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tion of the open sets on which they are defined. These estimates are expressed
in terms of the Lebesgue measure of the symmetric difference of the open sets.
Both Dirichlet and Neumann boundary conditions are considered.

Keywords: Elliptic equations, Dirichlet and Neumann boundary conditions,
stability of eigenvalues, sharp estimates, domain perturbation.

2000 Mathematics Subject Classification: 35P15, 35J40, 47A75, 47B25.

1 Introduction

We consider a non-negative self-adjoint operator

Hu = (−1)m
∑

|α|=|β|=m

Dα
(

Aαβ(x)D
βu
)

, x ∈ Ω, (1.1)

of order 2m subject to homogeneous Dirichlet or Neumann boundary conditions
on an open set Ω in R

N . Here m ∈ N is arbitrary and the coefficients Aαβ are
bounded measurable functions satisfying the uniform ellipticity condition.

If Ω is sufficiently regular then H has compact resolvent and its spectrum
consists of a sequence of eigenvalues

λ1[Ω] ≤ λ2[Ω] ≤ · · · ≤ λn[Ω] ≤ . . .

of finite multiplicity such that limn→∞ λn[Ω] = ∞.
In this paper, for fixed coefficients Aαβ , we prove sharp stability estimates for

the variation of λn[Ω] upon variation of Ω.
The problem of estimating the deviation of the eigenvalues of second order

elliptic operators following a domain perturbation has been considered by several
authors: we refer to Burenkov, Lamberti and Lanza de Cristoforis [9] for extensive
references on this subject and to Barbatis, Burenkov and Lamberti [3] for a recent
paper concerning stability estimates for resolvents, eigenfunctions and eigenvalues
in the case of domain perturbations obtained by suitable diffeomorphisms.
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The case of higher order operators has been far less investigated. We refer to
Prikazhchikov and Klunnik [11] for the case of the biharmonic operator subject
to Dirichlet boundary conditions on smooth open sets and to Burenkov and Lam-
berti [6] for the general case of higher order elliptic operators subject to Dirichlet
or Neumann boundary conditions on open sets with continuous boundaries. The
estimates provided in [6],[11] are expressed in terms of the Hausdorff-Pompeiu
distance between the open sets.

In this paper we develop the approach of Burenkov and Lamberti [7, 8] aiming
at estimates via the Lebesgue measure of the symmetric difference of the open
sets.

Namely, we consider families of open sets which are locally subgraphs of func-
tions of class Cm−1,1. We require that the ‘atlas’ A, with the help of which
such boundaries are described, is fixed and we consider the class Cm−1,1

M (A) of
open sets for which the behavior of the derivatives of the functions describing the
boundaries is controlled by a fixed constant M > 0 (see Definition 2.10).

Let ϕn[Ω], n ∈ N, denote an orthonormal sequence of eigenfunctions corre-
sponding to the eigenvalues λn[Ω]. In Corollary 4.14 we prove that if A is a family
of open sets of class Cm−1,1

M (A) such that for some 2 < p ≤ ∞

sup
Ω∈A

‖ϕn[Ω]‖Wm,p(Ω) <∞, (1.2)

for all n ∈ N, then for each n ∈ N there exists cn > 0 such that for both Dirichlet
and Neumann boundary conditions

|λn[Ω1]− λn[Ω2]| ≤ cn|Ω1 △ Ω2|1−
2
p , (1.3)

for all Ω1,Ω2 ∈ A satisfying |Ω1 △ Ω2| < c−1
n , where |Ω1 △ Ω2| is the Lebesgue

measure of the symmetric difference Ω1 △ Ω2.
If Ω1 is fixed and Ω2 ⊂ Ω1 then in the case of Dirichlet boundary conditions the

assumptions of Corollary 4.14 can be weakened. In fact, in Corollary 4.12 we prove
that if Ω1 is of class Cm−1,1

M (A) and, for some 2 < p ≤ ∞, ϕn[Ω1] ∈ Wm,p(Ω1)
for all n ∈ N, then for each n ∈ N there exists cn > 0 such that for Dirichlet
boundary conditions

λn[Ω1] ≤ λn[Ω2] ≤ λn[Ω1] + cn|Ω1 \ Ω2|1−
2
p , (1.4)

for all Ω2 of class C
m−1,1
M (A) satisfying Ω2 ⊂ Ω1 and |Ω1 \Ω2| ≤ c−1

n . (In this case
there are no assumptions on the eigenfunctions ϕn[Ω2].)

In Section 5 we also prove that, in general, the exponent 1− 2/p in (1.3) and
(1.4) cannot be replaced by a larger one.

If the coefficients Aαβ are of class Cm and the open sets are of class C2m,
condition (1.2) is satisfied with p = ∞. It follows that for each n ∈ N there exists
cn > 0 such that

|λn[Ω1]− λn[Ω2]| ≤ cn|Ω1 △ Ω2|, (1.5)

for all Ω1,Ω2 of class C2m
M (A) satisfying |Ω1 △ Ω2| < c−1

n . See Corollary 4.20.
The casem = 1 was considered in [7, 8]. As in [7, 8], the proof of our estimates

is based on the general spectral stability theorem [8, Thm. 3.2]. In order to
apply that theorem we construct linear operators TD : Wm,2

0 (Ω1) → Wm,2
0 (Ω2),

TN : Wm,2(Ω1) → Wm,2(Ω2) possessing a number of special properties. These
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operators serve as ‘transition operators’ for Dirichlet and Neumann boundary
conditions respectively, as required by the general spectral stability theorem. We
point out that the construction of such transition operators for m > 1 is rather
sofisticated and a straightforward extension to the case m > 1 of the techniques
used in [7] for m = 1 is not possible.

We note that in [6] we proved spectral stability estimates expressed in terms of
so-called ‘atlas’ distance and the Hausdorff-Pompeiu distance of the boundaries
of Ω1 and Ω2. In that case we considered classes of open sets with boundaries ad-
mitting arbitrarily strong degenerations and we did not require any summability
assumption on the eigenfunctions and their gradients. However, as we pointed
out in [7], using the Lebesgue measure of Ω1 △ Ω2 as we do here, allows to obtain
better estimates.

2 Preliminaries and notation

Let N,m ∈ N and Ω be an open set in R
N . Let NN

0 be the set of all multi-indices
α = (α1, . . . , αN) and |α| = α1 + · · ·+ αN be their lengths. Here N0 = N ∪ {0}.
By Wm,2(Ω) we denote the Sobolev space of all complex-valued functions u in
L2(Ω), which have all weak derivatives Dαu up to order m in L2(Ω), endowed
with the norm

‖u‖Wm,2(Ω) =
∑

|α|≤m

‖Dαu‖L2(Ω). (2.1)

By Wm,2
0 (Ω) we denote the closure in Wm,2(Ω) of the space of the C∞-functions

with compact support in Ω.

Let m̂ be the number of the multi-indices α ∈ N
N
0 with |α| = m. For all

α, β ∈ N
N
0 such that |α| = |β| = m, let Aαβ be bounded measurable real-valued

functions defined on Ω such that Aαβ = Aβα and for some θ > 0

θ−1|ξ|2 ≤
∑

|α|=|β|=m

Aαβ(x)ξαξβ ≤ θ|ξ|2 (2.2)

for all x ∈ Ω, ξ = (ξα)|α|=m ∈ R
m̂.

Let V (Ω) be a closed subspace of Wm,2(Ω) containing Wm,2
0 (Ω). We consider

the following eigenvalue problem

∫

Ω

∑

|α|=|β|=m

AαβD
αuDβv̄dx = λ

∫

Ω

uv̄dx, (2.3)

for all test functions v ∈ V (Ω), in the unknowns u ∈ V (Ω) (the eigenfunctions)
and λ ∈ R (the eigenvalues).

As is well-known, problem (2.3) is the weak formulation of the eigenvalue
problem for the operator H in (1.1) subject to suitable homogeneous boundary
conditions: the choice of V (Ω) corresponds to the choice of the boundary condi-
tions (see e.g., Nečas [10]).

