GEOMETRIC REALIZABILITY OF COVARIANT DERIVATIVE KÄHLER TENSORS FOR ALMOST PSEUDO-HERMITIAN AND ALMOST PARA-HERMITIAN MANIFOLDS

M. BROZOS-VÁZQUEZ, E. GARCÍA-RÍO, P. GILKEY, AND L. HERVELLA

Abstract. The covariant derivative of the Kähler form of an almost pseudoHermitian or of an almost para-Hermitian manifold satisfies certain algebraic relations. We show, conversely, that any 3 -tensor which satisfies these algebraic relations can be realized geometrically.
MSC 2010: 53B05, 15A72, 53A15, 53B10, 53C07, 53C25

1. Introduction

The paper of Gray and Hervella [17] puts into a unified framework 16 classes of almost Hermitian manifolds and was the work which inspired other classification results like those in [24, 28, 29]. It is important in the mathematical setting and is used in obvious settings when some class of Kähler or Hermitian manifolds is the central focus of investigation. The Gray-Hervella decomposition plays a role in the discussion of nearly Kähler and almost Kähler geometry as well as in the study of conformal equivalences among almost Hermitian structures (see for example [11, 23], 4], and [5, 7], respectively). It is related to the Tricerri-Vanhecke [28] decomposition of the curvature tensor in [12] and it has a prominent role in understanding the influence of the curvature on the underlying structure of the manifold [19. The Gray-Hervella classification is related to the 64 classes of almost quaternion-Hermitian structures in [21, showing some interactions amongst them. The different classes have been considered for flag manifolds - they essentially reduce to four classes [26], and the 6 -dimensional case has been considered in detail in [3]. The different classes of almost Hermitian structures also enter into the discussion of some harmonicity problems [5].

Although most of this work has been in the positive definite setting, the indefinite case also plays a role (see for example [10, 15, 18, 22, 27). In addition to the pseudo-Hermitian setting, the almost para-Hermitian geometry is of interest both from the mathematical and the physical point of view [1, 2, 8, 9, 16, 25. Related work of Gadea and Masque [14] classified almost para-Hermitian structures into 32 different classes by considering separately the two natural distributions associated to the almost para-Hermitian structure.

In this paper we put both the almost para-Hermitian and the almost pseudoHermitian structures in an unified context by extending the Gray-Hervella decomposition to the pseudo-Riemannian setting. This is done by analyzing the covariant derivative of the corresponding Kähler form and the decomposition of the space of such tensors under the action of a suitable structure group (see Theorem 1.4 for details). Moreover we consider the geometric realizability of all the different classes by perturbing the given structures. In Theorem 1.1, we show that any algebraic covariant derivative Kähler tensor can be geometrically realized by perturbing the underlying structure on a given almost para/pseudo-Hermitian background manifold; Theorem 1.2 provides a similar result in the integrable setting. In Theorem 1.6, we restrict to the complex setting and extend results of 17 from the positive
definite context to the indefinite context showing any of the 16 classes has at least one geometrical representative.

We establish notation as follows. Let (M, g) be a pseudo-Riemannian manifold of dimension $m=2 \bar{m}$. Let $J_{ \pm}$be endomorphisms of the tangent bundle $T M$. We say that $\left(M, g, J_{+}\right)$is an almost para-Hermitian manifold if $J_{+}^{2}=\mathrm{id}$ and if $J_{+}^{*} g=-g$. Similarly, if $J_{-}^{2}=-\mathrm{id}$ and if $J_{-}^{*} g=g$, then we say that $\left(M, g, J_{-}\right)$is an almost pseudo-Hermitian manifold. The existence of such structures is related to the signature (p, q) of g. If (M, g) admits an almost para-Hermitian structure J_{+}, then $p=q$. Similarly if (M, g) admits an almost pseudo-Hermitian structure J_{-}, then both p and q are even. Thus usually we are not dealing with both J_{-} and J_{+}at the same time on (M, g), but we adopt a common notation to keep the exposition in parallel as much as possible.

Let ∇ be the Levi-Civita connection of g. The associated Kähler form and the covariant derivative are defined, respectively, by:

$$
\begin{aligned}
& \Omega_{ \pm}(x, y):=g\left(x, J_{ \pm} y\right) \\
& \nabla \Omega_{ \pm}(x, y ; z)=z g\left(x, J_{ \pm} y\right)-g\left(\nabla_{z} x, J_{ \pm} y\right)-g\left(x, J_{ \pm} \nabla_{z} y\right)
\end{aligned}
$$

We subscript J and Ω to keep track of the signs involved. For example, as we shall see presently in Lemma 3.1, we have:

$$
\begin{align*}
\nabla \Omega_{ \pm}(x, y ; z) & =-\nabla \Omega_{ \pm}(y, x ; z) \\
\nabla \Omega_{ \pm}(x, y ; z) & = \pm \nabla \Omega_{ \pm}\left(J_{ \pm} x, J_{ \pm} y ; z\right) \tag{1.a}
\end{align*}
$$

It is convenient to work in an algebraic context as well. Let $(V,\langle\cdot, \cdot\rangle)$ be an inner product space and let $J_{ \pm}^{0}$ be linear maps of V. We say that $\left(V,\langle\cdot, \cdot\rangle, J_{+}^{0}\right)$ is a para-Hermitian vector space if $\left(J_{+}^{0}\right)^{*}\langle\cdot, \cdot\rangle=-\langle\cdot, \cdot\rangle$ and if $\left(J_{+}^{0}\right)^{2}=$ id. Similarly, $\left(V,\langle\cdot, \cdot\rangle, J_{-}^{0}\right)$ is said to be a pseudo-Hermitian vector space if $\left(J_{-}^{0}\right)^{*}\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle$ and if $\left(J_{-}^{0}\right)^{2}=-$ id. Again, the existence of such structures imposes restrictions on the signature. Motivated by Equation (1.a), we define:

$$
\begin{array}{r}
\mathfrak{H}_{ \pm}:=\left\{H_{ \pm} \in \otimes^{3} V^{*}: H_{ \pm}(x, y ; z)=-H_{ \pm}(y, x ; z) \quad\right. \text { and } \\
\left.H_{ \pm}\left(J_{ \pm}^{0} x, J_{ \pm}^{0} y ; z\right)= \pm H_{ \pm}(x, y ; z) \forall x, y, z\right\} .
\end{array}
$$

Let $H_{ \pm} \in \mathfrak{H}_{ \pm}$. We have

$$
\begin{equation*}
H_{ \pm}\left(x, J_{ \pm}^{0} y ; z\right)= \pm H_{ \pm}\left(J_{ \pm}^{0} x, J_{ \pm}^{0} J_{ \pm}^{0} y ; z\right)=H_{ \pm}\left(J_{ \pm}^{0} x, y ; z\right) \tag{1.b}
\end{equation*}
$$

The following result shows that Equation (1.a) generates the universal symmetries satisfied by $\nabla \Omega_{ \pm}$and provides a rich family of examples. It is striking that we can fix the metric and only vary the almost (para)-complex structure; in particular, we could take the background structure to be flat.

Theorem 1.1. Let $\left(M, g, J_{ \pm}\right)$be a background almost para/pseudo-Hermitian manifold and let $P \in M$. Suppose given $H_{ \pm}$in $\mathfrak{H}_{ \pm}\left(T_{P} M, g_{P}, J_{ \pm, P}\right)$. Then there exists a new almost para/pseudo-Hermitian structure $\tilde{J}_{ \pm}$on M which agrees with $J_{ \pm}$at P so that $\nabla \Omega_{ \pm}\left(M, g, \tilde{J}_{ \pm}\right)(P)=H_{ \pm}$.

We consider the following subspace:

$$
U_{3, \pm}:=\left\{H_{ \pm} \in \mathfrak{H}_{ \pm}: H_{ \pm}(x, y ; z)=\mp H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \forall x, y, z\right\} .
$$

If $\left(M, g, J_{ \pm}\right)$is a para/pseudo-Hermitian manifold (i.e. $J_{ \pm}$is integrable), then $\nabla \Omega_{ \pm} \in U_{3, \pm}$ as we shall see presently in Lemma 3.2. Conversely:

Theorem 1.2. Let $\left(M, g, J_{ \pm}\right)$be a background para/pseudo-Hermitian manifold and let $P \in M$. Suppose given $H_{ \pm}$in $U_{3, \pm}\left(T_{P} M, g_{P}, J_{ \pm, P}\right)$. Then there exists a new para/pseudo-Hermitian metric \tilde{g} on M which agrees with g at P so that $\nabla \Omega_{ \pm}\left(M, \tilde{g}, J_{ \pm}\right)(P)=H_{ \pm}$.

Theorems 1.1 and 1.2 are global results; it is necessary to have a starting background structure as not every manifold admits a para/pseudo-Hermitian structure of a given signature; in general, there are topological restrictions on M for the existence of a (para)-complex structure or for the existence of a metric of signature (p, q). These Theorems give results in the category of compact manifolds. However it is a direct consequence of the Theorems that one can also restrict attention to an open coordinate chart to get purely local results.

These results are based on a decomposition of $\mathfrak{H}_{ \pm}$which extends the decomposition given in [17] in the positive definite context. Adopt the Einstein convention and sum over repeated indices.

Definition 1.3. Let $\left(V,\langle\cdot, \cdot\rangle, J_{ \pm}^{0}\right)$ be a para/pseudo-Hermitian vector space. Let $\varepsilon_{i j}:=\left\langle e_{i}, e_{j}\right\rangle$ for some basis $\left\{e_{i}\right\}$ for V. Let $\phi \in V^{*}$. Let $H \in \otimes^{3} V^{*}$. Let GL be the general linear group. Set:
(1) $\left(\tau_{1} H\right)(x):=\varepsilon^{i j} H\left(x, e_{i} ; e_{j}\right)$.
(2) $\sigma_{ \pm}(\phi)(x, y ; z):=\phi\left(J_{ \pm}^{0} x\right)\langle y, z\rangle-\phi\left(J_{ \pm}^{0} y\right)\langle x, z\rangle+\phi(x)\left\langle J_{ \pm}^{0} y, z\right\rangle-\phi(y)\left\langle J_{ \pm}^{0} x, z\right\rangle$.
(3) $W_{1, \pm}:=\left\{H_{ \pm} \in \mathfrak{H}_{ \pm}: H_{ \pm}(x, y ; z)+H_{ \pm}(x, z ; y)=0 \forall x, y, z\right\}$.
(4) $W_{2, \pm}:=\left\{H_{ \pm} \in \mathfrak{H}_{ \pm}: H_{ \pm}(x, y ; z)+H_{ \pm}(y, z ; x)+H_{ \pm}(z, x ; y)=0 \forall x, y, z\right\}$.
(5) $W_{3, \pm}:=U_{3, \pm} \cap \operatorname{ker}\left(\tau_{1}\right)$.
(6) $W_{4, \pm}:=$ Range $\left(\sigma_{ \pm}\right)$.
(7) $\mathcal{O}:=\left\{T \in \mathrm{GL}: T^{*}\langle\cdot, \cdot\rangle=\langle\cdot, \cdot\rangle\right\}$.
(8) $\mathcal{U}_{ \pm}:=\left\{T \in \mathcal{O}: T J_{ \pm}^{0}=J_{ \pm}^{0} T\right\}$.
(9) $\mathcal{U}_{ \pm}^{\star}:=\left\{T \in \mathcal{O}: T J_{ \pm}^{0}=T J_{ \pm}^{0}\right.$ or $\left.T J_{ \pm}^{0}=-J_{ \pm}^{0} T\right\}$.
(10) $\mathrm{GL}_{ \pm}:=\left\{T \in \mathrm{GL}: T J_{ \pm}^{0}=J_{ \pm}^{0} T\right\}$.
(11) $\chi(T):=+1$ if $T \in \mathcal{U}_{ \pm}$and $\chi(T):=-1$ if $T \in \mathcal{U}_{ \pm}^{\star}-\mathcal{U}_{ \pm}$.

