GEOMETRIC REALIZABILITY OF COVARIANT DERIVATIVE KÄHLER TENSORS FOR ALMOST PSEUDO-HERMITIAN AND ALMOST PARA-HERMITIAN MANIFOLDS

M. BROZOS-VÁZQUEZ, E. GARCÍA-RÍO, P. GILKEY, AND L. HERVELLA

ABSTRACT. The covariant derivative of the Kähler form of an almost pseudo-Hermitian or of an almost para-Hermitian manifold satisfies certain algebraic relations. We show, conversely, that any 3-tensor which satisfies these algebraic relations are realized geometrically.

 $\mathrm{MSC}\ 2010:\ 53B05,\ 15A72,\ 53A15,\ 53B10,\ 53C07,\ 53C25$

1. Introduction

The paper of Gray and Hervella [17] puts into a unified framework 16 classes of almost Hermitian manifolds and was the work which inspired other classification results like those in [24, 28, 29]. It is important in the mathematical setting and is used in obvious settings when some class of Kähler or Hermitian manifolds is the central focus of investigation. The Gray-Hervella decomposition plays a role in the discussion of nearly Kähler and almost Kähler geometry as well as in the study of conformal equivalences among almost Hermitian structures (see for example [11, 23], [4], and [5, 7], respectively). It is related to the Tricerri-Vanhecke [28] decomposition of the curvature tensor in [12] and it has a prominent role in understanding the influence of the curvature on the underlying structure of the manifold [19]. The Grav-Hervella classification is related to the 64 classes of almost quaternion-Hermitian structures in [21], showing some interactions amongst them. The different classes have been considered for flag manifolds – they essentially reduce to four classes [26], and the 6-dimensional case has been considered in detail in [3]. The different classes of almost Hermitian structures also enter into the discussion of some harmonicity problems [5].

Although most of this work has been in the positive definite setting, the indefinite case also plays a role (see for example [10, 15, 18, 22, 27]). In addition to the pseudo-Hermitian setting, the almost para-Hermitian geometry is of interest both from the mathematical and the physical point of view [1, 2, 8, 9, 16, 25]. Related work of Gadea and Masque [14] classified almost para-Hermitian structures into 32 different classes by considering separately the two natural distributions associated to the almost para-Hermitian structure.

In this paper we put both the almost para-Hermitian and the almost pseudo-Hermitian structures in an unified context by extending the Gray-Hervella decomposition to the pseudo-Riemannian setting. This is done by analyzing the covariant derivative of the corresponding Kähler form and the decomposition of the space of such tensors under the action of a suitable structure group (see Theorem 1.4 for details). Moreover we consider the geometric realizability of all the different classes by perturbing the given structures. In Theorem 1.1, we show that *any* algebraic covariant derivative Kähler tensor can be geometrically realized by perturbing the underlying structure on a given almost para/pseudo-Hermitian background manifold; Theorem 1.2 provides a similar result in the integrable setting. In Theorem 1.6, we restrict to the complex setting and extend results of [17] from the positive definite context to the indefinite context showing any of the 16 classes has at least one geometrical representative.

We establish notation as follows. Let (M, g) be a pseudo-Riemannian manifold of dimension $m = 2\bar{m}$. Let J_{\pm} be endomorphisms of the tangent bundle TM. We say that (M, g, J_{\pm}) is an almost para-Hermitian manifold if $J_{\pm}^2 = \text{id}$ and if $J_{\pm}^*g = -g$. Similarly, if $J_{\pm}^2 = -\text{id}$ and if $J_{\pm}^*g = g$, then we say that (M, g, J_{\pm}) is an almost pseudo-Hermitian manifold. The existence of such structures is related to the signature (p, q) of g. If (M, g) admits an almost para-Hermitian structure J_{\pm} , then p = q. Similarly if (M, g) admits an almost pseudo-Hermitian structure J_{\pm} , then both p and q are even. Thus usually we are not dealing with both J_{\pm} and J_{\pm} at the same time on (M, g), but we adopt a common notation to keep the exposition in parallel as much as possible.

Let ∇ be the Levi-Civita connection of g. The associated Kähler form and the covariant derivative are defined, respectively, by:

$$\begin{split} \Omega_{\pm}(x,y) &:= g(x,J_{\pm}y), \\ \nabla \Omega_{\pm}(x,y;z) &= zg(x,J_{\pm}y) - g(\nabla_z x,J_{\pm}y) - g(x,J_{\pm}\nabla_z y) \,. \end{split}$$

We subscript J and Ω to keep track of the signs involved. For example, as we shall see presently in Lemma 3.1, we have:

$$\nabla\Omega_{\pm}(x, y; z) = -\nabla\Omega_{\pm}(y, x; z),$$

$$\nabla\Omega_{\pm}(x, y; z) = \pm\nabla\Omega_{\pm}(J_{\pm}x, J_{\pm}y; z).$$
(1.a)

It is convenient to work in an algebraic context as well. Let $(V, \langle \cdot, \cdot \rangle)$ be an inner product space and let J^0_{\pm} be linear maps of V. We say that $(V, \langle \cdot, \cdot \rangle, J^0_+)$ is a para-Hermitian vector space if $(J^0_+)^* \langle \cdot, \cdot \rangle = -\langle \cdot, \cdot \rangle$ and if $(J^0_+)^2 = \text{id. Similarly}$, $(V, \langle \cdot, \cdot \rangle, J^0_-)$ is said to be a pseudo-Hermitian vector space if $(J^0_-)^* \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle$ and if $(J^0_-)^* \langle \cdot, \cdot \rangle = -i \text{d. Again, the existence of such structures imposes restrictions on the signature. Motivated by Equation (1.a), we define:$

$$\mathfrak{H}_{\pm} := \{ H_{\pm} \in \otimes^{3} V^{*} : H_{\pm}(x, y; z) = -H_{\pm}(y, x; z) \text{ and} \\ H_{\pm}(J^{0}_{+}x, J^{0}_{+}y; z) = \pm H_{\pm}(x, y; z) \ \forall \ x, y, z \} .$$

Let $H_{\pm} \in \mathfrak{H}_{\pm}$. We have

$$H_{\pm}(x, J_{\pm}^{0}y; z) = \pm H_{\pm}(J_{\pm}^{0}x, J_{\pm}^{0}J_{\pm}^{0}y; z) = H_{\pm}(J_{\pm}^{0}x, y; z).$$
(1.b)

The following result shows that Equation (1.a) generates the universal symmetries satisfied by $\nabla \Omega_{\pm}$ and provides a rich family of examples. It is striking that we can fix the metric and only vary the almost (para)-complex structure; in particular, we could take the background structure to be flat.

Theorem 1.1. Let (M, g, J_{\pm}) be a background almost para/pseudo-Hermitian manifold and let $P \in M$. Suppose given H_{\pm} in $\mathfrak{H}_{\pm}(T_PM, g_P, J_{\pm,P})$. Then there exists a new almost para/pseudo-Hermitian structure \tilde{J}_{\pm} on M which agrees with J_{\pm} at P so that $\nabla \Omega_{\pm}(M, g, \tilde{J}_{\pm})(P) = H_{\pm}$.

We consider the following subspace:

 $U_{3,\pm} := \{ H_{\pm} \in \mathfrak{H}_{\pm} : H_{\pm}(x,y;z) = \mp H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \ \forall \ x,y,z \} \,.$

If (M, g, J_{\pm}) is a para/pseudo-Hermitian manifold (i.e. J_{\pm} is integrable), then $\nabla \Omega_{\pm} \in U_{3,\pm}$ as we shall see presently in Lemma 3.2. Conversely:

Theorem 1.2. Let (M, g, J_{\pm}) be a background para/pseudo-Hermitian manifold and let $P \in M$. Suppose given H_{\pm} in $U_{3,\pm}(T_PM, g_P, J_{\pm,P})$. Then there exists a new para/pseudo-Hermitian metric \tilde{g} on M which agrees with g at P so that $\nabla \Omega_{\pm}(M, \tilde{g}, J_{\pm})(P) = H_{\pm}$.

3

Theorems 1.1 and 1.2 are global results; it is necessary to have a starting background structure as not every manifold admits a para/pseudo-Hermitian structure of a given signature; in general, there are topological restrictions on M for the existence of a (para)-complex structure or for the existence of a metric of signature (p,q). These Theorems give results in the category of compact manifolds. However it is a direct consequence of the Theorems that one can also restrict attention to an open coordinate chart to get purely local results.

These results are based on a decomposition of \mathfrak{H}_{\pm} which extends the decomposition given in [17] in the positive definite context. Adopt the *Einstein convention* and sum over repeated indices.

Definition 1.3. Let $(V, \langle \cdot, \cdot \rangle, J^0_{\pm})$ be a para/pseudo-Hermitian vector space. Let $\varepsilon_{ij} := \langle e_i, e_j \rangle$ for some basis $\{e_i\}$ for V. Let $\phi \in V^*$. Let $H \in \otimes^3 V^*$. Let GL be the general linear group. Set:

- (1) $(\tau_1 H)(x) := \varepsilon^{ij} H(x, e_i; e_j).$
- (2) $\sigma_{\pm}(\phi)(x,y;z) := \phi(J^0_{\pm}x)\langle y,z\rangle \phi(J^0_{\pm}y)\langle x,z\rangle + \phi(x)\langle J^0_{\pm}y,z\rangle \phi(y)\langle J^0_{\pm}x,z\rangle.$
- (3) $W_{1,\pm} := \{ H_{\pm} \in \mathfrak{H}_{\pm} : H_{\pm}(x,y;z) + H_{\pm}(x,z;y) = 0 \ \forall \ x,y,z \}.$
- (4) $W_{2,\pm} := \{ H_{\pm} \in \mathfrak{H}_{\pm} : H_{\pm}(x,y;z) + H_{\pm}(y,z;x) + H_{\pm}(z,x;y) = 0 \ \forall \ x,y,z \}.$
- (5) $W_{3,\pm} := U_{3,\pm} \cap \ker(\tau_1).$
- (6) $W_{4,\pm} := \text{Range}(\sigma_{\pm}).$
- (7) $\mathcal{O} := \{T \in \mathrm{GL} : T^* \langle \cdot, \cdot \rangle = \langle \cdot, \cdot \rangle \}.$
- (8) $\mathcal{U}_{\pm} := \{ T \in \mathcal{O} : TJ^0_{\pm} = J^0_{+}T \}.$
- (9) $\mathcal{U}_{\pm}^{\star} := \{ T \in \mathcal{O} : TJ_{\pm}^0 = TJ_{\pm}^0 \text{ or } TJ_{\pm}^0 = -J_{\pm}^0 T \}.$
- (10) $\operatorname{GL}_{\pm} := \{ T \in \operatorname{GL} : TJ_{\pm}^0 = J_{\pm}^0 T \}.$
- (11) $\chi(T) := +1$ if $T \in \mathcal{U}_{\pm}$ and $\chi(T) := -1$ if $T \in \mathcal{U}_{\pm}^{\star} \mathcal{U}_{\pm}$.

