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Abstract

In this paper, the numerical differentiation by integration method based on Jacobi polynomials originally introduced
by Mboup, Fliess and Join [20, 21] is revisited in the central case where the used integration window is centered. Such
method based on Jacobi polynomials was introduced through an algebraic approach [20, 21] and extends the numerical
differentiation by integration method introduced by Lanczos [16]. The here proposed method, rooted in [20, 21], is
used to estimate the nth (n ∈ N) order derivative from noisy data of a smooth function belonging to at least Cn+1+q

(q ∈ N). In [20, 21], where the causal and anti-causal case were investigated, the mismodelling due to the truncation
of the Taylor expansion was investigated and improved allowing a small time-delay in the derivative estimation. Here,
for the central case, we show that the bias error is O(hq+2) where h is the integration window length for f ∈ Cn+q+2

in the noise free case and the corresponding convergence rate is O(δ
q+1

n+1+q ) where δ is the noise level for a well chosen
integration window length. Numerical examples show that this proposed method is stable and effective.
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1. Introduction

Numerical differentiation is concerned with the numerical estimation of derivatives of an unknown function (defined
from R to R) from its noisy measurement data. It has attracted a lot of attention from different points of view: observer
design in the control literature [4, 14, 18], digital filter in signal processing [2, 26], Volterra integral equation of the
first kind [3, 11] and identification [12, 34]. The problem of numerical differentiation is ill-posed in the sense that a
small error in measurement data can induce a large error in the approximate derivatives. Therefore, various numerical
methods have been developed to obtain stable algorithms more or less sensitive to additive noise. They mainly fall
into five categories: the finite difference methods [15, 27, 29], the mollification methods [13, 22, 23], the regularization
methods [24, 36, 33], the algebraic methods [20, 21] that are the roots of the here reported results, the differentiation
by integration methods [16, 28, 35], i.e. using the Lanczos generalized derivatives.

The Lanczos generalized derivative Dhf , defined in [16] by

Dhf(x) =
3

2h3

∫ h

−h

t f(x+ t) dt =
3

2h

∫ 1

−1

t f(x+ ht) dt,

is an approximation to the first derivative of f in the sense that Dhf(x) = f ′ (x) +O(h2). It is aptly called a method
of differentiation by integration. Rangarajana and al. [28] generalized it for higher order derivatives with

D
(n)
h f(x) =

1

hn

∫ 1

−1

γnLn(t) f(x + ht) dt, n ∈ N,

where f is assumed to belong to Cn+2(I) with I being an open interval of R and Ln is the nth order Legendre

polynomial. The coefficient γn is equal to 1×3×5×···×(2n+1)
2 and 2h > 0 is the length of the integral window on which

the estimates are calculated. By applying the scalar product of the Taylor expansion of f at x with Ln they showed
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that D
(n)
h f(x) = f (n)(x) + O(h2). Recently, by using Richardson extrapolation Wang and al. [35] have improved the

convergence rate for obtaining high order Lanczos derivatives with the following affine schemes for any n ∈ N

D
(n)
h,λn

f(x) =
1

hn

∫ 1

−1

Ln(t) (an f(x+ ht) + bn f(x+ λnht)) dt,

where f is assumed to belong to Cn+4(I), an, bn and λn are chosen such that D
(n)
h,λn

f(x) = f (n)(x) +O(h4).
Very recently an algebraic setting for numerical differentiation of noisy signals was introduced in [7] and analyzed

in [20, 21]. The reader may find additional theoretical foundations in [8, 5]. The algebraic manipulations used in
[20, 21] are inspired by the one used in the algebraic parametric estimation technics [10, 19, 17]. Let us recall that
[20, 21] analyze a causal and anti-causal version of numerical differentiation by integration method based on Jacobi
polynomials

D
(n)
h f(x) =

1

(±h)n

∫ 1

0

γκ,µ,n
dn

dtn

{

tκ+n(1− t)µ+n
}

f(x± ht) dt, n ∈ N,

where f is assumed to belong to Cn(I) with I being an open interval of R. The coefficient γκ,µ,n is equal to

(−1)n (µ+κ+2n+1)!
(µ+n)!(κ+n)! , where κ, µ are two integer parameters and h > 0 is the length of the integral window on which the

estimates are calculated. In [20] the authors show that the mismodelling due to the truncation of the Taylor expansion
is improved allowing small time-delay in the derivative estimation. Here in this article, we propose to extend these dif-
ferentiation by integration methods by using as in [20, 21] Jacobi polynomials: for this we use a central estimator (the
integration window is now [−1, 1]) and the design parameters are now allowed to be reals which are strictly greater
than −1. It is worth to mention that in most of the practical applications the noise can be seen as an integrable
bounded function (which noise level is δ as it is considered in this paper). An other point of view concerning the noise
definition/characterization is given in [8] for which unbounded noise may appear. Let us mention that the Legendre
polynomials are one particular class of Jacobi polynomials, that were used in [28] and [35] to obtain higher order
derivative estimations. Moreover, it can be seen that these so obtained derivative estimators correspond to truncated
terms in the Jacobi orthogonal series. In fact, the choice of the Jacobi polynomials comes from algebraic manipulations
introduced in the recent papers by M. Mboup, C. Join and M. Fliess [20, 21], where the derivatives estimations were
given by some parameters in the causal and anti-causal cases. Here, we give the derivatives estimations in the central
case with the same but extended parameters used in [20, 21]. If f ∈ Cn+q+2 then we show that the bias error is
O(hq+2) in the noise free case (where 2h is the integration window length). We also show that the corresponding

convergence rate is O(δ
q+1

n+1+q ) for a well chosen integration window length in the noisy case, where δ is the noise level.
One can see the obtained causal estimators in [20, 21] are well suited for on-line estimation (which is of importance
in signal processing, automatic control, . . . ) whereas here the proposed central estimators are only suited for off-line
applications. Let us emphasize that those technics exhibit good robustness properties with respect to corrupting noises
(see [8, 9] for more theoretical details). These robustness properties have already been confirmed by numerous com-
puter simulations and several laboratory experiments. Hence, the robustness of the derivative estimators presented in
this paper can be ensured as shown by the here reported results and simulations.

This paper is organized as follows: in Section 2 firstly a family of central estimators of the derivatives for higher
orders are introduced by using the nth order Jacobi polynomials. The corresponding convergence rate is O(h) and
can be improved to O(h2) when the Jacobi polynomials are ultraspherical polynomials (see [32]). Secondly, a new
family of estimators are given. They can be written as an affine combination of the estimators proposed previously.
Consequently, we show that if f ∈ Cn+1+q(I) with q ∈ N the corresponding convergence rate is improved to O(hq+1).
Moreover, when the Jacobi polynomials are ultraspherical polynomials, if f ∈ Cn+2+q(I) for any even integer q the
corresponding convergence rate can be improved to O(hq+2). Numerical tests are given in Section 3 to verify the
efficiency and the stability of the proposed estimators.