Theorem 1.4. Let $m \geq 6$. We have a direct sum orthogonal decomposition of $\mathfrak{H}_{ \pm}$ and of $U_{3, \pm}$ into irreducible inequivalent $\mathcal{U}_{ \pm}^{\star}$ modules in the form:

$$
\mathfrak{H}_{ \pm}=W_{1, \pm} \oplus W_{2, \pm} \oplus W_{3, \pm} \oplus W_{4, \pm} \quad \text { and } \quad U_{3, \pm}=W_{3, \pm} \oplus W_{4, \pm}
$$

One obtains the corresponding decompositions if $m=4$ by setting $W_{1, \pm}=0$ and $W_{3, \pm}=0$. The modules $W_{i,-}$ are also irreducible \mathcal{U}_{-}modules so the decomposition of [17] of \mathfrak{H}_{-}as a \mathcal{U}_{-}module extends without change from the positive definite to the indefinite setting; we omit the additional analysis this requires in the interests of brevity. The modules $W_{i,+}$ are not, however, irreducible \mathcal{U}_{+}modules and thus the classification of [14] is a more refined one than we consider here as there are 8 factors in the decomposition rather than 4 . By using the structure group \mathcal{U}_{+}^{\star} instead of \mathcal{U}_{+}, we shall bypass some of the technical difficulties encountered in [14] and this structure group is sufficient for our purposes.

The focus of Theorem 1.1 and of Theorem 1.2 is to show that every element of $\mathfrak{H}_{ \pm}$and of $U_{3, \pm}$ is geometrically realizable in an appropriate context. One can, however, focus instead on the precise nature of the classes involved. We now restrict to the complex setting. Let ξ be a \mathcal{U}_{-}^{\star} submodule of \mathfrak{H}_{-}. We say that $\left(M, g, J_{-}\right)$is a ξ-manifold if $\nabla \Omega_{-}$belongs to ξ for every point of the manifold and if ξ is minimal with this property. This gives rise to the celebrated 16 classes of almost Hermitian manifolds (in the positive definite setting) [17]:

Theorem 1.5. Let ξ be a submodule of \mathfrak{H}_{-}. Then there exists an almost Hermitian ξ-manifold.

We can generalize this to the indefinite setting; we shall suppose $m \geq 10$ to simplify the discussion:

Theorem 1.6. Suppose given $(2 \bar{p}, 2 \bar{q})$ with $2 \bar{p}+2 \bar{q} \geq 10$. Let ξ be a submodule of \mathfrak{H}_{-}. Then there exists a ξ-manifold of signature $(2 \bar{p}, 2 \bar{q})$.

Many of these classes have geometrical meanings which have been extensively investigated. For example:
(1) $\xi=\{0\}$ defines the class of Kähler manifolds.
(2) $\xi=W_{1,-}$ defines the class of nearly Kähler manifolds.
(3) $\xi=W_{2,-}$ defines the class of almost Kähler manifolds.
(4) $\xi=W_{3,-}$ defines the class of Hermitian semi-Kähler manifolds.
(5) $\xi=W_{1,-} \oplus W_{2,-}$ defines the class of quasi-Kähler manifolds.
(6) $\xi=W_{3,-} \oplus W_{4,-}=U_{3,-}$ defines the class of pseudo-Hermitian manifolds.
(7) $\xi=W_{1,-} \oplus W_{2,-} \oplus W_{3,-}$ defines the class of semi-Kähler manifolds.
(8) $\xi=\mathfrak{H}_{-}$defines the class of almost pseudo-Hermitian manifolds.

Here is a brief outline to the paper. In Section 2 we review briefly the representation theory we shall need concerning $\mathcal{U}_{ \pm}^{\star}$ submodules of $\otimes^{k} V^{*}$ and obtain an upper bound on the dimension of the space of quadratic invariants for $\mathfrak{H}_{ \pm}$as a $\mathcal{U}_{ \pm}^{\star}$ module. In Section 3, we turn to the geometric setting and study $\nabla \Omega_{ \pm}$. In Section 4. we examine matters in the algebraic context and define projectors on the spaces $W_{1, \pm}, W_{2, \pm}, U_{3, \pm}$, and $W_{4, \pm}$. In Section 5, we fix the metric and vary the almost (para)-complex structure to prove Theorem 1.1 and Theorem 1.4. In Section 6, we assume the (para)-complex structure to be integrable and vary the metric to prove Theorem 1.2. In Section 7, we use results of [17] to establish Theorem 1.6,

2. Representation theory

Let $\left(V,\langle\cdot, \cdot\rangle, J_{ \pm}\right)$be a para/pseudo-Hermitian space. Extend $\langle\cdot, \cdot\rangle$ to $\otimes^{k} V$ so

$$
\begin{equation*}
\left\langle\left(v_{1} \otimes \cdots \otimes v_{k}\right),\left(w_{1} \otimes \cdots \otimes w_{k}\right)\right\rangle:=\prod_{i=1}^{k}\left\langle v_{i}, w_{i}\right\rangle \tag{2.a}
\end{equation*}
$$

Equation (2.a) defines a non-degenerate symmetric bilinear form on $\otimes^{k} V$. We use $\langle\cdot, \cdot\rangle$ to identify V with V^{*} and $\otimes^{k} V$ with $\otimes^{k} V^{*}$. If $\theta \in \otimes^{k} V^{*}$ and if $u \in \mathcal{U}_{ \pm}^{\star}$, the pull-back $u^{*} \theta \in \otimes^{k} V^{*}$ is defined by $u^{*} \theta\left(v_{1}, \ldots, v_{k}\right):=\theta\left(u v_{1}, \ldots, u v_{k}\right)$. Pull-back defines a natural action of $\mathcal{U}_{ \pm}^{\star}$ on $\otimes^{k} V^{*}$ which preserves the canonical inner product of Equation (2.a). Let ξ be a $\mathcal{U}_{ \pm}^{\star}$-invariant subspace of $\otimes^{k} V^{*}$; the natural action of $\mathcal{U}_{ \pm}^{\star}$ on $\otimes^{k} V^{*}$ by pull-back makes ξ into a $\mathcal{U}_{ \pm}^{\star}$ submodule of $\otimes^{k} V^{*}$. One has:
Lemma 2.1. Let $\left(V,\langle\cdot, \cdot\rangle, J_{ \pm}^{0}\right)$ be a para/pseudo-Hermitian vector space. Let ξ be a $\mathcal{U}_{ \pm}^{\star}$ submodule of $\otimes^{k} V^{*}$.
(1) $\langle\cdot, \cdot\rangle$ is non-degenerate on ξ.
(2) There is an orthogonal direct sum decomposition $\xi=\eta_{1} \oplus \cdots \oplus \eta_{k}$ where the η_{i} are irreducible $\mathcal{U}_{ \pm}^{\star}$-modules.
(3) If ξ_{1} and ξ_{2} are inequivalent irreducible $\mathcal{U}_{ \pm}^{\star}$ submodules of ξ, then $\xi_{1} \perp \xi_{2}$.
(4) The multiplicity with which an irreducible representation appears in ξ is independent of the decomposition in (2).
(5) If ξ_{1} appears with multiplicity 1 in ξ and if η is any $\mathcal{U}_{ \pm}^{\star}$ submodule of ξ, then either $\xi_{1} \subset \eta$ or else $\xi_{1} \perp \eta$.
(6) If $0 \rightarrow \xi_{1} \rightarrow \xi \rightarrow \xi_{2} \rightarrow 0$ is a short exact sequence of $\mathcal{U}_{ \pm}^{\star}$-modules, then $\xi \approx \xi_{1} \oplus \xi_{2}$ as a $\mathcal{U}_{ \pm}^{\star}$-module.

Proof. We shall establish Assertion (1) as this is the crucial property; the remaining assertions follow from Assertion (1) using essentially the same arguments as those used in the positive definite setting; we refer to [6] for a detailed exposition. For example, it is Assertion (1) which lets us define orthogonal projection; if ξ is invariant under the action of $\mathcal{U}_{ \pm}^{\star}$, then $\xi \cap \xi^{\perp}$ is a totally isotropic invariant subspace
of $\otimes^{k} V^{*}$ and hence $\xi \cap \xi^{\perp}=\{0\}$. Thus $\otimes^{k} V^{*}=\xi \oplus \xi^{\perp}$ and orthogonal projection on ξ is given by the first factor in this decomposition.

Suppose first $\left(V,\langle\cdot, \cdot\rangle, J_{-}^{0}\right)$ is a pseudo-Hermitian vector space of signature (p, q). We prove Assertion (1) for the smaller group \mathcal{U}_{-}; it then follows automatically for the larger group \mathcal{U}_{-}^{\star}. Use the Gramm-Schmidt process to choose an orthogonal decomposition $V=V_{+} \oplus V_{-}$which is J_{-}^{0} invariant so V_{+}is spacelike and V_{-}is timelike. Let $T= \pm \mathrm{id}$ on $V_{ \pm} ; T \in \mathcal{U}_{-}$since the decomposition is J_{-}^{0} invariant. Let $\left\{e_{1}, \ldots, e_{p}\right\}$ be an orthonormal basis for V_{-}and let $\left\{e_{p+1}, \ldots, e_{m}\right\}$ be an orthonormal basis for V_{+}. Let $\left\{e^{1}, \ldots, e^{m}\right\}$ be the corresponding orthonormal dual basis for V^{*}. Then $T^{*}\left(e^{i}\right)=\left\langle e^{i}, e^{i}\right\rangle e^{i}= \pm e^{i}$. If $I=\left(i_{1}, \ldots, i_{k}\right)$ is a multi-index, set $e^{I}:=$ $e^{i_{1}} \otimes \ldots \otimes e^{i_{k}}$. The collection $\left\{e^{I}\right\}$ is an orthonormal basis for $\otimes^{k} V^{*}$ with:

$$
\begin{aligned}
T^{*} e^{I} & =T^{*}\left(e^{i_{1}}\right) \otimes \ldots \otimes T^{*}\left(e^{i_{k}}\right)=\left\langle e^{i_{1}}, e^{i_{1}}\right\rangle e^{i_{1}} \otimes \ldots \otimes\left\langle e^{i_{k}}, e^{i_{k}}\right\rangle e^{i_{k}} \\
& =\left\langle e^{I}, e^{I}\right\rangle e^{I}= \pm e^{I}
\end{aligned}
$$

Thus if $T^{*} w=w$, then w is a spacelike vector in $\otimes^{k} V^{*}$ while if $T^{*} w=-w$, then w is a timelike vector in $\otimes^{k} V^{*}$. Let ξ be a non-trivial \mathcal{U}_{-}invariant subspace of $\otimes^{k} V^{*}$. Since $T \in \mathcal{U}_{-}, T$ preserves ξ. Decompose $\xi=\xi_{+} \oplus \xi_{-}$into the ± 1 eigenspaces of T^{*}. Since ξ_{+}is spacelike and ξ_{-}is timelike, the metric on ξ is non-degenerate and Assertion (1) follows in this framework.