Theorem 1.4. Let $m \ge 6$. We have a direct sum orthogonal decomposition of \mathfrak{H}_{\pm} and of $U_{3,\pm}$ into irreducible inequivalent \mathcal{U}_{\pm}^* modules in the form:

$$\mathfrak{H}_{\pm} = W_{1,\pm} \oplus W_{2,\pm} \oplus W_{3,\pm} \oplus W_{4,\pm}$$
 and $U_{3,\pm} = W_{3,\pm} \oplus W_{4,\pm}$

One obtains the corresponding decompositions if m = 4 by setting $W_{1,\pm} = 0$ and $W_{3,\pm} = 0$. The modules $W_{i,-}$ are also irreducible \mathcal{U}_- modules so the decomposition of [17] of \mathfrak{H}_- as a \mathcal{U}_- module extends without change from the positive definite to the indefinite setting; we omit the additional analysis this requires in the interests of brevity. The modules $W_{i,+}$ are not, however, irreducible \mathcal{U}_+ modules and thus the classification of [14] is a more refined one than we consider here as there are 8 factors in the decomposition rather than 4. By using the structure group \mathcal{U}_+^{\star} instead of \mathcal{U}_+ , we shall bypass some of the technical difficulties encountered in [14] and this structure group is sufficient for our purposes.

The focus of Theorem 1.1 and of Theorem 1.2 is to show that *every* element of \mathfrak{H}_{\pm} and of $U_{3,\pm}$ is geometrically realizable in an appropriate context. One can, however, focus instead on the precise nature of the classes involved. We now restrict to the complex setting. Let ξ be a $\mathcal{U}_{\pm}^{\star}$ submodule of \mathfrak{H}_{-} . We say that (M, g, J_{-}) is a ξ -manifold if $\nabla \Omega_{-}$ belongs to ξ for every point of the manifold and if ξ is minimal with this property. This gives rise to the celebrated 16 classes of almost Hermitian manifolds (in the positive definite setting) [17]:

Theorem 1.5. Let ξ be a submodule of \mathfrak{H}_{-} . Then there exists an almost Hermitian ξ -manifold.

We can generalize this to the indefinite setting; we shall suppose $m \ge 10$ to simplify the discussion:

Theorem 1.6. Suppose given $(2\bar{p}, 2\bar{q})$ with $2\bar{p} + 2\bar{q} \ge 10$. Let ξ be a submodule of \mathfrak{H}_- . Then there exists a ξ -manifold of signature $(2\bar{p}, 2\bar{q})$.

Many of these classes have geometrical meanings which have been extensively investigated. For example:

- (1) $\xi = \{0\}$ defines the class of Kähler manifolds.
- (2) $\xi = W_{1,-}$ defines the class of nearly Kähler manifolds.
- (3) $\xi = W_{2,-}$ defines the class of almost Kähler manifolds.
- (4) $\xi = W_{3,-}$ defines the class of Hermitian semi-Kähler manifolds.
- (5) $\xi = W_{1,-} \oplus W_{2,-}$ defines the class of quasi-Kähler manifolds.
- (6) $\xi = W_{3,-} \oplus W_{4,-} = U_{3,-}$ defines the class of pseudo-Hermitian manifolds.
- (7) $\xi = W_{1,-} \oplus W_{2,-} \oplus W_{3,-}$ defines the class of semi-Kähler manifolds.
- (8) $\xi = \mathfrak{H}_{-}$ defines the class of almost pseudo-Hermitian manifolds.

Here is a brief outline to the paper. In Section 2, we review briefly the representation theory we shall need concerning $\mathcal{U}_{\pm}^{\star}$ submodules of $\otimes^{k} V^{*}$ and obtain an upper bound on the dimension of the space of quadratic invariants for \mathfrak{H}_{\pm} as a $\mathcal{U}_{\pm}^{\star}$ module. In Section 3, we turn to the geometric setting and study $\nabla\Omega_{\pm}$. In Section 4, we examine matters in the algebraic context and define projectors on the spaces $W_{1,\pm}, W_{2,\pm}, U_{3,\pm}, \text{ and } W_{4,\pm}$. In Section 5, we fix the metric and vary the almost (para)-complex structure to prove Theorem 1.1 and Theorem 1.4. In Section 6, we assume the (para)-complex structure to be integrable and vary the metric to prove Theorem 1.2. In Section 7, we use results of [17] to establish Theorem 1.6.

2. Representation theory

Let $(V, \langle \cdot, \cdot \rangle, J_{\pm})$ be a para/pseudo-Hermitian space. Extend $\langle \cdot, \cdot \rangle$ to $\otimes^k V$ so

$$\langle (v_1 \otimes \cdots \otimes v_k), (w_1 \otimes \cdots \otimes w_k) \rangle := \prod_{i=1}^k \langle v_i, w_i \rangle.$$
 (2.a)

Equation (2.a) defines a non-degenerate symmetric bilinear form on $\otimes^k V$. We use $\langle \cdot, \cdot \rangle$ to identify V with V^* and $\otimes^k V$ with $\otimes^k V^*$. If $\theta \in \otimes^k V^*$ and if $u \in \mathcal{U}_{\pm}^*$, the pull-back $u^*\theta \in \otimes^k V^*$ is defined by $u^*\theta(v_1, \ldots, v_k) := \theta(uv_1, \ldots, uv_k)$. Pull-back defines a natural action of \mathcal{U}_{\pm}^* on $\otimes^k V^*$ which preserves the canonical inner product of Equation (2.a). Let ξ be a \mathcal{U}_{\pm}^* -invariant subspace of $\otimes^k V^*$; the natural action of \mathcal{U}_{\pm}^* on $\otimes^k V^*$ by pull-back makes ξ into a \mathcal{U}_{\pm}^* submodule of $\otimes^k V^*$. One has:

Lemma 2.1. Let $(V, \langle \cdot, \cdot \rangle, J^0_{\pm})$ be a para/pseudo-Hermitian vector space. Let ξ be a \mathcal{U}^*_{\pm} submodule of $\otimes^k V^*$.

- (1) $\langle \cdot, \cdot \rangle$ is non-degenerate on ξ .
- (2) There is an orthogonal direct sum decomposition $\xi = \eta_1 \oplus \cdots \oplus \eta_k$ where the η_i are irreducible \mathcal{U}^*_+ -modules.
- (3) If ξ_1 and ξ_2 are inequivalent irreducible $\mathcal{U}_{\pm}^{\star}$ submodules of ξ , then $\xi_1 \perp \xi_2$.
- (4) The multiplicity with which an irreducible representation appears in ξ is independent of the decomposition in (2).
- (5) If ξ_1 appears with multiplicity 1 in ξ and if η is any $\mathcal{U}^{\star}_{\pm}$ submodule of ξ , then either $\xi_1 \subset \eta$ or else $\xi_1 \perp \eta$.
- (6) If $0 \to \xi_1 \to \xi \to \xi_2 \to 0$ is a short exact sequence of \mathcal{U}_{\pm}^* -modules, then $\xi \approx \xi_1 \oplus \xi_2$ as a \mathcal{U}_{\pm}^* -module.

Proof. We shall establish Assertion (1) as this is the crucial property; the remaining assertions follow from Assertion (1) using essentially the same arguments as those used in the positive definite setting; we refer to [6] for a detailed exposition. For example, it is Assertion (1) which lets us define orthogonal projection; if ξ is invariant under the action of \mathcal{U}_{+}^{*} , then $\xi \cap \xi^{\perp}$ is a totally isotropic invariant subspace

of $\otimes^k V^*$ and hence $\xi \cap \xi^{\perp} = \{0\}$. Thus $\otimes^k V^* = \xi \oplus \xi^{\perp}$ and orthogonal projection on ξ is given by the first factor in this decomposition.

Suppose first $(V, \langle \cdot, \cdot \rangle, J_{-}^{0})$ is a pseudo-Hermitian vector space of signature (p, q). We prove Assertion (1) for the smaller group \mathcal{U}_{-} ; it then follows automatically for the larger group \mathcal{U}_{-}^{\star} . Use the Gramm-Schmidt process to choose an orthogonal decomposition $V = V_{+} \oplus V_{-}$ which is J_{-}^{0} invariant so V_{+} is spacelike and V_{-} is timelike. Let $T = \pm \operatorname{id}$ on V_{\pm} ; $T \in \mathcal{U}_{-}$ since the decomposition is J_{-}^{0} invariant. Let $\{e_{1}, ..., e_{p}\}$ be an orthonormal basis for V_{-} and let $\{e_{p+1}, ..., e_{m}\}$ be an orthonormal basis for V_{+} . Let $\{e^{1}, ..., e^{m}\}$ be the corresponding orthonormal dual basis for V^{*} . Then $T^{*}(e^{i}) = \langle e^{i}, e^{i} \rangle e^{i} = \pm e^{i}$. If $I = (i_{1}, ..., i_{k})$ is a multi-index, set $e^{I} :=$ $e^{i_{1}} \otimes ... \otimes e^{i_{k}}$. The collection $\{e^{I}\}$ is an orthonormal basis for $\otimes^{k} V^{*}$ with:

$$\begin{aligned} T^* e^I &= T^*(e^{i_1}) \otimes \ldots \otimes T^*(e^{i_k}) = \langle e^{i_1}, e^{i_1} \rangle e^{i_1} \otimes \ldots \otimes \langle e^{i_k}, e^{i_k} \rangle e^{i_k} \\ &= \langle e^I, e^I \rangle e^I = \pm e^I \,. \end{aligned}$$

Thus if $T^*w = w$, then w is a spacelike vector in $\otimes^k V^*$ while if $T^*w = -w$, then w is a timelike vector in $\otimes^k V^*$. Let ξ be a non-trivial \mathcal{U}_- invariant subspace of $\otimes^k V^*$. Since $T \in \mathcal{U}_-$, T preserves ξ . Decompose $\xi = \xi_+ \oplus \xi_-$ into the ± 1 eigenspaces of T^* . Since ξ_+ is spacelike and ξ_- is timelike, the metric on ξ is non-degenerate and Assertion (1) follows in this framework.

