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EXISTENCE OF A CAPILLARY SURFACE WITH PRESCRIBED CONTACT ANGLE

IN M × R

MARIA CALLE AND LEILI SHAHRIYARI

Abstract. We study the prescribed mean curvature equation with a prescribed boundary contact angle
condition in M × R where M

n is a Riemannian submanifold in Rn+1. The main purpose is to establish a
priori gradient estimates for solutions, from which the long time existence of the solution are derived.

1. Introduction

In this paper we discuss the existence of solution u of the Capillary problem

(1.0.1)
(a) div(Du

V 2 ) =
1√
σ
Di(υ

i) = Ψ(x, u) (x ∈ Ω) V =
√
1 + |Du|2

(b) υ · γ = Φ(x, u) (x ∈ ∂Ω)

where Ω is a bounded domain in n-dimensional manifold M with Riemannian metric σ, Ψ and Φ are given
functions on M ×R and ∂Ω×R respectively, υ is the downward unit normal to the graph of u and γ is the
inner normal to ∂Ω× R.

Capillary problems arise from the physical phenomena that occurs whenever two different materials are
situated adjacent to each other and do not mix. If one (at least) of the materials is a fluid, which forms with
another fluid (or gas) a free surface interface, then the interfaces will be referred to as a capillary surface. A
great deal of work has been devoted to capillarity phenomena since the initial works of Young and Laplace
in the early nineteenth century (see the book of Finn [1] for an account on the subject).

Notice that the capillary problem is the same as the prescribed mean curvature equation with given
contact angle in the boundary. Recently the topics of existence of minimal and constant mean curvature
surfaces in M × R, where M is a Riemannian manifold, have gathered great interest. For example; B. Nelli
and H. Rosenberg considered minimal surfaces in H2 × R; particularly, surfaces which are vertical graphs
over domains in H2 [8]. Also H. Rosenberg discussed minimal surfaces in M × R, where M is the 2-sphere
(with the constant curvature one metric) or a complete Riemannian surface with a metric of non-negative
curvature, or M is the hyperbolic plane [9]. L. Hauswirth, H. Rosenberg, and J. Spruck proved existence of
constant mean curvature graphs in M × R where M = H2 or S2 the hyperbolic plane of curvature −1 or
the 2-sphere of curvature 1 [4]. Also J. Spruck established a priori interior gradient estimates and existence
theorems for n-dimensional graphs of constant mean curvature H > 0 in Mn × R where Mn is simply
connected and complete and Ω is a bounded domain in M [12].

In this work we prove that the prescribed mean curvature equation with given contact angle for every
given Ψ (not only constant) satisfying certain conditions has a solution. For reaching this goal we follow
Korevaar’s technique [5] to estimate the gradient of a solution to the nonparametric capillary problem in
an n-dimensional Riemannian manifold M ⊂ Rn+1. For smooth Euclidean domains, J. Spruck has used a
maximum principle in two dimensions to obtain global gradient estimates [11]. The analogous n-dimensional
estimate in Euclidean domains have also been obtained using integral iteration arguments, in [2], [3] and
[10]. Also G. Lieberman [7] discusses a closely related maximum principle argument to Korevaar’s method
for getting a priori gradient bound.

In the present paper the following theorem will be proved.

Theorem 1.0.1. Let Ω ⊂ M be a bounded domain with C3 boundary ∂Ω. Then there exists a function
u ∈ C2(Ω) ∩ C1

loc(Ω) a (bounded) solution to the capillary problem (1.0.1) in Ω if there exists K1 < ∞ and
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K2 < ∞ so that
(i) |u| < K1

(ii) n+ |Ψ|+ |Ψx| < K2

(iii) Ψz ≥ 0
(iv) 1− |Φ| ≥ K−1

2

(v) Φz ≥ 0
(vi) |Φ|C2 < K2

on some open set containing Ω× [−K1,K1].

In the remainder of this section we set our notation. In §2 we describe how gradient bounds follow from the
construction of suitable ”barrier” comparison surfaces. For later reference we collect the estimate which must
hold to obtain a gradient bound. In §3 we derive a priori local and global gradient bounds for nonparametric
capillary surfaces above smooth domains. In §4 we use the continuity method to prove existence of solution.

Let Mn ⊂ Rn+1 be a Riemannian Manifold. We rescale M so that |x− y|M < 2|x− y| for any two points
x, y ∈ M .