The argument is a bit different in the para-Hermitian setting. Let $\left(V,\langle\cdot, \cdot\rangle, J_{+}^{0}\right)$ be a para-Hermitian vector space. Find an orthogonal direct sum decomposition $V=V_{+} \oplus V_{-}$where V_{+}is spacelike, where V_{-}is timelike, and where $J_{+}^{0}: V_{ \pm} \rightarrow V_{\mp}$. As before, let $T= \pm \mathrm{id}$ on $V_{ \pm} ; T$ does not belong to \mathcal{U}_{+}but it does belong to \mathcal{U}_{+}^{\star}. The remainder of the argument now follows as in the complex case; it is necessary to assume ξ is invariant under \mathcal{U}_{+}^{\star} and not simply under \mathcal{U}_{+}- this is the crucial difference.

Remark 2.2. Lemma 2.1 fails for the group \mathcal{U}_{+}and it is for this reason that the decomposition of \mathfrak{H}_{+}has more factors as a \mathcal{U}_{+}module than as a \mathcal{U}_{+}^{\star} module. Let $\left(V,\langle\cdot, \cdot\rangle, J_{+}^{0}\right)$ be a para-Hermitian vector space. Decompose $V=W_{+} \oplus W_{-}$into the ± 1 eigenspaces of J_{+}^{0}. Then $W_{ \pm}$are totally isotropic subspaces of V which are invariant under \mathcal{U}_{+}.

Let ξ be a $\mathcal{U}_{ \pm}^{\star}$ submodule of $\otimes^{k} V^{*}$. We say that a symmetric inner product $\theta \in S^{2}\left(\xi^{*}\right)$ is a quadratic invariant if $\theta(\gamma x, \gamma y)=\theta(x, y)$ for all $\gamma \in \mathcal{U}_{ \pm}^{\star}$ and for all $x, y \in \xi$; let $S_{\mathcal{U}_{ \pm}^{\star}}^{2}(\xi)$ be the space of all quadratic invariants. The following is well known - see, for example, the discussion in [6]. The proof follows exactly the same lines as in the positive definite setting given Lemma 2.1 (1).
Lemma 2.3. Let ξ be a $\mathcal{U}_{ \pm}^{\star}$ submodule of $\otimes^{k} V^{*}$. Suppose that ξ_{i} are non-trivial $\mathcal{U}_{ \pm}^{\star}$-modules so that $\xi_{1} \oplus \cdots \oplus \xi_{\ell}$ is a $\mathcal{U}_{ \pm}^{\star}$ submodule of ξ. Also suppose that $\operatorname{dim}\left\{S_{\mathcal{U}_{ \pm}^{\star}}^{2}(\xi)\right\} \leq \ell$. Then:
(1) $\xi=\xi_{1} \oplus \cdots \oplus \xi_{\ell}, \xi_{i} \perp \xi_{j}$ for $i \neq j$, and $\operatorname{dim}\left\{S_{\mathcal{U}_{ \pm}^{\star}}^{2}(\xi)\right\}=\ell$.
(2) The modules ξ_{i} are all irreducible and ξ_{i} is not isomorphic to ξ_{j} for $i \neq j$.

We now examine the space of quadratic invariants for the setting at hand.
Lemma 2.4. $\operatorname{dim}\left\{S_{\mathcal{U}_{ \pm}^{\star}}^{2}\left(\mathfrak{H}_{ \pm}\right)\right\} \leq 4$.
Proof. Since the original discussion in [17] was in the positive definite setting, we shall provide full details. Let $\left(V,\langle\cdot, \cdot\rangle, J_{ \pm}^{0}\right)$ be a para/pseudo-Hermitian vector space and let ξ be a G submodule of $\otimes^{k} V^{*}$. A spanning set for the space of quadratic invariants if $G=\mathcal{O}$ or if $G=\mathcal{U}_{-}$in the positive definite setting is given in 30 and in [13, 20], respectively. The extension to the groups $\mathcal{U}_{ \pm}^{\star}$ is straightforward
(see [6] for example). In brief, if $G=\mathcal{U}_{ \pm}^{\star}$, everything is given by contraction of indices using the inner product $\langle\cdot, \cdot\rangle$ and the structure $J_{ \pm}^{0}$ where $J_{ \pm}^{0}$ must appear an even number of times. The following is a convenient formalism. We identify θ with the corresponding quadratic function $\theta(x):=\theta(x, x)$. We consider 3 distinct orthonormal bases $\left\{e_{i_{1}}^{1}, e_{i_{2}}^{2}, e_{i_{3}}^{3}\right\}$ for V which are indexed by $\left\{i_{1}, i_{2}, i_{3}\right\}$, respectively, for $1 \leq i_{1} \leq m, 1 \leq i_{2} \leq m$, and $1 \leq i_{3} \leq m$. Let

$$
\varepsilon_{I}=\left\langle e_{i_{1}}^{1}, e_{i_{1}}^{1}\right\rangle\left\langle e_{i_{2}}^{2}, e_{i_{2}}^{2}\right\rangle\left\langle e_{i_{3}}^{3}, e_{i_{3}}^{3}\right\rangle= \pm 1
$$

We consider a string S of 6 symbols grouped into 2 monomials of 3 symbols where each index $1,2,3$ appears twice and where some of the indices are decorated with $J_{ \pm}^{0}$. Thus, for example, if $S=\left(1,2 ; J_{ \pm}^{0} 2\right)\left(1,3 ; J_{ \pm}^{0} 3\right)$ and if $H_{ \pm} \in \mathfrak{H}_{ \pm}$, then the associated invariant $\mathcal{I}(S)$ is given by:

$$
\mathcal{I}(S)\left(H_{ \pm}\right):=\sum_{i_{1}=1}^{m} \sum_{i_{2}=1}^{m} \sum_{i_{3}=1}^{m} \varepsilon_{I} H_{ \pm}\left(e_{i_{1}}^{1}, e_{i_{2}}^{2} ; J_{ \pm}^{0} e_{i_{2}}^{2}\right) H_{ \pm}\left(e_{i_{1}}^{1}, e_{i_{3}}^{3} ; J_{ \pm}^{0} e_{i_{3}}^{3}\right)
$$

The space of quadratic invariants of $\mathfrak{H}_{ \pm}$is spanned by such invariants. We will stratify the invariants by the number of times $J_{ \pm}^{0}$ appears; this gives rise to 2 basic cases each of which has 2 subcases.
(1) General remarks.
(a) We can replace the basis $\left\{e_{i_{1}}^{1}\right\}$ by $\left\{J_{ \pm}^{0} e_{i_{1}}^{1}\right\}$ and thereby replace ε_{I} by $\mp \varepsilon_{I}$. Thus $\mathcal{I}\{(\ldots, 1, \ldots, 1, \ldots)\}=\mp \mathcal{I}\left\{\left(\ldots, J_{ \pm}^{0} 1, \ldots, J_{ \pm}^{0} 1, \ldots\right)\right\}$.
(b) We need only consider strings where either a given index is undecorated or it is decorated exactly once.
(c) We may permute the bases. Thus $\mathcal{I}\{(1,2 ; 3)(1,2 ; 3)\}=\mathcal{I}\{(2,3 ; 1)(2,3 ; 1)\}$.
(d) By Equation (1.a), $\mathcal{I}\{(\mu, \sigma ; \star)(\star, \star ; \star)\}=-\mathcal{I}\{(\sigma, \mu ; \star)(\star, \star ; \star)\}$ $= \pm \mathcal{I}\left\{\left(J_{ \pm}^{0} \mu, J_{ \pm}^{0} \sigma ; \star\right)(\star, \star ; \star)\right\}$.
(e) By Equation (1.b), $\mathcal{I}\left\{\left(\mu, J_{ \pm}^{0} \sigma ; \star\right)(\star, \star ; \star)\right\}=\mathcal{I}\left\{\left(J_{ \pm}^{0} \mu, \sigma ; \star\right)(\star, \star ; \star)\right\}$.
(2) $J_{ \pm}^{0}$ does not appear. This gives rise to 3 invariants:
(a) Each index appears in each variable:
(i) $\psi_{1}:=\mathcal{I}\{(1,2 ; 3)(1,2 ; 3)\}$.
(ii) $\psi_{2}:=\mathcal{I}\{(1,2 ; 3)(1,3 ; 2)\}$.
(b) Only one index appears in both variables:
(i) $\psi_{3}:=\mathcal{I}\{(1,2 ; 1)(3,2 ; 3)\}$.
(3) $J_{ \pm}^{0}$ appears twice. This gives rise to another invariant:
(a) Each index appears in each variable:
(i) $\psi_{4}:=\mathcal{I}\left\{\left(1, J_{ \pm}^{0} 2 ; J_{ \pm}^{0} 3\right)(1,2 ; 3)\right\}$.
(ii) $\mathcal{I}\left\{\left(1, J_{ \pm}^{0} 2 ; 3\right)\left(1, J_{ \pm}^{0} 3 ; 2\right)\right\}=\mathcal{I}\left\{\left(J_{ \pm}^{0} 1,2 ; 3\right)\left(J_{ \pm}^{0} 1,2 ; 3\right)\right\}$

$$
=\mp \mathcal{I}\{(1,2 ; 3)(1,2 ; 3)\}=\mp \psi_{1}
$$

(b) Only one index appears in both variables:
(i) $\mathcal{I}\left\{\left(J_{ \pm}^{0} 1,2 ; 1\right)\left(J_{ \pm}^{0} 3,2 ; 3\right)\right\}=\mathcal{I}\left\{\left(1, J_{ \pm}^{0} 2 ; 1\right)\left(3, J_{ \pm}^{0} 2 ; 3\right)\right\}$

$$
=\mp \mathcal{I}\{(1,2 ; 1)(3,2 ; 3)\}=\mp \psi_{3} .
$$

We have enumerated all the possibilities and constructed 4 invariants.