2. Derivative estimations by using Jacobi orthogonal series

Let f δ = f + ̟ be a noisy function defined in an open interval I ⊂ R, where f ∈ Cn+1(I) with n ∈ N and the
noise1 ̟ is bounded and integrable with a noise level δ, i.e. δ = sup

x∈I

|̟(x)|. Contrary to [28] where the nth order

1More generally, the noise is a stochastic process, which is bounded with certain probability and integrable in the sense of convergence
in mean square.



Legendre polynomials were used, we propose to use, as in [20, 21], the nth order Jacobi polynomial so as to obtain
estimates of the nth order derivative of f . The nth order Jacobi polynomials (see [32]) are defined as follows

P (α,β)
n (t) =

n
∑

j=0

(

n+ α

j

)(

n+ β

n− j

)(

t− 1

2

)n−j (
t+ 1

2

)j

(1)

where α, β ∈]−1,+∞[. Let us denote ∀g1, g2 ∈ C0([−1, 1]), 〈g1(·), g2(·)〉α,β =
∫ 1

−1
wα,β(t)g1(t)g2(t)dt, where wα,β(t) =

(1− t)α(1 + t)β is the weight function. Hence, we can denote its associated norm by ‖ · ‖α,β.
We assume in this article that the parameter h > 0 and we denote Ih := {x ∈ I; [x− h, x+ h] ⊂ I}.

2.1. Minimal estimators

In this subsection, let us ignore the noise ̟ for a moment. Then we can define a family of central estimators of
f (n).

Proposition 2.1 Let f ∈ Cn+1(I), then a family of central estimators of f (n) can be given as follows

∀x ∈ Ih, D
(n)
h,α,βf(x) =

1

hn

∫ 1

−1

ρn,α,β(t) f(x+ ht)dt, (2)

where ρn,α,β(t) =
2−(n+α+β+1)n!

B(n+α+1,n+β+1)P
(α,β)
n (t)wα,β(t) with B(n+ α+ 1, n+ β + 1) = Γ(n+α+1) Γ(n+β+1)

Γ(2n+α+β+2) .

Moreover, we have D
(n)
h,α,βf(x) = f (n)(x) +O(h).

Remark 1 In order to compute ρn,α,β, we should calculate P
(α,β)
n whose computational complexity is O(n2). Hence,

the computational effort of ρn,α,β is O(n2).

Proof: By taking the Taylor expansion of f , we obtain for any x ∈ Ih that there exists θ ∈]x− h, x+ h[ such that

f(x+ ht) = f(x) + htf ′(x) + · · ·+
hntn

n!
f (n)(x) +

hn+1tn+1

(n+ 1)!
f (n+1)(θ). (3)

Substituting (3) in (2), we deduce from the classical orthogonal properties of the Jacobi polynomials (see [32]) that

∫ 1

−1

ρn,α,β(t) t
m dt = 0, 0 ≤ m < n, (4)

∫ 1

−1

ρn,α,β(t) t
n dt = (n!). (5)

Using (3), (4) and (5), we can conclude that

D
(n)
h,α,βf(x) =

1

hn

∫ 1

−1

ρn,α,β(t) f(x+ ht)dt = f (n)(x) +O(h).

Hence, this proof is completed. �

In fact, we have taken a nth order truncation in the Taylor expansion of f in Proposition 2.1 where n is the order
of the estimated derivative. Thus, we call these estimators minimal estimators (see [20, 21]). Then, we can deduce
the following corollary.

Corollary 2.2 Let f ∈ Cn+1(I), then by assuming that there exists Mn+1 > 0 such that for any x ∈ I,
∣

∣f (n+1)(x)
∣

∣ ≤
Mn+1, we have

∥

∥

∥
D

(n)
h,α,βf(x)− f (n)(x)

∥

∥

∥

∞

≤ C1h, (6)

where C1 = Mn+1

(n+1)!

∫ 1

−1
|tn+1ρn,α,β(t)| dt.

When α = β the Jacobi polynomials are called ultraspherical polynomials (see [32]). In this case, we can improve
the convergence rate to O(h2) by using the following lemma.



Lemma 2.3 Let P
(α,α)
n be the nth order ultraspherical polynomials, then we have

∫ 1

−1

P (α,α)
n (t)wα,α(t) t

n+l dt = 0, (7)

where l is an odd integer.

Proof: Recall the Rodrigues formula (see [32])

P (α,β)
n (t)wα,β(t) =

(−1)n

2nn!

dn

dtn
[wα+n,β+n(t)], (8)

we get, by substituting (8) in (7) and applying n times integrations by parts, that

∫ 1

−1

P (α,β)
n (t)wα,β(t) t

n+l dt =
(n+ l)!

2n(n!)2

∫ 1

−1

wα+n,β+n(t) t
l dt. (9)

If α = β and l is an odd number then wα+n,β+n(t) t
l is an odd function and the integral in (9) is equal to zero. Hence,

this proof is completed. �

Consequently, we can deduce from Proposition 2.1 and Lemma 2.3 the following corollary.

Corollary 2.4 Let f ∈ Cn+2(I) and α = β in Proposition 2.1, then we obtain

∀x ∈ Ih, D
(n)
h,α,αf(x) = f (n)(x) +O(h2). (10)

Moreover, if we assume that there exists Mn+2 > 0 such that for any x ∈ I,
∣

∣f (n+2)(x)
∣

∣ ≤Mn+2, then we have

∥

∥

∥
D

(n)
h,α,αf(x)− f (n)(x)

∥

∥

∥

∞

≤ Ĉ1h
2, (11)

where Ĉ1 = Mn+2

(n+2)!

∫ 1

−1 |t
n+2ρn,α,α(t)| dt.

We can see in the following proposition the relation between minimal estimators of f and minimal estimators of
f (n).

Proposition 2.5 Let f ∈ Cn+1(I), then we have

∀x ∈ Ih, D
(n)
h,α,βf(x) =

1

(2h)n
Γ(α+ β + 2n+ 2)

Γ(α+ β + n+ 2)

n
∑

j=0

(−1)n+j

(

n

j

)

D
(0)
h,αn,j,βj

f(x), (12)

where αn,j = α+ n− j and βj = β + j.

In order to prove this proposition, we give the following lemma.

Lemma 2.6 For any i ∈ N, we have

∀x ∈ Ih,

〈

P
(α,β)
i (t), f(x+ ht)

〉

α,β

‖P
(α,β)
i ‖2α,β

=

i
∑

j=0

(−1)i+j

(

i

j

)

2i+ α+ β + 1

i+ α+ β + 1
D

(0)
h,αi,j,βj

f(x), (13)

where αi,j = α+ i− j and βj = β + j.

