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At which points exactly has Lebesgue’s

singular function the derivative zero ?
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Abstract

Let La(x) be Lebesgue’s singular function with a real parameter
a (0 < a < 1, a 6= 1/2). As is well known, La(x) is strictly increasing
and has a derivative equal to zero almost everywhere. However, what
sets of x ∈ [0, 1] actually have L

′

a(x) = 0 or +∞? We give a partial
characterization of these sets in terms of the binary expansion of x. As
an application, we consider the differentiability of the composition of
Takagi’s nowhere differentiable function and the inverse of Lebesgue’s
singular function.
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1 Introduction

Imagine flipping an unfair coin with probability a ∈ (0, 1) of heads and
probability 1 − a of tails. Note that a 6= 1/2. Let the binary expansion of
t ∈ [0, 1]: t =

∑

∞

n=1 ωn/2
n be determined by flipping the coin infinitely many
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Figure 1: Lebesgue’s singular function (a = 0.3)

times. More precisely, ωn = 0 if the n-th toss is heads and ωn = 1 if it is tails.
We define Lebesgue’s singular function La(x) as the distribution function of
t:

La(x) := prob{t ≤ x}, 0 ≤ x ≤ 1.

It is well-known that La(x) is strictly increasing, but the derivative is
0 almost everywhere. This distribution function La(x) was also defined in
different ways and studied by a number of authors: Cesaro (1906), Faber
(1910), Lomnicki and Ulam(1934), Salem (1943), De Rham (1957) and oth-
ers. For instance, De Rham [3] studied La(x) as a unique continuous solution
of the functional equation

La(x) =

{

aLa(2x), 0 ≤ x ≤ 1
2
,

(1− a)La(2x− 1) + a, 1
2
≤ x ≤ 1,

(1)

where 0 < a < 1, and a 6= 1/2.
From (1), it is clear that the graph of La(x) is self-affine. Because of its

connection with fractals, several applications have been found in recent years:
for instance, in physics [12, 13], real analysis [5, 6], digital sum problems [7, 9]
and complex dynamical systems [10]. There is even a connection with the
Collatz conjecture [2].

Reconsider the differentiability of La(x). It is known that for any x ∈
[0, 1], L

′

a(x) is either zero, or +∞, or it does not exist. Then, it is natural to
ask at which points x ∈ [0, 1] exactly we have L

′

a(x) = 0 or +∞.

In fact, De Rham [3] gave the following partial answer to this question.
Let the binary expansion of x ∈ [0, 1] be x =

∑

∞

k=1 2
−kεk, where εk ∈ {0, 1}.
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For those x ∈ [0, 1] having two binary expansions, we choose the expansion
which is eventually all zeros. As an exception, fix εk = 1 for every k if x = 1.

Define

In :=

n
∑

k=1

εk. (2)

Note that In is the number of 1’s occurring in the first n binary digits of x.
Suppose that In/n tends to a limit l as n → ∞, and let

l0 :=
log 2a

log a− log(1− a)
. (3)

Then the derivative L
′

a(x) exists and is zero, when (l− l0)(a− 1/2) > 0. An
English translation of De Rham’s original paper is included in Edgar’s book
[4].

Unfortunately, De Rham’s paper did not contain a proof. The main
purpose of this note is to give a proof of De Rham’s statement and extend
his result. The paper is organized as follows. Section 2 states and proves the
main results. The key to the proof is to use Lomnicki and Ulam’s expression
from 1934 [8]. De Rham might have had a different proof in mind, as he did
not mention Lomnicki and Ulam’s paper. In Section 3, as an application, we
consider a question about the differentiability of the composition of Takagi’s
nowhere differentiale function and the inverse of Lebesgue’s singular function.

2 The main result

For convenience, define the right-hand and left-hand derivatives of La(x) as
follows.

L′

a+(x) : = lim
h→0+

La(x+ h)− La(x)

h
,

L′

a−(x) : = lim
h→0−

La(x+ h)− La(x)

h
,

provided the limits exist.
From the self-affinity of the graph, we have

Lemma 2.1. For any x ∈ [0, 1] for which L′

a+(x) exists,

L′

a+(x) = L′

(1−a)−(1− x).
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Define

D1(x) := lim
n→∞

In
n

= lim
n→∞

1

n

n
∑

k=1

εk, (4)

provided the limit exists, and put D0(x) := 1−D1(x). In other words, Di(x)
is the density of the digit i in the binary expansion of x, for i = 0, 1.

Theorem 2.2. 1. If x ∈ [0, 1] is dyadic, then L′

a+(x) 6= L′

a−(x).

2. If x ∈ [0, 1] is not dyadic and 0 < D1(x) < 1, then

L′

a(x) =

{

0, if aD0(x)(1− a)D1(x) < 1/2,

+∞, if aD0(x)(1− a)D1(x) > 1/2.

Remark 2.3. De Rham’s statement is equivalent to the following. For a

value of x for which D1(x) exists, L
′

a(x) = 0 when aD0(x)(1− a)D1(x) < 1/2.

