if d(X) ≥ 5, then X ≃ P1×P1×
P1.

Proof. Assume thatX 6≃ P1×P1×P1. Then X is singular and d(X) = 6
or 5 by Theorems 3.2 and 3.5.
Consider the case d(X) = 6. Since r(X) ≥ 3, our X is described

in 7.3. Then X contains exactly two planes Π1, Π2 and the divisor
Π1 +Π2 is G-invariant. Hence Π1 + Π2 ∼ aS for some positive integer
a. Comparing degrees we get 2 = 6a, a contradiction.
Now let d(X) = 5. By Lemma 3.3 we may assume that X is not

factorial. In this situation, X is imprimitive. The same arguments as
above show that the number of planes on X in any G-orbit must be
divisible by 5. This contradicts Corollary 8.7. �

9.3. From now on we assume that d(X) ≤ 4. By Theorem 4.2 we may
assume that X is imprimitive. Let S ∈ |−1

2
KX | be a general member.

Let n := rk∆ = 9− d(X).

9.3.1. Lemma. If in the above notation d(X) ≤ 4, then X contains

at least two planes Π1, Π2 such that dimΠ1 ∩Π2 ≤ 0.

Proof. Since X is imprimitive, it contains at least one plane Π1. Let
Π1, . . . ,Πl be its orbit. Since Cl(X)G = Z ·S, k ≥ 4. If dimΠi∩Πj ≥ 1
for all i, j, the linear span of Π1, . . . ,Πk is three-dimensional and so X
cannot be an intersection of quadrics. �

First we consider the case ∆′′ = ∅.
9.4. Proposition. If in the above notation ∆′′ = ∅, then d(X) = 3,
r(X) = 3, p(X) = 3, and X is a projection of a del Pezzo threefold

Y = Y4 ⊂ P5 of type (5.2.8) from a point. If moreover the singularities

of X are at worst nodes, then by [FW], X is of type J11 or J12, and
6 ≤ s(X) ≤ 7.

Proof. Let en−m+1, . . . , en correspond to blowups σ. If m > 1, then
en−1 − en ∈ ∆′′. Thus, m = 1, d(X̄) = d(X) + 1, and we may assume
that every two planes on X meet each other by a subset of dimension
1. Therefore, r(X̄) = 2 and r(X) = 3. By Lemma 9.3.1 d(X) ≤ 3.
Therefore, d(X̄) ≤ 4, and 8 ≥ n ≥ 6.
Consider the case where f : X̄ → Z = P2 is a P1-bundle. Then by

Theorem 6.2 we may assume that the vectors e1 − e2, . . . , en−2 − en−1

form a basis of ∆′. We have:
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n = 6, d(X) = 3 =⇒ 2h−∑
ei ∈ ∆′′,

n = 7, d(X) = 2 =⇒ 2h+ e7 −
∑

ei ∈ ∆′′,
n = 8, d(X) = 1 =⇒ 3h− e8 −

∑
ei ∈ ∆′′.

Thus, in all cases we have ∆′′ 6= ∅, a contradiction.
Consider the case where f : X̄ → Z = P1 is a quadric bundle. Then

d(X) = d(X̄)− 1 = 1 or 3 by Theorem 5.2. Again by Theorem 6.2 we
may assume that vectors

h− e1 − e2 − e3, e2 − e3, . . . , en−2 − en−1

form a basis of ∆′. If n = 8, then 3h−e8−
∑

ei ∈ ∆′′, a contradiction.
Therefore, d(X) = 3 and X̄ is of type (5.2.8). Thus X is a cubic in P4.
Since for any two planes Πi, Πj ⊂ X we have dimΠi ∩ Πj ≥ 1, all the
planes on X are contained in one hyperplane. Hence p(X) = 3. By

Proposition 10.6 s(X) ≤ 7 − h1,2(X̂). If the singularities of X are at
worst nodes, then X is of type J11 or J12 by [FW]. �

9.4.1. Example. Consider the cubic X ⊂ P4 given by the equation

x1x2x3 + x0
(
λx20 + x21 + x22 + x23 + x24

)
= 0.