3. Geometric analysis

If $\left(x^{1}, \ldots, x^{m}\right)$ is a system of local coordinates on M, let $\partial_{x_{i}}:=\frac{\partial}{\partial x_{i}}$.
Lemma 3.1. Let $\left(M, g, J_{ \pm}\right)$be an almost para/pseudo-Hermitian manifold. Then:
(1) $\nabla \Omega_{ \pm} \in \mathfrak{H}_{ \pm}$.
(2) $\nabla \Omega_{ \pm}(x, y ; z)=g\left(x,\left(\nabla_{z} J_{ \pm}\right) y\right)=g\left(x, \nabla_{z} J_{ \pm} y\right)-g\left(x, J_{ \pm} \nabla_{z} y\right)$

$$
=g\left(x, \nabla_{z} J_{ \pm} y\right)+g\left(J_{ \pm} x, \nabla_{z} y\right)
$$

Proof. Since $\Omega_{ \pm} \in C^{\infty}\left(\Lambda^{2}\right), \nabla \Omega_{ \pm} \in C^{\infty}\left(\Lambda^{2} \otimes V^{*}\right)$. We prove Assertion (1) by studying the action of $J_{ \pm}^{*}$:

$$
\begin{aligned}
& \nabla \Omega_{ \pm}\left(J_{ \pm} x, J_{ \pm} y ; z\right) \\
& \quad=z g\left(J_{ \pm} x, J_{ \pm} J_{ \pm} y\right)-g\left(\nabla_{z} J_{ \pm} x, J_{ \pm} J_{ \pm} y\right)-g\left(J_{ \pm} x, J_{ \pm} \nabla_{z} J_{ \pm} y\right) \\
& \quad=\mp z g\left(x, J_{ \pm} y\right) \mp g\left(\nabla_{z} J_{ \pm} x, y\right) \pm g\left(x, \nabla_{z} J_{ \pm} y\right) \\
& \quad=\mp z g\left(x, J_{ \pm} y\right) \mp z g\left(J_{ \pm} x, y\right) \pm g\left(J_{ \pm} x, \nabla_{z} y\right) \pm z g\left(x, J_{ \pm} y\right) \mp g\left(\nabla_{z} x, J_{ \pm} y\right) \\
& \quad= \pm z g\left(x, J_{ \pm} y\right) \mp g\left(x, J_{ \pm} \nabla_{z} y\right) \mp g\left(\nabla_{z} x, J_{ \pm} y\right)= \pm \nabla \Omega_{ \pm}(x, y ; z) .
\end{aligned}
$$

We use the fact that $\nabla g=0$ to prove Assertion (2) by computing:

$$
\begin{aligned}
& \nabla_{z} \Omega_{ \pm}(x, y)=z g\left(x, J_{ \pm} y\right)-g\left(\nabla_{z} x, J_{ \pm} y\right)-g\left(x, J_{ \pm} \nabla_{z} y\right) \\
& =z g\left(x, J_{ \pm} y\right)-g\left(\nabla_{z} x, J_{ \pm} y\right)-g\left(x, \nabla_{z} J_{ \pm} y\right)+g\left(x, \nabla_{z} J_{ \pm} y\right)-g\left(x, J_{ \pm} \nabla_{z} y\right) \\
& =\left(\nabla_{z} g\right)\left(x, J_{ \pm} y\right)+g\left(x, \nabla_{z} J_{ \pm} y\right)-g\left(x, J_{ \pm} \nabla_{z} y\right) \\
& =g\left(x, \nabla_{z} J_{ \pm} y\right)-g\left(x, J_{ \pm} \nabla_{z} y\right)=g\left(x, \nabla_{z} J_{ \pm} y\right)+g\left(J_{ \pm} x, \nabla_{z} y\right)
\end{aligned}
$$

Let $g(x, y ; z):=z g(x, y)$. We continue our study and assume $J_{ \pm}$is integrable:
Lemma 3.2. Let $\left(M, g, J_{ \pm}\right)$be a para/pseudo-Hermitian manifold. Then:
(1) $\nabla \Omega_{ \pm}\left(\partial_{x_{i}}, \partial_{x_{j}} ; \partial_{x_{k}}\right)=\frac{1}{2}\left\{g\left(\partial_{x_{i}}, \partial_{x_{k}} ; J_{ \pm} \partial_{x_{j}}\right)-g\left(\partial_{x_{j}}, \partial_{x_{k}} ; J_{ \pm} \partial_{x_{i}}\right)\right.$

$$
\left.+g\left(J_{ \pm} \partial_{x_{i}}, \partial_{x_{k}} ; \partial_{x_{j}}\right)-g\left(J_{ \pm} \partial_{x_{j}}, \partial_{x_{k}} ; \partial_{x_{i}}\right)\right\} .
$$

(2) $\nabla \Omega_{ \pm}\left(M, g, J_{ \pm}\right) \in U_{3, \pm}$.
(3) $\nabla \Omega_{ \pm}\left(M, e^{2 f} g, J_{ \pm}\right)=e^{2 f}\left\{\nabla \Omega_{ \pm}\left(M, g, J_{ \pm}\right)-\sigma_{ \pm, g}(d f)\right\}$.
(4) $W_{4, \pm} \subset U_{3, \pm}$.

Proof. Since $J_{ \pm}$is integrable, we may choose coordinates so $J_{ \pm} \partial_{x_{i}} \in\left\{\partial_{x_{1}}, \ldots, \partial_{x_{m}}\right\}$. Let $x=\partial_{x_{i}}, y=\partial_{x_{j}}$, and $z=\partial_{x_{k}}$. We may apply Lemma 3.1 and the Koszul formula for the Christoffel symbols in a coordinate frame to see:

$$
\begin{aligned}
\nabla_{z} \Omega_{ \pm}(x, y) & =g\left(x, \nabla_{z} J_{ \pm} y\right)+g\left(J_{ \pm} x, \nabla_{z} y\right) \\
& =\frac{1}{2}\left\{g\left(x, z ; J_{ \pm} y\right)+g\left(x, J_{ \pm} y ; z\right)-g\left(z, J_{ \pm} y ; x\right)\right\} \\
& +\frac{1}{2}\left\{g\left(J_{ \pm} x, z ; y\right)+g\left(J_{ \pm} x, y ; z\right)-g\left(z, y ; J_{ \pm} x\right)\right\}
\end{aligned}
$$

Assertion (1) now follows from the identity:

$$
g\left(x, J_{ \pm} y ; z\right)+g\left(J_{ \pm} x, y ; z\right)=z\left\{g\left(x, J_{ \pm} y\right)+g\left(J_{ \pm} x, y\right)\right\}=0
$$

We prove Assertion (2) by checking that $\nabla \Omega_{ \pm}$satisfies the defining relation for $U_{3, \pm}$ in this instance. We use Assertion (1) to compute:

$$
\begin{aligned}
& \nabla \Omega_{ \pm}\left(x, J_{ \pm} y ; J_{ \pm} z\right) \\
= & \frac{1}{2}\left\{g\left(x, J_{ \pm} z ; J_{ \pm} J_{ \pm} y\right)-g\left(J_{ \pm} y, J_{ \pm} z ; J_{ \pm} x\right)\right\} \\
+ & \frac{1}{2}\left\{g\left(J_{ \pm} x, J_{ \pm} z ; J_{ \pm} y\right)-g\left(J_{ \pm} J_{ \pm} y, J_{ \pm} z ; x\right)\right\} \\
= & \frac{1}{2}\left\{ \pm g\left(x, J_{ \pm} z ; y\right) \pm g\left(y, z ; J_{ \pm} x\right) \mp g\left(x, z ; J_{ \pm} y\right) \pm g\left(J_{ \pm} y, z ; x\right)\right\} \\
= & \frac{1}{2}\left\{\mp g\left(J_{ \pm} x, z ; y\right) \pm g\left(y, z ; J_{ \pm} x\right) \mp g\left(x, z ; J_{ \pm} y\right) \pm g\left(J_{ \pm} y, z ; x\right)\right\} \\
= & \mp \nabla_{ \pm}(x, y ; z) .
\end{aligned}
$$

We also use Assertion (1) to prove Assertion (3) by checking:

$$
\begin{aligned}
& \nabla \Omega_{ \pm, e^{2 f} g}(x, y ; z) \\
= & e^{2 f}\left\{\nabla \Omega_{ \pm, g}(x, y ; z)+d f\left(J_{ \pm} y\right) g(x, z)-d f\left(J_{ \pm} x\right) g(y, z)\right. \\
+ & \left.d f(y) g\left(J_{ \pm} x, z\right)-d f(x) g\left(J_{ \pm} y, z\right)\right\} \\
= & e^{2 f}\left\{\nabla \Omega_{ \pm, g}(x, y ; z)-\sigma_{ \pm, g}(d f)(x, y ; z)\right\} .
\end{aligned}
$$

Let $\left(V,\langle\cdot, \cdot\rangle, J_{ \pm}^{0}\right)$ be a para/pseudo-Hermitian vector space. Let f be a smooth function on V and consider the manifold $\left(M, g, J_{ \pm}\right):=\left(V, e^{2 f}\langle\cdot, \cdot\rangle, J_{ \pm}^{0}\right)$. We apply Assertion (2) and Assertion (3) to prove Assertion (4) by checking:

$$
e^{2 f} \sigma_{ \pm,\langle\cdot, \cdot\rangle}(d f)=-\nabla \Omega_{ \pm, e^{2 f}\langle\cdot, \cdot\rangle} \in U_{3, \pm}
$$

4. Algebraic considerations

We now turn our attention to purely algebraic considerations. For the remainder of this section, let $\left(V,\langle\cdot, \cdot\rangle, J_{ \pm}^{0}\right)$ be a para/pseudo-Hermitian vector space.
Definition 4.1. Let $H_{ \pm} \in \mathfrak{H}_{ \pm}$.
(1) $\left(\pi_{1, \pm} H_{ \pm}\right)(x, y ; z):=\frac{1}{6}\left\{H_{ \pm}(x, y ; z)+H_{ \pm}(y, z ; x)+H_{ \pm}(z, x ; y)\right.$

$$
\left. \pm H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \pm H_{ \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \pm H_{ \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right)\right\} .
$$

(2) $\left(\pi_{2, \pm} H_{ \pm}\right)(x, y ; z):=\frac{1}{6}\left\{2 H_{ \pm}(x, y ; z)-H_{ \pm}(y, z ; x)-H_{ \pm}(z, x ; y)\right.$

$$
\left. \pm 2 H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \mp H_{ \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \mp H_{ \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right)\right\} .
$$

(3) $\left(\pi_{3, \pm} H_{ \pm}\right)(x, y ; z):=\frac{1}{2}\left\{H_{ \pm}(x, y ; z) \mp H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right)\right\}$.
(4) $\pi_{4, \pm}:= \pm \frac{1}{m-2} \sigma_{ \pm}\left(J_{ \pm}^{0}\right)^{*} \tau_{1}$.

Lemma 4.2.

(1) $\pi_{1, \pm}$ is a projection from $\mathfrak{H}_{ \pm}$onto $W_{1, \pm}$.
(2) $\pi_{2, \pm}$ is a projection from $\mathfrak{H}_{ \pm}$onto $W_{2, \pm}$.
(3) $\pi_{3, \pm}$ is a projection from $\mathfrak{H}_{ \pm}$onto $U_{3, \pm}$.
(4) $\pi_{4, \pm}$ is a projection from $\mathfrak{H}_{ \pm}$onto $W_{4, \pm}$.