The argument is a bit different in the para-Hermitian setting. Let $(V, \langle \cdot, \cdot \rangle, J_{+}^{0})$ be a para-Hermitian vector space. Find an orthogonal direct sum decomposition $V = V_{+} \oplus V_{-}$ where V_{+} is spacelike, where V_{-} is timelike, and where $J_{+}^{0} : V_{\pm} \to V_{\mp}$. As before, let $T = \pm \text{id}$ on V_{\pm} ; T does not belong to \mathcal{U}_{+} but it does belong to \mathcal{U}_{+}^{\star} . The remainder of the argument now follows as in the complex case; it is necessary to assume ξ is invariant under \mathcal{U}_{+}^{\star} and not simply under \mathcal{U}_{+} – this is the crucial difference.

Remark 2.2. Lemma 2.1 fails for the group \mathcal{U}_+ and it is for this reason that the decomposition of \mathfrak{H}_+ has more factors as a \mathcal{U}_+ module than as a \mathcal{U}_+^* module. Let $(V, \langle \cdot, \cdot \rangle, J_+^0)$ be a para-Hermitian vector space. Decompose $V = W_+ \oplus W_-$ into the ± 1 eigenspaces of J_+^0 . Then W_{\pm} are totally isotropic subspaces of V which are invariant under \mathcal{U}_+ .

Let ξ be a \mathcal{U}^*_{\pm} submodule of $\otimes^k V^*$. We say that a symmetric inner product $\theta \in S^2(\xi^*)$ is a quadratic invariant if $\theta(\gamma x, \gamma y) = \theta(x, y)$ for all $\gamma \in \mathcal{U}^*_{\pm}$ and for all $x, y \in \xi$; let $S^2_{\mathcal{U}^*_{\pm}}(\xi)$ be the space of all quadratic invariants. The following is well known – see, for example, the discussion in [6]. The proof follows exactly the same lines as in the positive definite setting given Lemma 2.1 (1).

Lemma 2.3. Let ξ be a $\mathcal{U}_{\pm}^{\star}$ submodule of $\otimes^{k} V^{*}$. Suppose that ξ_{i} are non-trivial $\mathcal{U}_{\pm}^{\star}$ -modules so that $\xi_{1} \oplus \cdots \oplus \xi_{\ell}$ is a $\mathcal{U}_{\pm}^{\star}$ submodule of ξ . Also suppose that $\dim \{S^{2}_{\mathcal{U}_{\pm}}(\xi)\} \leq \ell$. Then:

- (1) $\xi = \xi_1 \oplus \cdots \oplus \xi_\ell, \ \xi_i \perp \xi_j \ for \ i \neq j, \ and \ \dim\{S^2_{\mathcal{U}^*_{\pm}}(\xi)\} = \ell.$
- (2) The modules ξ_i are all irreducible and ξ_i is not isomorphic to ξ_j for $i \neq j$.

We now examine the space of quadratic invariants for the setting at hand.

Lemma 2.4. dim $\{S^2_{\mathcal{U}^{\star}_{\pm}}(\mathfrak{H}_{\pm})\} \leq 4.$

Proof. Since the original discussion in [17] was in the positive definite setting, we shall provide full details. Let $(V, \langle \cdot, \cdot \rangle, J^0_{\pm})$ be a para/pseudo-Hermitian vector space and let ξ be a G submodule of $\otimes^k V^*$. A spanning set for the space of quadratic invariants if $G = \mathcal{O}$ or if $G = \mathcal{U}_-$ in the positive definite setting is given in [30] and in [13, 20], respectively. The extension to the groups \mathcal{U}^*_{\pm} is straightforward

(see [6] for example). In brief, if $G = \mathcal{U}_{\pm}^{\star}$, everything is given by contraction of indices using the inner product $\langle \cdot, \cdot \rangle$ and the structure J^0_+ where J^0_+ must appear an even number of times. The following is a convenient formalism. We identify θ with the corresponding quadratic function $\theta(x) := \theta(x, x)$. We consider 3 distinct orthonormal bases $\{e_{i_1}^1, e_{i_2}^2, e_{i_3}^3\}$ for V which are indexed by $\{i_1, i_2, i_3\}$, respectively, for $1 \leq i_1 \leq m, 1 \leq i_2 \leq m$, and $1 \leq i_3 \leq m$. Let

$$\varepsilon_I = \langle e_{i_1}^1, e_{i_1}^1 \rangle \langle e_{i_2}^2, e_{i_2}^2 \rangle \langle e_{i_3}^3, e_{i_3}^3 \rangle = \pm 1.$$

We consider a string S of 6 symbols grouped into 2 monomials of 3 symbols where each index 1, 2, 3 appears twice and where some of the indices are decorated with J^0_{\pm} . Thus, for example, if $S = (1,2; J^0_{\pm}2)(1,3; J^0_{\pm}3)$ and if $H_{\pm} \in \mathfrak{H}_{\pm}$, then the associated invariant $\mathcal{I}(S)$ is given by:

$$\mathcal{I}(S)(H_{\pm}) := \sum_{i_1=1}^m \sum_{i_2=1}^m \sum_{i_3=1}^m \varepsilon_I H_{\pm}(e_{i_1}^1, e_{i_2}^2; J_{\pm}^0 e_{i_2}^2) H_{\pm}(e_{i_1}^1, e_{i_3}^3; J_{\pm}^0 e_{i_3}^3) \,.$$

The space of quadratic invariants of \mathfrak{H}_{\pm} is spanned by such invariants. We will stratify the invariants by the number of times J^0_{\pm} appears; this gives rise to 2 basic cases each of which has 2 subcases.

(1) General remarks.

- (a) We can replace the basis $\{e_{i_1}^1\}$ by $\{J_{\pm}^0e_{i_1}^1\}$ and thereby replace ε_I by $\mp \varepsilon_I. \text{ Thus } \mathcal{I}\{(\ldots, 1, \ldots, 1, \ldots)\} = \mp \mathcal{I}\{(\ldots, J_{\pm}^0 1, \ldots, J_{\pm}^0 1, \ldots)\}.$
- (b) We need only consider strings where either a given index is undecorated or it is decorated exactly once.
- (c) We may permute the bases. Thus
- $\mathcal{I}\{(1,2;3)(1,2;3)\} = \mathcal{I}\{(2,3;1)(2,3;1)\}.$ (d) By Equation (1.a), $\mathcal{I}\{(\mu, \sigma; \star)(\star, \star; \star)\} = -\mathcal{I}\{(\sigma, \mu; \star)(\star, \star; \star)\}$
 - $= \pm \mathcal{I}\{(J^0_{\pm}\mu, J^0_{\pm}\sigma; \star)(\star, \star; \star)\}.$
- (e) By Equation (1.b), $\mathcal{I}\{(\mu, J^0_{\pm}\sigma; \star)(\star, \star; \star)\} = \mathcal{I}\{(J^0_{\pm}\mu, \sigma; \star)(\star, \star; \star)\}.$
- (2) J^0_{\pm} does not appear. This gives rise to 3 invariants:
 - (a) Each index appears in each variable:
 - (i) $\psi_1 := \mathcal{I}\{(1,2;3)(1,2;3)\}.$
 - (ii) $\psi_2 := \mathcal{I}\{(1,2;3)(1,3;2)\}.$
 - (b) Only one index appears in both variables:
 - (i) $\psi_3 := \mathcal{I}\{(1,2;1)(3,2;3)\}.$
- (3) J^0_+ appears twice. This gives rise to another invariant:
 - (a) Each index appears in each variable: (i) $\psi_4 := \mathcal{I}\{(1, J^0_{\pm}2; J^0_{\pm}3)(1, 2; 3)\}.$

ii)
$$\mathcal{I}\{(1, J_{\pm}^{0}2; 3)(1, J_{\pm}^{0}3; 2)\} = \mathcal{I}\{(J_{\pm}^{0}1, 2; 3)(J_{\pm}^{0}1, 2; 3)\}$$

= $\mp \mathcal{I}\{(1, 2; 3)(1, 2; 3)\} = \mp \psi_1.$

(b) Only one index appears in both variables:

(i)
$$\mathcal{I}\{(J^0_{\pm}1,2;1)(J^0_{\pm}3,2;3)\} = \mathcal{I}\{(1,J^0_{\pm}2;1)(3,J^0_{\pm}2;3)\}$$

= $\mp \mathcal{I}\{(1,2;1)(3,2;3)\} = \mp \psi_3.$

We have enumerated all the possibilities and constructed 4 invariants.

3. Geometric analysis

If (x^1, \ldots, x^m) is a system of local coordinates on M, let $\partial_{x_i} := \frac{\partial}{\partial x_i}$.