We consider the (signed) distance function

d(x) =

{
miny∈∂Ω|x− y|M if x ∈ Ω;
−miny∈∂Ω|x− y|M if x ∈ M \ Ω.

near ∂Ω, and the inner normal γ = ∇d
|∇d| . There exists a neighborhood of radius µ > 0 of points within

(unsigned) distance µ of ∂Ω, on which d is C3 and γ is C2.
Define the Euclidean ball of radius R and center x in M by BR(x) = {y ∈ M : |x − y| < R}. If x is

suppressed it is assumed to be zero.
We embed M ⊂ M × R in the usual way: M = {(x, z) ∈ M × R : z = 0}. The capillary tube above ∂Ω

is defined to be ∂Ω× R = {(x, z) : x ∈ ∂Ω, z ∈ R}. We often extend functions (or vector fields) defined on
U ⊂ M to U ×R ⊂ M ×R by making them constant in the z-direction. In particular, we so extend d and γ

and they represent the distance function and normal vector field associated to ∂Ω× R.
For a function u on M define S = graph(u) to be {(x, z) ∈ M × R : z = u(x)}.
Let x1, ..., xn be a system of local coordinate for M with corresponding metric σij . Subscripts on functions

generally denote partial derivatives, e.g. fi =
∂f
∂xi , whereas superscripts refer to components of vectors. For

total derivative we use D for a function of x and z, that is

Df = Df(x, u(x)) = fx + fzDu = (D1f, ..., Dnf).

The downward unit normal to S is given by

υ = (υ1, ..., υn+1) =
1√

1 + |Du|2
(u1, ..., un,−1)

where ui = σijDju and |Du| = |Du|M .
We extend υ and u away from S and Ω by making them constant in the vertical direction. Measure the

steepness of S by

V = (υn+1)−1 =
√
1 + |Du|2

2. Maximum Principle

In this section we will set up a technique to construct suitable ”barrier” comparison surfaces to obtain
the gradient estimate in the third section using the maximum principle Lemma (2.2.2).

2.1. Barrier Technique. We construct a family of surfaces Σ(t) = graph(ut(x)) for sufficiently small
nonnegative t, with Σ(0) = Σ ⊂⊂ S = graph(u). Denote the interior of Σ by Σo, and its boundary by ∂Σ.
The Σ(t) are constructed by deforming Σ smoothly along a vector field Z. Although one can modify the
Σ(t) so that they are actually barriers (i.e. lying in a useful way entirely above or below graph(u)), we use
them directly as comparison surfaces: for small t, the height separation s(t) between S and Σ(t) will be seen
to be about t(Z ·υ)V . For suitable Z we can use the contact angle boundary condition to show that (Z ·υ)V
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is bounded at any (relatively large) maximum value of s(t) which occurs on the intersection of Σ with the
capillary tube. (Z · υ)V will be bounded by construction on the part of ∂Σ that is inside the tube, ∂Σ∩ So.
Finally, we will be able to use the prescribed mean curvature equation to show that (Z · υ)V is bounded at
any maximum of s(t) which occurs on Σo. We will therefore conclude a bound for (Z · υ)V on Σ, i.e. a local
gradient estimate.

Proceeding with our construction, we assume there exists an open subset O ⊂ M × R with Σ ⊂ O, on

which the deformation vector field Z is defined, with |Z|C2(O) < ∞. For P ∈ Σ and small t, define P̃ (P, t)
by solving the ODE

d

dt
P̃ = Z(P̃ )(2.1.1)

P̃ (P, 0) = P(2.1.2)

and define the resulting perturbed surface by

(2.1.3) Σ(t) = {P̃ (P, t) : P ∈ Σ}

It follows from ODE theory that Σ(t) is the graph of a C2 function ut(x), with domain nearly that of u0.
If we make the further requirement that Z be tangential:

(2.1.4) Z(Q) · γ(Q) = 0 for all Q ∈ ∂Ω× R ∩O

(and that ∂Ω×R ∩O is C1), then the ODE (2.1.1) preserves ∂Ω×R, a fact which implies that the domain
of ut is contained in Ω, which will be useful later in boundary (contact angle) calculations. We define the

quantities to be estimated later. Writing P̃ (P, t) = (x̃, ut(x̃)), denote the point in S = graph(u) directly

above (or below) it by P̂ (P, t) = (x̃, u(x̃)). Let s(P, t) be the (signed) vertical distance from P̃ (P, t) to S,
s(P, t) = u(x̃)− ut(x̃). Let υ(P, t), Π(P, t) and H(P, t) be the normal, tangential plane and mean curvature

of Σ(t) at P̃ (P, t), respectively. Whenever t is suppressed its value is zero. Hereafter t should be small

enough such that P̃ and P̂ are in the injectivity ball of P in M × R.
For a fixed point P ∈ Σ, we consider a unitary frame {f1, f2, ..., fn+1} of M × R with the following

properties:

(1) For each Q ∈ Σ, fi ∈ Π(Q) for i = 1, .., n and fn+1 = −υ(Q).
(2) At P they are orthonormal. Moreover, the vectors f1, .., fn−1 are horizontal, that is, they have the

last component (in M × R) equal to 0, and fn is in the direction of steepest ascent in Π(P ).

Let g be the Riemannian metric equivalent to σ + dz2 of M × R corresponding to this new frame.
Any vector field X on S can be written as X = Xαfα = X ifi − χfn+1. (Here and in the sequel we use

the summation convention, summing from 1 to n + 1 if the repeated indices are Greek and from 1 to n if
they are Latin.) For any function χ, we can define natural tangent-plane analogs to the gradient ∇ and △
of (M × R, g):

∇Πχ = ∇χ− (χυ)υ

△Πχ = △χ− χυυ

(χυ = ∇χ · υ).(2.1.5)

For |y| small less than the injectivity radius of M × R at P , S may be given near P by the exponential
mapping y → expP (y

ifi + U(y)fn+1), for some C3 function U . Let [Uij(y)] denote its Hessian matrix, and
for y = 0 write UijUij = |A|2. ([Uij(0)] is the matrix for the second fundamental form of S at P , with
respect to the {fi} frame on S).

Similarly, we can write a point P̃ (Q, t) ∈ Σ(t) close enough to P as P̃ (Q, t) = expP (ỹ
ifi + U t(ỹ)fn+1),

for t small enough. We use the notation P̃ (Q, t) = (ỹ, U t(ỹ)) and Q = (y, U(y)).

Lemma 2.1.1. Let P ∈ Σ and t = 0. Let the vector field Z satisfy (2.1.1) and let u ∈ C3(O). Express
Z = Zifi − ζfn+1 in the P-based coordinate system. Then the surfaces Σ(t) which result from the vector
flow (2.1.1) evolve so that at t = 0
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∂

∂t
s(P, t) = ζV

∂

∂t
υ(P, t) = −∇Πζ

∂

∂t
H(P, t) = −(2Zk

i Uki +△Πζ − ζυH)(2.1.6)

in the strong sense that for L = s, υ,H we have

(2.1.7) L(P, t) = L(P, 0) + t
∂L

∂t
+ o(t)

with the error term o(t) uniform for P ∈ Σ. In the special case that Z is a normal-perturbation vector field
(Z = ηυ, with the function η ∈ C2(O) and υ), the evolution formulae are given by

∂

∂t
s(P, t) = ηV

∂

∂t
υ(P, t) = −∇Πη

∂

∂t
H(P, t) = −(2η|A|2 +△Πη − ηυH)(2.1.8)

Proof. Consider the curve α(t) = P̂ (P, t), the vertical projection onto Σ of the curve P̃ (P, t) that solves the
ODE (2.1.1). Then we can write:

α(t) = exp
P̃ (P,t)(s(P, t)en+1),

and therefore we have the equation:

dα

dt
=

d

dt
exp

P̃ (P,t)(s(P, t)en+1) =

= d(exp
P̃ (P,t))s(P,t)en+1

(
P̃ (P, t)

dt
+

ds(P, t)

dt
en+1)

= d(exp
P̃ (P,t))s(P,t)en+1

(Z(P̃ (P, t)) +
ds(P, t)

dt
en+1)

At t = 0, we have P̃ (P, 0) = P and s(P, 0) = 0, therefore:

dα

dt
(0) = d(expP )0(Z(P ) +

ds(P, 0)

dt
en+1) = Z(P ) +

ds(P, 0)

dt
en+1

Since α(t) is a curve in Σ, we have that dα
dt
(0) ∈ Π(P ), and therefore its product with the normal vector

is 0:

0 =
dα

dt
(0) · υ(P ) = (Z(P ) +

ds(P, 0)

dt
en+1) · υ(P )

and from this and the fact that en+1 · υ(P ) = V −1 we get the result for ds
dt
.