We set

QΩ(u, v) =

∫

Ω

∑

|α|=|β|=m

AαβD
αuDβv̄dx, QΩ(u) = QΩ(u, u), (2.4)
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for all u, v ∈ Wm,2(Ω).
If the embedding V (Ω) ⊂Wm−1,2(Ω) is compact, then the eigenvalues of equa-

tion (2.3) coincide with the eigenvalues of a suitable operator HV (Ω) canonically
associated with the restriction of the quadratic form QΩ to V (Ω). In fact, we
have the following theorem (see [6, Thm. 2.1] for a detailed proof).

Theorem 2.5 Let Ω be an open set in R
N . Let m ∈ N, θ > 0 and, for all

α, β ∈ N
N
0 such that |α| = |β| = m, let Aαβ be bounded measurable real-valued

functions defined on Ω, satisfying Aαβ = Aβα and condition (2.2).
Let V (Ω) be a closed subspace of Wm,2(Ω) containing Wm,2

0 (Ω) and such that
the embedding V (Ω) ⊂Wm−1,2(Ω) is compact.

Then there exists a non-negative self-adjoint linear operator HV (Ω) on L2(Ω)

with compact resolvent, such that Dom(H
1/2
V (Ω)) = V (Ω) and

< H
1/2
V (Ω)u,H

1/2
V (Ω)v >L2(Ω)= QΩ(u, v), (2.6)

for all u, v ∈ V (Ω). Moreover, the eigenvalues of equation (2.3) coincide with the
eigenvalues λn[HV (Ω)] of HV (Ω) and

λn[HV (Ω)] = inf
L≤V (Ω)
dimL=n

sup
u∈L
u 6=0

QΩ(u)

‖u‖2L2(Ω)

, (2.7)

where the infimum is taken with respect to all subspaces L of V (Ω) of dimension
n.

In this paper we are interested in the cases V (Ω) = Wm,2
0 (Ω) and V (Ω) =

Wm,2(Ω) which correspond to Dirichlet and Neumann boundary conditions re-
spectively.

Definition 2.8 Let Ω be an open set in R
N . Let m ∈ N, θ > 0 and, for all

α, β ∈ N
N
0 such that |α| = |β| = m, let Aαβ be bounded measurable real-valued

functions defined on Ω, satisfying Aαβ = Aβα and condition (2.2).
If the embedding Wm,2

0 (Ω) ⊂ Wm−1,2(Ω) is compact, we set

λn,D[Ω] = λn[HWm,2
0 (Ω)].

If the embedding Wm,2(Ω) ⊂ Wm−1,2(Ω) is compact, we set

λn,N [Ω] = λn[HWm,2(Ω)].

The numbers λn,D[Ω], λn,N [Ω] are called the Dirichlet eigenvalues, Neumann
eigenvalues respectively, of operator (1.1).

Remark 2.9 If Ω is such that the embedding W 1,2
0 (Ω) ⊂ L2(Ω) is compact (for

instance, if Ω is an arbitrary open set with finite Lebesgue measure), then also
the embedding Wm,2

0 (Ω) ⊂ Wm−1,2(Ω) is compact and the Dirichlet eigenvalues
are well-defined.

If Ω is such that the embeddingW 1,2(Ω) ⊂ L2(Ω) is compact (for instance, if Ω
has a continuous boundary, see Definition 2.10), then the embedding Wm,2(Ω) ⊂
Wm−1,2(Ω) is compact and the Neumann eigenvalues are well-defined.
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In the next sections we shall study the variation of λn,D[Ω] and λn,N [Ω] upon
variation of Ω in suitable classes of open sets defined below.

For any set V in R
N and δ > 0 we denote by Vδ the set {x ∈ V : d(x, ∂Ω) > δ}.

Moreover, by a rotation in R
N we mean a N × N -orthogonal matrix with real

entries which we identify with the corresponding linear operator acting in R
N .

Definition 2.10 Let ρ > 0, s, s′ ∈ N, s′ ≤ s and {Vj}sj=1 be a family of bounded
open cuboids and {rj}sj=1 be a family of rotations in R

N .
We say that A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) is an atlas in R

N with the param-
eters ρ, s, s′, {Vj}sj=1, {rj}sj=1, briefly an atlas in R

N .
We denote by C(A) the family of all open sets Ω in R

N satisfying the following
properties:

(i) Ω ⊂
s
⋃

j=1

(Vj)ρ and (Vj)ρ ∩ Ω 6= ∅;
(ii) Vj ∩ ∂Ω 6= ∅ for j = 1, . . . s′, Vj ∩ ∂Ω = ∅ for s′ < j ≤ s;
(iii) for j = 1, ..., s

rj(Vj) = { x ∈ R
N : aij < xi < bij , i = 1, ...., N}

and

rj(Ω ∩ Vj) = {x ∈ R
N : aNj < xN < gj(x̄), x̄ ∈ Wj},

where x̄ = (x1, ..., xN−1), Wj = {x̄ ∈ R
N−1 : aij < xi < bij , i = 1, ..., N − 1} and

gj is a continuous function defined on W j (it is meant that if s′ < j ≤ s then
gj(x̄) = bNj for all x̄ ∈ W j);

moreover for j = 1, . . . , s′

aNj + ρ ≤ gj(x̄) ≤ bNj − ρ,

for all x̄ ∈ W j.
We say that an open set Ω in R

N is an open set with a continuous boundary
if Ω is of class C(A) for some atlas A.

Let m ∈ N,M > 0. We say that an open set Ω is of class Cm
M(A), Cm−1,1

M (A) if
Ω is of class C(A) and all the functions gj in (iii) are of class Cm(W ), Cm−1,1(W )
with

|gj|cm(W ) =
∑

1≤|α|≤m

‖Dαgj‖L∞(W ) ≤M,

|gj|cm−1,1(W ) = |gj|cm−1(W ) +
∑

|α|=m−1

sup
x̄,ȳ∈W
x̄6=ȳ

|Dαgj(x̄)−Dαgj(ȳ)|
|x̄− ȳ| ≤M

respectively1.
We say that an open set Ω in R

N is an open set of class Cm, Cm−1,1 if Ω is
of class Cm

M(A), Cm−1,1
M (A) respectively, for some atlas A and some M > 0.

1Note that as customary ‖gj‖Cm(W ) = ‖gj‖L∞(W ) + |gj |cm(W ) and ‖gj‖Cm−1,1(W ) =

‖gj‖L∞(W ) + |gj |cm−1,1(W ).
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3 A pre-transition operator for higher order So-

bolev spaces

In Theorem 3.30, given two open sets Ω1, Ω2 of class Cm−1,1
M (A), we construct

special linear bounded operators TD : Wm,p
0 (Ω1) → Wm,p

0 (Ω2), TN : Wm,p(Ω1) →
Wm,p(Ω2) which do not modify the values of the functions on a set Ω3 ⊂ Ω1 ∩Ω2

satisfying condition (3.31) below. The construction requires several technical
lemmas.