Lemma 3.1. Let (M, g, J_{\pm}) be an almost para/pseudo-Hermitian manifold. Then:

- (1) $\nabla \Omega_{\pm} \in \mathfrak{H}_{\pm}$.
- $\begin{array}{l} \overbrace{(2)}^{-} \nabla \Omega_{\pm}^{-}(x,y;z) = g(x,(\nabla_{z}J_{\pm})y) = g(x,\nabla_{z}J_{\pm}y) g(x,J_{\pm}\nabla_{z}y) \\ = g(x,\nabla_{z}J_{\pm}y) + g(J_{\pm}x,\nabla_{z}y). \end{array}$

Proof. Since $\Omega_{\pm} \in C^{\infty}(\Lambda^2)$, $\nabla \Omega_{\pm} \in C^{\infty}(\Lambda^2 \otimes V^*)$. We prove Assertion (1) by studying the action of J_{\pm}^* :

$$\begin{aligned} \nabla \Omega_{\pm}(J_{\pm}x, J_{\pm}y; z) \\ &= zg(J_{\pm}x, J_{\pm}J_{\pm}y) - g(\nabla_z J_{\pm}x, J_{\pm}J_{\pm}y) - g(J_{\pm}x, J_{\pm}\nabla_z J_{\pm}y) \\ &= \mp zg(x, J_{\pm}y) \mp g(\nabla_z J_{\pm}x, y) \pm g(x, \nabla_z J_{\pm}y) \\ &= \mp zg(x, J_{\pm}y) \mp zg(J_{\pm}x, y) \pm g(J_{\pm}x, \nabla_z y) \pm zg(x, J_{\pm}y) \mp g(\nabla_z x, J_{\pm}y) \\ &= \pm zg(x, J_{\pm}y) \mp g(x, J_{\pm}\nabla_z y) \mp g(\nabla_z x, J_{\pm}y) = \pm \nabla \Omega_{\pm}(x, y; z). \end{aligned}$$

We use the fact that $\nabla g = 0$ to prove Assertion (2) by computing:

$$\begin{split} \nabla_z \Omega_{\pm}(x,y) &= zg(x,J_{\pm}y) - g(\nabla_z x,J_{\pm}y) - g(x,J_{\pm}\nabla_z y) \\ &= zg(x,J_{\pm}y) - g(\nabla_z x,J_{\pm}y) - g(x,\nabla_z J_{\pm}y) + g(x,\nabla_z J_{\pm}y) - g(x,J_{\pm}\nabla_z y) \\ &= (\nabla_z g)(x,J_{\pm}y) + g(x,\nabla_z J_{\pm}y) - g(x,J_{\pm}\nabla_z y) \\ &= g(x,\nabla_z J_{\pm}y) - g(x,J_{\pm}\nabla_z y) = g(x,\nabla_z J_{\pm}y) + g(J_{\pm}x,\nabla_z y). \end{split}$$

Let g(x, y; z) := zg(x, y). We continue our study and assume J_{\pm} is integrable:

Lemma 3.2. Let (M, g, J_{\pm}) be a para/pseudo-Hermitian manifold. Then:

- (1) $\nabla \Omega_{\pm}(\partial_{x_i}, \partial_{x_j}; \partial_{x_k}) = \frac{1}{2} \{ g(\partial_{x_i}, \partial_{x_k}; J_{\pm} \partial_{x_j}) g(\partial_{x_j}, \partial_{x_k}; J_{\pm} \partial_{x_i})$ + $g(J_{\pm} \partial_{x_i}, \partial_{x_k}; \partial_{x_j}) - g(J_{\pm} \partial_{x_j}, \partial_{x_k}; \partial_{x_i}) \}.$ (2) $\nabla \Omega_{\pm}(M, g, J_{\pm}) \in U_{3,\pm}.$
- (3) $\nabla \Omega_{\pm}(M, e^{2f}g, J_{\pm}) = e^{2f} \{ \nabla \Omega_{\pm}(M, g, J_{\pm}) \sigma_{\pm,q}(df) \}.$
- (4) $W_{4,\pm} \subset U_{3,\pm}$.

Proof. Since J_{\pm} is integrable, we may choose coordinates so $J_{\pm}\partial_{x_i} \in \{\partial_{x_1}, ..., \partial_{x_m}\}$. Let $x = \partial_{x_i}, y = \partial_{x_j}$, and $z = \partial_{x_k}$. We may apply Lemma 3.1 and the Koszul formula for the Christoffel symbols in a coordinate frame to see:

$$\begin{aligned} \nabla_z \Omega_{\pm}(x,y) &= g(x, \nabla_z J_{\pm} y) + g(J_{\pm} x, \nabla_z y) \\ &= \frac{1}{2} \{ g(x,z; J_{\pm} y) + g(x, J_{\pm} y; z) - g(z, J_{\pm} y; x) \} \\ &+ \frac{1}{2} \{ g(J_{\pm} x, z; y) + g(J_{\pm} x, y; z) - g(z, y; J_{\pm} x) \} . \end{aligned}$$

Assertion (1) now follows from the identity:

$$g(x, J_{\pm}y; z) + g(J_{\pm}x, y; z) = z\{g(x, J_{\pm}y) + g(J_{\pm}x, y)\} = 0$$

We prove Assertion (2) by checking that $\nabla \Omega_{\pm}$ satisfies the defining relation for $U_{3,\pm}$ in this instance. We use Assertion (1) to compute:

$$\begin{split} &\nabla\Omega_{\pm}(x,J_{\pm}y;J_{\pm}z) \\ = & \frac{1}{2}\{g(x,J_{\pm}z;J_{\pm}J_{\pm}y) - g(J_{\pm}y,J_{\pm}z;J_{\pm}x)\} \\ &+ & \frac{1}{2}\{g(J_{\pm}x,J_{\pm}z;J_{\pm}y) - g(J_{\pm}J_{\pm}y,J_{\pm}z;x)\} \\ = & \frac{1}{2}\{\pm g(x,J_{\pm}z;y) \pm g(y,z;J_{\pm}x) \mp g(x,z;J_{\pm}y) \pm g(J_{\pm}y,z;x)\} \\ = & \frac{1}{2}\{\mp g(J_{\pm}x,z;y) \pm g(y,z;J_{\pm}x) \mp g(x,z;J_{\pm}y) \pm g(J_{\pm}y,z;x)\} \\ = & \mp \nabla_{\pm}(x,y;z) \,. \end{split}$$

We also use Assertion (1) to prove Assertion (3) by checking:

$$\begin{aligned} \nabla \Omega_{\pm,e^{2f}g}(x,y;z) &= e^{2f} \{ \nabla \Omega_{\pm,g}(x,y;z) + df(J_{\pm}y)g(x,z) - df(J_{\pm}x)g(y,z) \\ &+ df(y)g(J_{\pm}x,z) - df(x)g(J_{\pm}y,z) \} \\ &= e^{2f} \{ \nabla \Omega_{\pm,g}(x,y;z) - \sigma_{\pm,g}(df)(x,y;z) \} . \end{aligned}$$

Let $(V, \langle \cdot, \cdot \rangle, J^0_{\pm})$ be a para/pseudo-Hermitian vector space. Let f be a smooth function on V and consider the manifold $(M, g, J_{\pm}) := (V, e^{2f} \langle \cdot, \cdot \rangle, J^0_{\pm})$. We apply Assertion (2) and Assertion (3) to prove Assertion (4) by checking:

$$e^{2f}\sigma_{\pm,\langle\cdot,\cdot\rangle}(df) = -\nabla\Omega_{\pm,e^{2f}\langle\cdot,\cdot\rangle} \in U_{3,\pm}.$$

4. Algebraic considerations

We now turn our attention to purely algebraic considerations. For the remainder of this section, let $(V, \langle \cdot, \cdot \rangle, J^0_{\pm})$ be a para/pseudo-Hermitian vector space.

Definition 4.1. Let $H_{\pm} \in \mathfrak{H}_{\pm}$.

- $(1) \quad (\pi_{1,\pm}H_{\pm})(x,y;z) := \frac{1}{6} \Big\{ H_{\pm}(x,y;z) + H_{\pm}(y,z;x) + H_{\pm}(z,x;y) \\ \pm H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \pm H_{\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \pm H_{\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \Big\}.$ $(2) \quad (\pi_{2,\pm}H_{\pm})(x,y;z) := \frac{1}{6} \Big\{ 2H_{\pm}(x,y;z) H_{\pm}(y,z;x) H_{\pm}(z,x;y) \\ \pm 2H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \mp H_{\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \mp H_{\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \Big\}.$ $(3) \quad (\pi_{3,\pm}H_{\pm})(x,y;z) := \frac{1}{2} \{ H_{\pm}(x,y;z) \mp H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \}.$
- (4) $\pi_{4,\pm} := \pm \frac{1}{m-2} \sigma_{\pm} (J^0_{\pm})^* \tau_1.$

Lemma 4.2.

- (1) $\pi_{1,\pm}$ is a projection from \mathfrak{H}_{\pm} onto $W_{1,\pm}$.
- (2) $\pi_{2,\pm}$ is a projection from \mathfrak{H}_{\pm} onto $W_{2,\pm}$.
- (3) $\pi_{3,\pm}$ is a projection from \mathfrak{H}_{\pm} onto $U_{3,\pm}$.
- (4) $\pi_{4,\pm}$ is a projection from \mathfrak{H}_{\pm} onto $W_{4,\pm}$.