To calculate υ(P, t) and H(P, t), we consider the curve from Q = (y, U(y)) ∈ Σ to (ỹ, U t(ỹ)) ≅ P̃ (Q, t)
that solves the ODE (2.1.1). By the Taylor expansion for exp map we have

ỹi(t) = yi +

∫ t

0

Zi(P̃ (Q, a))ds+ o(t)

U t(ỹ) = U(y)−

∫ t

0

ζ(P̃ (Q, s))ds+ o(t)(2.1.9)

The first equation in (2.1.9) expresses ỹ as a function of y. We use it to estimate the Jacobian of the
inverse transformation, which expresses y as a function of ỹ. With this Jacobian we can use the chain rule
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and the second equation to estimate the first two derivatives of U t(ỹ), with respect to ỹ, yielding estimates
for υ(P, t) and H(P, t). We note that the o(t)-error terms below depend at most on second derivatives of Z
and third derivatives of U .

∂ỹi

∂ym
= δim + tDmZi(y, U(y)) +

∫ t

0

Dm(Zk(P̃ (Q, s))− Zk(Q))ds+ o(t)

∂yk

∂ỹi
= δik − tDiZ

k(Q) + o(t)

∂U t(ỹ)

∂ỹi
= Ui(y)− t(Diζ + UkDiZ

k) + o(t)

∂2U t(ỹ)

∂ỹi∂ỹj
= Uij − t(UikDjZ

k + UkjDiZ
k +DjDiζ + UkDjDiZ

k) + o(t)

The terms involving DU are zero at the value of ỹ corresponding to y = 0, and the derivative estimates
there simplify to

∂U t(ỹ)

∂ỹi
= −tζi + o(t)

∂2U t(ỹ)

∂ỹi∂ỹj
= Uij − t(UikZ

k
j + UkjZ

k
i + ζij + ζn+1Uij) + o(t)

(2.1.10)

Estimating the normal and mean curvature of Σ(t) at P̃ (P, t) with the aid of (2.1.10) yields the evolution
formulas for υ and H .

In the case Z = ηυ is normal perturbation, we have

Zk(Q) = η(Q)(υ · fk) (1 ≤ k ≤ n)

ζ(Q) = η(Q)(υ · fn+1)(2.1.11)

In computing the derivative of Z at P we use the facts that the gradient of U is zero there and that
because υn+1 = −1 is a minimum value, so is the gradient of υn+1. These computation yield

ζ(P ) = η, ζi(P ) = ηi, ζii = ηii − ηUikUik(2.1.12)

ζυ(P ) = ηυ, Zk
i (P ) = ηUik(2.1.13)

Substituting the above expirations into the estimate (2.1.6) yields (2.1.8).
�

2.2. Maximum Principle Lemma. The maximality of s(P, t) has two possible geometry consequences:
depending on the location of P , we can obtain inequalities which are implicit in comparison principles for
surfaces of related mean curvature and contact angle:

Lemma 2.2.1. Let a positive maximum of s(Q, t) (over Σ) occur at P ∈ Σ.

(1) If P ∈ (∂Σ
⋂
∂S)o, then υ(P̃ (P, t)) · γ(P̃ (P, t)) ≥ υ(P̂ (P, t)) · γ(P̂ (P, t)).

(2) If P ∈ Σo, then H(P̃ (P, t)) ≥ H(P̂ (P, t)).

Proof. These inequalities follow directly from calculus and the ellipticity of the contact angle and mean

curvature operators. In both cases the function s = u − ut has a local maximum at P̃ (P, t). In case (1)
it follows that the gradient Ds points in the exterior normal direction, −γ, implying the contact angle
inequality. In case (2) it follows that Ds is zero and D2s is negative semi-definite, implying the mean
curvature inequality. �
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Now let P ∈ Σo be a point where s is maximum, we write P̃ = (x, ũ(x)) and P̂ = (x, u(x)), so that
s = u(x) − ũ(x). Since it is a maximum, we have that Ds(x) = 0, so that Du(x) = Dũ(x) and therefore

the tangent plane to Σ(t) at P̃ is parallel to the tangent plane to Σ at P̂ . This also implies that, if we write

P̃ = (ỹ, U t(ỹ)) and P̂ = (y, U(y)) in the fi basis, we have that DU(y) = DU t(ỹ).