Lemma 3.1 Let W be a bounded convex open set in R
N−1. Let m ∈ N, a ∈ R,

D1 > D2 > a and g1, g2 ∈ Cm−1,1(W ) be such that

D2 < g2(x̄), g1(x̄) < D1, (3.2)

for all x̄ ∈ W . Let δ = D2−a
2(D1−D2)

and c ≥ 1
δ
. Let

g3(x̄) = g2(x̄)− δ(g1(x̄)− g2(x̄))
+

g1,c(x̄) = g2(x̄) + cδ(g1(x̄)− g2(x̄))
+,

for all x̄ ∈ W , and let

Ok = {(x̄, xN) : x̄ ∈ W, a < xN < gk(x̄)} , k = 1, 2, 3,

O1,c = {(x̄, xN) : x̄ ∈ W, a < xN < g1,c(x̄)} . (3.3)

Let Φc be the map of O2 into O1c defined by

Φc(x) = (x̄, xN + ch(x)), x ∈ O2 (3.4)

where

h(x) =

{

0, if x ∈ O3,
(xN−g3(x̄))m+1

δm(g1(x̄)−g2(x̄))m
, if x ∈ O2 \ O3,

(3.5)

Then the following statements hold:

(i) ∅ 6= O3 ⊂ O2; O1,O2,O3 ⊂ O1,c and |O1,c\O2| = cδ|O1\O2| = c|O2\O3|;

(ii) Φc is a bijection of O2 onto O1,c, Φc(∂O2) = ∂O1,c, Φc ∈ Cm−1,1
loc (O2) ∩

Lip(O2), and Φc(x) = x for all x ∈ O3;

(iii) there exists M > 0 depending only on N,m, a,D1, D2, ‖g1‖cm−1,1(W ) and

‖g2‖cm−1,1(W ) such that for all α ∈ N
N
0 with |α| ≤ m

‖h|α|−1Dαh‖L∞(O2\O3)
≤M.

Proof. We note that if x̄ ∈ W and g2(x̄) ≥ g1(x̄) then g3(x̄) = g1,c(x̄) = g2(x̄);
viceversa, if g2(x̄) < g1(x̄), since cδ ≥ 1 it follows that g3(x̄) < g2(x̄) < g1(x̄) <
g1,c(x̄). In particular, O3 ⊂ O2 and O1,O2,O3 ⊂ O1,c; moreover, if (x̄, xN ) ∈
O2\O3 then g2(x̄) < g1(x̄), hence Φc is well defined. Since δ < (D2−a)/(D1−D2)
then a < g3(x̄) for all x̄ ∈ W , hence O3 6= ∅. Moreover, we note that

g1,c(x̄)− g2(x̄) = cδ(g1(x̄)− g2(x̄))
+ = c(g2(x̄)− g3(x̄)),
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hence the equalities in statement (i) follow.
Statement (iii) follows by standard calculus.
We now prove statement (ii). By using the same argument as in [7, Lemma 4.1]

one can prove that Φc ∈ Lip(O2). Moreover, it is obvious that Φc is a bijection
of O2 onto O1,c and Φc(∂O2) = ∂O1,c.

It remains to prove that Φc ∈ Cm−1,1
loc (O2). Clearly Φc is of class Cm−1,1

loc

on the open sets O3 and O2 \ O3. We now prove that Φc is of class Cm−1

in a neighborhood of any point of O2 ∩ ∂O3. It clearly suffices to do so for
(Φc)N . Let (ȳ, yN) ∈ O2 ∩ ∂O3. Then yN = g3(ȳ) < g2(ȳ) < g1(ȳ) and by
continuity there exists an open neighborhood U of (ȳ, yN) contained in O2 such
that g3(x̄) < g2(x̄) < g1(x̄) for all (x̄, xN ) ∈ U .

Consider the functions ϕ1(x̄, xN) = xN and ϕ2(x̄, xN ) = xN + c|xN−g3(x̄)|m+1

δm(g1(x̄)−g2(x̄))m

for all (x̄, xN ) ∈ U . Clearly ϕ1, ϕ2 ∈ Cm−1,1(U) and Dαϕ1 = Dαϕ2 on U ∩ ∂O3

for all α ∈ N
N
0 with |α| ≤ m−1. Since (Φc)N = ϕ1 on U ∩O3 and (Φc)N = ϕ2 on

U \ O3 it follows that (Φc)N ∈ Cm−1(U). Moreover, since Dαϕ1 = Dαϕ2 on the
graph of g3 for all |α| = m − 1, it follows that Dα(Φc)N , hence D

αΦc is locally
Lipschitz continuous on O2 for all |α| = m− 1. 2

Lemma 3.6 Let the assumptions of Lemma 3.1 hold. If v ∈ Wm,1
loc (O1,c) then

v ◦ Φc ∈ Wm,1
loc (O2) and for each α ∈ N

N
0 with 1 ≤ |α| ≤ m

Dα(v(Φc))(x) (3.7)

=
∑

1≤|β|<|α|

(Dβv)(Φc(x))

h(x)|α|−|β|

|β|
∑

r=1

bβ,r(x)c
r +

∑

|β|=|α|

(Dβv)(Φc(x))

|β|
∑

r=0

bβ,r(x)c
r,

for all x ∈ O2 \ O3, where bβ,r are bounded continuous functions independent of
c. Moreover, there exists M > 0 depending only on N,m, a, D1, D2, ‖g1‖cm−1,1(W )

and ‖g2‖cm−1,1(W ) such that all functions bβ,r in (3.7) satisfy the inequality

‖bβ,r‖L∞(O2\O3) ≤M.

Proof. If φ = (φ1, . . . , φN) is a map of O2 to O1,c of class Cm−1,1
loc then

v ◦ φ ∈ Wm,1
loc (O2) for all v ∈ Wm,1

loc (O1,c). Moreover, by the chain rule Dα(v(φ))
is a linear combination of the functions

(Dβv)(φ)Dνi1φi1 · · ·Dνikφik (3.8)

with natural coefficients depending only on α, β, νi1, . . . , νik , where 1 ≤ |β| ≤ |α|,
k = |β|, i1, . . . ik ∈ {1, . . . , N}, νi1 , . . . , νik ∈ N

N
0 , and

|νi1|+ · · ·+ |νik | = |α|, |νi1|, . . . , |νik| ≥ 1 . (3.9)

In particular if φ = Φc then φi(x) = xi for all i = 1, . . . , N − 1, and φN(x) =
xN + ch(x) for all x ∈ O2, where h defined by (3.5). If i1, . . . , ik ∈ {1, . . . , N −
1} then among the functions in (3.8) we can consider only those with νi1 =
ei1 , . . . , νik = eik , (here e1, . . . , eN denotes the canonical basis in R

N) in which
case |β| = |α| by (3.9): thus, in this case we can consider only functions of the
type

(Dβv)(Φc) (3.10)
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with |β| = |α|. The remaining functions correspond to the cases when at least
one of the indices is is N . Assume that exactly n of them are equal to N , then
νis = eis for the remaining |β| − n of them. Thus, such functions are of the type

(Dβv)(Φc)D
η1(xN + ch(x)) · · ·Dηn(xN + ch(x)) (3.11)

where 1 ≤ |β| ≤ |α|, 1 ≤ n ≤ |β|, η1, . . . , ηn ∈ N
N
0 , and

|η1|+ · · ·+ |ηn| = |α| − |β|+ n, |η1|, . . . , |ηn| ≥ 1 . (3.12)

The functions in (3.11) are linear combinations of functions of the type

cρ(Dβv)(Φc)D
ξ1h · · ·Dξρh (3.13)

with natural coefficients depending only on α, β, ρ, ξ1, . . . , ξρ, where

1 ≤ ρ ≤ n, |ξ1|+ · · ·+ |ξρ| = |α| − |β|+ ρ, |ξ1|, . . . , |ξn| ≥ 1 , (3.14)

and of functions of the type (3.10) which correspond to the case η1 = · · · = ηn =
eN , in which case |α| = |β| by (3.12).

By Lemma 3.1 the functions bξs = h|ξs|−1Dξsh are continuous, bounded and
such that ‖bξs‖L∞(O2\O3)

≤ M1 where M1 is constant depending only on N,m, a,
D1, D2, ‖g1‖cm−1,1(W ) and ‖g2‖cm−1,1(W ). Hence

cρ(Dβv)(Φc)D
ξ1h · · ·Dξρh (3.15)

= cρ(Dβv)(Φc)bξ1 · · · bξρhρ−(|ξ1|+···+|ξρ|) = cρ(Dβv)(Φc)bξ1 · · · bξρh|β|−|α|.