Proof: Observe from the expression of the Jacobi polynomials given in (1) that

P
(α,β)
i (t)wα,β(t) =

1

(−2)i

i
∑

j=0

(

i + α

j

)(

i+ β

i− j

)

(−1)jwαi,j ,βj
(t), (14)



we get

〈

P
(α,β)
i (t), f(x+ ht)

〉

α,β
=

1

(−2)i

i
∑

j=0

(

i+ α

j

)(

i+ β

i− j

)

(−1)j
∫ 1

−1

wαi,j ,βj
(t) f(x + ht) dt. (15)

Then, by using Proposition 2.1 with n = 0 and P
(αi,j ,βj)
0 (t) ≡ 1 we obtain

〈

P
(α,β)
i (t), f(x+ ht)

〉

α,β

‖P
(α,β)
i ‖2α,β

=

i
∑

j=0

(

i+ α

j

)(

i+ β

i− j

)

(−1)j

(−2)i
B(αi,j + 1, βj + 1)2αi,j+βj+1

‖P
(α,β)
i ‖2α,β

D
(0)
h,αi,j ,βj

f(x). (16)

Recall that (see [32])

‖P
(α,β)
i ‖2α,β =

2α+β+1

2i+ α+ β + 1

Γ(α+ i+ 1)Γ(β + i+ 1)

Γ(α+ β + i+ 1)Γ(i+ 1)
, (17)

then the proof is completed by using (17) in (16). �

Proof of Proposition 2.5: From (2), it is easy to show after some calculations that

D
(n)
h,α,βf(x) =

1

(2h)n
Γ(α+ β + 2n+ 1)

Γ(α+ β + n+ 1)

〈

P
(α,β)
n (t), f(x+ ht)

〉

α,β

‖P
(α,β)
n ‖2α,β

. (18)

Hence, this proof can be completed by using Lemma 2.6 and (18). �

Now, we can see in the following proposition that the estimates given in Proposition 2.1 are also equal to the first
term in the Jacobi orthogonal series expansion of f (n)(x + ht) at point t = 0.

Proposition 2.7 Let f ∈ Cn+1(I), then the minimal estimators of f (n) given in Proposition 2.1 can be also written
as follows

∀x ∈ Ih, D
(n)
h,α,βf(x) =

〈

P
(α+n,β+n)
0 (t), f (n)(x+ ht)

〉

α+n,β+n

‖P
(α+n,β+n)
0 ‖2α+n,β+n

P
(α+n,β+n)
0 (0). (19)

Moreover, we have

∀x ∈ Ih, D
(n)
h,α,βf(x) = D

(0)
h,α+n,β+nf

(n)(x). (20)

Proof: By using Rodrigues formula in (2) and applying n times integrations by parts we get

D
(n)
h,α,βf(x) =

1

hn
(−1)n2−(2n+α+β+1)

B(n+ α+ 1, n+ β + 1)

∫ 1

−1

dn

dtn
[wα+n,β+n(t)] f(x+ ht) dt

=
2−(2n+α+β+1)

B(n+ α+ 1, n+ β + 1)

∫ 1

−1

wα+n,β+n(t) f
(n)(x+ ht) dt

= D
(0)
h,α+n,β+nf

(n)(x).

Then, by using P
(α+n,β+n)
0 (t) ≡ 1 and ‖P

(α+n,β+n)
0 ‖2α+n,β+n = 22n+α+β+1B(n+ α+ 1, n+ β + 1), we can achieve

this proof.
�

2.2. Affine estimators

It is shown in Proposition 2.7 that the minimal estimators of f (n)(x) given in Proposition 2.1 are equal to the value
of the 0 order truncated Jacobi orthogonal series expansion of f (n)(x+ ht) at t = 0. Let us assume that f ∈ Cn+1(I),
then we define now the qth (q ∈ N) order truncated Jacobi orthogonal series of f (n)(x+ ht) by the following operator

∀x ∈ Ih, D
(n)
h,α,β,qf(x+ th) :=

q
∑

〈

P
(α+n,β+n)
i (·), f (n)(x+ h·)

〉

α+n,β+n

‖P
(α+n,β+n)

‖2
P

(α+n,β+n)
i (t). (21)



Take t = 0 in (21), we obtain a family of estimators of f (n)(x) with

∀x ∈ Ih, D
(n)
h,α,β,qf(x) =

q
∑

i=0

〈

P
(α+n,β+n)
i (·), f (n)(x+ h·)

〉

α+n,β+n

‖P
(α+n,β+n)
i ‖2α+n,β+n

P
(α+n,β+n)
i (0). (22)

To better explain our method, let us recall some well-known facts. We consider the subspace of C0([−1, 1]), defined
by

Hq = span
{

P
(α+n,β+n)
0 , P

(α+n,β+n)
1 , · · · , P (α+n,β+n)

q

}

. (23)

Equipped with the inner product 〈·, ·〉α+n,β+n, Hq is clearly a reproducing kernel Hilbert space [1], [31], with the
reproducing kernel

Kq(τ, t) =

q
∑

i=0

P
(α+n,β+n)
i (τ)P

(α+n,β+n)
i (t)

‖P
(α+n,β+n)
i ‖2α+n,β+n

. (24)

The reproducing property implies that for any function f (n)(x+ h·) belonging to C0([−1, 1]), we have

〈

Kq(·, t), f
(n)(x+ h·)

〉

α+n,β+n
= D

(n)
h,α,β,qf(x+ th), (25)

where D
(n)
h,α,β,qf(x+ h·) stands for the orthogonal projection of f (n)(x+ h·) on Hq. Thus, the estimators given in (22)

can be obtained by taking t = 0.

We will see in the following proposition that the estimators D
(n)
h,α,β,qf(x) can be written as an affine combination

of different minimal estimators. These estimators are called affine estimators as in [20].

Proposition 2.8 Let f ∈ Cn+1(I), then we have

∀x ∈ Ih, D
(n)
h,α,β,qf(x) =

q
∑

i=0

P
(α+n,β+n)
i (0)

2i+ α+ β + 2n+ 1

i+ α+ β + 2n+ 1

i
∑

j=0

(−1)i+j

(

i

j

)

D
(n)
h,αi,j,βj

f(x), (26)

where q ∈ N, αi,j = α+ i− j and βj = β + j. Moreover, we have

q
∑

i=0

P
(α+n,β+n)
i (0)

2i+ α+ β + 2n+ 1

i+ α+ β + 2n+ 1

i
∑

j=0

(−1)i+j

(

i

j

)

= 1. (27)

Proof: By replacing α by α+ n, β by β + n and f(x+ ht) by f (n)(x + ht) in Lemma 2.6, we obtain

〈

P
(α+n,β+n)
i (t), f (n)(x+ ht)

〉

α+n,β+n

‖P
(α+n,β+n)
i ‖2α+n,α+n

=

i
∑

j=0

(−1)i+j

(

i

j

)

2i+ α+ β + 2n+ 1

i+ α+ β + 2n+ 1
D

(0)
h,αi,j+n,βj+nf

(n)(x). (28)

Then (26) can be obtained by using (20) and (22). By using the Binomial relation, (27) can be easily obtained. �

Hence, by using Proposition 2.1 an explicit formulation of these affine estimators is obtained in the following
corollary.

Corollary 2.9 Let f ∈ Cn+1(I), then the affine estimators of f (n) can be written as

∀x ∈ Ih, D
(n)
h,α,β,qf(x) =

1

hn

∫ 1

−1

Qα,β,n,q(t) f(x+ ht) dt, (29)

where

Qα,β,n,q(t) =

q
∑

i=0

P
(α+n,β+n)
i (0)

i
∑

j=0

(−1)i+j

(

i

j

)

2i+ α+ β + 2n+ 1

i+ α+ β + 2n+ 1
ρn,αi,j ,βj

(t) (30)

with q ∈ N, ρn,αi,j ,βj
given in Proposition 2.1 and αi,j = α+ i− j, βj = β + j.