Then X has 6 (resp. 7) nodes if λ 6= 0 (resp. λ = 0). It is easy
to see that X contains at least 3 planes, so r(X) ≥ 3. By [FW] we
have r(X) = 3 and p(X) = 3. The symmetric group S3 acts on X by
permutations of x1, x2, x3 so that X is a G-Fano threefold.

9.5. Now we assume that ∆′′ 6= ∅. Then ∆′′ is a G-invariant root
subsystem in ∆. By the results of §7 and §8 we may assume that
r(X) ≤ 7− d(X). Further, by Lemma 9.3.1 d(X) ≤ 3.

9.6. Consider the case d(X) = 3. There are only the following possi-
bilities:

9.6.1. d(X̄) = 4, r(X̄) = 2, X̄ is of type (5.2.8), r(X) = 3. Then ∆′ is
described in 6.3.2: it is of type D4 and generated by h− e1 − e2 − e3,
e2−e3, e3−e4, e4−e5. Any root α ∈ ∆ has the form α = ±(ei−ej),
±(h − ei − ej − ek) or ±(2h −∑

ei) (see e.g., [Man86, ch. 4, 3.7]).
Since ι∗ Cl(X) = ∆′⊥, we get ∆′′ = ∅, a contradiction.

9.6.2. d(X̄) = 5, r(X̄) = 1, X̄ = V5, r(X) = 3. Similarly, ∆′ is of type
A4 and generated by h − e1 − e2 − e3, e1 − e2, e2 − e3, e3 − e4.
In this case, ∆′′ = {±(e5 − e6)}. It is easy to see that the group G
permutes elements e5, e6 ∈ ι∗Cl(X). But then the class of e5+e6 must
be G-invariant, so it is proportional to −KS, a contradiction.

9.6.3. d(X̄) = 5, r(X̄) = 2, X̄ is of type (5.2.5), r(X) = 4. Similarly,
∆′ is of type A3 and generated by e1 − e2, e2 − e3, e3 − e4. Then
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∆′′ = {±(2h−∑
ei), ±(e5 − e6)}. There is a unique element (class of

a line on S) x ∈ (∆′ +∆′′)⊥ such that x2 = KX · x = −1:
x = h− e5 − e6.

But then x ∈ ι∗Cl(X) and x must be G-invariant, a contradiction.

9.7. Finally we consider cases d(X) ≤ 2. According to Remark 3.4.1
any del Pezzo threefold with d(X) ≤ 2 is automatically G-del Pezzo.
Thus all the possibilities for X̄ with 2 ≤ d(X̄) ≤ 5 and r(X̄) ≤ 2 do
occur (recall that 3 ≤ r(X) ≤ 7− d(X)):

• X̄ = V5 =⇒ d(X) ≤ 2, ∆′ ≃ A4;
• X̄ = V4 =⇒ d(X) ≤ 2, ∆′ ≃ D5;
• X̄ = V3 =⇒ d(X) ≤ 2, ∆′ ≃ E6;
• X̄ is of type (5.2.2) =⇒ d(X) = 1, ∆′ ≃ A6;
• X̄ is of type (5.2.3) =⇒ d(X) ≤ 2, ∆′ ≃ A5;
• X̄ is of type (5.2.5) =⇒ d(X) ≤ 2, ∆′ ≃ A3;
• X̄ is of type (5.2.7) =⇒ d(X) = 1, ∆′ ≃ D6;
• X̄ is of type (5.2.8) =⇒ d(X) ≤ 2, ∆′ ≃ D4.

The number of planes can be found by using Lemma 3.8.3 and direct
computations.

9.7.1. Example. Let X ⊂ P(14, 2) is given by the equation

y2 = x1x2x3x4 + λ(x21 + x22 + x23 + x24)
2

where λ is a constant. Then X has exactly 12 nodes and contains 8
planes. By Corollary 10.6.2 r(X) ≥ 3. Further, by our classification X
is of type 22o.