Proof. Set:

$$
\begin{aligned}
& \left(\kappa_{ \pm}^{1} H_{ \pm}\right)(x, y ; z):= \pm H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \\
& \left(\kappa_{ \pm}^{2} H_{ \pm}\right)(x, y ; z) \\
& \quad=H_{ \pm}(y, z ; x)+H_{ \pm}(z, x ; y) \\
& \quad \pm H_{ \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \pm H_{ \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right)
\end{aligned}
$$

We may use Equation (1.a) and Equation (1.b) to see that $\kappa_{ \pm}^{1} H_{ \pm}$, and $\kappa_{ \pm}^{2} H_{ \pm}$are anti-symmetric in the first two arguments. We show that $\kappa_{ \pm}^{1} \mathfrak{H}_{ \pm} \subset \mathfrak{H}_{ \pm}$and that $\kappa_{ \pm}^{2} \mathfrak{H}_{ \pm} \subset \mathfrak{H}_{ \pm}$by checking:

$$
\begin{aligned}
& \left(\kappa_{ \pm}^{1} H_{ \pm}\right)\left(J_{ \pm}^{0} x, J_{ \pm}^{0} y ; z\right)=H_{ \pm}\left(J_{ \pm}^{0} x, J_{ \pm}^{0} J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right)= \pm H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \\
& \quad= \pm \kappa_{ \pm}^{1} H_{ \pm}(x, y ; z) \\
& \quad\left(\kappa_{ \pm}^{2} H_{ \pm}\right)\left(J_{ \pm}^{0} x, J_{ \pm}^{0} y ; z\right)=H_{ \pm}\left(J_{ \pm}^{0} y, z ; J_{ \pm}^{0} x\right)+H_{ \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right) \\
& \quad \pm H_{ \pm}\left(J_{ \pm}^{0} y, J_{ \pm}^{0} z ; J_{ \pm}^{0} J_{ \pm}^{0} x\right) \pm H_{ \pm}\left(z, J_{ \pm}^{0} J_{ \pm}^{0} x ; J_{ \pm}^{0} J_{ \pm}^{0} y\right) \\
& \quad=H_{ \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right)+H_{ \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right) \pm H_{ \pm}(y, z ; x) \pm H_{ \pm}(z, x ; y) \\
& \quad= \pm\left(\kappa_{ \pm}^{2} H_{ \pm}\right)(x, y ; z) .
\end{aligned}
$$

We see $\pi_{1, \pm} \mathfrak{H}_{ \pm} \subset \mathfrak{H}_{ \pm}, \pi_{2, \pm} \mathfrak{H}_{ \pm} \subset \mathfrak{H}_{ \pm}$, and $\pi_{3, \pm} \mathfrak{H}_{ \pm} \subset \mathfrak{H}_{ \pm}$by expressing:

$$
\begin{aligned}
& \pi_{1, \pm}=\frac{1}{6}\left\{\mathrm{id}+\kappa_{ \pm}^{1}+\kappa_{ \pm}^{2}\right\}, \quad \pi_{2, \pm}=\frac{1}{6}\left\{2\left(\mathrm{id}+\kappa_{ \pm}^{1}\right)-\kappa_{ \pm}^{2}\right\}, \\
& \pi_{3, \pm}=\frac{1}{2}\left\{\mathrm{id}-\kappa_{ \pm}^{1}\right\} .
\end{aligned}
$$

Let $H_{ \pm} \in \mathfrak{H}_{ \pm}$. We verify $\pi_{1, \pm} H_{ \pm} \in W_{1, \pm}$, that $\pi_{2, \pm} H_{ \pm} \in W_{2, \pm}$, and that $\pi_{3, \pm} H_{ \pm} \in U_{3, \pm}$ by checking that the defining relations are satisfied in each case:

$$
\begin{aligned}
& \left(\pi_{1, \pm} H_{ \pm}\right)(x, z ; y):=\frac{1}{6}\left\{H_{ \pm}(x, z ; y)+H_{ \pm}(z, y ; x)+H_{ \pm}(y, x ; z)\right. \\
& \left.\quad \pm H_{ \pm}\left(x, J_{ \pm}^{0} z ; J_{ \pm}^{0} y\right) \pm H_{ \pm}\left(z, J_{ \pm}^{0} y ; J_{ \pm}^{0} x\right) \pm H_{ \pm}\left(y, J_{ \pm}^{0} x ; J_{ \pm}^{0} z\right)\right\} \\
& \quad=-\pi_{1, \pm} H_{ \pm}(x, y ; z)
\end{aligned}
$$

$$
\begin{aligned}
&\left(\pi_{2, \pm}\right.\left.H_{ \pm}\right)(x, y ; z)+\left(\pi_{2, \pm} H_{ \pm}\right)(y, z ; x)+\left(\pi_{2, \pm} H_{ \pm}\right)(z, x ; y) \\
& \quad= \frac{1}{6}\left\{2 H_{ \pm}(x, y ; z)-H_{ \pm}(y, z ; x)-H_{ \pm}(z, x ; y)\right. \\
& \pm 2 H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \mp H_{ \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \mp H_{ \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right) \\
& \quad+2 H_{ \pm}(y, z ; x)-H_{ \pm}(z, x ; y)-H_{ \pm}(x, y ; z) \\
& \quad \pm 2 H_{ \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \mp H_{ \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right) \mp H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \\
&+2 H_{ \pm}(z, x ; y)-H_{ \pm}(x, y ; z)-H_{ \pm}(y, z ; x) \\
&\left.\quad \pm 2 H_{ \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right) \mp H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \mp H_{ \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right)\right\}=0, \\
&\left(\pi_{3, \pm} H_{ \pm}\right)\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \\
& \quad= \frac{1}{2}\left\{H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \mp H_{ \pm}\left(x, J_{ \pm}^{0} J_{ \pm}^{0} y ; J_{ \pm}^{0} J_{ \pm}^{0} z\right)\right\} \\
&= \frac{1}{2}\left\{H_{ \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \mp H_{ \pm}(x, y ; z)\right\} \\
&=\mp \frac{1}{2}\left\{H(x, y ; z) \mp H\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right)\right\}=\mp\left(\pi_{3, \pm} H_{ \pm}\right)(x, y ; z) .
\end{aligned}
$$

Let $H_{1, \pm} \in W_{1, \pm}$, let $H_{2, \pm} \in W_{2, \pm}$, and let $H_{3, \pm} \in U_{3, \pm}$. We complete the proof of Assertion (1), of Assertion (2), and of Assertion (3) by verifying:

$$
\begin{aligned}
&\left(\pi_{1, \pm}\right.\left.H_{1, \pm}\right)(x, y ; z)=\frac{1}{6}\left\{H_{1, \pm}(x, y ; z)+H_{1, \pm}(y, z ; x)+H_{1, \pm}(z, x ; y)\right. \\
&\left. \pm H_{1, \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \pm H_{1, \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \pm H_{1, \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right)\right\} \\
&= \frac{1}{6}\left\{H_{1, \pm}(x, y ; z)-H_{1, \pm}(y, x ; z)-H_{1, \pm}(x, z ; y)\right. \\
&\left.\mp H_{1, \pm}\left(J_{ \pm}^{0} z, J_{ \pm}^{0} y ; x\right) \mp H_{1, \pm}\left(J_{ \pm}^{0} x, J_{ \pm}^{0} z ; y\right) \mp H_{1, \pm}\left(J_{ \pm}^{0} y, J_{ \pm}^{0} x ; z\right)\right\} \\
&= \frac{1}{6}\left\{H_{1, \pm}(x, y ; z)+H_{1, \pm}(x, y ; z)+H_{1, \pm}(x, y ; z)\right. \\
&\left.-H_{1, \pm}(z, y ; x)-H_{1, \pm}(x, z ; y)-H_{1, \pm}(y, x ; z)\right\}=H_{1, \pm}(x, y ; z), \\
&\left(\pi_{2, \pm} H_{2, \pm}\right)(x, y ; z)=\frac{1}{6}\left\{2 H_{2, \pm}(x, y ; z)-H_{2, \pm}(y, z ; x)-H_{2, \pm}(z, x ; y)\right. \\
&\left. \pm 2 H_{2, \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right) \mp H_{2, \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \mp H_{2, \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right)\right\} \\
&= \frac{1}{6}\left\{3 H_{2, \pm}(x, y ; z) \pm H_{2, \pm}\left(J_{ \pm}^{0} x, y ; J_{ \pm}^{0} z\right) \pm H_{2, \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right)\right. \\
&\left.\mp H_{2, \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \mp H_{2, \pm}\left(J_{ \pm}^{0} z, x ; J_{ \pm}^{0} y\right)\right\} \\
&= \frac{1}{6}\left\{3 H_{2, \pm}(x, y ; z) \mp H_{2, \pm}\left(J_{ \pm}^{0} z, J_{ \pm}^{0} x ; y\right) \mp H_{2, \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right)\right. \\
& \mp H_{2, \pm}\left(J_{ \pm}^{0} y, J_{ \pm}^{0} z ; x\right) \mp H_{2, \pm}\left(J_{ \pm}^{0} z, x ; J_{ \pm}^{0} y\right) \\
&\left.\mp H_{2, \pm}\left(y, J_{ \pm}^{0} z ; J_{ \pm}^{0} x\right) \mp H_{2, \pm}\left(J_{ \pm}^{0} z, x ; J_{ \pm}^{0} y\right)\right\} \\
&= \frac{1}{6}\left\{3 H_{2, \pm}(x, y ; z)-H_{2, \pm}(z, x ; y)-H_{2, \pm}(y, z ; x)\right. \\
&\left.\mp 2 H_{2, \pm}\left(J_{ \pm}^{0} y, z ; J_{ \pm}^{0} x\right) \mp 2 H_{2, \pm}\left(z ; J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right)\right\} \\
&= \frac{1}{6}\left\{4 H_{2, \pm}(x, y ; z) \pm 2 H_{2, \pm}\left(J_{0}^{ \pm} x, J_{0}^{ \pm} y ; z\right)\right\}=H_{2, \pm}(x, y ; z), \\
&\left(\pi_{3, \pm}\right.\left.H_{3, \pm}\right)(x, y ; z)=\frac{1}{2}\left\{H_{3, \pm}(x, y ; z) \mp H_{3, \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right\}\right. \\
&= \frac{1}{2}\left\{H_{3, \pm}(x, y ; z)+H_{3, \pm}(x, y ; z)\right\}=H_{3, \pm}(x, y ; z) .
\end{aligned}
$$

We now turn to the final assertion. We compute:

$$
\begin{aligned}
& \tau_{1}\left(\sigma_{ \pm}(\phi)\right)(x)=\varepsilon^{i j}\left\{\phi\left(J_{ \pm}^{0} x\right)\left\langle e_{i}, e_{j}\right\rangle-\phi\left(J_{ \pm}^{0} e_{i}\right)\left\langle x, e_{j}\right\rangle\right\} \\
&+\varepsilon^{i j}\left\{\phi(x)\left\langle J_{ \pm}^{0} e_{i}, e_{j}\right\rangle-\phi\left(e_{i}\right)\left\langle J_{ \pm}^{0} x, e_{j}\right\rangle\right\} \\
&= m \phi\left(J_{ \pm}^{0} x\right)-\phi\left(J_{ \pm}^{0} x\right)+\operatorname{Trace}\left(J_{ \pm}^{0}\right) \phi(x)-\phi\left(J_{ \pm}^{0} x\right) \\
&=(m-2)\left(\left(J_{ \pm}^{0}\right)^{*} \phi\right)(x)+\operatorname{Trace}\left(J_{ \pm}^{0}\right) \phi(x) .
\end{aligned}
$$

Since $\operatorname{Trace}\left(J_{ \pm}^{0}\right)=0$, we have $\tau_{1} \sigma_{ \pm}=(m-2)\left(J_{ \pm}^{0}\right)^{*}$. It is immediate that $\pi_{4, \pm}$ takes values in $W_{4, \pm}$. We complete the proof by checking:

$$
\pi_{4, \pm} \sigma_{ \pm} \phi= \pm \frac{1}{m-2}\left(\sigma_{ \pm}\left(J_{ \pm}^{0}\right)^{*} \tau_{1}\right)\left(\sigma_{ \pm} \phi\right)= \pm \sigma_{ \pm}\left(J_{ \pm}^{0}\right)^{*}\left(J_{ \pm}^{0}\right)^{*} \phi=\sigma_{ \pm} \phi
$$

We examine these modules further:

Lemma 4.3.