Write ξ(t) for the Σ-secant vector such that P̂ (P, t) = expP (ξ(t)), and recall that α(t) = P̂ (P, t). Using
the calculations above for α(t), we can compute:

d

dt
|t=0expP (ξ(t)) =

dα(0)

dt
= Z(P ) +

ds(P, 0)

dt
en+1,

which is a vector in Π(P ). On the other hand,

d

dt
|t=0expP (ξ(t)) = d(expP )0(

dξ

dt
|t=0) =

dξ

dt
|t=0 = ξ̇(0),

so that ξ(t) = ξ(0) + tξ̇(0) + o(t) = t(Z(P ) + ds(P,0)
dt

en+1) + o(t). We can then write y = tξ̇(0) + o(t) and
U(y) = o(t).

Now we compute the Taylor expansion of Ui(y) at 0:

(2.2.1) Ui(y) = Ui(0) +DUi(0) · y +O(|y|2) = DUi(0) · tξ̇(0) + o(t) = t(ξ̇(0)kUik) + o(t)

where we have used that DU(0) = 0. On the other hand, by (2.1.6) we have that U t
i (ỹ) = −tζi + o(t). By

equating DU(y) and DU t(ỹ) and dividing by t, we obtain:

(2.2.2) ξ̇(0)kUik = −ζi + o(1)

We know that Z = Zmfm + ζυ, for m = 1..n. On the other hand, by the definition of the basis (using

the fact that f1, .., fn−1 are horizontal and fn is in the direction of Du), we can see that en+1 · fn = |Du|
V

(in

fact, fn = ( 1
V |Du|Du+ |Du|

V
en+1)), so that we have

(2.2.3) ξ̇(0)k = Zk(P ) + ζ(P )|Du|δkn

That implies:

(2.2.4) ζ|Du|Uni = −ζi − ZkUki + o(1) for 1 ≤ i ≤ n

Now we will prove the key Lemma to get the gradient bound in the next section.

Lemma 2.2.2. Let u ∈ C3(Ω) solve the capillary problem in Ω. Consider Σ ⊂⊂ S = graph(u), Σ ⊂ O,
and a C2 tangential deformation vector field Z = ηυ + X. Assume that ∂Σ is the union of ∂Σ ∩ So and
(∂Σ ∩ ∂S)o. Fixing any point P ∈ Σ, denote the decomposition of X with respect to the tilted basis {fα} at
P by X = X ifi − χfn+1. Then we can conclude the gradient estimate

(Z · υ)V = (η + χ)V ≤ M

on Σ, for some 0 < M < ∞, if we can verify the following three inequalities, for some δ > 0:

(1) (Z · υ)V ≤ M − δ, (P ∈ ∂Σ ∩ So).

(2) ∇Π(η + χ) · γ > δ − ∂
∂t
Φ(P̃ (P, t)) + υ · ∂

∂t
γ(P̃ (P, t)), (at t = 0 for P ∈ (∂Σ ∩ ∂S)o).

(3) η|A|2 + 2Xk
i Uki +△Π(η + χ)− (η + χ)υH + ξ̇(0) · ∇Ψ > δ, (for P ∈ Σo).

Proof. For small t > 0, we consider the maximum on Σ of the function s(Q, t), and let that maximum occur
at P ∈ Σ. If s(P, t) ≤ Mt for small t, since s = t(η + χ)V + o(t), that is enough to prove the gradient
estimate. Consider the following cases for P :

(1) If P ∈ ∂Σ ∩ So, then inequality (1) shows that the gradient estimate holds.
6



(2) If P ∈ (∂Σ ∩ ∂S)o: then using Capillary equation we have Φ(P, 0) = γ(P, 0) · υ(P, 0) Also we have
∂υ(P,t)

∂t
= −∇Π(η + χ) Thus inequality (2) will imply at t = 0:

−
∂υ

∂t
(P, t) · γ > δ −

∂

∂t
Φ(P̃ (P, t)) + υ ·

∂

∂t
γ(P̃ (P, t))

∂

∂t
Φ(P̃ (P, t)) > δ +

∂

∂t
(υ · γ(P, t))(2.2.5)

Since Z is tangential then we have x̂ ∈ ∂Ω, so using Taylor expansion for υ ·γ and Φ also by knowing

P̃ + sen+1 = P̂ then we have:

υ · γ(P, t) = υ · γ(P, 0) + t
∂

∂t
(υ · γ(P, t))|t=0 + o(t)

υ · γ(P, t)− υ · γ(P, 0) < −δt+ t
∂

∂t
Φ(P̃ (P, t))|t=0 + o(t)

υ · γ(P̂ (P, 0))− υ · γ(P, 0) < −δt+ t
∂

∂t
Φ(P̃ (P, t)) + o(t)

∂

∂t
Φ(P̂ (P, t))|t=0 < C +

∂

∂t
Φ(P̃ (P, t))|t=0 + o(t)

(η + χ)V =
∂

∂t
s|t=0 < M(2.2.6)

(3) If P ∈ Σo, using Capillary equation we have H(P, 0) = Ψ(P, 0) and from (3), (2.1.6) and (2.1.8) we
have:

(2.2.7) −
∂H

∂t
(P, t)|t=0 + ξ̇(0) · ∇Ψ > δ

By Taylor expansion for H and Ψ also (2.2.1) we have:

H(P, 0)−H(P, t) + o(t) + tξ̇(0) · ∇Ψ > tδ

H(P, 0)−H(P̂ , t) + tξ̇(0) · ∇Ψ+ o(t) > tδ

Ψ(P, 0)−Ψ(P̂ , t) + tξ̇(0) · ∇Ψ + o(t) > tδ

−ξ̇(0) · ∇Ψ−
∂

∂t
(ũt + s(P, t))|t=0Ψz + ξ̇(0) · ∇Ψ + Ct+ o(t) > δ

(η + χ)VΨz + Z · en+1Ψz + Ct+ o(t) < δ(2.2.8)

Therefore we have (η + χ)V < M .

�

3. Gradient bounds in smooth domains

We prove three a priori gradient estimates for solutions to the capillary problem: local interior and
boundary estimates when there is positive gravity, and global estimates when there is not.

3.1. Local gradient bound. we will prove local interior and boundary gradient estimates assuming positive
gravity using Lemma (2.2.2).

Theorem 3.1.1. Let u ∈ C3(Ω) solve the prescribed mean curvature equation, with positive gravity ΨZ > k >

0. If R be less than injectivity radius of M×R and BR(0) ⊂ Ω, then there exists a finite M = M(R,K1,K2, k)
so that

V (x) ≤ M
R2

R2 − |x|2

for all x ∈ BR.

Proof. In the formalism of §2, define the subset Σ ⊂⊂ S = graph(u) and the deformation vector field Z by

(3.1.1) Σ = S ∩ (BR × R), Z = ηυ, η(x, z) = 1−
|x|2

R2

7



we only need to find 0 < M < ∞ with which to satisfy condition (3) in Lemma (2.2.2) in order to get

interior estimate (Σ ⊂ So and η = 0 on ∂Σ). Fixing a point P ∈ Σo, using (2.2.3) for the vector ξ̇(0) (2.2.3)
and the definition of fn we have

ξ̇(0) · ∇Ψ = ((Zk + η|Du|δkn)fk) · (Ψxk
ek +Ψzen+1)

ξ̇(0) · ∇Ψ ≥ ηk
|Du|2

V
− C(3.1.2)

Thus by definition of η there is a constant C so that

η|A|2 +△Πη − ηυH + ξ̇(0) · ∇Ψ > ηk
|Du|2

V
− C

so that condition (3) in Lemma (2.2.2) can be verified for sufficiently large M . �

Remark 3.1.2. Let u ∈ C3(Ω) solve the prescribed mean curvature equation with positive gravity k. Let Ω
satisfy a uniform interior sphere condition of radius R > 0 (i.e. each P ∈ Ω is contained in a sub ball of
Ω having radius at least R). Then it follows immediately from pervious theorem and the definition of the
distance function d, that there is an M so that V (x) ≤ M

d(x) for any x ∈ Ω.

Now we will prove an a priori boundary gradient estimate when there is positive gravity.

Theorem 3.1.3. For Ω as in Capillary problem let u ∈ C3(Ω) solve the capillary problem with positive
gravity k. Then for r > 0 and y ∈ M , B3r(y), there exists an M = M(r, k,K1,K2, ∂Ω ∩ B3r(y)), such that
V (x) ≤ M for each x ∈ Br(y) ∩Ω.