Consequently these affine estimators are also differentiation by integration estimators.

Remark 2 Qα,β,n,q is a sum of 1
2 (q+1)(q+2) terms. According to Remark 1, the computational effort of each term

is O(n2). Hence, the computational effort of Qα,β,n,q is also O(n2).

It is shown in Proposition 2.1 that the convergence rate of minimal estimators is O(h). We will see in the following
proposition that the convergence rate of affine estimators can be improved to O(hq+1).

Proposition 2.10 Let f ∈ Cn+1+q(I) with q ∈ N, then we have

∀x ∈ Ih, D
(n)
h,α,β,qf(x) = f (n)(x) +O(hq+1). (31)

Moreover, if we assume that there exists Mn+1+q > 0 such that for any x ∈ I,
∣

∣f (n+1+q)(x)
∣

∣ ≤Mn+1+q, then we have

∥

∥

∥
D

(n)
h,α,β,qf(x)− f (n)(x)

∥

∥

∥

∞

≤ C2h
q+1, (32)

where C2 =
Mn+1+q

(n+1+q)!

∫ 1

−1
|tn+1+qQα,β,n,q(t)| dt.

Proof: By taking the Taylor expansion of f , we get for any x ∈ Ih there exists ξ ∈]x− h, x+ h[ such that

f(x+ ht) = fn+q(x + ht) +
hn+1+qtn+1+q

(n+ 1 + q)!
f (n+1+q)(ξ), (33)

where fn+q(x+ ht) =

n+q
∑

j=0

hjtj

j!
f (j)(x) is the (n+ q)th order truncated Taylor series expansion of f(x+ ht).

Let us take the Jacobi orthogonal series expansion of f
(n)
n+q(x+ ht). Then by taking t = 0, we obtain

f
(n)
n+q(x) =

q
∑

i=0

〈

P
(α+n,β+n)
i (t), f

(n)
n+q(x+ ht)

〉

α+n,β+n

‖P
(α+n,β+n)
i ‖2α+n,α+n

P
(α+n,β+n)
i (0). (34)

Similarly to (22) we obtain

f
(n)
n+q(x) =

1

hn

∫ 1

−1

Qα,β,n,q(t)fn+q(x+ ht)dt, (35)

from (29) where Qα,β,n,q is given in Corollary 2.9 by (30).

By calculating the value of the nth order derivative of f
(n)
n+q at t = 0, we obtain f

(n)
n+q(x) = f (n)(x). Then by using

(29) and (35) we obtain

D
(n)
h,α,β,qf(x)− f (n)(x) =

1

hn

∫ 1

−1

Qα,β,n,q(t) [f(x+ ht)− fn+q(x+ ht)] dt

=
hq+1

(n+ 1 + q)!

∫ 1

−1

Qα,β,n,q(t)t
n+1+qf (n+1+q)(ξ)dt

=O(hq+1).

Consequently, if for any x ∈ I
∣

∣f (n+1+q)(x)
∣

∣ ≤Mn+1+q, then we have

∥

∥

∥
D

(n)
h,α,β,qf(x)− f (n)(x)

∥

∥

∥

∞

≤ hq+1 Mn+1+q

(n+ 1 + q)!

∫ 1

−1

|tn+1+qQα,β,n,q(t)| dt.

�

We can deduce that the affine estimator for f (n)(x) obtained by taking the qth order truncated Jacobi orthogonal
series expansion of f (n)(x+ h·) can be also obtained by taking the (n+ q)th order truncated Taylor series expansion
of f with a scalar product of Jacobi polynomials.



Moreover, let fn+q(x+ht) = fn(x+ht)+rq(x+ht) where rq(x+ht) =

n+q
∑

j=n+1

hjtj

j!
f (j)(x) for q ≥ 1 and rq(x+ht) = 0

for q = 0, then (34) becomes

f
(n)
n+q(x) =

q
∑

i=0

〈

P
(α+n,β+n)
i (t), f

(n)
n (x + ht)

〉

α+n,β+n

‖P
(α+n,β+n)
i ‖2α+n,α+n

P
(α+n,β+n)
i (0) +R,

where R =

q
∑

i=0

〈

P
(α+n,β+n)
i (t), r

(n)
q (x + ht)

〉

α+n,β+n

‖P
(α+n,β+n)
i ‖2α+n,α+n

P
(α+n,β+n)
i (0).

Observe that f
(n)
n (x+h·) is a 0th order polynomial, then by using the orthogonal properties of P

(α+n,β+n)
i we have

q
∑

i=0

〈

P
(α+n,β+n)
i (t), f

(n)
n (x+ ht)

〉

α+n,β+n

‖P
(α+n,β+n)
i ‖2α+n,α+n

P
(α+n,β+n)
i (0)

=

〈

P
(α+n,β+n)
0 (t), f

(n)
n (x+ ht)

〉

α+n,β+n

‖P
(α+n,β+n)
0 ‖2α+n,α+n

P
(α+n,β+n)
0 (0) = f (n)

n (x).

By calculating the value of the nth order derivative of f
(n)
n+q and f

(n)
n at t = 0, we obtain f

(n)
n+q(x) = f

(n)
n (x) = f (n)(x).

Hence, we get R = 0. Hence, we can deduce that

R =
1

hn

∫ 1

−1

Qα,β,n,q(t)rq(x+ ht)dt = 0, (36)

where Qα,β,n,q is given in Corollary 2.9 by (30).
Consequently, (36) explains why the convergence rate can be improved from O(h) to O(hq+1): the price to pay is

some more smoothness hypotheses on the function f .
If we consider the noisy function f δ, then it is sufficient to replace f(x+ h·) in (29) by f δ(x+ h·) so as to estimate

f (n)(x). Then we have the following definition.

Definition 2.11 Let f δ = f + ̟ be a noisy function, where f ∈ Cn+1(I) and ̟ is a bounded and integrable noise
with a noise level δ. Then a family of estimators of f (n) is defined as follows

∀x ∈ Ih, D
(n)
h,α,β,qf

δ(x) =
1

hn

∫ 1

−1

Qα,β,n,q(t) f
δ(x+ ht) dt, (37)

where Qα,β,n,q is given by (30).

In the following proposition we study the estimation error for these estimators.

Proposition 2.12 Let f δ be a noisy function where f ∈ Cn+1+q(I) and ̟ is a bounded and integrable noise with a
noise level δ, then

∥

∥

∥
D

(n)
h,α,β,qf

δ(x) − f (n)(x)
∥

∥

∥

∞

≤ C2h
q+1 + C3

δ

hn
, (38)

where C2 is given in Proposition 2.10 and C3 =
∫ 1

−1 |Qα,β,n,q(t)| dt.