More examples of del Pezzo therefolds with d(X) = 2 can be con-
structed similarly by writing down explicit equations (cf. [Jes16]).

10. Appendix: number of singular points of Fano

threefolds

10.1. Definition. Let V ∋ P be a threefold terminal Gorenstein
(=isolated cDV) singularity. We say that V ∋ P is r-nondegenerate

(resolution nondegenerate) if there is a resolution

σ : Vm
σm→ · · · σ2→ V1

σ1→ V = V0,

where each σi is a blowup of a singular point Pi−1 ∈ Vi−1. Such a res-
olution σ is called standard. In this situation, all varieties Vi also have
only isolated cDV singularities. If furthermore each σi-exceptional di-
visor Ei ⊂ Vi is irreducible, then we say that V ∋ P is rs-nondegenerate
(strongly resolution nondegenerate).
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Denote λ(V, P ) := m and let ν(V, P ) be the number of σ-exceptional
divisors. Thus λ(V, P ) ≤ ν(V, P ) and the equality holds if and only if
V ∋ P is rs-nondegenerate.

10.2. Remark. Let V ∋ P be a threefold terminal Gorenstein point
and let σ1 : V1 → V be the blowup of P . Since V ∋ P is a hypersurface
singularity, we have an (analytic) embedding

V1
σ1 //

� _

��

V � _

��

C̃4
σ̃1 // C4

where σ̃1 : C̃4 → C4 is the blowup of the origin. Let D := σ̃−1
1 (P ) be

the exceptional divisor. Then D ≃ P3. Since V ∋ P is a singularity of
multiplicity 2, we have one of the following cases:

(i) D ∩ V1 is a smooth quadric,
(ii) D ∩ V1 is a quadratic cone,
(iii) D ∩ V1 is a couple of planes,
(iv) D ∩ V1 is a double plane.

In cases (i) and (ii) V1 is either smooth or have terminal singularity.
Moreover, the above arguments show that 2λ(V, P ) ≥ ν(V, P ).

10.3. Proposition. Let (V ∋ 0) ⊂ C4 be a singularity given by t2 =
φ(x, y, z), where φ = 0 is an equation of a Du Val singularity. Then

V ∋ 0 is r-nondegenerate. Moreover, if φ = 0 defines a singularity of

type An, then V ∋ 0 is rs-nondegenerate.

Proof. Direct computation. �

10.3.1. Corollary. Let X be a del Pezzo threefold with d(X) ≤ 2.
Assume that the branch divisor B of the double cover ϕ : X → P(13, 2)
(resp. ϕ : X → P3) has only Du Val singularities (see 3.4.1). Then

the singularities of X are r-nondegenerate. If moreover B has only

singularities of type A, then the singularities of X are rs-nondegenerate.

10.4. Let W be a smooth projective fourfold and let V ⊂ W be an
effective divisor. Define

β(W,V ) := c3(W ) · V − c2(W ) · V 2 + c1(W ) · V 3 − V 4.

If V is smooth then β(W,V ) coincides with deg c3(V ) = Eu(V ), the
topological Euler number of V .

10.5. Lemma. In the above notation let P ∈ V be a singular point, let

σ : W̃ → W be the blowup of P , and let Ṽ ⊂ W̃ be the proper transform

of V . Then β(W̃ , Ṽ ) = β(W,V ) + 4.
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Proof. Let R = σ−1(P ) be the exceptional divisor in W̃ , and let E =

R ∩ Ṽ be the exceptional divisor in Ṽ . We have

Ṽ ∼ σ∗V − 2E, c3(W̃ ) = σ∗c3(W ) + 2E3,

c2(W̃ ) = σ∗c2(W ) + 2E2, c1(W̃ ) = σ∗c1(W )− 3E.