Proof. Without loss of generality we may assume y = 0. Modify the distance function d outside the µ-
neighborhood of ∂Ω ∩ B2r on which it is C3. Make it a C3 function on all of B2r in such a way that this
modified d always has magnitude less than the actual (non-negative) distance to ∂Ω, and so that its gradient
is bounded in norm by 1. Extend γ to the gradient of the d in B2r(y), making it a C2 function in the entire
ball. It follows from remark (3.1.2) that we have the preliminary estimate

(3.1.3) V (x) ≤ Cd−1 in Ω ∩B2r

In analogy with Theorem (3.1.1), we define

(3.1.4) Σ = S ∩B2r, w(x, z) = 4r2 − |x|2.

Let 0 < ǫ < 1 and N > 0, we define the vector field Z = ηυ +X by

(3.1.5) η = ǫw +Nd, X = −ǫΦ(wγ − d∇w)

and now we want to show the three conditions of Lemma (2.2.2) hold for sufficiently large M . We estimate
the terms of condition (2) in Lemma (2.2.2), for P ∈ (∂Σ ∩ ∂S)o, since 1 − |Φ|2 is bounded above zero we
have:

∇Π(ǫw +Nd+ χ) · γ +
∂

∂t
Φ(P̃ (P, t)) − υ ·

∂

∂t
γ(P̃ (P, t)) >

∇Π(Nd) · γ − ǫ∇Π(Φwγ · υ) · γ +DΦ · Z − υ · (D(∇d)Z) − C >(3.1.6)

∇Π(Nd) · γ − C = N(γ − (γ · υ)υ) · γ − C = N(|1− |Φ|2)− C.

This implies that we can satisfy condition (2) in Lemma (2.2.2) for large N , independently of M . For
such N now we will show that condition (1) in Lemma (2.2.2) can be verified for large M : since w = 0 on
∂Σ ∩ So and because of the estimate (3.1.3), we have

(3.1.7) (η + χ)V = (ǫw +Nd+ χ)V ≤ (Nd+ Cd)Cd−1 ≤ C (x ∈ ∂Σ ∩ So).
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From (3.1.5) in the {fα} coordinate we have |(Xα)β +(Xβ)α| ≤ C(ǫw+ d), so from symmetry of [Uij ] we
get:

(3.1.8) η|A|2 + 2Xk
i Uki ≥ η|A|2 − Cη|A| ≥ −C

From this inequality and an inequality analogous to (3.1.2) we estimate

(3.1.9) η|A|2 + 2Xk
i Uki +△Π(η + χ)− (η + χ)υH + ξ̇(0) · ∇Ψ > C

Taken together, (3.1.6), (3.1.7) and (3.1.9) show that there is a large M verify the three conditions of
Lemma (2.2.2), hence ζV is bounded above by M on Σ.

(3.1.10) ζ = ǫw +Nd+X · υ ≥ ǫw(1 − |Φ|) + (N − ǫC)d ≥ ǫw(1 − |Φ|) >
ǫ

C

Thus we have Theorem (3.1.3) for x ∈ Br and ǫ sufficiently small. �

3.2. Global gradient estimate. For proving existence of solutions using the continuity method we need
to obtain an a priori gradient estimate. Notice that we will get a global gradient bound without assuming
positive gravity.

Theorem 3.2.1. Let u ∈ C3(Ω) solve the capillary problem. Then there is an M = M(K1,K2, ∂Ω) such
that V (x) ≤ M for all x ∈ Ω.

Proof. Recall the neighborhood of radius µ about ∂Ω on which d is C3. Extend d to be a C3 function in all
of Ω, with |∇d| ≤ 1, and extend γ as ∇d. For the positive parameter N construct an increasing C2 function
f : R+ → R+ such that f(0) = 1, f ′(0) = N and f(t) = 2 for t ≥ µ.