Moreover, if we choose h =
[

nC3

(q+1)C2
δ
]

1
n+q+1

, then we have

∥

∥

∥
D

(n)
h,α,β,qf

δ(x)− f (n)(x)
∥

∥

∥

∞

= O(δ
q+1

n+1+q ). (39)

Proof: Since

∥

∥

∥
D

(n)
h,α,β,qf

δ(x) −D
(n)
h,α,β,qf(x)

∥

∥

∥
=
∥

∥

∥
D

(n)
h,α,β,q

[

f δ(x) − f(x)
]

∥

∥

∥
≤

δ

hn

∫ 1

|Qα,β,n,q(t)| dt,



by using Proposition 2.10 we get

∥

∥

∥
D

(n)
h,α,β,qf

δ(x) − f (n)(x)
∥

∥

∥

∞

≤
∥

∥

∥
D

(n)
h,α,β,qf

δ(x)−D
(n)
h,α,β,qf(x)

∥

∥

∥

∞

+
∥

∥

∥
D

(n)
h,α,β,qf(x)− f (n)(x)

∥

∥

∥

∞

≤ C2h
q+1 + C3

δ

hn
,

where C3 =
∫ 1

−1
|Qα,β,n,q(t)| dt. Let us denote the error bound by ψ(h) = C2h

q+1 + C3
δ
hn . Consequently, we can

calculate its minimum value. It is obtained for h∗ =
[

nC3

(q+1)C2
δ
]

1
n+q+1

and

ψ(h∗) =
n+ 1 + q

q + 1

(

q + 1

n

)
n

n+1+q

C
n

n+1+q

2 C
q+1

n+1+q

3 δ
q+1

n+1+q . (40)

Then, the proof is completed. �

In Proposition 2.8, we improve the convergence rate from O(h) to O(hq+1) (q ∈ N) for the exact function f by
taking an affine combination of minimal estimators of f (n). Here, the convergence rate is also improved for noisy

functions. It passes from O(δ
1

n+1 ) to O(δ
q+1

n+1+q ) if we choose h = c δ
1

n+1+q , where c is a constant.

Remark 3 Usually, the sampling data are given in discrete case. We should use a numerical integration method to
approximate the integrals in our estimators. This numerical method will produce a numerical error. Hence, we always
set the value of h larger than the optimal one calculated in the previous proof.

We have seen in the previous subsection that the convergence rate of minimal estimators can be improved to O(h2)
when α = β. Let us then study the convergence rate of affine estimators in this case.

Corollary 2.13 Let f ∈ Cn+2+q(I) where q is an even integer. If we set α = β in (22), then we have

∀x ∈ Ih, D
(n)
h,α,α,qf(x) = f (n)(x) +O(hq+2). (41)

Moreover, if we assume that there exists Mn+2+q > 0 such that for any x ∈ I,
∣

∣f (n+q+2)(x)
∣

∣ ≤Mn+2+q, then we have

∥

∥

∥
D

(n)
h,α,α,qf(x)− f (n)(x)

∥

∥

∥

∞

≤ Ĉ2h
q+2, (42)

where Ĉ2 =
Mn+2+q

(n+q+2)!

∫ 1

−1 |t
n+q+2Qα,n,q(t)| dt and

Qα,n,q(t) =

q
2
∑

i=0

P
(α+n,α+n)
2i (0)

2i
∑

j=0

(−1)j
(

2i

j

)

4i+ 2α+ 2n+ 1

2i+ 2α+ 2n+ 1
ρn,α2i,j ,βj

(t) (43)

with ρn,α2i,j ,βj
given in Proposition 2.1 and α2i,j = α+ 2i− j, βj = α+ j.

Proof: Observe that P
(α+n,α+n)
q+1 (−t) = (−1)(q+1)P

(α+n,α+n)
q+1 (t) for any t ∈ [−1, 1] (see [32] p.80), we obtain

P
(α+n,α+n)
q+1 (0) = 0. Hence, (22) becomes

D
(n)
h,α,α,qf(x) =

q+1
∑

i=0

〈

P
(α+n,α+n)
i (t), f (n)(x+ ht)

〉

α+n,α+n

‖P
(α+n,α+n)
i ‖2α+n,α+n

P
(α+n,α+n)
i (0).

If f ∈ Cn+2+q(I), then let us take fn+q+1 as the (n+ q+1)th order truncated Taylor series expansion of f(x+ht).

By taking the Jacobi orthogonal series expansion of f
(n)
n+q+1

f
(n)
n+q+1(x) =

q+1
∑

i=0

〈

P
(α+n,α+n)
i (t), f

(n)
n+q+1(x+ ht)

〉

α+n,α+n

‖P
(α+n,α+n)
i ‖2α+n,α+n

P
(α+n,α+n)
i (0),



we obtain

D
(n)
h,α,α,qf(x)− f (n)(x) = D

(n)
h,α,α,qf(x)− f

(n)
n+q+1(x)

=

q+1
∑

i=0

〈

P
(α+n,α+n)
i (t), f (n)(x+ ht)− f

(n)
n+q+1(x + ht)

〉

α+n,α+n

‖P
(α+n,α+n)
i ‖2α+n,α+n

P
(α+n,α+n)
i (0)

=
1

hn

∫ 1

−1

Qα,α,n,q(t) [f(x+ ht)− fn+q+1(x+ ht)] dt

=
hq+2

(n+ 2 + q)!

∫ 1

−1

Qα,α,n,q(t)t
n+2+qf (n+2+q)(ξ′)dt, ξ′ ∈]x− h, x+ h[

= O(hq+2).

Consequently, (42) follows directly from the hypothesis on
∣

∣f (n+q+2)(x)
∣

∣. Since P
(α+n,α+n)
i (0) = 0 for any odd integer

i, (43) can be obtained by using (30). Then this proof is completed. �

Remark 4 According to [25], we can deduce the asymptotic behavior of the number ξ′ when h→ 0+

lim
h→0+

|ξ′ − x|

h
=

1

n+ q + 3
. (44)

Similarly to Proposition 2.12, we can obtain the following corollary.

Corollary 2.14 Let f ∈ Cn+2+q(I) where q is an even integer. If α = β in Definition 2.11, then the estimation error

for D
(n)
h,α,α,qf

δ(x) is given by
∥

∥

∥
D

(n)
h,α,α,qf

δ(x)− f (n)(x)
∥

∥

∥

∞

≤ Ĉ2h
q+2 + C3

δ

hn
,

where Ĉ2 is given in Corollary 2.13 and C3 is given in Proposition 2.12.

Moreover, if we choose ĥ =
[

nC3

(q+2)Ĉ2
δ
]

1
n+q+2

, then we have

∥

∥

∥
D

(n)
h,α,α,qf

δ(x)− f (n)(x)
∥

∥

∥

∞

= O(δ
q+2

n+2+q ).

In the following proposition, if we assume that f ∈ Cn−1(I) then we can define the generalized derivative of f (n).
We can see that if the right and left hand derivatives for the nth order exist, then this generalized derivative converges
to the average value of these one-sided derivatives.