Using the equality c(Ṽ ) = c(W̃ ) · c(NṼ /W̃ )−1, we get

β(W̃ , Ṽ ) = c3(W̃ ) · Ṽ − c2(W̃ ) · Ṽ 2 + c1(W̃ ) · Ṽ 3 − Ṽ 4 =

= (σ∗c3(W ) + 2E3) · (σ∗V − 2E)− (σ∗c2(W ) + 2E2) · (σ∗V − 2E)2+

+ (σ∗c1(W )− 3E) · (σ∗V − 2E)3 − (σ∗V − 2E)4 = β(W,V )− 4E4.

�

10.6. Proposition. Let X be a Gorenstein Fano threefold whose sin-

gularities are r-nondegenerate terminal points. Assume that

(*) X can be embedded into a smooth fourfold so that a general

member X ′ ∈ |X| is smooth.

Then

∑

P∈X

′

λ(X,P ) ≤
∑

P∈X

(
2λ(X,P )− ν(X,P )

)
=

= r(X)− ρ(X) + h1,2(X ′)− h1,2(X̂),

where X̂ → X is the standard resolution and the first sum runs through

all rs-nondegenerate points P ∈ X.

Proof. Put λ :=
∑

P∈X λ(X,P ). Thus

2 + 2ρ(X̂)− 2h1,2(X̂) = Eu(X̂) = β(Ŷ , X̂) = β(Ŷ , X̂) + 4λ =

= Eu(X ′) + 4λ = 2 + 2ρ(X ′)− 2h1,2(X ′) + 4λ.

Since ρ(X̂) = r(X) +
∑
ν(X,P ), this gives the disired inequality. �

10.6.1. Remark. The condition (*) is automatically satisfied if X is
a del Pezzo threefold (see Theorem 3.4).

10.6.2. Corollary. In the notation of 10.6 assume additionally that

the singularities are rs-nondegenerate. Then

| Sing(X)| ≤ r(X)− ρ(X) + h1,2(X ′)− h1,2(X̂).

The equality holds, if all the singularities are nodes.
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11. Concluding remarks and open questions

We would like to propose the following open questions.

11.1. Give a complete birational classification of del Pezzo threefolds
over C. Non-trivial cases only are factorial del Pezzo threefolds of
degree ≤ 3. All other cases can be reduced to the above ones by using
construction 3.10.1 (or birationally trivial). It is well-known that a
three-dimensional cubic hypersurface with at worst cDV singularities
is rational if and only if it is singular [CG72]. A general smooth (and, in
some cases, factorial) del Pezzo threefold of degree ≤ 2 is not rational
[AM72], [Bea77], [Tyu79].

11.2. Give a complete birational classification of del Pezzo threefolds
over non-closed fields. Here is one example.

11.2.1. Theorem. Let X be a smooth del Pezzo thereefold of degree 5
over a field k. Then X is k-rational.

Proof. Denote X̄ := X ⊗ k̄. Let Γ := Γ(X) be the Hilbert scheme
parameterizing the family of lines on X . It is known that Γ̄ := Γ ⊗
k̄ ≃ P2

k̄
(see [Isk80a, Prop. 1.6, ch. 3], [FN89]). Moreover, lines with

normal bundle Nl/X ≃ O(−1)⊕ O(1) are parametrized by some conic
C ⊂ Γ [FN89]. The conic C contains a point of degree ≤ 2. Therefore,
there is a line ℓ ⊂ Γ defined over k. Let Hℓ be the union of all lines
L ⊂ X whose class is contained in ℓ ⊂ Γ. Then Hℓ in an element of
|−1

2
KX | defined over k [Isk80a, Proof of Prop. 1.6, ch. 3]. In particular,

Pic(X) = Z · 1
2
KX and the linear system |−1

2
KX | defines an embedding

X ⊂ P6
k. A general pencil of hyperplane sections defines a structure of

del Pezzo fibration of degree 5 on X . By [Man86, Ch. 4] the variety X
is k-rational. �

11.3. Describe automorphism groups of del Pezzo threefolds over an
algebraically closed fields. Which of them are birationally rigid (cf.
[CS09], [CS10])? These questions are very usefull for applications to
the classification of finite subgroups of Cremona group Cr3(k) [Pro09b],
[Pro09a].
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