Thus Dα(v(Φc)) is a linear combination with natural coefficients depending
only on α, β, ρ, ξ1, . . . , ξρ of functions of the type (3.10) with |β| = |α| and of the
type (3.15) with 1 ≤ |β| ≤ |α| and 1 ≤ ρ ≤ |β| . Clearly, such functions can be
arranged as in formula (3.7). 2

Lemma 3.16 Let µ, s ∈ N, s ≤ µ, 0 < c1 < · · · < cµ, γ1, . . . , γµ ∈ R and

µ
∑

k=1

γkc
σ
k = 0, σ = 1, . . . , s. (3.17)

Moreover, let −∞ < a < b < ∞, η ∈ C1[a, b] and η(x) > 0, η′(x) ≥ 0 for all
x ∈ (a, b). Then

∥

∥

∥

∥

η−s(x)

µ
∑

k=1

γkckf(x+ ckη(x))

∥

∥

∥

∥

Lp(a,b)

≤ C‖f (s)‖Lp(a,b+cµη(b)),

for all 1 ≤ p ≤ ∞ and for all f ∈ W s,p(a, b+ cµη(b)), where

C =

µ
∑

k=1

|γk|ck(ck − c1)
s.

8



Proof. If f ∈ W s,p(a, b + cµη(b))) there exists a function g equivalent to f on
(a, b+ cµη(b)) whose derivative g(s−1) is absolutely continuous on [a, b + cµη(b)].
By (3.17) for all x ∈ (a, b)

µ
∑

k=1

γkckg(x+ ckη(x)) =

µ
∑

k=1

γkck(g(x+ ckη(x))− g(x+ c1η(x)))

= η(x)

µ
∑

k=1

γkck(ck − c1)

∫ 1

0

g′(x+ c1η(x) + t1(ck − c1)η(x))dt1

= η(x)

µ
∑

k=1

γkck(ck − c1)

∫ 1

0

g′(x+ c1η(x) + t1(ck − c1)η(x))− g′(x+ c1η(x))dt1

= η2(x)

µ
∑

k=1

γkck(ck − c1)
2

∫ 1

0

∫ 1

0

t1g
′′(x+ c1η(x) + t1t2(ck − c1)η(x))dt2dt1 = . . .

= ηs(x)

µ
∑

k=1

γkck(ck − c1)
s

∫ 1

0

. . .

∫ 1

0

t1 · · · ts−1g
(s)(x+ c1η(x) + t1 · · · ts(ck − c1)η(x))dts . . . dt1.

(3.18)

By Minkowski’s inequality for integrals

∥

∥

∥

∥

η−s(x)

µ
∑

k=1

γkckf(x+ ckη(x))

∥

∥

∥

∥

Lp(a,b)

=

∥

∥

∥

∥

η−s(x)

µ
∑

k=1

γkckg(x+ ckη(x))

∥

∥

∥

∥

Lp(a,b)

≤
µ
∑

k=1

|γk|ck(ck − c1)
s

∫ 1

0

. . .

∫ 1

0

‖g(s)(x+ c1η(x) + t1 · · · ts(ck − c1)η(x))‖Lp(a,b)dts . . . dt1 .

Let y = x+ c1η(x) + t1 · · · ts(ck − c1)η(x). Note that for all x ∈ [a, b], a ≤ y(x) ≤
b+ cµη(b) and y

′(x) ≥ 1. Hence

‖g(s)(x+ c1η(x) + t1 · · · ts(ck − c1)η(x))‖Lp(a,b)

≤ ‖g(s)(y)‖Lp(a,b+cµη(b)) = ‖f (s)‖Lp(a,b+cµη(b)) (3.19)

and the statement follows. 2

Lemma 3.20 Let W,m, a,D1, D2, δ, g1, g2 be as in Lemma 3.1. Let δ1, . . . , δm ∈
R, 1/δ ≤ c1 < · · · < cm be such that

m
∑

k=1

δk = 1, and

m
∑

k=1

δkc
τ
k = 0, τ = 1, . . . , m− 1. (3.21)

Let g3, gck , O1, O2, O3, O1,ck , Φck be as in Lemma 3.1 with c replaced by ck for
all k = 1, . . . , m. Let T be the linear map of L1

loc(W×]a,∞[) to L1
loc(O2) defined

by

T [v](x) =
m
∑

k=1

δkv(Φck(x)), (3.22)

for all x ∈ O2 and for all v ∈ L1
loc(W×]a,∞[).
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Then for all 1 ≤ p ≤ ∞

T : Wm,p(W×]a,∞[) → Wm,p(O2) (3.23)

and there exists C > 0 depending only on N,m, p, a,D1, D2, δ, cm, ‖g1‖cm−1,1(W ),
‖g2‖cm−1,1(W ) such that ‖T‖ ≤ C.

Moreover, T [v](x) = v(x) for all v ∈ L1
loc(W×]a,∞[), x ∈ O3, and if v = 0

on Oc
1 then T [v] = 0 on Oc

2.

Proof. First of all we recall that if x ∈ O3 then Φck(x) = x for all k =
1, . . . , m. Thus by the first condition in (3.21) it follows that

T [v](x) =

m
∑

k=1

δkv(Φck(x)) =

m
∑

k=1

δkv(x) = v(x), (3.24)

for all v ∈ L1
loc(W×]a,∞[), x ∈ O3.

Let v ∈ Wm,p(W×]a,∞[). By Lemma 3.6 T [v] ∈ Wm,1
loc (O2) and

Dα(T [v](x)) =
∑

1≤|β|≤|α|

|β|
∑

r=0

bβ,r(x)

h(x)|α|−|β|

m
∑

k=1

δkc
r
k(D

βv)(x̄, xN + ckh(x)), (3.25)

for all |α| = m and for all x ∈ O2 \ O3, where bβ,0 = 0 if |β| < |α|. We now
estimate the Lp norms of the summonds in the right-hand side of (3.25). We
consider first the case 1 ≤ p < ∞, |β| < |α|, 1 ≤ r ≤ |β|. In this case we apply
Lemma 3.16 with f(xN ) = Dβv(x̄, xN), a = g3(x̄), b = g2(x̄), η(xN) = h(x̄, xN ),
µ = m, γk = δkc

r−1
k , s = |α| − |β|.

Note that by (3.21)

m
∑

k=1

γkc
σ
k =

m
∑

k=1

δkc
σ+r−1
k = 0, σ = 1, . . . , |α| − |β|.

Indeed, 1 ≤ r ≤ |β|, hence 1 ≤ σ+r−1 ≤ |α|−1 ≤ m−1 for all σ = 1, . . . , |α|−|β|.
Thus, condition (3.17) is satisfied and by Lemma 3.16 we have

(

∫

W

∫ g2(x̄)

g3(x̄)

∣

∣

∣

∣

∣

1

h(x)|α|−|β|

m
∑

k=1

δkc
r
k(D

βv)(x̄, xN + ckh(x))

∣

∣

∣

∣

∣

p

dxNdx̄

)1/p

≤ c̃1

(
∫

W

∫ ∞

a

|D(β̄,βN+|α|−|β|)v(x̄, xN)|pdxNdx̄
)1/p

≤ c̃1‖v‖Wm,p(W×]a,∞[),

(3.26)

where β = (β̄, βN). In the case 1 ≤ p < ∞, |β| = |α|, 0 ≤ r ≤ |β|, by a simple
change of variables we obtain

(

∫

W

∫ g2(x̄)

g3(x̄)

∣

∣

∣

∣

∣

m
∑

k=0

δkc
r
k

(Dβv)(x̄, xN + ckh(x))

h(x)|α|−|β|

∣

∣

∣

∣

∣

p

dxNdx̄

)1/p

≤
(

∫

W

∫ ∞

a

∣

∣

∣

∣

∣

m
∑

k=0

δkc
r
k(D

βv)(x̄, xN + ckh(x))

∣

∣

∣

∣

∣

p

dxNdx̄

)1/p

≤ c̃2‖v‖Wm,p(W×]a,∞[).