Proof. Set:

$$\begin{split} &(\kappa_{\pm}^{1}H_{\pm})(x,y;z) := \pm H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z), \\ &(\kappa_{\pm}^{2}H_{\pm})(x,y;z) := H_{\pm}(y,z;x) + H_{\pm}(z,x;y) \\ &\pm H_{\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \pm H_{\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \,. \end{split}$$

We may use Equation (1.a) and Equation (1.b) to see that $\kappa_{\pm}^{1}H_{\pm}$, and $\kappa_{\pm}^{2}H_{\pm}$ are anti-symmetric in the first two arguments. We show that $\kappa_{\pm}^{1}\mathfrak{H}_{\pm} \subset \mathfrak{H}_{\pm}$ and that $\kappa_{\pm}^{2}\mathfrak{H}_{\pm} \subset \mathfrak{H}_{\pm} \subset \mathfrak{H}_{\pm}$ by checking:

$$\begin{aligned} (\kappa_{\pm}^{1}H_{\pm})(J_{\pm}^{0}x, J_{\pm}^{0}y; z) &= H_{\pm}(J_{\pm}^{0}x, J_{\pm}^{0}J_{\pm}^{0}y; J_{\pm}^{0}z) = \pm H_{\pm}(x, J_{\pm}^{0}y; J_{\pm}^{0}z) \\ &= \pm \kappa_{\pm}^{1}H_{\pm}(x, y; z), \\ (\kappa_{\pm}^{2}H_{\pm})(J_{\pm}^{0}x, J_{\pm}^{0}y; z) &= H_{\pm}(J_{\pm}^{0}y, z; J_{\pm}^{0}x) + H_{\pm}(z, J_{\pm}^{0}x; J_{\pm}^{0}y) \\ &\pm H_{\pm}(J_{\pm}^{0}y, J_{\pm}^{0}z; J_{\pm}^{0}J_{\pm}^{0}x) \pm H_{\pm}(z, J_{\pm}^{0}J_{\pm}^{0}x; J_{\pm}^{0}J_{\pm}^{0}y) \\ &= H_{\pm}(y, J_{\pm}^{0}z; J_{\pm}^{0}x) + H_{\pm}(z, J_{\pm}^{0}x; J_{\pm}^{0}y) \pm H_{\pm}(y, z; x) \pm H_{\pm}(z, x; y) \\ &= \pm (\kappa_{\pm}^{2}H_{\pm})(x, y; z). \end{aligned}$$

We see $\pi_{1,\pm}\mathfrak{H}_{\pm} \subset \mathfrak{H}_{\pm}, \pi_{2,\pm}\mathfrak{H}_{\pm} \subset \mathfrak{H}_{\pm}, \text{ and } \pi_{3,\pm}\mathfrak{H}_{\pm} \subset \mathfrak{H}_{\pm}$ by expressing:

$$\pi_{1,\pm} = \frac{1}{6} \{ \operatorname{id} + \kappa_{\pm}^1 + \kappa_{\pm}^2 \}, \quad \pi_{2,\pm} = \frac{1}{6} \{ 2(\operatorname{id} + \kappa_{\pm}^1) - \kappa_{\pm}^2 \}, \\ \pi_{3,\pm} = \frac{1}{2} \{ \operatorname{id} - \kappa_{\pm}^1 \}.$$

Let $H_{\pm} \in \mathfrak{H}_{\pm}$. We verify $\pi_{1,\pm}H_{\pm} \in W_{1,\pm}$, that $\pi_{2,\pm}H_{\pm} \in W_{2,\pm}$, and that $\pi_{3,\pm}H_{\pm} \in U_{3,\pm}$ by checking that the defining relations are satisfied in each case:

$$\begin{aligned} (\pi_{1,\pm}H_{\pm})(x,z;y) &:= \frac{1}{6} \Big\{ H_{\pm}(x,z;y) + H_{\pm}(z,y;x) + H_{\pm}(y,x;z) \\ &\pm H_{\pm}(x,J_{\pm}^{0}z;J_{\pm}^{0}y) \pm H_{\pm}(z,J_{\pm}^{0}y;J_{\pm}^{0}x) \pm H_{\pm}(y,J_{\pm}^{0}x;J_{\pm}^{0}z) \Big\} \\ &= -\pi_{1,\pm}H_{\pm}(x,y;z), \end{aligned}$$

8

$$\begin{aligned} (\pi_{2,\pm}H_{\pm})(x,y;z) + (\pi_{2,\pm}H_{\pm})(y,z;x) + (\pi_{2,\pm}H_{\pm})(z,x;y) \\ &= \frac{1}{6} \Big\{ 2H_{\pm}(x,y;z) - H_{\pm}(y,z;x) - H_{\pm}(z,x;y) \\ &\pm 2H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \mp H_{\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \mp H_{\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \\ &+ 2H_{\pm}(y,z;x) - H_{\pm}(z,x;y) - H_{\pm}(x,y;z) \\ &\pm 2H_{\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \mp H_{\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \mp H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \\ &+ 2H_{\pm}(z,x;y) - H_{\pm}(x,y;z) - H_{\pm}(y,z;x) \\ &\pm 2H_{\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \mp H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \mp H_{\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \Big\} = 0, \end{aligned}$$

$$\begin{aligned} &(\pi_{3,\pm}H_{\pm})(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \\ &= \frac{1}{2} \{ H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \mp H_{\pm}(x,J_{\pm}^{0}J_{\pm}^{0}y;J_{\pm}^{0}J_{\pm}^{0}z) \} \\ &= \frac{1}{2} \{ H_{\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \mp H_{\pm}(x,y;z) \} \\ &= \mp \frac{1}{2} \{ H(x,y;z) \mp H(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \} = \mp (\pi_{3,\pm}H_{\pm})(x,y;z). \end{aligned}$$

Let $H_{1,\pm} \in W_{1,\pm}$, let $H_{2,\pm} \in W_{2,\pm}$, and let $H_{3,\pm} \in U_{3,\pm}$. We complete the proof of Assertion (1), of Assertion (2), and of Assertion (3) by verifying:

$$\begin{split} &(\pi_{1,\pm}H_{1,\pm})(x,y;z) = \frac{1}{6} \Big\{ H_{1,\pm}(x,y;z) + H_{1,\pm}(y,z;x) + H_{1,\pm}(z,x;y) \\ &\pm H_{1,\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \pm H_{1,\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \pm H_{1,\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \Big\} \\ &= \frac{1}{6} \Big\{ H_{1,\pm}(x,y;z) - H_{1,\pm}(y,x;z) - H_{1,\pm}(x,z;y) \\ &\mp H_{1,\pm}(J_{\pm}^{0}z,J_{\pm}^{0}y;x) \mp H_{1,\pm}(J_{\pm}^{0}x,J_{\pm}^{0}z;y) \mp H_{1,\pm}(J_{\pm}^{0}y,J_{\pm}^{0}x;z) \Big\} \\ &= \frac{1}{6} \Big\{ H_{1,\pm}(x,y;z) + H_{1,\pm}(x,y;z) + H_{1,\pm}(x,y;z) \\ &- H_{1,\pm}(z,y;x) - H_{1,\pm}(x,z;y) - H_{1,\pm}(y,x;z) \Big\} = H_{1,\pm}(x,y;z), \\ &(\pi_{2,\pm}H_{2,\pm})(x,y;z) = \frac{1}{6} \Big\{ 2H_{2,\pm}(x,y;z) - H_{2,\pm}(y,z;x) - H_{2,\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \Big\} \\ &= \frac{1}{6} \Big\{ 3H_{2,\pm}(x,y;z) \pm H_{2,\pm}(J_{\pm}^{0}x,y;J_{\pm}^{0}z) \pm H_{2,\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \Big\} \\ &= \frac{1}{6} \Big\{ 3H_{2,\pm}(x,y;z) \pm H_{2,\pm}(J_{\pm}^{0}x,x;J_{\pm}^{0}y) \\ &\mp H_{2,\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \mp H_{2,\pm}(J_{\pm}^{0}z,x;J_{\pm}^{0}y) \Big\} \\ &= \frac{1}{6} \Big\{ 3H_{2,\pm}(x,y;z) \mp H_{2,\pm}(J_{\pm}^{0}z,x;J_{\pm}^{0}y) \\ &\mp H_{2,\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \mp H_{2,\pm}(J_{\pm}^{0}z,x;J_{\pm}^{0}y) \\ &\mp H_{2,\pm}(y,J_{\pm}^{0}z;J_{\pm}^{0}x) \mp H_{2,\pm}(J_{\pm}^{0}z,x;J_{\pm}^{0}y) \\ &= \frac{1}{6} \Big\{ 3H_{2,\pm}(x,y;z) - H_{2,\pm}(z,x;y) - H_{2,\pm}(y,z;x) \\ &\mp H_{2,\pm}(J_{\pm}^{0}y,z;J_{\pm}^{0}x) \mp H_{2,\pm}(J_{\pm}^{0}z,x;J_{\pm}^{0}y) \\ &= \frac{1}{6} \Big\{ 3H_{2,\pm}(x,y;z) - H_{2,\pm}(z,x;y) - H_{2,\pm}(y,z;x) \\ &\mp 2H_{2,\pm}(J_{\pm}^{0}y,z;J_{\pm}^{0}x) \mp H_{2,\pm}(J_{\pm}^{0}z,x;J_{\pm}^{0}y) \\ &= \frac{1}{6} \Big\{ 4H_{2,\pm}(x,y;z) + 2H_{2,\pm}(J_{\pm}^{0}x,z;J_{\pm}^{0}y;J_{\pm}^{0}y) \Big\} \\ &= \frac{1}{6} \Big\{ 4H_{2,\pm}(x,y;z) \pm 2H_{2,\pm}(J_{\pm}^{0}x,J_{\pm}^{0}y;z) \Big\} = H_{2,\pm}(x,y;z), \\ (\pi_{3,\pm}H_{3,\pm})(x,y;z) = \frac{1}{2} \Big\{ H_{3,\pm}(x,y;z) \mp H_{3,\pm}(x,y;z) \\ &= H_{3,\pm}(x,y;z). \end{aligned}$$

We now turn to the final assertion. We compute:

$$\begin{aligned} \tau_1(\sigma_{\pm}(\phi))(x) &= \varepsilon^{ij} \{ \phi(J_{\pm}^0 x) \langle e_i, e_j \rangle - \phi(J_{\pm}^0 e_i) \langle x, e_j \rangle \} \\ &+ \varepsilon^{ij} \{ \phi(x) \langle J_{\pm}^0 e_i, e_j \rangle - \phi(e_i) \langle J_{\pm}^0 x, e_j \rangle \} \\ &= m \phi(J_{\pm}^0 x) - \phi(J_{\pm}^0 x) + \operatorname{Trace}(J_{\pm}^0) \phi(x) - \phi(J_{\pm}^0 x) \\ &= (m-2)((J_{\pm}^0)^* \phi)(x) + \operatorname{Trace}(J_{\pm}^0) \phi(x) \,. \end{aligned}$$

Since $\operatorname{Trace}(J^0_{\pm}) = 0$, we have $\tau_1 \sigma_{\pm} = (m-2)(J^0_{\pm})^*$. It is immediate that $\pi_{4,\pm}$ takes values in $W_{4,\pm}$. We complete the proof by checking:

$$\pi_{4,\pm}\sigma_{\pm}\phi = \pm \frac{1}{m-2}(\sigma_{\pm}(J^0_{\pm})^*\tau_1)(\sigma_{\pm}\phi) = \pm \sigma_{\pm}(J^0_{\pm})^*(J^0_{\pm})^*\phi = \sigma_{\pm}\phi.$$

We examine these modules further:

Lemma 4.3.