Introducing another positive parameter L, we define Σ and Z = ηυ +X by

(3.2.1) Σ = S = graph(u), η = f(d)eLz, X = −ΦeLzγ

Since Φ is bounded by construction we have

(3.2.2) K−1
2 eLz ≤ ζ ≤ CeLz

We seek to verify conditions (2), (3) in Lemma (2.2.2) for sufficiently large M . We estimate:

∇Π(η + χ) · γ +
∂

∂t
Φ(P̃ (P, t)) − υ · γ(P̃ (P, t)) ≥

eLz(∇Πf · γ) + LfeLz(∇Πz · γ)−∇Π(|Φ|
2eLz) · γ +DΦ(P̃ (P, t))Z − υ · (D∇d(P̃ (P, t))Z) ≥

eLz(N(1− |Φ|2)− C − CLV −1)(3.2.3)

whenever P ∈ (∂S ∩ ∂Σ)o. If ζV is sufficiently large (depending on L), then the second inequality of (3.2.2)

and |u| < K1 imply that CL eLz

V
in (3.2.3) is small. Hence we fix N large enough to verify condition (2) in

Lemma (2.2.2) for large M (depending on L). To verify Lemma (2.2.2) we make the preliminary estimate

(3.2.4) η|A|2 + 2Xk
i Uki ≥ −CeLz

whenever ζV is large enough, because we have |Xk
i | ≤ CeLz for i < n and |Xk

n| ≤ CLeLz, also |Ukn| ≤
(ζV )−1C(1 + |A|) for t small and V > 1. Using (ζV )−1 to compensate for the L in estimating Xk

nUkn, and
then applying Cauchy-Schwartz, we will get (3.2.4) for ζV sufficiently large (depending on L). Using (3.2.4)
and the fact that |∇Πz|

2 = 1− V −2, we have

η|A|2 + 2Xk
i Uki +△Π(η + χ)− (η + χ)υH + ξ̇(0) · ∇Ψ ≥

△Πη − eLz(C + CLV −1) ≥ eLz(L2(1− V −2)− C − CL)(3.2.5)

whenever P ∈ Σ ∩ So and ζV is large enough. Now fixing L large enough, we use (3.2.5) and sufficiently
large M to verify condition (3) in Lemma (2.2.2). Since condition (1) in Lemma (2.2.2) is true, all three
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conditions of Lemma (2.2.2) can be verified for a fixed N and L. We get ζV is uniformly bounded on Σ,
using the first inequality of (3.2.2) we conclude the uniform bound for V on Ω. �

4. Existence of solution

Let A = Di(ai(p)), ai = pi · (1 + |p|2)−
1
2 , We can rewrite the Capillary problem such that

Au = Ψ(x, u) in Ω(4.0.6)

υ · γ = Φ(x, u) on ∂Ω(4.0.7)

In view of the a priori estimate which we have just established the existence of a solution will be proved
by the method of continuity.

Theorem 4.0.2. Let Ω be a bounded domain in M with ∂Ω is C3, then the boundary value Capillary problem
that we have defined in section §1 has a unique solution u ∈ C3,α(Ω), where 0 < α < 1.

Proof. Let τ be a real number with 0 ≤ τ ≤ 1, and consider the boundary value problem

Auτ = τΨ(x, uτ )(4.0.8)

υ · γ = τΦ(x, uτ )(4.0.9)

Let T = {τ : there exists a solution uτ ∈ C3(Ω)}. T is not empty because 0 ∈ T . We should show that it is
both open and closed. We obtain an a priori estimate of |uτ |Ω for any τ ∈ T independent of τ . Furthermore,
let us remark that any solution uτ ∈ C3(Ω) is of class C3,α(Ω) with some fixed α, 0 < α < 1 such that the
norm of uτ in C2,α(Ω) is bounded independent of τ . To prove this, we deduce from Theorem (3.2.1) that

|Duτ |Ω ≤ M uniformly. We choose a smooth vector field ãi such that ∂ãi

∂pj is uniformly elliptic, such that

ãi(p) = ai(p) for |p| ≤ 3M . From Theorem 2.2 in chapter 10 of [6] we conclude that the problem

Ãũτ = τΨ(x, uτ ) in Ω(4.0.10)

υ · γ = τΦ(x, uτ ) on ∂Ω(4.0.11)

has a solution ũτ ∈ C3,α(Ω) for any τ . Moreover we have Ãuτ = Auτ . Hence we obtain from uniqueness
of the solution ũτ = uτ . Thus we can conclude that |uτ |3,α,Ω is uniformly bounded.

(4.0.12) |uτ |3,α,Ω ≤ M1

where the constant is determined by known quantities. From the estimate (4.0.12) it follows that T is closed.
Now, let τ0 ∈ T . Then, we consider the boundary value problem (4.0.10) as before. Since |Dũτ |Ω depends
continuously on τ , it turns out that |Dũτ | ≤ M1 for |τ − τ0| < ǫ. This yields ũτ = uτ for those τ ’s. That
means T is open. �
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