(3.27)
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Thus by (3.25), (3.26), (3.27)

‖DαT [v]‖Lp(O2\O3) ≤ c̃3‖v‖Wm,p(W×]a,∞[), (3.28)

for all v ∈ Wm,p(W×]a,∞[). Clearly, by (3.24)

‖DαT [v]‖Lp(O3) = ‖Dαv‖Lp(O3) ≤ ‖v‖Wm,p(W×]a,∞[),

Thus
‖T [v]‖Wm,p(O2) ≤ c̃4‖v‖Wm,p(W×]a,∞[). (3.29)

for all v ∈ Wm,p(W×]a,∞[). In (3.26)-(3.29), c̃1, c̃2, c̃3, c̃4 are constants which
clearly can be estimated above by a constant depending only onN,m, p, a,D1, D2,
δ, cm, ‖g1‖cm−1,1(W ), ‖g2‖cm−1,1(W ). Thus, T maps Wm,p(W×]a,∞[) to Wm,p(O2),
and is a linear and continuous map with ‖T‖ as in the statement.

The argument above works also for the case p = ∞ provided that integrals
are replaced by the corresponding L∞ norms.

Finally, if v ∈ L1
loc(W×]a,∞[) is such that v = 0 on Oc

1 then v = 0 on Oc
1,ck

hence v(Φck) = 0 on Oc
2 for all k = 1, . . . , m; thus T [v] = 0 on Oc

2. 2

Theorem 3.30 Let A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) be an atlas in R
N , m ∈ N,

M > 0. Let Ω1,Ω2 ∈ Cm−1,1
M (A). For all m ∈ N, 1 ≤ p ≤ ∞ there exist linear

maps

TD : Wm,p
0 (Ω1) →Wm,p

0 (Ω2) and TN :Wm,p(Ω1) →Wm,p(Ω2).

with the following properties:

(i) there exists C1 > 0 depending only on A, m,M, p such that ‖TD‖, ‖TN‖ ≤
C1.

(ii) there exists C2 > 0 depending only on A, and an open set Ω3 ⊂ Ω1 ∩ Ω2

such that
|Ω2 \ Ω3| ≤ C2|Ω1 \ Ω2|, (3.31)

and such that
TD[u](x) = u(x), TN [v](x) = v(x), (3.32)

for all u ∈ Wm,p
0 (Ω1), v ∈ Wm,p(Ω2), x ∈ Ω3.

Proof. We divide the proof into three steps.
Step 1. Recall that rj(Vj) is a cuboid ΠN

k=1]akj, bkj[ and

rj(Ωi ∩ Vj) =
{

(x̄, xN ) ∈ R
N : x̄ ∈ ΠN−1

k=1 ]akj, bkj[, aNj < xN < gi,j(x̄)
}

, (3.33)

for i = 1, 2, where gi,j ∈ Cm−1,1(W j) and

aNj +
ρ

2
< g2,j(x̄), g1,j(x̄) < bNj −

ρ

2
, (3.34)

for all j = 1, . . . , s′, x̄ ∈ W j .
For each j = 1, . . . , s′ we apply Lemma 3.20, with W = Wj , a = aNj , D1 =

bNj − ρ/2, D2 = aNj + ρ/2, g1 = g1,j, g2 = g2,j , hence

δ =
1

2
min

j=1,...,s′

ρ

2(bNj − aNj − ρ)
, (3.35)
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and with ck = k − 1 + 1/δ, for all k = 1, . . . , m, and δk determined by (3.21).
Accordingly, for each j = 1, . . . , s′, we consider the sets O1 = O1,j, O2 = O2,j ,
O3 = O3,j defined by (3.3) and the map T = Tj , Tj : L1

loc(Wj×]aNj ,∞[) →
L1
loc(O2,j) defined by (3.22). Observe that Oi,j = rj(Ωi ∩ Vj), i = 1, 2. Finally,

for all j = 1, . . . , s′, we set

Tj [v] ≡ (Tj [(v ◦ r(−1)
j )|Wj×]aNj,∞[

]) ◦ rj , (3.36)

for all v ∈ L1
loc(R

N), and

Ω3,j ≡ r
(−1)
j (O3,j). (3.37)

By Lemma 3.20 it follows that Tj : L
1
loc(R

N ) → L1
loc(Ω2∩Vj), Tj : W

m,p(RN ) →
Wm,p(Ω2 ∩ Vj), for all 1 ≤ p ≤ ∞, j = 1, . . . , s′. Moreover, Tj [v](x) = v(x)
for all v ∈ L1

loc(R
N), x ∈ Ω3,j, and there exists C1,j > 0 depending only on

N,m, ρ, aNj, bNj ,M and there exists C2,j > 0 depending only on ρ, aNj , bNj such
that ‖Tj‖ ≤ C1,j and |(Ω2 ∩ Vj) \Ω3,j | ≤ C2,j |(Ω1 ∩ Vj) \ (Ω2 ∩ Vj)|. Furthermore,
if v ∈ L1

loc(R
N) and v = 0 on (Ω1 ∩ Vj)c then Tjv = 0 on (Ω2 ∩ Vj)c.

Step 2. We paste together the functions Tj defined in Step 1. To do so,
we consider a partition of unity {ψj}sj=1 such that ψj ∈ C∞

c ((Vj) 3
4
ρ) for all j =

1, . . . , s and such that
∑s

j=1 ψj(x) = 1, 0 ≤ ψj(x) ≤ 1 and |∇ψj(x)| ≤ C3 for all
x ∈ ∪s

j=1(Vj)ρ, where C3 depends only on A.
For all j = 1, . . . , s′, let Tj : L

1
loc(R

N ) → L1
loc(Ω2 ∩ Vj) be as in Step 1, and for

all s′ < j ≤ s, let Tj be the restriction operator from L1
loc(R

N) to L1
loc(Vj). Then

we consider the operator T of L1
loc(R

N) to L1
loc(Ω2) which takes v ∈ L1

loc(R
N) to

T [v] =

s
∑

j=1

Tj [ψjv], (3.38)

for all v ∈ L1
loc(R

N). Clearly, if v ∈ Wm,p(RN) then Tj [ψjv] ∈ Wm,p(Ω2).
Step 3. Since Ω1 ∈ Cm−1,1

M (A), by Burenkov [4, Thm. 3, p. 285] there exists a
linear extension operator

EN : Wm,p(Ω1) →Wm,p(RN)

with ‖EN‖ depending only on A, m. Let

ED : Wm,p
0 (Ω1) → Wm,p(RN)

be the extension-by-zero operator.
We set

TD[u] = T [EDu], TN [v] = T [EN v] (3.39)

for all u ∈ Wm,p
0 (Ω), v ∈ Wm,p(Ω), and

Ω3 = Ω1 \ (∪s′

j=1(Ω1 ∩ Vj) \ Ω3,j). (3.40)

Note that Ω3 ∩ Vj ⊂ Ω3,j for all j = 1, . . . , s′, hence Ω3 ⊂ Ω1 ∩ Ω2.
By Step 2. it follows that TN maps Wm,p(Ω1) to Wm,p(Ω2). Moreover, if

u ∈ Wm,p
0 (Ω1) then EDu vanishes outside Ω1, hence Tj [ψjEDu] vanishes outside

Ω2 and TD[u] ∈ Wm,p
0 (Ω2). Thus TD maps Wm,p

0 (Ω1) to W
m,p
0 (Ω2).

Statement (i) follows by Step 1 and by the properties of the extension op-
erators EN , ED. The equalities in (3.32) immediately follow by Lemma 3.20.
Finally, inequality (3.31) can be deduced by Lemma 3.1 (i) by using exactly the
same argument in the proof of [7, Lemma 4.23]. 2
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4 Sharp estimates for the variation of the eigen-

values via the Lebesgue measure

In this section we prove stability estimates for the eigenvalues λn,D[Ω], λn,N [Ω]
defined in Definition 2.8. Recall that λn,D[Ω], λn,N [Ω] are the eigenvalues of the
operators HWm,2

0 (Ω), HWm,2(Ω) respectively.