(1) $W_{1, \pm}+W_{2, \pm} \subset \operatorname{ker} \pi_{3, \pm}$.
(2) $W_{1, \pm} \cap W_{2, \pm}=\{0\}$.
(3) $W_{1, \pm} \oplus W_{2, \pm} \oplus W_{3, \pm} \oplus W_{4, \pm}$ is a $\mathcal{U}_{ \pm}^{\star}$ submodule of $\mathfrak{H}_{ \pm}$.

Proof. Suppose first that $H_{1, \pm} \in W_{1, \pm}$. Then

$$
\begin{aligned}
& \pi_{3, \pm} H_{1, \pm}(x, y ; z)=\frac{1}{2}\left\{H_{1, \pm}(x, y ; z) \mp H_{1, \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right)\right\} \\
& \quad=\frac{1}{2}\left\{H_{1, \pm}(x, y ; z) \mp H_{1, \pm}\left(J_{ \pm}^{0} x, y ; J_{ \pm}^{0} z\right)\right\} \\
& \quad=\frac{1}{2}\left\{H_{1, \pm}(x, y ; z) \pm H_{1, \pm}\left(J_{ \pm}^{0} x, J_{ \pm}^{0} z ; y\right)\right\} \\
& \quad=\frac{1}{2}\left\{H_{1, \pm}(x, y ; z)+H_{1, \pm}(x, z ; y)\right\}=0 .
\end{aligned}
$$

Next suppose that $H_{2, \pm} \in W_{2, \pm}$. We have

$$
\begin{aligned}
\pi_{3, \pm} & H_{2, \pm}(x, y ; z)=\frac{1}{2}\left\{H_{2, \pm}(x, y ; z) \mp H_{2, \pm}\left(x, J_{ \pm}^{0} y ; J_{ \pm}^{0} z\right)\right\} \\
= & \frac{1}{2}\left\{H_{2, \pm}(x, y ; z) \pm H_{2, \pm}\left(J_{ \pm}^{0} y, J_{ \pm}^{0} z ; x\right) \pm H_{2, \pm}\left(J_{ \pm}^{0} z, x ; J_{ \pm}^{0} y\right)\right\} \\
= & \frac{1}{2}\left\{H_{2, \pm}(x, y ; z)+H_{2, \pm}(y, z ; x) \pm H_{2, \pm}\left(z, J_{ \pm}^{0} x ; J_{ \pm}^{0} y\right)\right\} \\
= & \frac{1}{2}\left\{H_{2, \pm}(x, y ; z)+H_{2, \pm}(y, z ; x) \mp H_{2, \pm}\left(J_{ \pm}^{0} x, J_{ \pm}^{0} y ; z\right)\right. \\
& \left.\mp H_{2, \pm}\left(J_{ \pm}^{0} y, z ; J_{ \pm}^{0} x\right)\right\} \\
= & \frac{1}{2}\left\{H_{2, \pm}(y, z ; x) \mp H_{2, \pm}\left(J_{ \pm}^{0} y, z ; J_{ \pm}^{0} x\right)\right\} \\
= & -\frac{1}{2}\left\{H_{2, \pm}(z, y ; x) \mp H_{2, \pm}\left(z, J_{ \pm}^{0} y ; J_{ \pm}^{0} x\right)\right\}=-\pi_{3, \pm} H_{2, \pm}(z, y ; x) .
\end{aligned}
$$

This shows that

$$
\begin{aligned}
\pi_{3, \pm} H_{2, \pm}(x, y ; z) & =-\pi_{3, \pm} H_{2, \pm}(y, x ; z)=\pi_{3, \pm} H_{2, \pm}(z, x ; y) \\
& =-\pi_{3, \pm} H_{2, \pm}(x, z ; y) .
\end{aligned}
$$

Consequently $H_{1, \pm}:=\pi_{3, \pm} H_{2, \pm} \in W_{1, \pm}$. Thus:

$$
\pi_{3, \pm} H_{2, \pm}=\pi_{3, \pm} \pi_{3, \pm} H_{2, \pm}=\pi_{3, \pm} H_{1, \pm}=0
$$

Let $H_{ \pm} \in W_{1, \pm} \cap W_{2, \pm}$. We establish Assertion (2) by checking:

$$
\begin{aligned}
0 & =H_{ \pm}(x, y ; z)+H_{ \pm}(y, z ; x)+H_{ \pm}(z, x ; y) \\
& =H_{ \pm}(x, y ; z)-H_{ \pm}(y, x ; z)-H_{ \pm}(x, z ; y) \\
& =3 H_{ \pm}(x, y ; z)
\end{aligned}
$$

If $\pi_{ \pm}: \mathfrak{H}_{ \pm} \rightarrow \mathfrak{H}_{ \pm}$satisfies $\pi_{ \pm}^{2}=\pi_{ \pm}$, then Lemma 2.1 shows

$$
\mathfrak{H}_{ \pm}=\operatorname{ker}\left(\pi_{ \pm}\right) \oplus \operatorname{Range}\left(\pi_{ \pm}\right)
$$

By Lemma 4.2, we can apply this observation to $\pi_{3, \pm}$ and to $\pi_{4, \pm}$. By Assertion (1) and by Assertion (2),

$$
W_{1, \pm} \cap W_{2, \pm}=\{0\} \quad \text { so } \quad W_{1, \pm} \oplus W_{2, \pm} \subset \operatorname{ker}\left(\pi_{3, \pm}\right)
$$

By Lemma 4.2, we have $U_{3, \pm}=$ Range $\left(\pi_{3, \pm}\right)$. Consequently

$$
W_{1, \pm} \oplus W_{2, \pm} \oplus U_{3, \pm}
$$

is a submodule of $\mathfrak{H}_{ \pm}$. By Lemma 4.2,

$$
W_{4, \pm}=\operatorname{Range}\left(\pi_{4, \pm}\right) \subset U_{3, \pm}
$$

Since $W_{4, \pm}=\pi_{4, \pm} U_{3, \pm}, W_{3, \pm} \oplus W_{4, \pm}$ is a $\mathcal{U}_{ \pm}^{\star}$ submodule of $U_{3, \pm}$.

5. Varying the almost (para)-complex structure

Fix a background almost para/pseudo-Hermitian manifold ($M, g, J_{ \pm}$) and a point P of M for the remainder of Section5 Let $\mathcal{O}(M)$ be the fiber bundle whose fibre over a point Q of M is the associated structure group $\mathcal{O}\left(T_{Q} M, g_{Q}\right)$. The Lie algebra \mathfrak{o} of \mathcal{O} is the vector space of all matrices which are skew-adjoint with respect to the inner product. Let $\vartheta \in \mathfrak{o}_{P} \otimes T_{P}^{*} \mathrm{M}$. Let Θ be a smooth section to $\mathcal{O}(M)$ so that $\Theta(P)=\mathrm{id}$, so that $\Theta=\mathrm{id}$ off a neighborhood of P, and so that $d \Theta=\vartheta$. Let:

$$
J_{ \pm}^{\Theta}:=\Theta^{-1} J_{ \pm} \Theta
$$

Since Θ takes values in $\mathcal{O},\left(M, g, J_{ \pm}^{\Theta}\right)$ is an almost para/pseudo-Hermitian manifold as well. Define:

$$
\Xi_{ \pm}(\vartheta)(x, y ; z):=g\left(x,\left(-\vartheta(z) J_{ \pm}+J_{ \pm} \vartheta(z)\right) y\right)(P)
$$

Lemma 5.1. Adopt the notation established above.
(1) $\left\{\nabla \Omega_{ \pm}\left(M, g, J_{ \pm}^{\Theta}\right)(x, y ; z)-\nabla \Omega_{ \pm}\left(M, g, J_{ \pm}\right)(x, y ; z)\right\}(P)$

$$
=\Xi_{ \pm}(d \vartheta)(x, y ; z)
$$

(2) $\Xi_{ \pm}$is a $\mathcal{U}_{ \pm}^{\star}$ module morphism from $\mathfrak{o} \otimes V^{*} \otimes \chi$ to $\mathfrak{H}_{ \pm}$.
(3) If $m \geq 6$, then $\pi_{1, \pm}\left\{\Xi_{ \pm}(\mathfrak{o})\right\} \neq\{0\}$ and $\pi_{3, \pm}\left\{\Xi_{ \pm}(\mathfrak{o})\right\} \cap W_{3, \pm} \neq\{0\}$.
(4) $\pi_{2, \pm}\left\{\Xi_{ \pm}(\mathfrak{o})\right\} \neq\{0\}$ and $\pi_{4, \pm}\left\{\Xi_{ \pm}(\mathfrak{o})\right\} \neq\{0\}$.