- (1) $W_{1,\pm} + W_{2,\pm} \subset \ker \pi_{3,\pm}.$
- (2) $W_{1,\pm} \cap W_{2,\pm} = \{0\}.$
- (3) $W_{1,\pm} \oplus W_{2,\pm} \oplus W_{3,\pm} \oplus W_{4,\pm}$ is a $\mathcal{U}^{\star}_{\pm}$ submodule of \mathfrak{H}_{\pm} .

Proof. Suppose first that $H_{1,\pm} \in W_{1,\pm}$. Then

$$\begin{aligned} \pi_{3,\pm} H_{1,\pm}(x,y;z) &= \frac{1}{2} \{ H_{1,\pm}(x,y;z) \mp H_{1,\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \} \\ &= \frac{1}{2} \{ H_{1,\pm}(x,y;z) \mp H_{1,\pm}(J_{\pm}^{0}x,y;J_{\pm}^{0}z) \} \\ &= \frac{1}{2} \{ H_{1,\pm}(x,y;z) \pm H_{1,\pm}(J_{\pm}^{0}x,J_{\pm}^{0}z;y) \} \\ &= \frac{1}{2} \{ H_{1,\pm}(x,y;z) + H_{1,\pm}(x,z;y) \} = 0. \end{aligned}$$

Next suppose that $H_{2,\pm} \in W_{2,\pm}$. We have

$$\begin{split} \pi_{3,\pm}H_{2,\pm}(x,y;z) &= \frac{1}{2} \{ H_{2,\pm}(x,y;z) \mp H_{2,\pm}(x,J_{\pm}^{0}y;J_{\pm}^{0}z) \} \\ &= \frac{1}{2} \{ H_{2,\pm}(x,y;z) \pm H_{2,\pm}(J_{\pm}^{0}y,J_{\pm}^{0}z;x) \pm H_{2,\pm}(J_{\pm}^{0}z,x;J_{\pm}^{0}y) \} \\ &= \frac{1}{2} \{ H_{2,\pm}(x,y;z) + H_{2,\pm}(y,z;x) \pm H_{2,\pm}(z,J_{\pm}^{0}x;J_{\pm}^{0}y) \} \\ &= \frac{1}{2} \{ H_{2,\pm}(x,y;z) + H_{2,\pm}(y,z;x) \mp H_{2,\pm}(J_{\pm}^{0}x,J_{\pm}^{0}y;z) \\ &\mp H_{2,\pm}(J_{\pm}^{0}y,z;J_{\pm}^{0}x) \} \\ &= \frac{1}{2} \{ H_{2,\pm}(y,z;x) \mp H_{2,\pm}(J_{\pm}^{0}y,z;J_{\pm}^{0}x) \} \\ &= -\frac{1}{2} \{ H_{2,\pm}(z,y;x) \mp H_{2,\pm}(z,J_{\pm}^{0}y;J_{\pm}^{0}x) \} \\ &= -\frac{1}{2} \{ H_{2,\pm}(z,y;x) \mp H_{2,\pm}(z,J_{\pm}^{0}y;J_{\pm}^{0}x) \} = -\pi_{3,\pm}H_{2,\pm}(z,y;x) \end{split}$$

This shows that

$$\pi_{3,\pm}H_{2,\pm}(x,y;z) = -\pi_{3,\pm}H_{2,\pm}(y,x;z) = \pi_{3,\pm}H_{2,\pm}(z,x;y) = -\pi_{3,\pm}H_{2,\pm}(x,z;y) .$$

Consequently $H_{1,\pm} := \pi_{3,\pm} H_{2,\pm} \in W_{1,\pm}$. Thus:

$$\pi_{3,\pm}H_{2,\pm} = \pi_{3,\pm}\pi_{3,\pm}H_{2,\pm} = \pi_{3,\pm}H_{1,\pm} = 0$$

Let $H_{\pm} \in W_{1,\pm} \cap W_{2,\pm}$. We establish Assertion (2) by checking:

$$0 = H_{\pm}(x, y; z) + H_{\pm}(y, z; x) + H_{\pm}(z, x; y)$$

= $H_{\pm}(x, y; z) - H_{\pm}(y, x; z) - H_{\pm}(x, z; y)$
= $3H_{+}(x, y; z)$.

If $\pi_{\pm}:\mathfrak{H}_{\pm}\to\mathfrak{H}_{\pm}$ satisfies $\pi_{\pm}^2=\pi_{\pm}$, then Lemma 2.1 shows

$$\mathfrak{H}_{\pm} = \ker(\pi_{\pm}) \oplus \operatorname{Range}(\pi_{\pm})$$

By Lemma 4.2, we can apply this observation to $\pi_{3,\pm}$ and to $\pi_{4,\pm}$. By Assertion (1) and by Assertion (2),

 $W_{1,\pm} \cap W_{2,\pm} = \{0\}$ so $W_{1,\pm} \oplus W_{2,\pm} \subset \ker(\pi_{3,\pm})$.

By Lemma 4.2, we have $U_{3,\pm} = \text{Range}(\pi_{3,\pm})$. Consequently

$$W_{1,\pm} \oplus W_{2,\pm} \oplus U_{3,\pm}$$

is a submodule of \mathfrak{H}_{\pm} . By Lemma 4.2,

$$W_{4,\pm} = \operatorname{Range}(\pi_{4,\pm}) \subset U_{3,\pm}.$$

Since $W_{4,\pm} = \pi_{4,\pm}U_{3,\pm}$, $W_{3,\pm} \oplus W_{4,\pm}$ is a $\mathcal{U}_{\pm}^{\star}$ submodule of $U_{3,\pm}$.

10

5. VARYING THE ALMOST (PARA)-COMPLEX STRUCTURE

Fix a background almost para/pseudo-Hermitian manifold (M, g, J_{\pm}) and a point P of M for the remainder of Section 5. Let $\mathcal{O}(M)$ be the fiber bundle whose fibre over a point Q of M is the associated structure group $\mathcal{O}(T_Q M, g_Q)$. The Lie algebra \mathfrak{o} of \mathcal{O} is the vector space of all matrices which are skew-adjoint with respect to the inner product. Let $\vartheta \in \mathfrak{o}_P \otimes T_P^* M$. Let Θ be a smooth section to $\mathcal{O}(M)$ so that $\Theta(P) = \mathrm{id}$, so that $\Theta = \mathrm{id}$ off a neighborhood of P, and so that $d\Theta = \vartheta$. Let:

$$J_{\pm}^{\Theta} := \Theta^{-1} J_{\pm} \Theta \,.$$

Since Θ takes values in \mathcal{O} , (M, g, J_{\pm}^{Θ}) is an almost para/pseudo-Hermitian manifold as well. Define:

$$\Xi_{\pm}(\vartheta)(x,y;z) := g(x, (-\vartheta(z)J_{\pm} + J_{\pm}\vartheta(z))y)(P).$$

Lemma 5.1. Adopt the notation established above.

- (1) $\left\{ \nabla \Omega_{\pm}(M, g, J_{\pm}^{\Theta})(x, y; z) \nabla \Omega_{\pm}(M, g, J_{\pm})(x, y; z) \right\} (P)$ = $\Xi_{\pm}(d\vartheta)(x, y; z).$
- (2) Ξ_{\pm} is a $\mathcal{U}_{\pm}^{\star}$ module morphism from $\mathfrak{o} \otimes V^* \otimes \chi$ to \mathfrak{H}_{\pm} .
- (3) If $m \ge 6$, then $\pi_{1,\pm} \{ \Xi_{\pm}(\mathbf{o}) \} \ne \{ 0 \}$ and $\pi_{3,\pm} \{ \Xi_{\pm}(\mathbf{o}) \} \cap W_{3,\pm} \ne \{ 0 \}$.
- (4) $\pi_{2,\pm}\{\Xi_{\pm}(\mathfrak{o})\} \neq \{0\} \text{ and } \pi_{4,\pm}\{\Xi_{\pm}(\mathfrak{o})\} \neq \{0\}.$

Proof. Since $\Theta(P) = id$, $(J_{\pm}^{\Theta} - J_{\pm})(P) = 0$. We use Lemma 3.1 to prove Assertion (1) by computing:

$$\begin{aligned} \Omega_{\pm}(M, g, J_{\pm}^{\Theta})(P) &- \Omega_{\pm}(M, g, J_{\pm})(P) \\ &= g(x, \{\nabla_{z}(J_{\pm}^{\Theta} - J_{\pm}) - (J_{\pm}^{\Theta} - J_{\pm})\nabla_{z}\}y)(P) \\ &= g(x, \{z(J_{\pm}^{\Theta} - J_{\pm})\}y)(P) = g(x, \{z(\Theta^{-1}J_{\pm}\Theta - J_{\pm})\}y)(P) \\ &= g(x, \{-z(\Theta)J_{\pm} + J_{\pm}z(\Theta)\}y)(P). \end{aligned}$$