Proposition 2.15 Let f ∈ Cn−1(I), then we define the generalized derivative of f (n) by

∀x ∈ Ih, D
(n)
h,α,α,qf(x) =

1

hn

∫ 1

−1

Qα,n,q(t) f(x+ ht) dt, (45)

where Qα,n,q is defined by (43). Moreover, if f
(n)
+ (x) and f

(n)
−

(x) exist at any point x ∈ Ih, then we have

lim
h→0+

D
(n)
h,α,α,qf(x) =

1

2

(

f
(n)
+ (x) + f

(n)
−

(x)
)

, (46)

where f
(n)
+ (resp. f

(n)
−

) denotes the right (resp. left) hand derivative for the nth order.

Before proving this proposition, let us give the following lemma.

Lemma 2.16 Let n ∈ N and Qα,n,q be the function defined on [−1, 1] by (43) where q is an even integer. If n is even
then Qα,n,q is also even, odd else.



Proof: By taking α = β in (22), we obtain

∀x ∈ Ih, D
(n)
h,α,α,qf(x) =

q
∑

i=0

P
(α+n,α+n)
i (0)

‖P
(α+n,α+n)
i ‖2α+n,α+n

∫ 1

−1

P
(α+n,α+n)
i (t)wα+n,α+n(t)f

(n)(x+ ht)dt. (47)

By using (14) and replacing α, β by α+ n, we get for l = 0, · · · , n− 1

dl

dtl

[

P
(α+n,α+n)
i (t)wα+n,α+n(t)

]

=
1

(−2)i

i
∑

j=0

(

i+ α+ n

j

)(

i+ α+ n

i− j

)

(−1)j
dl

dtl

[

wαi+n,j ,αj+n
(t)
]

,

where αi+n,j = α+ i+ n− j, αj+n = α+ j + n. Then, by applying the Rodrigues formula, we get

dl

dtl

[

P
(α+n,α+n)
i (t)wα+n,α+n(t)

]

=
l!

2i−l

i
∑

j=0

(

i+ α+ n

j

)(

i+ α+ n

i− j

)

(−1)j+i+lP
(αi+n−l,j ,αj+n−l)
n (t)wαi+n−l,j ,αj+n−l

(t),

where αi+n−l,j = α+ i+ n− j − l, αj+n−l = α+ j + n− l. Hence, we get that dl

dtl
[P

(α+n,α+n)
i wα+n,α+n] are equal to

0 at −1 and 1. Thus, by applying n times integrations by parts in (47), we obtain

∀x ∈ Ih, D
(n)
h,α,α,qf(x) =

(−1)n

hn

q
∑

i=0

P
(α+n,α+n)
i (0)

‖P
(α+n,α+n)
i ‖2α+n,α+n

∫ 1

−1

dn

dtn

[

P
(α+n,α+n)
i (t)wα+n,α+n(t)

]

f(x+ ht)dt. (48)

By using Corollary 2.10 with α = β, we get

Qα,n,q(t) = (−1)n
q
∑

i=0

P
(α+n,α+n)
i (0)

‖P
(α+n,α+n)
i ‖2α+n,α+n

dn

dtn

[

P
(α+n,α+n)
i (t)wα+n,α+n(t)

]

. (49)

Since P
(α+n,α+n)
i (0) = 0 for any odd integer i, (49) becomes

Qα,n,q(t) = (−1)n

q
2
∑

i=0

P
(α+n,α+n)
2i (0)

‖P
(α+n,α+n)
2i ‖2α+n,α+n

dn

dtn

[

P
(α+n,α+n)
2i (t)wα+n,α+n(t)

]

. (50)

Since P
(α+n,α+n)
2i (−t) = P

(α+n,α+n)
2i (t) (see [32]) and wα+n,α+n(−t) = wα+n,α+n(t), we have

dn

dtn

[

P
(α+n,α+n)
2i (t)wα+n,α+n(t)

]

= (−1)n
dn

dtn

[

P
(α+n,α+n)
2i (−t)wα+n,α+n(−t)

]

.

Thus, we have Qα,n,q(t) = (−1)nQα,n,q(−t). Then this proof is completed. �

Proof of Proposition 2.15: Let us recall the local Taylor formula with the Peano remainder term [37]. For any
given ε′ > 0, there exists δ > 0 such that

∣

∣

∣

∣

∣

f(x+ ht)− fn−1(x+ ht)−
f
(n)
−

(x)

n!
(ht)n

∣

∣

∣

∣

∣

< ε′|ht|n, for δ < ht < 0, (51)

and
∣

∣

∣

∣

∣

f(x+ ht)− fn−1(x + ht)−
f
(n)
+ (x)

n!
(ht)n

∣

∣

∣

∣

∣

< ε′(ht)n, for 0 < ht < δ, (52)

where fn−1(x+ ht) is the (n− 1)th order truncated Taylor series expansion of f(x+ ht). Let us consider the function
g(x) = xn the nth order derivative of which is equal to (n!). Thus, by using (22) we have

∀x ∈ Ih, D
(n)
h,α,α,qg(x) = (n!).



Thus, by applying Corollary 2.9 with α = β, we get

∀x ∈ Ih, D
(n)
h,α,α,qg(x) =

1

hn

∫ 1

−1

Qα,n,q(t) g(x+ ht) dt = (n!).

In particular, by taking x = 0 we get 1
hn

∫ 1

−1
Qα,n,q(t) (ht)

n dt = (n!). According to Lemma 2.16, tnQα,n,q(t) with

t ∈ [−1, 1] is an odd function. Hence, we have 1
hn

∫ 0

−1Qα,n,q(t) (ht)
n dt = 1

hn

∫ 1

0 Qα,n,q(t) (ht)
n dt. Thus, we get

1

hn

∫ 0

−1

Qα,n,q(t)
f
(n)
−

(x)

n!
(ht)n dt =

1

2
f
(n)
−

(x), (53)

and
1

hn

∫ 1

0

Qα,n,q(t)
f
(n)
+ (x)

n!
(ht)n dt =

1

2
f
(n)
+ (x). (54)

By using (22) and Corollary 2.9 with α = β we get

∀x ∈ Ih, D
(n)
h,α,α,qfn−1(x) =

1

hn

∫ 1

−1

Qα,n,q(t) fn−1(x+ ht) dt = 0. (55)

Hence, by using (53), (54) and (55) we obtain

∣

∣

∣

∣

D
(n)
h,α,α,qf(x)−

1

2

(

f
(n)
+ (x) + f

(n)
−

(x)
)

∣

∣

∣

∣

≤
1

hn

∫ 0

−1

∣

∣

∣

∣

∣

Qα,n,q(t)

(

f(x+ ht)− fn−1(x+ ht)−
f
(n)
−

(x)

n!
(ht)n

)∣

∣

∣

∣

∣

dt

+
1

hn

∫ 1

0

∣

∣

∣

∣

∣

Qα,n,q(t)

(

f(x+ ht)− fn−1(x+ ht)−
f
(n)
+ (x)

n!
(ht)n

)
∣

∣

∣

∣

∣

dt.