By ϕn,D[Ω] and ϕn,N [Ω] we denote a sequence of orthonormal eigenfunctions
corresponding to λn,D[Ω] and λn,N [Ω] respectively.

When no distinction between the Dirichlet and the Neumann case is required
and we refer to both, we simply write λn[Ω], ϕn[Ω], HΩ to indicate the eigenvalues
and the corresponding eigenfunctions and operators.

The following statement hold for both Dirichlet and Neumann boundary con-
ditions.

Theorem 4.1 Let A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) be an atlas in R
N , m ∈ N,

M, θ > 0. For all α, β ∈ N
N
0 with |α| = |β| = m, let Aαβ be measurable real-

valued functions defined on ∪s
j=1Vj, satisfying Aαβ = Aβα and condition (2.2).

Let 2 < p ≤ ∞, 0 < Mn < ∞ for all n ∈ N, and A =
{

Ω ∈ Cm−1,1
M (A) :

‖ϕn[Ω]‖Wm,p(Ω) ≤Mn for all n ∈ N
}

.
Then for each n ∈ N there exists cn > 0 depending only on n,A, m,M, θ, p,

M1, . . . ,Mn such that

λn[Ω2] ≤ λn[Ω1] + cn|Ω1 \ Ω2|1−
2
p , (4.2)

for all Ω1 ∈ A, Ω2 ∈ Cm−1,1
M (A) such that |Ω1 \ Ω2| < c−1

n .

Proof. Let Ω1 ∈ A and Ω2 ∈ Cm−1,1
M (A). To shorten our notation we set

ϕn,1 = ϕn[Ω1], for all n ∈ N. We denote by L1 the space of the finite linear
combinations of the eigenfunctions ϕn,1. Moreover, we define a linear operator

T12 : L1 → Dom(H
1/2
Ω2

)

by setting in the Dirichlet case

T12[ϕn,1] = TDϕn,1,

and in the Neumann case
T12[ϕn,1] = TNϕn,1.

for all n ∈ N. Here

TD : Wm,p
0 (Ω1) →Wm,p

0 (Ω2) and TN : Wm,p(Ω1) →Wm,p(Ω2)

are the operators provided by Theorem 3.30. Note that T12 is well-defined. In-
deed, by assumption L1 ⊂ Wm,p(Ω1), and in the Dirichlet case L1 ⊂ Wm,p

0 (Ω1).

Moreover, T12 takes values in Dom(H
1/2
Ω2

) because in the Dirichlet case Wm,p
0 (Ω2)

⊂ Wm,2
0 (Ω2) = Dom(H

1/2
Ω2

), and in the Neumann case Wm,p(Ω2) ⊂ Wm,2(Ω2) =

Dom(H
1/2
Ω2

).
To prove (4.2) we apply the general spectral stability theorem [8, Thm. 3.2].

In the terminology of [8], we need to prove that T12 is a ‘transition operator’ from
HΩ1 to HΩ2. To do so, we prove inequalities (4.7) and (4.8) below.
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By Theorem 3.30, T12ϕn = ϕn on Ω3 where Ω3 is as in Theorem 3.30 (ii).
Thus

(H
1/2
Ω2
T12ϕm,1, H

1/2
Ω2
T12ϕn,1)L2(Ω2) = QΩ2(T12ϕm,1, T12ϕn,1) (4.3)

= QΩ3(T12ϕm,1, T12ϕn,1) +QΩ2\Ω3
(T12ϕm,1, T12ϕn,1)

= QΩ3(ϕm,1, ϕn,1) +QΩ2\Ω3(T12ϕm,1, T12ϕn,1)

= QΩ1(ϕm,1, ϕn,1)−QΩ1\Ω3(ϕm,1, ϕn,1) +QΩ2\Ω3(T12ϕm,1, T12ϕn,1)

= (H
1/2
Ω1
ϕm,1, H

1/2
Ω1
ϕn,1)L2(Ω1) −QΩ1\Ω3(ϕm,1, ϕn,1) +QΩ2\Ω3(T12ϕm,1, T12ϕn,1),

for all m,n ∈ N. By Hölder’s inequality

QΩ1\Ω3
(ϕm,1, ϕn,1) ≤ cMmMn|Ω1 \ Ω3|1−

2
p (4.4)

and by Theorem 3.30 we have

QΩ2\Ω3
(T12ϕm,1, T12ϕn,1) ≤ cMmMn|Ω2 \ Ω3|1−

2
p , (4.5)

and
|Ω1 \ Ω3| ≤ c|Ω1 \ Ω2|, (4.6)

where c > 0 depends only on A, m,M, θ, p. Thus by (4.3)-(4.6) it follows that

|(H1/2
Ω2
T12ϕm,1, H

1/2
Ω2
T12ϕn,1)L2(Ω2)

−(H
1/2
Ω1
ϕm,1, H

1/2
Ω1
ϕn,1)L2(Ω1)| ≤ c̃5MmMn|Ω1 \ Ω2|1−

2
p , (4.7)

and similarly

|(T12ϕm,1, T12ϕn,1)L2(Ω2) − (ϕm,1, ϕn,1)L2(Ω1)| ≤ c̃6MmMn|Ω1 \ Ω2|1−
2
p , (4.8)

for all m,n ∈ N, where c̃5, c̃6 > 0 depend only on A, m,M, θ, p.
By (4.7), (4.8) it follows that T12 is a transition operator from HΩ1 to HΩ2

with parameters amn = c̃5MnMm, bmn = c̃6MnMm and measure of vicinity

δ(HΩ1, HΩ2) = |Ω1 \ Ω2|1−
2
p (see [8, Def. 3.1]). Thus by [8, Thm. 3.2] it follows

that
λn[Ω2] ≤ λn[Ω1] + (2anλn[Ω1] + bn)δ(HΩ1, HΩ2). (4.9)

if δ(HΩ1 , HΩ2) ≤ (2an)
−1, where an = (

∑N
k,l=1 a

2
kl)

1/2 = c̃5
∑n

k=1M
2
k , bn =

(
∑N

k,l=1 b
2
kl)

1/2 = c̃6
∑n

k=1M
2
k . Furthermore, by [6, Lemma 3.2] there exists Λn > 0

depending only on n,A, m, θ such that

λn[Ω] ≤ Λn (4.10)

for all Ω ∈ Cm−1,1
M (A). Thus, inequality (4.2) follows by combining (4.9) and

(4.10). 2

Remark 4.11 It can be traced that starting with (4.3) one can obtain the esti-
mate

λn[Ω2] ≤ λn[Ω1] + cn

n
∑

k=1

‖ϕk[Ω1]‖Wm,2(Ω1\Ω3)

which in some cases (depending on the properties of ϕ1[Ω1], . . . , ϕn[Ω1] near the
boundary of Ω1) can be better than estimate (4.2).
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It is well-known that if Ω2 ⊂ Ω1 then λn,D[Ω1] ≤ λn,D[Ω2]. Thus by Theo-
rem 4.1 we immediately deduce the following corollary concerning Dirichlet eigen-
values (for the proof of the sharpness of estimate (4.13), see Section 5).

Corollary 4.12 Let A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) be an atlas in R
N , m ∈ N,

M, θ > 0. Let Ω1 ∈ Cm−1,1
M (A). For all α, β ∈ N

N
0 with |α| = |β| = m, let

Aαβ be measurable real-valued functions defined on Ω1, satisfying Aαβ = Aβα and
condition (2.2).

Assume that 2 < p ≤ ∞ and ϕn,D[Ω1] ∈ Wm,p(Ω1) for all n ∈ N. Then for
each n ∈ N there exists cn > 0 depending only on n,A, m,M, θ, p, ‖ϕk[Ω1]‖Wm,p(Ω1)

k = 1, . . . , n, such that

λn,D[Ω1] ≤ λn,D[Ω2] ≤ λn,D[Ω1] + cn|Ω1 \ Ω2|1−
2
p , (4.13)

for all Ω2 of class Cm−1,1
M (A) such that Ω2 ⊂ Ω1 and |Ω1 \ Ω2| < c−1

n .
Moreover, in general the exponent 1− 2

p
in (4.13) cannot be replaced by 1− 2

p
+δ

where δ > 0 is a constant independent of p.