Assertion (2) is an immediate consequence of Assertion (1). The proof of Assertions (3) and (4) is a purely algebraic computation. Introduce an orthonormal basis $\{e_1, \ldots, e_{\bar{m}}, f_1, \ldots, f_{\bar{m}}\}$ for V so

$$J_{\pm}: e_i \to f_i \quad \text{and} \quad J_{\pm}: f_i \to \pm e_i \,.$$

We set $\varepsilon_i := \langle e_i, e_i \rangle$. Define $\vartheta_0 \in \mathfrak{o}$ by setting:

$$\vartheta_0 e_i = \left\{ \begin{array}{ccc} \varepsilon_2 e_2 & \text{if} & i = 1 \\ -\varepsilon_1 e_1 & \text{if} & i = 2 \\ 0 & \text{if} & i > 2 \end{array} \right\} \quad \text{and} \quad \vartheta_0 f_i = \left\{ \begin{array}{ccc} 0 & \text{if} & i = 1 \\ 0 & \text{if} & i = 2 \\ 0 & \text{if} & i > 2 \end{array} \right\}.$$

Suppose first that $m \ge 6$. We set $\vartheta = \vartheta_0 \otimes e^3$. Choose $\alpha \in C^{\infty}(M)$ to be compactly supported near P with $d\alpha(P) = dx^3$. If $\varepsilon_1 = \varepsilon_2$, then the corresponding Θ may be taken to be:

$$\Theta \partial_{x_i} = \left\{ \begin{array}{c} \cos(\alpha)e_1 + \varepsilon_2 \sin(\alpha)e_2 & \text{if } i = 1\\ -\varepsilon_2 \sin(\alpha)e_1 + \cos(\alpha)e_2 & \text{if } i = 2\\ e_i & \text{if } i \ge 3 \end{array} \right\} \text{ and } \Theta \partial_{y_i} = \partial_{y_i} \ \forall \ i \,,$$

whereas if $\varepsilon_1 = -\varepsilon_2$, then Θ may be taken to be:

$$\Theta \partial_{x_i} = \left\{ \begin{array}{c} \cosh(\alpha)e_1 + \varepsilon_2 \sinh(\alpha)e_2 & \text{if } i = 1\\ \varepsilon_2 \sinh(\alpha)e_1 + \cosh(\alpha)e_2 & \text{if } i = 2\\ e_i & \text{if } i \ge 3 \end{array} \right\} \quad \text{and} \quad \Theta \partial_{y_i} = \partial_{y_i} \; \forall \; i \, .$$

Set $H_{\pm} := \Xi_{\pm}(\vartheta_0 \otimes e^3)$. The non-zero components of H_{\pm} are determined by:

$$H_{\pm}(f_2, e_1; e_3) = \mp 1$$
 and $H_{\pm}(f_1, e_2; e_3) = \pm 1$.

Clearly $\tau_1 H_{\pm} = 0$; thus $\pi_{3,\pm} H_{\pm} \in W_{3,\pm}$. We prove Assertion (3) by computing:

$$\pi_{1,\pm}H_{\pm}(f_2,e_1;e_3) = \mp \frac{1}{6}$$
 and $\pi_{3,\pm}H_{\pm}(f_2,e_1;e_3) = \mp \frac{1}{2}$.

Next we clear the previous notation and let $H_{\pm} = \Xi_{\pm}(\vartheta_0 \otimes e^2)$; here we need to have $d\alpha(P) = dx^2$. The non-zero components of H_{\pm} are determined by:

$$H_{\pm}(f_2, e_1; e_2) = \mp 1$$
 and $H_{\pm}(f_1, e_2; e_2) = \pm 1$.

Since $\tau_1(H_{\pm}) = \pm \varepsilon_2$, the component of H_{\pm} in $W_{4,\pm}$ is non-zero. We complete the proof of Assertion (4) by checking:

$$\begin{aligned} (\pi_{2,\pm}H_{\pm})(f_2,f_1;f_2) &:= \frac{1}{6} \{ 2H_{\pm}(f_2,f_1;f_2) - H_{\pm}(f_1,f_2;f_2) - H_{\pm}(f_2,f_2;f_1) \\ &\pm 2H_{\pm}(f_2,J_{\pm}^0f_1;J_{\pm}^0f_2) \mp H_{\pm}(f_1,J_{\pm}^0f_2;J_{\pm}^0f_2) \mp H_{\pm}(f_2,J_{\pm}^0f_2;J_{\pm}^0f_1) \} \\ &= \frac{1}{6} \{ 0 - 0 - 0 - 2 - 1 + 0 \} = -\frac{1}{2}. \end{aligned}$$

Proof of Theorem 1.4. Let $m \ge 6$. By Lemma 5.1, $W_{i,\pm}$ are non-trivial modules for $1 \le i \le 4$. By Lemma 4.3, $W_{1,\pm} \oplus W_{2,\pm} \oplus W_{3,\pm} \oplus W_{4,\pm}$ is a $\mathcal{U}_{\pm}^{\star}$ submodule of \mathfrak{H}_{\pm} . By Lemma 2.4, dim $\{S_{\mathcal{U}_{\pm}^{\star}}^{2}(\mathfrak{H}_{\pm})\} \le 4$. Theorem 1.4 now follows from Lemma 2.1 and from Lemma 2.3.

Proof of Theorem 1.1. Let (M, g, J_{\pm}) be an almost para/pseudo-Hermitian manifold of dimension $m \geq 6$ (the case m = 4 is analogous). We consider variations (M, g, J_{\pm}^{Θ}) . Subtracting $\nabla \Omega_{\pm}(M, g, J_{\pm})(P)$ has no effect on the question of surjectivity. Every $\vartheta \in \mathfrak{o} \otimes T^*M$ can be written in the form $\vartheta = d\Theta(P)$ for some admissible Θ . Thus it suffices to show $\Xi_{\pm}(\mathfrak{o}) = \mathfrak{H}_{\pm}$. By Lemma 5.1, $\Xi(\mathfrak{o})$ is not perpendicular to $W_{\pm,i}$ for $1 \leq i \leq 4$. By Theorem 1.4, $W_{\pm,i}$ is an irreducible submodule of \mathfrak{H}_{\pm} which occurs with multiplicity 1. Thus by Lemma 2.1, $W_{\pm,i} \subset \Xi(\mathfrak{o})$ for $1 \leq i \leq 4$. Theorem 1.4 now shows $\mathfrak{H}_{\pm} \subset \Xi(\mathfrak{o})$ as desired.

6. VARYING THE METRIC

Let (M, g, J_{\pm}) be a para/pseudo-Hermitian manifold. Fix P in M and let

$$(V, \langle \cdot, \cdot \rangle, J^0_{\pm}) := (T_P M, g_P, J_{\pm,P})$$

Let \mathfrak{gl}_{\pm} be the Lie algebra of GL_{\pm} at P. Given $\tilde{\vartheta} \in \mathfrak{gl} \otimes V^*$, we may find a smooth map $\tilde{\Theta}$ from a neighborhood of P in M to GL_{\pm} so that $\tilde{\Theta}(P) = \operatorname{id}$, so that $\tilde{\Theta} = \operatorname{id}$ away from a neighborhood of P, and so that $d\tilde{\Theta}(P) = \tilde{\vartheta}$. We define a new pseudo-Riemannian metric $g^{\tilde{\Theta}}$ which agrees with g at P and which agrees with g away from a neighborhood of P by setting:

$$g^{\Theta}(x,y) = (\tilde{\Theta}x, \tilde{\Theta}y).$$

Since $\Theta J_{\pm} = J_{\pm}\Theta, \, g^{\tilde{\Theta}}$ is a para/pseudo-Hermitian metric. Set:

$$\tilde{\Xi}_{\pm}(\tilde{\vartheta}) := \left\{ \nabla \Omega_{\pm}(V, g^{\tilde{\Theta}}, J_{\pm}) - \nabla \Omega_{\pm}(V, g, J_{\pm}^{0}) \right\} (P) \,.$$

We may then use Lemma 3.2 to see that $\tilde{\Xi}_{\pm}(\tilde{\vartheta}) \in W_{\pm,3}$ is independent of the choice of $\tilde{\Theta}$ and defines a $\mathcal{U}^{\star}_{\pm}$ module morphism from $\mathfrak{gl}_{\pm} \otimes V^* \otimes \chi$ to \mathfrak{H}_{\pm} by computing:

$$\begin{aligned} &\Xi_{\pm}(\vartheta)(x,y;z) \\ &= \frac{1}{2} \left\{ \langle \tilde{\vartheta}(J_{\pm}y)x,z \rangle + \langle x,\tilde{\vartheta}(J_{\pm}y)z \rangle + \langle \tilde{\vartheta}(y)J_{\pm}x,z \rangle + \langle J_{\pm}x,\tilde{\vartheta}(y)z \rangle \right. \\ &\left. - \langle \tilde{\vartheta}(J_{\pm}x)y,z \rangle + \langle y,\tilde{\vartheta}(J_{\pm}x)z \rangle + \langle \tilde{\vartheta}(x)J_{\pm}y,z \rangle + \langle J_{\pm}y,\tilde{\vartheta}(x)z \rangle \right\} \,. \end{aligned}$$

Thus to prove Theorem 1.2, it suffices to show that Ξ_{\pm} is surjective. Since we have subtracted the effect of the background metric, we may take the flat metric $g = \langle \cdot, \cdot \rangle$. As in Section 5, we introduce a normalized orthonormal basis $\{e_1, \ldots, e_{\bar{m}}, f_1, \ldots, f_{\bar{m}}\}$ for V. Let α be a smooth function which is compactly supported near P = 0 with $\alpha(0) = 0$ and $d\alpha(0) = dx^1$. Set:

$$\tilde{\Theta}e_i = \left\{ \begin{array}{ccc} e^{\alpha}e_i & \text{if} \quad i = 1,2\\ e_i & \text{if} \quad i \ge 3 \end{array} \right\} \quad \text{and} \quad \tilde{\Theta}f_i = \left\{ \begin{array}{ccc} e^{\alpha}f_i & \text{if} \quad i = 1,2\\ f_i & \text{if} \quad i \ge 3 \end{array} \right\} \,.$$