(56)

By using (43), we get

∫ 1

0

|Qα,n,q(t)| dt ≤

q
2
∑

i=0

∣

∣

∣
P

(α+n,α+n)
2i (0)

∣

∣

∣

2i
∑

j=0

(

2i

j

)

4i+ 2α+ 2n+ 1

2i+ 2α+ 2n+ 1

∫ 1

0

∣

∣ρn,α2i,j ,βj
(t)
∣

∣ dt. (57)

Then, according to (2) and (14) we can obtain that
∫ 1

0

∣

∣ρn,α2i,j ,βj
(t)
∣

∣ dt <∞. Hence,

∫ 1

0

|Qα,n,q(t) t
n| dt ≤

∫ 1

0

|Qα,n,q(t)| dt <∞.

Consequently, for any ε > 0, by using (56), (51) and (52) with ε = 2ε′
∫ 1

0 |Qα,n,q(t) t
n| dt, there exists δ such that

0 < h < δ and
∣

∣

∣

∣

D
(n)
h,α,α,qf(x)−

1

2

(

f
(n)
+ (x) + f

(n)
−

(x)
)

∣

∣

∣

∣

< ε.

Then, this proof can be completed. �

3. Numerical tests

In order to demonstrate the efficiency and the stability of the previously proposed estimators, we present some
numerical results in this section. First of all, we analyze the choice of parameters for these estimators.
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Figure 1: Values of C3.
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Figure 2: Values of log10 C4 and log10 C3.

3.1. Analysis for parameters’ choice for the bias term error and the noise error

As it is shown previously, the proposed estimators contain two sources of errors: the bias term error which is
produced by the truncation of the Jacobi orthogonal series expansion and the noise error contribution. The error
bounds for these errors are given in Corollary 2.14. We are going to use the knowledge of the parameters’ influence
to these errors bounds. This will help us to obtain a tendency on the influence of these parameters on the estimation
errors.

According to Corollary 2.13, we set α = β and choose the truncation order q to be an even integer. On one
hand, it is clear that we should set q as large as possible so as to improve the convergence rate and reduce the
bias term error. On the other hand, the noise error contribution is bounded in Corollary 2.14 by Bnoise = C3

δ
hn

where C3 =
∫ 1

−1
|Qα,n,q(t)| dt. We can see in Figure 1 the different values of C3 where n = 1, 2, q = 0, 2, · · · , 8 and

α = 0, 1, · · · , 10. It is clear that with the same values for n and α, C3 increases with respect to q. Furthermore, it is
easy to verify that C3 increases with respect to q, independently of n and α. Hence, in order to reduce the bias term
error and to avoid a large noise error, we set q = 4 in our estimators. With this value, according to Corollary 2.14 the

convergence rate is O(δ
6

n+6 ).

The bias term error is bounded by Bbias = Ĉ2h
q+2 in Corollary 2.14 where Ĉ2 =

Mn+2+q

(n+q+2)!

∫ 1

−1 |t
n+q+2Qα,n,q(t)| dt.

Let us introduce C4 =
∫ 1

−1 |t
n+q+2Qα,n,q(t)| dt. We can see in Figure 2 the different values of log10 C4 and log10 C3

when n = 1, · · · , 4, q = 4 and α = 0, 1, · · · , 10. It is clear that C4 decreases with respect to α while C3 increases with



respect to α. Thus, in order to reduce the bias term error, we should set α as large as possible. However, a large value
of α may produce a large noise error contribution. Here, we choose α = 5.

Until here, we have chosen q = 4 and α = 5. The noise error decreases with respect to h and the bias term error
increases with respect to h. In the next subsection we are going to chose an appropriate value for h by using the
knowledge of function f and by taking into account the numerical integration method error.
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(c) n = 3, α = 5, q = 4 and h = 777Ts .
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(d) n = 4, α = 5, q = 4 and h = 850Ts.

Figure 3: The exact values of f
(n)
1 (xi) and the estimated values D

(n)
h,α,α,q

f1(xi) for δ = 0.15.

3.2. Simulation results

The tests are performed by using Matlab R2007b. Let f δ(xi) = f(xi) + c̟(xi) be a generated noise data with an
equidistant sampling period Ts = 10−3 where c > 0. The noise c̟(xi) are simulated from a zero-mean white Gaussian
iid sequence by the Matlab function ’randn’ with STATE reset to 0. By using the well known three-sigma rule, we
can assume that the noise level for c̟ is equal to 3c. We use the trapezoidal method to approximate the integrals in
our estimators with 2m+ 1 values. The estimated derivatives of f at the point xi ∈ I = [−2, 2] are calculated from
the noise data f δ(xj) with xj ∈ [−xi − h, xi + h], where h = mTs and 2m + 1 is the number of sampling data used
to calculate our estimation inside the sliding integration windows. When all the parameters are chosen, Qα,β,n,q in
the integrals of our estimators can be calculated explicitly by off-line work with the O(n2) complexity. Hence, our
estimators can be written like a discrete convolution product of these pre-calculated coefficients. Thus, we only need
2m+ 1 multiplications and 2m additions to calculate each estimation.

The numerical integration method has an approximation error. Thus, the total error for our estimators can be
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(a) n = 1, α = 5, q = 4 and h = 442Ts .
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(b) n = 2, α = 5, q = 4 and h = 549Ts.
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(c) n = 3, α = 5, q = 4 and h = 643Ts .
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(d) n = 4, α = 5, q = 4 and h = 733Ts.

Figure 4: The exact values of f
(n)
2 (xi) and the estimated values D

(n)
h,α,α,q

f2(xi) for δ = 0.15.

bounded by
∣

∣

∣
Tm
(

Qα,n,q(·) f
δ(xi + h·)

)

− f (n)(xi)
∣

∣

∣
≤
∣

∣Tm
(

Qα,n,q(·) f
δ(xi + h·)

)

− Tm (Qα,n,q(·) f(xi + h·))
∣

∣

+
∣

∣

∣
Tm (Qα,n,q(·) f(xi + h·))−D

(n)
h,α,α,qf(xi)

∣

∣

∣
+
∣

∣

∣
D

(n)
h,α,α,qf(xi)− f (n)(xi)

∣

∣

∣

≤ Bnoise +Bnum +Bbias = Btotal,

where Tm (Qα,n,q(·) f(xi + h·)) (resp. Tm
(

Qα,n,q(·) f
δ(xi + h·)

)

) is the numerical approximation to D
(n)
h,α,α,qf(xi)

(resp. D
(n)
h,α,α,qf

δ(xi)) with the trapezoidal method and Bnum is the well-known error bound for the numerical
integration error [30]:

∣

∣

∣
D

(n)
h,α,α,qf(xi)− Tm (Qα,n,q(·) f(xi + h·))

∣

∣

∣
≤

23

12(2m)2
sup

t∈[−1,1]

(Qα,n,q(t) f(xi + ht))(2) = Bnum. (58)

We are going to set the value of m such that Btotal reaches its minimum and consequently the total errors in the
two following examples can be minimized. For this, we need to calculate some values of f (k) with k = 0, · · · , n+ q+2.
According to Remark 4, we calculate the value ofMn+2+q in the interval [−2− h

n+q+3 , 2+
h

n+q+3 ]. However, in practice,
the function f is unknown.