Proof. Since $\Theta(P)=\mathrm{id},\left(J_{ \pm}^{\Theta}-J_{ \pm}\right)(P)=0$. We use Lemma 3.1 to prove Assertion (1) by computing:

$$
\begin{aligned}
& \Omega_{ \pm}\left(M, g, J_{ \pm}^{\Theta}\right)(P)-\Omega_{ \pm}\left(M, g, J_{ \pm}\right)(P) \\
= & g\left(x,\left\{\nabla_{z}\left(J_{ \pm}^{\Theta}-J_{ \pm}\right)-\left(J_{ \pm}^{\Theta}-J_{ \pm}\right) \nabla_{z}\right\} y\right)(P) \\
= & g\left(x,\left\{z\left(J_{ \pm}^{\Theta}-J_{ \pm}\right)\right\} y\right)(P)=g\left(x,\left\{z\left(\Theta^{-1} J_{ \pm} \Theta-J_{ \pm}\right)\right\} y\right)(P) \\
= & g\left(x,\left\{-z(\Theta) J_{ \pm}+J_{ \pm} z(\Theta)\right\} y\right)(P) .
\end{aligned}
$$

Assertion (2) is an immediate consequence of Assertion (1). The proof of Assertions (3) and (4) is a purely algebraic computation. Introduce an orthonormal basis $\left\{e_{1}, \ldots, e_{\bar{m}}, f_{1}, \ldots, f_{\bar{m}}\right\}$ for V so

$$
J_{ \pm}: e_{i} \rightarrow f_{i} \quad \text { and } \quad J_{ \pm}: f_{i} \rightarrow \pm e_{i}
$$

We set $\varepsilon_{i}:=\left\langle e_{i}, e_{i}\right\rangle$. Define $\vartheta_{0} \in \mathfrak{o}$ by setting:

$$
\vartheta_{0} e_{i}=\left\{\begin{array}{rll}
\varepsilon_{2} e_{2} & \text { if } & i=1 \\
-\varepsilon_{1} e_{1} & \text { if } & i=2 \\
0 & \text { if } & i>2
\end{array}\right\} \quad \text { and } \quad \vartheta_{0} f_{i}=\left\{\begin{array}{lll}
0 & \text { if } & i=1 \\
0 & \text { if } & i=2 \\
0 & \text { if } & i>2
\end{array}\right\}
$$

Suppose first that $m \geq 6$. We set $\vartheta=\vartheta_{0} \otimes e^{3}$. Choose $\alpha \in C^{\infty}(M)$ to be compactly supported near P with $d \alpha(P)=d x^{3}$. If $\varepsilon_{1}=\varepsilon_{2}$, then the corresponding Θ may be taken to be:

$$
\Theta \partial_{x_{i}}=\left\{\begin{array}{rll}
\cos (\alpha) e_{1}+\varepsilon_{2} \sin (\alpha) e_{2} & \text { if } & i=1 \\
-\varepsilon_{2} \sin (\alpha) e_{1}+\cos (\alpha) e_{2} & \text { if } & i=2 \\
e_{i} & \text { if } & i \geq 3
\end{array}\right\} \quad \text { and } \quad \Theta \partial_{y_{i}}=\partial_{y_{i}} \forall i
$$

whereas if $\varepsilon_{1}=-\varepsilon_{2}$, then Θ may be taken to be:

$$
\Theta \partial_{x_{i}}=\left\{\begin{array}{rll}
\cosh (\alpha) e_{1}+\varepsilon_{2} \sinh (\alpha) e_{2} & \text { if } & i=1 \\
\varepsilon_{2} \sinh (\alpha) e_{1}+\cosh (\alpha) e_{2} & \text { if } & i=2 \\
e_{i} & \text { if } & i \geq 3
\end{array}\right\} \quad \text { and } \quad \Theta \partial_{y_{i}}=\partial_{y_{i}} \forall i
$$

Set $H_{ \pm}:=\Xi_{ \pm}\left(\vartheta_{0} \otimes e^{3}\right)$. The non-zero components of $H_{ \pm}$are determined by:

$$
H_{ \pm}\left(f_{2}, e_{1} ; e_{3}\right)=\mp 1 \quad \text { and } \quad H_{ \pm}\left(f_{1}, e_{2} ; e_{3}\right)= \pm 1
$$

Clearly $\tau_{1} H_{ \pm}=0$; thus $\pi_{3, \pm} H_{ \pm} \in W_{3, \pm}$. We prove Assertion (3) by computing:

$$
\pi_{1, \pm} H_{ \pm}\left(f_{2}, e_{1} ; e_{3}\right)=\mp \frac{1}{6} \quad \text { and } \quad \pi_{3, \pm} H_{ \pm}\left(f_{2}, e_{1} ; e_{3}\right)=\mp \frac{1}{2}
$$

Next we clear the previous notation and let $H_{ \pm}=\Xi_{ \pm}\left(\vartheta_{0} \otimes e^{2}\right)$; here we need to have $d \alpha(P)=d x^{2}$. The non-zero components of $H_{ \pm}$are determined by:

$$
H_{ \pm}\left(f_{2}, e_{1} ; e_{2}\right)=\mp 1 \quad \text { and } \quad H_{ \pm}\left(f_{1}, e_{2} ; e_{2}\right)= \pm 1
$$

Since $\tau_{1}\left(H_{ \pm}\right)= \pm \varepsilon_{2}$, the component of $H_{ \pm}$in $W_{4, \pm}$ is non-zero. We complete the proof of Assertion (4) by checking:

$$
\begin{aligned}
& \left(\pi_{2, \pm} H_{ \pm}\right)\left(f_{2}, f_{1} ; f_{2}\right):=\frac{1}{6}\left\{2 H_{ \pm}\left(f_{2}, f_{1} ; f_{2}\right)-H_{ \pm}\left(f_{1}, f_{2} ; f_{2}\right)-H_{ \pm}\left(f_{2}, f_{2} ; f_{1}\right)\right. \\
& \left.\quad \pm 2 H_{ \pm}\left(f_{2}, J_{ \pm}^{0} f_{1} ; J_{ \pm}^{0} f_{2}\right) \mp H_{ \pm}\left(f_{1}, J_{ \pm}^{0} f_{2} ; J_{ \pm}^{0} f_{2}\right) \mp H_{ \pm}\left(f_{2}, J_{ \pm}^{0} f_{2} ; J_{ \pm}^{0} f_{1}\right)\right\} \\
& \quad=\frac{1}{6}\{0-0-0-2-1+0\}=-\frac{1}{2} .
\end{aligned}
$$

Proof of Theorem 1.4, Let $m \geq 6$. By Lemma 5.1. $W_{i, \pm}$ are non-trivial modules for $1 \leq i \leq 4$. By Lemma 4.3, $W_{1, \pm} \oplus W_{2, \pm} \oplus W_{3, \pm} \oplus W_{4, \pm}$ is a $\mathcal{U}_{ \pm}^{\star}$ submodule of $\mathfrak{H}_{ \pm}$. By Lemma[2.4, $\operatorname{dim}\left\{S_{\mathcal{U}_{ \pm}^{\star}}^{2}\left(\mathfrak{H}_{ \pm}\right)\right\} \leq 4$. Theorem[1.4]now follows from Lemma 2.1 and from Lemma 2.3 .
Proof of Theorem 1.1. Let $\left(M, g, J_{ \pm}\right)$be an almost para/pseudo-Hermitian manifold of dimension $m \geq 6$ (the case $m=4$ is analogous). We consider variations $\left(M, g, J_{ \pm}^{\Theta}\right)$. Subtracting $\nabla \Omega_{ \pm}\left(M, g, J_{ \pm}\right)(P)$ has no effect on the question of surjectivity. Every $\vartheta \in \mathfrak{o} \otimes T^{*} M$ can be written in the form $\vartheta=d \Theta(P)$ for some admissible Θ. Thus it suffices to show $\Xi_{ \pm}(\mathfrak{o})=\mathfrak{H}_{ \pm}$. By Lemma 5.1$](\mathfrak{o})$ is not perpendicular to $W_{ \pm, i}$ for $1 \leq i \leq 4$. By Theorem [1.4] $W_{ \pm, i}$ is an irreducible submodule of $\mathfrak{H}_{ \pm}$which occurs with multiplicity 1 . Thus by Lemma 2.1, $W_{ \pm, i} \subset \Xi(\mathfrak{o})$ for $1 \leq i \leq 4$. Theorem 1.4 now shows $\mathfrak{H}_{ \pm} \subset \Xi(\mathfrak{o})$ as desired.

6. Varying the metric

Let $\left(M, g, J_{ \pm}\right)$be a para/pseudo-Hermitian manifold. Fix P in M and let

$$
\left(V,\langle\cdot, \cdot\rangle, J_{ \pm}^{0}\right):=\left(T_{P} M, g_{P}, J_{ \pm, P}\right)
$$

Let $\mathfrak{g l}_{ \pm}$be the Lie algebra of $\mathrm{GL}_{ \pm}$at P. Given $\tilde{\vartheta} \in \mathfrak{g l} \otimes V^{*}$, we may find a smooth map $\tilde{\Theta}$ from a neighborhood of P in M to $\mathrm{GL}_{ \pm}$so that $\tilde{\Theta}(P)=\mathrm{id}$, so that $\tilde{\Theta}=\mathrm{id}$ away from a neighborhood of P, and so that $d \tilde{\Theta}(P)=\tilde{\vartheta}$. We define a new pseudoRiemannian metric $g^{\tilde{\Theta}}$ which agrees with g at P and which agrees with g away from a neighborhood of P by setting:

$$
g^{\tilde{\Theta}}(x, y)=(\tilde{\Theta} x, \tilde{\Theta} y)
$$

Since $\Theta J_{ \pm}=J_{ \pm} \Theta, g^{\tilde{\Theta}}$ is a para/pseudo-Hermitian metric. Set:

$$
\tilde{\Xi}_{ \pm}(\tilde{\vartheta}):=\left\{\nabla \Omega_{ \pm}\left(V, g^{\tilde{\Theta}}, J_{ \pm}\right)-\nabla \Omega_{ \pm}\left(V, g, J_{ \pm}^{0}\right)\right\}(P)
$$

We may then use Lemma 3.2 to see that $\tilde{\Xi}_{ \pm}(\tilde{\vartheta}) \in W_{ \pm, 3}$ is independent of the choice of $\tilde{\Theta}$ and defines a $\mathcal{U}_{ \pm}^{\star}$ module morphism from $\mathfrak{g l}_{ \pm} \otimes V^{*} \otimes \chi$ to $\mathfrak{H}_{ \pm}$by computing:

$$
\begin{aligned}
& \tilde{\Xi}_{ \pm}(\tilde{\vartheta})(x, y ; z) \\
&=\quad \frac{1}{2}\{ \left\{\tilde{\vartheta}\left(J_{ \pm} y\right) x, z\right\rangle+\left\langle x, \tilde{\vartheta}\left(J_{ \pm} y\right) z\right\rangle+\left\langle\tilde{\vartheta}(y) J_{ \pm} x, z\right\rangle+\left\langle J_{ \pm} x, \tilde{\vartheta}(y) z\right\rangle \\
&\left.-\left\langle\tilde{\vartheta}\left(J_{ \pm} x\right) y, z\right\rangle+\left\langle y, \tilde{\vartheta}\left(J_{ \pm} x\right) z\right\rangle+\left\langle\tilde{\vartheta}(x) J_{ \pm} y, z\right\rangle+\left\langle J_{ \pm} y, \tilde{\vartheta}(x) z\right\rangle\right\} .
\end{aligned}
$$