Let $\tilde{\vartheta} = d\tilde{\Theta}(0) = \tilde{\vartheta}_0 \otimes dx^1$ where $\tilde{\vartheta}_0$ is orthogonal projection on Span $\{e_1, e_2, f_1, f_2\}$:

$$\tilde{\vartheta}_0 e_i = \left\{ \begin{array}{ccc} e_i & \text{if} & i=1,2\\ 0 & \text{if} & i \geq 3 \end{array} \right\} \quad \text{and} \quad \tilde{\vartheta}_0 f_i = \left\{ \begin{array}{ccc} f_i & \text{if} & i=1,2\\ 0 & \text{if} & i \geq 3 \end{array} \right\}.$$

The associated metric takes the form:

$$\begin{array}{ll} g_{\pm}^{\bar{\Theta}} &=& e^{2\alpha}\varepsilon_1(e^1\otimes e^1\mp f^1\otimes f^1) + e^{2\alpha}\varepsilon_2(e^2\otimes e^2\mp f^2\otimes f^2) \\ &+& \sum_{i\geq 3}\varepsilon_i(e^i\otimes e^i\mp f^i\otimes f^i) \,. \end{array}$$

Set $H_{\pm} := \nabla \Omega_{\pm}(0) = \tilde{\Xi}_{\pm}(\vartheta)$. We use Lemma 3.1 to see $\tau_1(H_{\pm}) = 2e^1$ and thus H_{\pm} has a non-trivial component in $W_{\pm,4}$. Since $H_{\pm}(e_1, e_3; f_3) = 0$ and $\sigma_{\pm}(e^1)(e_1, e_3; f_3) \neq 0$, H_{\pm} also has a non-zero component in $W_{3,\pm}$. Theorem 1.2 now follows.

7. The 16 classes of almost pseudo-Hermitian manifolds

Proof of Theorem 1.6. If (M, g, J_{-}) is a ξ -manifold, then $(M, -g, J_{-})$ also is a ξ -manifold. Thus by replacing g by -g if need be, we may assume without loss of generality that $p \leq q$ and consequently, as $m \geq 10$, that $6 \leq q$ to establish Theorem 1.6. We shall use product structures. The projections $\pi_{i,-}$ for i = 1, 2, 3 and the map τ_1 are compatible with Cartesian product; the splitting σ_- is not. This causes a small amount of additional technical fuss.

Suppose first that $W_4 \not\subset \xi$. By Theorem 1.5 we may choose a ξ -manifold $(M_1, g_1, J_{1,-})$ of Riemannian signature (0, q). Let $(M_2, g_2, J_{2,-})$ be a flat Kähler torus of signature (p, 0). Let

$$M = M_1 \times \mathbb{T}^{(p,0)}, \qquad g := g_1 + g_2, \quad J_- = J_{1,-} \oplus J_{2,-}.$$
 (7.a)

Then (M, g, J_{-}) is an almost pseudo-Hermitian manifold of signature (p, q). We have $\nabla \Omega_g = \nabla \Omega_{g_1}$ and $\tau_1(\nabla \Omega_g) = \tau_1(\nabla \Omega_{g_1}) = 0$. Thus $\pi_{3,-}\nabla \Omega_g$ is projection on $W_{-,3}$; this would not be the case if τ_1 was non-zero and this fact played an important role in the analysis of Section 6. Since $\pi_{i,-}\nabla \Omega_g = \pi_{i,-}\nabla \Omega_{g_1}$, it now follows that (M, g, J_{-}) is a ξ manifold in this special case.

Next we suppose that $\xi = \eta \oplus W_{-,4}$. Let (M, g, J_-) be an η -manifold of signature (p, q). We make a conformal change of metric and set $\tilde{g} := e^{2f}g$; it then follows from Lemma 3.2 that

$$\nabla\Omega_{\tilde{g}} = e^{2f} \nabla\Omega_g - e^{2f} \sigma_{-,g}(df)$$

where we use the original metric to define the splitting $\sigma_{-,g}$. This has a non-trivial $W_{4,-}$ component and the components $W_{i,-}$ for $1 \leq i \leq 3$ are not affected. \Box

Acknowledgments

Research of the authors partially supported by project MTM2009-07756 (Spain) and by INCITE09 207 151 PR (Spain).

References

- Alekseevsky D., Guilfoyle B., and Klingenberg W., "On the Geometry of Spaces of Oriented Geodesics", arXiv:0911.2602v1 [math.DG].
- [2] Alekseevsky D., Medori C., and Tomassini A., "Homogeneous para-Kaehler Einstein manifolds", Russian Math. Surveys 64 (2009), 1–43.
- [3] Alexandrov B., Friedrich Th., and Schoemann N., "Almost Hermitian 6-manifolds revisited", J. Geom. Phys. 53 (2005), 1–30.
- [4] Armstrong, J., "An ansatz for almost-Kähler, Einstein 4-manifolds", J. Reine Angew. Math. 542 (2002), 53?84.
- [5] Bor G., Hernández-Lamoneda L., and Salvai M., "Orthogonal almost-complex structures of minimal energy", *Geom. Dedicata* 127 (2007), 75–85.
- [6] Brozos-Vázquez M., Gilkey P., and Nikčević S., "Geometric Realizations of Curvature", Imperial College Press (2011).
- [7] Cleyton, R. and Ivanov, S., "Conformal equivalence between certain geometries in dimension 6 and 7", Math. Res. Lett. 15 (2008), 631-?640.
- [8] Cortés V., Mayer Ch., Mohaupt Th., and Saueressig F., "Special geometry of Euclidean supersymmetry 1. Vector multiplets", J. High Energy Phys. 03 (2004) 028.
- [9] Cortés V., Mayer Ch., Mohaupt Th., and Saueressig F., "Special geometry of Euclidean supersymmetry II. Hypermultiplets and the c-map", J. High Energy Phys. 06 (2005) 025.
- [10] Cortés V. and Schäfer L. "Flat nearly Kähler manifolds", Ann. Global Anal. Geom. 32 (2007), 379–389.
- [11] Euh Y., Park J. H., and Sekigawa K., "Nearly Kähler manifolds with vanishing Tricerri-Vanhecke Bochner curvature tensor", *Differential Geom. Appl.* 27 (2009), 250–256.
- [12] Falcitelli M., Farinola A., and Salamon S., "Almost-Hermitian geometry", Differential Geom. Appl. 4 (1994), 259–282.
- [13] Fukami T., "Invariant tensors under the real representation of unitary groups and their applications", J. Math. Soc. Japan 10 (1958), 135–144.
- [14] Gadea P. and Masque J., "Classification of almost para-Hermitian manifolds", Rend. Mat. Appl. 11 (1991), 377–396.
- [15] García-Río E. and Matsushita Y., "Isotropic Kähler structures on Engel 4-manifolds", J. Geom. Phys. 33 (2000), 288–294.
- [16] Gran U., Papadopoulos G., Sloane P., and Roest D., "Geometry of all supersymmetric type I backgrounds", J. High Energy Phys. (2007) 074.
- [17] Gray A. and Hervella L., "The sixteen classes of almost Hermitian manifolds and their linear invariants", Ann. Mat. Pura Appl. 123 (1980), 35–58.
- [18] Guilfoyle B. and Klingenberg W., "An indefinite Kähler metric on the space of oriented lines", J. London Math. Soc. 72 (2005), 497–509.
- [19] Hernández-Lamoneda, L., "Curvature vs. almost Hermitian structures", Geom. Dedicata 79 (2000), 205?218.
- [20] Iwahori N., "Some remarks on tensor invariants of O(n), U(n), Sp(n)", J. Math. Soc. Japan **10** (1958), 146–160.
- [21] Martín-Cabrera F. and Swann A., "Almost Hermitian structures and quaternionic geometries", Differential Geom. Appl. 21 (2004), 199–214.
- [22] Matsushita Y., Haze S., and Law P. R., "Almost Kähler-Einstein structures on 8-dimensional Walker manifolds", Monatsh. Math. 150 (2007), 41–48.
- [23] Moroianu A. and Ornea L., "Conformally Einstein products and nearly Kähler manifolds", Ann. Global Anal. Geom. 33 (2008), 11–18.
- [24] Naveira, A. M.; "A classification of Riemannian almost-product manifolds", Rend. Mat. (7) 3 (1983), 577-7592.
- [25] Papadopoulos G., "Killing-Yano equations and G structures", Classical Quantum Gravity 25 (2008), no. 10, 105016, 8 pp.
- [26] San Martin L. A. B. and Negreiros C. J. C., "Invariant almost Hermitian structures on flag manifolds", Adv. Math. 178 (2003), 277–310.
- [27] Sekigawa K. and Yamada A., "Compact indefinite almost Kähler Einstein manifolds", Geom. Dedicata 132 (2008), 65–79.
- [28] Tricerri F. and Vanhecke L., "Curvature tensors on almost Hermitian manifolds", Trans. Amer. Math. Soc. 267 (1981), 365–397.
- [29] Tricerri F. and Vanhecke L., "Homogeneous structures on Riemannian manifolds", London Math. Soc. Lecture Note Ser., 83, Cambridge University Press, Cambridge, 1983.
- [30] Weyl H., "The classical groups", Princeton Univ. Press, Princeton (1946) (8th printing).

MB-V: Department of Mathematics, University of A Coruña, Spain $E\text{-}mail\ address: \texttt{miguel.brozos.vazquez@udc.es}$

EG-R: Faculty of Mathematics, University of Santiago de Compostela, Spain E-mail address: eduardo.garcia.rio@usc.es

PG: MATHEMATICS DEPARTMENT, UNIVERSITY OF OREGON, EUGENE OR 97403, USA E-mail address: gilkey@uoregon.edu

LH: FACULTY OF MATHEMATICS, UNIVERSITY OF SANTIAGO DE COMPOSTELA, SPAIN *E-mail address*: luismaria.hervella@usc.es