Example 1. We choose f1(x) = sin(2πx)e−x2

as the exact function. The numerical results are shown in Figure 3,

where the noise level δ is equal to 0.15. The solid lines represent the exact derivative values of f
(n)

for n = 1, 2, 3, 4
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(a) n = 1, α = 5, q = 4 and h = 442Ts .
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(b) n = 2, α = 5, q = 4 and h = 549Ts.
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(c) n = 3, α = 5, q = 4 and h = 643Ts .
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Figure 5: The estimation errors for the estimated values D
(n)
h,α,α,q

f2(xi) for δ = 0.15.
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Figure 7: The estimation errors and their corresponding error bounds for D
(n)
hi,5,5,4

f2(xi) with varyings values of hi for δ = 0.15.

and the dash dot lines represent the estimated derivative values D
(n)
h,α,α,qf1(xi). Moreover, we give in Table 1 the total

errors values max
xi∈[2,2]

∣

∣

∣
D

(n)
h,α,α,qf1(xi)− f

(n)
1 (xi)

∣

∣

∣
for the following noise levels: δ = 0.15 and δ = 0.015. We can see also

the total error values produced with a larger sampling period T ′

s = 10Ts = 10−2.

Table 1: max
xi∈[2,2]

∣

∣

∣
D

(n)
h,5,5,4f1(xi)− f

(n)
1 (xi)

∣

∣

∣
.

δ n = 1 (m) n = 2 (m) n = 3 (m) n = 4 (m)
0.15 9.45e− 002 (591) 1.1 (698) 1.258e+ 001 (777) 1.278e+ 002 (850)
0.015 1.85e− 002 (425) 2.951e− 001 (523) 3.888 (601) 4.588e+ 001 (675)

0.015 (T ′

s = 0.01) 4.06e− 002 (47) 5.645e− 001 (55) 7.359 (62) 9.686e+ 001 (69)

Example 2. When f2(x) = ex
2

, we give our numerical results in Figure 4 with the noise level δ = 0.15, where the cor-

responding errors are given in Figure 5. In Table 2, we also give the total error values max
xi∈[2,2]

∣

∣

∣
D

(n)
h,α,α,qf2(xi)− f

(n)
2 (xi)

∣

∣

∣

for δ = 0.15 and δ = 0.015, where the total error values are produced with Ts and a larger sampling period T ′

s = 10−2.

Table 2: max
xi∈[2,2]

∣

∣

∣
D

(n)
h,5,5,4f2(xi)− f

(n)
2 (xi)

∣

∣

∣
.

δ n = 1 (m) n = 2 (m) n = 3 (m) n = 4 (m)
0.15 1.42e− 001 (442) 2.152 (549) 2.982e+ 001 (643) 3.756e+ 002 (733)
0.015 2.22e− 002 (346) 4.435e− 001 (428) 5.973 (510) 8.769e+ 001 (595)

0.015 (T ′

s = 0.01) 3.404e− 001 (54) 3.425 (61) 3.638e+ 001 (68) 5.235e+ 002 (79)

We can see in Figure 5 that the maximum of the total error for each estimation (solid line) is produced nearby
the extremities where the bias terms error plus the numerical error (dash line) are much larger than the noise error.
The noise error (dash dot line) is much larger elsewhere. This is due to the fact that the total error bound Btotal

is calculated globally in the interval [−h − 2, 2 + h]. The value of m with which Btotal reaches its minimum is used

for all the estimations D
(n)
h,α,α,qf2(xi) with xi ∈ [−2, 2]. This value is only appropriate for the estimations nearby the

extremities, but not for the others. In fact, when the bias term error and the numerical integration error decrease, we
should increase the value of m so as to reduce the noise errors. In order to improve our estimations, we can choose
locally the value of m = mi, i.e. we search the value mi which minimizes Btotal on [−hi+xi, xi+hi] where hi = miTs.

We can see in Figure 6 the errors for these improved estimations D
(n)
hi,5,5,4

f(xi). The different values of mi are also
given in Figure 6. The corresponding error bounds are given in Figure 7. We can observe that the error bounds
proposed in this paper are correct but not optimal. However, the parameters’ influence to these error bounds can help
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(a) δ = 0.15, n = 1, α = 5, q = 4 and h = 1700Ts.
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(b) δ = 0.015, n = 1, α = 5, q = 4 and h = 1200Ts .
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(c) δ = 0.15, n = 2, α = 5, q = 4 and h = 1700Ts.
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(d) δ = 0.015, n = 2, α = 5, q = 4 and h = 1200Ts .
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(e) δ = 0.15, n = 3, α = 2, q = 2 and h = 1700Ts.
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(f) δ = 0.015, n = 3, α = 2, q = 2 and h = 1500Ts .

Figure 8: The exact values of f
(n)
3 (xi) and the estimated values D

(n)
h,α,α,q

f3(xi).

us to know the tendency of errors so as to choose parameters for our estimations. On one hand, the chosen parameters
may not optimal, but as we have seen in our examples, they give good estimations. On the other hand, the optimal
parameters qop, αop and mop with which the total error bound reaches its minimum may not give the best estimation.
That is why we only use these error bounds to choose the value of m.



Example 3. Let us consider the following function

f3(x) =











−
1

6
x3 + 2x, if x ≤ 0,

1

6
x3 + 2x, if x > 0,

which is C2 on I = [−2, 2]. The second derivative of f3 is equal to |x|. Consequently, f
(3)
3 does not exist at x = 0. If

n ≥ 1, then this function does not satisfy the condition f ∈ Cn+2+q(I) of Corollary 2.14. The numerical results are
shown in Figure 8, where the sampling period is Ts = 10−3 and the noise level δ is equal to 0.15 and 0.015 respectively.

The solid lines represent the exact derivative values of f
(n)
3 for n = 1, 2, 3 and the dash dot lines represent the estimated

derivative values D
(n)
h,α,α,qf3(xi). For the estimations of f (1) and f (2), we set α = 5 and q = 4. When we estimate f (3),

the noise error increases. Hence, we need to decrease the values of α and q to α = 2 and q = 2. In Table 3, we give

also the total error values max
xi∈[2,2]

∣

∣

∣
D

(n)
h,α,α,qf3(xi)− f

(n)
3 (xi)

∣

∣

∣
for n = 1, 2 and δ = 0.015, 0.15.

Table 3: max
xi∈[2,2]

∣

∣

∣
D

(n)
h,5,5,4f3(xi)− f

(n)
3 (xi)

∣

∣

∣
.

δ n = 1 (m) n = 2 (m)
0.15 9.7e− 003 (1700) 9.65e− 002 (1700)
0.015 4.7e− 003 (1200) 7.23e− 002 (1200)
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[11] R. Gorenflo, S. Vessella, Abel integral equations: Analysis and applications, Lecture Notes in Mathematics, vol.
1461, Springer-Verlag, Berlin, 1991.



[12] M. Hanke, O. Scherzer, Error analysis of an equation error method for the identification of of the diffusion
coefficient in a quasi-linear parabolic differentical equation, SIAM J. Appl. Math. 59 (1999) 1012-1027 (electronic).
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