If we assume that both Ω1 and Ω2 belong to A then it is possible to swap Ω1

and Ω2 in (4.2). In this way we obtain a two-sided estimate for both Dirichlet
and Neumann eigenvalues without assuming that Ω2 ⊂ Ω1 as in Corollary 4.12.

Corollary 4.14 Let A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) be an atlas in R
N , m ∈ N,

M, θ > 0. For all α, β ∈ N
N
0 with |α| = |β| = m, let Aαβ be measurable real-valued

functions defined on ∪s
j=1Vj, satisfying Aαβ = Aβα and condition (2.2).

Let 2 < p ≤ ∞ and let A be a family of open sets of class Cm−1,1
M (A) such

that for each n ∈ N condition (1.2) is satisfied.
Then for each n ∈ N there exists cn > 0 depending only on n,A, m,M, θ, p,

supΩ∈A ‖ϕk[Ω]‖Wm,p(Ω) k = 1, . . . , n, such that

|λn[Ω1]− λn[Ω2]| ≤ cn|Ω1 △ Ω2|1−
2
p , (4.15)

for all Ω1,Ω2 ∈ A such that |Ω1 △ Ω2| < c−1
n .

If A is a family of open sets with sufficiently smooth boundaries then condition
(1.2) is satisfied with p = ∞.

Lemma 4.16 Let A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) be an atlas in R
N , m ∈ N,

B,M, θ > 0. For all α, β ∈ N
N
0 with |α| = |β| = m, let Aαβ ∈ Cm(∪s

j=1Vj)
satisfy Aαβ = Aβα, ‖Aαβ‖cm(∪s

j=1Vj)
≤ B, and condition (2.2). Then ϕn[Ω] ∈

W 2m−1,∞(Ω) and there exists C > 0 depending only on A, m,B,M, θ such that

‖ϕn[Ω]‖W k,∞(Ω) ≤ C(1 + λn[Ω])
N
4m

+ k
2m (4.17)

for all k = 0, . . . , 2m− 1 and Ω ∈ C2m
M (A).

Proof. It is well-known that under our regularity assumptions Dom(H) ⊂
W 2m,2(Ω) (see e.g., Agmon [2, Sec. 9]). Moreover, since the coefficients Aαβ are
of class Cm and we impose either Dirichlet or Neumann boundary conditions, we
can resort to the general setting of Agmon [1] (see [2, pp. 141-143] for details).
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Thus, by [1, Thm. 1.1 and the Lemma on p.131] it follows that if u ∈ Dom(H)
and Hu ∈ Lp(Ω) for some p > 1 then u ∈ W 2m,p(Ω) and

‖u‖W 2m,p(Ω) ≤ c(‖Hu‖Lp(Ω) + ‖u‖Lp(Ω)), (4.18)

where c is a positive constant. In particular if ϕ is an eigenfunction corresponding
to an eigenvalue λ and ϕ ∈ Lp(Ω) then

‖u‖W 2m,p(Ω) ≤ c(1 + λ)‖u‖Lp(Ω). (4.19)

By the apriori estimate (4.19) and a bootstrap argument one can finally prove
estimate (4.17) (see for instance Burenkov and Lamberti [8, Thm. 5.1] where in
the proof one has simply to replace [8, (5.5)] by (4.19). 2

By Corollary 4.14 and Lemma 4.16 we immediately deduce the validity of the
following

Corollary 4.20 Let A = (ρ, s, s′, {Vj}sj=1, {rj}sj=1) be an atlas in R
N , m ∈ N,

B,M, θ > 0. For all α, β ∈ N
N
0 with |α| = |β| = m, let Aαβ ∈ Cm

M(∪s
j=1Vj) satisfy

Aαβ = Aβα, ‖Aαβ‖cm(∪s
j=1Vj)

≤ B, and condition (2.2). Then for all n ∈ N there

exists cn > 0 depending only on n,A, m,B,M, θ such that

|λn[Ω1]− λn[Ω2]| ≤ cn|Ω1 △ Ω2|, (4.21)

for all Ω1,Ω2 ∈ C2m
M (A) satisfying |Ω1 △ Ω2| < c−1

n .

5 An example

We consider an example which proves that in the class of Lipschitz domains
the exponent in estimates (1.3) and (1.4) cannot, in general, be larger than 1 −
2/p. For this purpose we consider the Dirichlet and Neumann Laplacians on the
circular sector Ω ⊂ R

2 of radius R = 1 and angle 2β with 0 < β < π. In polar
coordinates

Ω = {(ρ, θ) : 0 < ρ < 1, −β < θ < β}. (5.1)

For 0 < ǫ < 1 we consider the deformation Ω(ǫ) of Ω given by

Ω(ǫ) = {(ρ, θ) : ǫ < ρ < 1, −β < θ < β}. (5.2)

Here we are interested in the behavior of the eigenvalues of the Dirichlet and
Neumann Laplacians on Ω(ǫ) as ǫ→ 0.

In the case of the Dirichlet Laplacian on Ω all the eigenvalues are the positive
solutions of the equations

Jν(
√
λ) = 0, (5.3)

where Jν is the Bessel function of the first kind and order ν, with ν = πk/(2β),
k ∈ N.

Note that ν > 1/2 for all 0 < β < π, k ∈ N, and that ν < 1 if an only if k = 1
and π/2 < β < π.
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For our purposes, it is enough to restrict our attention to the case ν /∈ N:
in this case the eigenvalues of the Dirichlet Laplacian on Ω(ǫ) are the positive
solutions of the cross-product equations

Jν(
√
λ)J−ν(ǫ

√
λ))− J−ν(

√
λ)Jν(ǫ

√
λ) = 0. (5.4)

Recall that for a Bessel function of the first kind and order µ (µ 6= −1,−2, . . . )
we have Jµ(s) = sµHµ(s

2), s ∈ R, where Hµ is an analytic function such that
Hµ(0) 6= 0, see ([12, §9.1.10]).

Assume that λ∗ is a fixed eigenvalue of the Dirichlet Laplacian on Ω, i.e., λ∗
is a fixed zero of Hν . It is known that H−ν(λ∗) 6= 0. Thus, in a sufficiently small
small neighborhood of λ∗ and for sufficiently small ǫ ≥ 0, equation (5.4) can be
rewritten as

f(λ)− ǫ2νf(ǫ2λ) = 0, (5.5)

where f(λ) = Hν(λ)/H−ν(λ) is an analytic function in a neighborhood of zero
and in a neighborhood of λ∗.

It is immediate to verify that if ǫ = 0 then the positive solutions of (5.3)
coincide with the positive solutions of equation (5.5). Thus, for each 0 ≤ ǫ < 1 the
eigenvalues λ of the Dirichlet Laplacian on Ω(ǫ) are exactly the zeros of equation
(5.5) (here it is understood that Ω(0) = Ω).