Thus to prove Theorem [1.2 it suffices to show that $\Xi_{ \pm}$is surjective. Since we have subtracted the effect of the background metric, we may take the flat metric $g=\langle\cdot, \cdot\rangle$. As in Section 5 we introduce a normalized orthonormal basis
$\left\{e_{1}, \ldots, e_{\bar{m}}, f_{1}, \ldots, f_{\bar{m}}\right\}$ for V. Let α be a smooth function which is compactly supported near $P=0$ with $\alpha(0)=0$ and $d \alpha(0)=d x^{1}$. Set:

$$
\tilde{\Theta} e_{i}=\left\{\begin{array}{rll}
e^{\alpha} e_{i} & \text { if } & i=1,2 \\
e_{i} & \text { if } & i \geq 3
\end{array}\right\} \quad \text { and } \quad \tilde{\Theta} f_{i}=\left\{\begin{array}{rll}
e^{\alpha} f_{i} & \text { if } & i=1,2 \\
f_{i} & \text { if } & i \geq 3
\end{array}\right\} .
$$

Let $\tilde{\vartheta}=d \tilde{\Theta}(0)=\tilde{\vartheta}_{0} \otimes d x^{1}$ where $\tilde{\vartheta}_{0}$ is orthogonal projection on $\operatorname{Span}\left\{e_{1}, e_{2}, f_{1}, f_{2}\right\}$:

$$
\tilde{\vartheta}_{0} e_{i}=\left\{\begin{array}{lll}
e_{i} & \text { if } & i=1,2 \\
0 & \text { if } & i \geq 3
\end{array}\right\} \quad \text { and } \quad \tilde{\vartheta}_{0} f_{i}=\left\{\begin{array}{lll}
f_{i} & \text { if } & i=1,2 \\
0 & \text { if } & i \geq 3
\end{array}\right\} .
$$

The associated metric takes the form:

$$
\begin{aligned}
g_{ \pm}^{\tilde{\Theta}} & =e^{2 \alpha} \varepsilon_{1}\left(e^{1} \otimes e^{1} \mp f^{1} \otimes f^{1}\right)+e^{2 \alpha} \varepsilon_{2}\left(e^{2} \otimes e^{2} \mp f^{2} \otimes f^{2}\right) \\
& +\sum_{i \geq 3} \varepsilon_{i}\left(e^{i} \otimes e^{i} \mp f^{i} \otimes f^{i}\right)
\end{aligned}
$$

Set $H_{ \pm}:=\nabla \Omega_{ \pm}(0)=\tilde{\Xi}_{ \pm}(\vartheta)$. We use Lemma 3.1 to see $\tau_{1}\left(H_{ \pm}\right)=2 e^{1}$ and thus $H_{ \pm}$has a non-trivial component in $W_{ \pm, 4}$. Since $H_{ \pm}\left(e_{1}, e_{3} ; f_{3}\right)=0$ and $\sigma_{ \pm}\left(e^{1}\right)\left(e_{1}, e_{3} ; f_{3}\right) \neq 0, H_{ \pm}$also has a non-zero component in $W_{3, \pm}$. Theorem 1.2 now follows.

7. The 16 classes of almost pseudo-Hermitian manifolds

Proof of Theorem 1.6. If $\left(M, g, J_{-}\right)$is a ξ-manifold, then $\left(M,-g, J_{-}\right)$also is a ξ-manifold. Thus by replacing g by $-g$ if need be, we may assume without loss of generality that $p \leq q$ and consequently, as $m \geq 10$, that $6 \leq q$ to establish Theorem 1.6. We shall use product structures. The projections $\pi_{i,-}$ for $i=1,2,3$ and the $\operatorname{map} \tau_{1}$ are compatible with Cartesian product; the splitting σ_{-}is not. This causes a small amount of additional technical fuss.

Suppose first that $W_{4} \not \subset \xi$. By Theorem 1.5 we may choose a ξ-manifold $\left(M_{1}, g_{1}, J_{1,-}\right)$ of Riemannian signature ($0, q$). Let $\left(M_{2}, g_{2}, J_{2,-}\right)$ be a flat Kähler torus of signature $(p, 0)$. Let

$$
\begin{equation*}
M=M_{1} \times \mathbb{T}^{(p, 0)}, \quad g:=g_{1}+g_{2}, \quad J_{-}=J_{1,-} \oplus J_{2,-} \tag{7.a}
\end{equation*}
$$

Then $\left(M, g, J_{-}\right)$is an almost pseudo-Hermitian manifold of signature (p, q). We have $\nabla \Omega_{g}=\nabla \Omega_{g_{1}}$ and $\tau_{1}\left(\nabla \Omega_{g}\right)=\tau_{1}\left(\nabla \Omega_{g_{1}}\right)=0$. Thus $\pi_{3,-} \nabla \Omega_{g}$ is projection on $W_{-, 3}$; this would not be the case if τ_{1} was non-zero and this fact played an important role in the analysis of Section 6] Since $\pi_{i,-} \nabla \Omega_{g}=\pi_{i,-} \nabla \Omega_{g_{1}}$, it now follows that $\left(M, g, J_{-}\right)$is a ξ manifold in this special case.

Next we suppose that $\xi=\eta \oplus W_{-, 4}$. Let $\left(M, g, J_{-}\right)$be an η-manifold of signature (p, q). We make a conformal change of metric and set $\tilde{g}:=e^{2 f} g$; it then follows from Lemma 3.2 that

$$
\nabla \Omega_{\tilde{g}}=e^{2 f} \nabla \Omega_{g}-e^{2 f} \sigma_{-, g}(d f)
$$

where we use the original metric to define the splitting $\sigma_{-, g}$. This has a non-trivial $W_{4,-}$ component and the components $W_{i,-}$ for $1 \leq i \leq 3$ are not affected.

Acknowledgments

Research of the authors partially supported by project MTM2009-07756 (Spain) and by INCITE09 207151 PR (Spain).

References

[1] Alekseevsky D., Guilfoyle B., and Klingenberg W., "On the Geometry of Spaces of Oriented Geodesics", arXiv:0911.2602 v1 [math.DG].
[2] Alekseevsky D., Medori C., and Tomassini A., "Homogeneous para-Kaehler Einstein manifolds", Russian Math. Surveys 64 (2009), 1-43.
[3] Alexandrov B., Friedrich Th., and Schoemann N., "Almost Hermitian 6-manifolds revisited", J. Geom. Phys. 53 (2005), 1-30.
[4] Armstrong, J., "An ansatz for almost-Kähler, Einstein 4-manifolds", J. Reine Angew. Math. 542 (2002), 53?84.
[5] Bor G., Hernández-Lamoneda L., and Salvai M., "Orthogonal almost-complex structures of minimal energy", Geom. Dedicata 127 (2007), 75-85.
[6] Brozos-Vázquez M., Gilkey P., and Nikčević S., "Geometric Realizations of Curvature", Imperial College Press (2011).
[7] Cleyton, R. and Ivanov, S., "Conformal equivalence between certain geometries in dimension 6 and 7", Math. Res. Lett. 15 (2008), 631-?640.
[8] Cortés V., Mayer Ch., Mohaupt Th., and Saueressig F., "Special geometry of Euclidean supersymmetry 1. Vector multiplets", J. High Energy Phys. 03 (2004) 028.
[9] Cortés V., Mayer Ch., Mohaupt Th., and Saueressig F., " Special geometry of Euclidean supersymmetry II. Hypermultiplets and the c-map", J. High Energy Phys. 06 (2005) 025.
[10] Cortés V. and Schäfer L. "Flat nearly Kähler manifolds", Ann. Global Anal. Geom. 32 (2007), 379-389.
[11] Euh Y., Park J. H., and Sekigawa K., "Nearly Kähler manifolds with vanishing TricerriVanhecke Bochner curvature tensor", Differential Geom. Appl. 27 (2009), 250-256.
[12] Falcitelli M., Farinola A., and Salamon S., "Almost-Hermitian geometry", Differential Geom. Appl. 4 (1994), 259-282.
[13] Fukami T., "Invariant tensors under the real representation of unitary groups and their applications", J. Math. Soc. Japan 10 (1958), 135-144.
[14] Gadea P. and Masque J., "Classification of almost para-Hermitian manifolds", Rend. Mat. Appl. 11 (1991), 377-396.
[15] García-Río E. and Matsushita Y., "Isotropic Kähler structures on Engel 4-manifolds", J. Geom. Phys. 33 (2000), 288-294.
[16] Gran U., Papadopoulos G., Sloane P., and Roest D., "Geometry of all supersymmetric type I backgrounds", J. High Energy Phys. (2007) 074.
[17] Gray A. and Hervella L., "The sixteen classes of almost Hermitian manifolds and their linear invariants", Ann. Mat. Pura Appl. 123 (1980), 35-58.
[18] Guilfoyle B. and Klingenberg W., "An indefinite Kähler metric on the space of oriented lines", J. London Math. Soc. 72 (2005), 497-509.
[19] Hernández-Lamoneda, L., "Curvature vs. almost Hermitian structures", Geom. Dedicata 79 (2000), $205 ? 218$.
[20] Iwahori N., "Some remarks on tensor invariants of $O(n), U(n), S p(n)$ ", J. Math. Soc. Japan 10 (1958), 146-160.
[21] Martín-Cabrera F. and Swann A., "Almost Hermitian structures and quaternionic geometries", Differential Geom. Appl. 21 (2004), 199-214.
[22] Matsushita Y., Haze S., and Law P. R., "Almost Kähler-Einstein structures on 8-dimensional Walker manifolds", Monatsh. Math. 150 (2007), 41-48.
[23] Moroianu A. and Ornea L., "Conformally Einstein products and nearly Kähler manifolds", Ann. Global Anal. Geom. 33 (2008), 11-18.
[24] Naveira, A. M.; "A classification of Riemannian almost-product manifolds", Rend. Mat. (7) 3 (1983), 577-?592.
[25] Papadopoulos G., "Killing-Yano equations and G structures", Classical Quantum Gravity 25 (2008), no. 10, 105016, 8 pp.
[26] San Martin L. A. B. and Negreiros C. J. C., "Invariant almost Hermitian structures on flag manifolds", Adv. Math. 178 (2003), 277-310.
[27] Sekigawa K. and Yamada A., "Compact indefinite almost Kähler Einstein manifolds", Geom. Dedicata 132 (2008), 65-79.
[28] Tricerri F. and Vanhecke L., "Curvature tensors on almost Hermitian manifolds", Trans. Amer. Math. Soc. 267 (1981), 365-397.
[29] Tricerri F. and Vanhecke L., "Homogeneous structures on Riemannian manifolds", London Math. Soc. Lecture Note Ser., 83, Cambridge University Press, Cambridge, 1983.
[30] Weyl H., "The classical groups", Princeton Univ. Press, Princeton (1946) ($8^{\text {th }}$ printing).

MB-V: Department of Mathematics, University of A Coruña, Spain
E-mail address: miguel.brozos.vazquez@udc.es
EG-R: Faculty of Mathematics, University of Santiago de Compostela, Spain E-mail address: eduardo.garcia.rio@usc.es
PG: Mathematics Department, University of Oregon, Eugene OR 97403, USA
E-mail address: gilkey@uoregon.edu
LH: Faculty of Mathematics, University of Santiago de Compostela, Spain
E-mail address: luismaria.hervella@usc.es