We set δ = ǫ2ν , so that equation (5.5) can be rewritten as

f(λ)− δf(δ
1
ν λ) = 0. (5.6)

Observe that the left-hand side of equation (5.6) defines a function of class
C1 in the variables δ, λ, for all (δ, λ) a neighborhood of the point (0, λ∗). Note
that H ′

ν(λ∗) 6= 0 since all positive zeros of the Bessel functions Jν are simple,
see [12, 9.5.2]. Thus, f ′(λ∗) 6= 0 and and by the Implicit Function Theorem the
zeros of equation (5.6) in a neighborhood of (0, λ∗) are given by the graph of a
function δ 7→ λ(δ) of class C1 such that λ(0) = λ∗. Moreover, since the derivative

of f(λ) − δf(δ
1
νλ) with respect to δ at the point (0, λ∗) is equal to −f(0) then

by the Implicit Function Theorem we have that

λ(δ) = λ∗ +
f(0)

f ′(0)
δ + o(δ), as δ → 0+. (5.7)

Note that f(0) 6= 0. This clearly implies that

|λ(ǫ)− λ∗| = C|Ω \ Ω(ǫ)|ν + o(|Ω \ Ω(ǫ)|ν), as ǫ→ 0+, (5.8)

where C is a positive constant.
We note that the eigenspace of the Dirichlet Laplacian on Ω corresponding to

the eigenvalue λ∗ is spanned by the function U defined in polar coordinates by

U(ρ, θ) = Jν(ρ
√

λ∗) sin ν(θ + β) = (ρ
√

λ∗)
νHν(ρ

2λ∗) sin ν(θ + β), (5.9)

for all 0 < ρ < 1, −β < θ < β. Clearly, U ∈ L∞(Ω) as expected, and if ν ≥ 1
then ∇U ∈ L∞(Ω), whilst if 1/2 < ν < 1 then ∇U ∈ Lp(Ω) if and only if
1 ≤ p < 2/(1−ν). Thus by applying estimate (1.4) we obtain that if 1/2 < ν < 1
then for any 0 < γ < ν there exists cγ > 0 such that

|λ(ǫ)− λ∗| ≤ cγ|Ω \ Ω(ǫ)|γ , (5.10)
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if |Ω \ Ω(ǫ)| < c−1
γ , whilst if ν ≥ 1 then there exists c > 0 such that

|λ(ǫ)− λ∗| ≤ c|Ω \ Ω(ǫ)|, (5.11)

if |Ω \ Ω(ǫ)| < c−1.
In the case of the Neumann Laplacian, equations (5.3), (5.4) should be re-

placed by equations
J ′
ν(
√
λ) = 0, (5.12)

and

J ′
ν(
√
λ)J ′

−ν(ǫ
√
λ))− J ′

−ν(
√
λ)J ′

ν(ǫ
√
λ) = 0, (5.13)

respectively. By writing J ′
µ(s) = sµ−1Kµ(s

2) where Kµ is a suitable analytic
function not vanishing at zero, one can easily see that in the case of the Neumann
Laplacian in equation (5.5) one should simply replace the function f by the
function g(λ) = Kν(λ)/K−ν(λ). Note that K ′

ν(λ∗) 6= 0 since all positive zeros of
J ′
ν are simple (use directly the Bessel equation of order ν and Watson [13, §15.3,

(3), p. 486]). Thus, one can apply the same argument used above and prove that
(5.8) holds also for the eigenvalues of the Neumann Laplacian.

Note that the eigenspace of the Neumann Laplacian on Ω corresponding to a
positive eigenvalue λ∗ is spanned by the function V defined in polar coordinates
by

V (ρ, θ) = Jν(ρ
√

λ∗) cos ν(θ + β) = (ρ
√

λ∗)
νHν(ρ

2λ∗) cos ν(θ + β),

for all 0 < ρ < 1, −β < θ < β. Thus also for the Neumann Laplacian, we
conclude that inequality (1.3) implies (5.10) and (5.11).

Clearly, in both the cases of Dirichlet and Neumann boundary conditions, (5.8)
shows that if k = 1 and π/2 < β < π ( ⇐⇒ 1/2 < ν < 1) then the exponent
γ in (5.10) cannot be larger than ν. Thus, in general, the exponent in the right
hand-side of estimates (1.3), (1.4) in the class of Lipschitz domains cannot be
larger than 1−2/p. However, (5.8) and (5.11) also show that for special domains
and special values of the indices n one may find better exponents in the right
hand-side of estimates (1.3), (1.4).

Note that in this example the domains Ω and Ω(ǫ) are of class C0,1 but not of
class C0,1

M (A) for fixed atlas A and M > 0. In the proof below the domains Ω(ǫ)
will be modified in an appropriate way in order to define suitable domains Ω̃(ǫ)
belonging to the same class C0,1

M (A).

Proof of the sharpness of the exponent 1 − 2/p in (4.13) for N = 2,
m = 1, n = 1. In this proof, by λ1,D[U ] we denote the first eigenvalue of the
Dirichlet Laplacian defined on a bounded domain U in R

2.
Let Ω be the domain defined by (5.1) with π/2 < β < π. For all ǫ ∈]0, 1[ we

set
Ω̃(ǫ) =

{

x = (x1, x2) ∈ R
2 : g(x2) < x1, |x| < 1

}

,

where g(x2) = ǫ−|x2| tan β
2
if |x2| ≤ ǫ sin β, and g(x2) = |x2| cotβ if |x2| > ǫ sin β.

It is easy to see that

Ω(ǫ) ⊂ Ω̃(ǫ) ⊂ Ω(Aǫ) ⊂ Ω, (5.14)
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for all ǫ ∈]0, 1[, where Ω(ǫ) is defined by (5.2) and A = sin β/
√

2(1− cos β). By
monotonicity it follows that

λ1,D[Ω] ≤ λ1,D[Ω(Aǫ)] ≤ λ1,D[Ω̃(ǫ)] ≤ λ1,D[Ω(ǫ)]. (5.15)

Since the eigenfunctions corresponding to the first eigenvalue of the Dirichlet
Laplacian are the only eigenfunctions which do not change sign, it follows that
the eigenspace corresponding to the eigenvalue λ1,D[Ω] is spanned by (5.9) with
ν = π/(2β). Thus, the asymptotic behavior of λ1,D[Ω(ǫ)] is given by (5.8) with
ν = π/(2β), hence

λ1,D[Ω(ǫ)] = λ1,D[Ω] + C|Ω \ Ω(ǫ)| π
2β + o

(

|Ω \ Ω(ǫ)| π
2β

)

, as ǫ→ 0+. (5.16)

By combining (5.15) and (5.16) it follows that

C1|Ω \ Ω̃(ǫ)| π
2β ≤ |λ1,D[Ω̃(ǫ)]− λ1,D[Ω]| ≤ C2|Ω \ Ω̃(ǫ)| π

2β , (5.17)

for all sufficiently small ǫ, where C1, C2 are positive constants independent of ǫ.
We now apply Corollary 4.12 to the Dirichlet Laplacian with Ω1 = Ω and

Ω2 = Ω̃(ǫ). It is clear that there exists an atlas A and M > 0 such that Ω and
Ω̃(ǫ) are of class C0,1

M (A) for all ǫ ∈]0, 1/2[. Moreover, by formula (5.9) it fol-
lows that if 1 ≤ p < 4β/(2β−π) then the eigenfunctions ϕn,D[Ω1] of the Dirichlet
Laplacian in Ω1 belong toW 1,p(Ω1) for all n ∈ N. Thus the assumptions of Corol-
lary 4.12 are satisfied for such range of p. Assume now by contradiction that under
the assumption of Corollary 4.12 estimate (4.13) is valid with |Ω1 \Ω2|1−2/p+δ re-
placing |Ω1 \ Ω2|1−2/p, where δ is a positive constant independent of p. Since
limp→4β/(2β−π) 1 − 2/p = π/(2β), by choosing p sufficiently close to 4β/(2β − π)

it follows that the second inequality in (5.17) holds with |Ω \ Ω̃(ǫ)| π
2β

+µ replacing
|Ω \ Ω̃(ǫ)| π

2β for some µ > 0 and this contradicts the first inequality in (5.17) as
ǫ→ 0+. 2

Acknowledgments: The authors are thankful to Professor M. Marletta who
carried out some numerical calculations confirming the sharpness of the exponent
1− 2/p in estimates (4.2), (4.13), (4.15) and thus encouraged us to give analytic
proof of the sharpness of this exponent.

We also note that further numerical calculations and some analytic computa-
tions in the spirit of Section 5 were carried out by the student N.A. Oliver under
the supervision of Professor M. Marletta.

This research was supported by the research project “Problemi di stabilità per
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