Remark 2.4. If x is a binary normal, that is, D0(x) = D1(x) = 1/2, then
Theorem 2.2 gives L′

a(x) = 0, since
√

a(1− a) < 1/2.

Proof of Theorem 2.2. First, suppose x ∈ [0, 1] is a dyadic point, say
x = j/2N . Let 2−(k+1) ≤ h ≤ 2−k where k > N . Since La is increasing, this
implies that

La(x+ 2−(k+1))− La(x)

2−k
≤

La(x+ h)− La(x)

h
≤

La(x+ 2−k)− La(x)

2−(k+1)
. (5)

The key to the proof is to use the following expression for La(x), given
by Lomnicki and Ulam [8]:

La(x) =
a

1− a

∞
∑

n=1

εna
n−In(1− a)In , (6)

where In is defined by (2). By (6), we have

La(x+ 2−k)− La(x) = ak−IN (1− a)IN .

Since (1− a)/a is a positive constant,

lim
k→∞

La(x+ 2−k)− La(x)

2−k
= lim

k→∞

(2a)k
(

1− a

a

)IN

=

{

0, if 0 < a < 1/2,

+∞, if 1/2 < a < 1.
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By (5), it follows that

L′

a+(x) =

{

0, if 0 < a < 1/2,

+∞, if 1/2 < a < 1.

Since 1−x is also a dyadic, the left-hand derivative follows from Lemma 2.1:

L′

a−(x) = L′

(1−a)+(1− x) =

{

+∞, if 0 < a < 1/2,

0, if 1/2 < a < 1.

Therefore, L′

a(x) does not exist if x is dyadic.

Next, suppose x ∈ [0, 1] is not dyadic and 0 < D1(x) < 1. Let pk be the
address of the k-th “0” in the binary expansion of x, and 2−pk+1 ≤ h ≤ 2−pk .
Since La is increasing, this implies that

La(x+ 2−pk+1)− La(x)

2−pk
≤

La(x+ h)− La(x)

h
≤

La(x+ 2−pk)− La(x)

2−pk+1
. (7)

Using (6), we have

La(x+2−pk)−La(x) = ak(1− a)pk−k +

(

1−
a

1− a

) ∞
∑

n=pk+1

εna
n−In(1− a)In .

(8)
Let n(l) be the address of the l-th “1” appearing after position pk in the
binary expansion of x. Then we have

∞
∑

n=pk+1

εna
n−In(1− a)In = ak(1− a)pk−k

∞
∑

l=1

an(l)−pk−l(1− a)l.

Since n(l)− pk − l ≥ 0 and 0 < a < 1, the series in the right hand side above
converges, say to C(x, k).

For convenience, define

C1(x, k) := 1 +

(

1−
a

1− a

)

C(x, k).

Then we can write (8) as

La(x+ 2−pk)− La(x) = ak(1− a)pk−kC1(x, k). (9)
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Since C(x, k) ≤
∑

∞

l=1(1− a)l, it follows that

min

{

1,
1− a

a

}

≤ C1(x, k) ≤ max

{

1,
1− a

a

}

. (10)

By (9), we have

La(x+ 2−pk)− La(x)

2−pk+1
=

{

2
pk+1
pk a

k
pk (1− a)

1− k
pk

}pk

C1(x, k),

La(x+ 2−pk+1)− La(x)

2−pk
=

{

2
pk

pk+1 a
k+1
pk+1 (1− a)

1− k+1
pk+1

}pk+1

C1(x, k).

Since k/pk tends to a nonzero limitD0(x) as k → ∞, we have pk+1/pk → 1
as k → ∞. Therefore, it follows from (7) and (10) that

L′

a+(x) =

{

0, if aD0(x)(1− a)D1(x) < 1/2,

+∞, if aD0(x)(1− a)D1(x) > 1/2.

Finally, for the left-hand derivative, it follows from Lemma 2.1 that

L′

a−(x) = L′

(1−a)+(1− x) =

{

0, if aD0(x)(1− a)D1(x) < 1/2,

+∞, if aD0(x)(1− a)D1(x) > 1/2,

since Di(x) = Dj(1− x) when i 6= j. This concludes the proof. 2

Remark 2.5. A careful study of the above proof shows that the existence of

the full limit D1(x) = limn→∞(In/n) is not necesary. The following general-

ization is straightforward:

1. Suppose 0 < a < 1/2. Then

L′

a(x) =

{

0, if limn→∞ sup In/n < l0,

+∞, if limn→∞ inf In/n > l0.

2. Suppose 1/2 < a < 1. Then

L′

a(x) =

{

0, if limn→∞ inf In/n > l0,

+∞, if limn→∞ sup In/n < l0,

where l0 is defined by (3).
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Note that Theorem 2.2 left out the boundary case; that is, those numbers
x for which aD0(x)(1 − a)D1(x) = 1/2; in other words, numbers x which have
the following densities:

D1(x) =
log 2a

log a− log(1− a)
, D0(x) =

log 2(1− a)

log(1− a)− log a
.

Let us define some additional notation. As a complement of In, define
On to be the number of 0’s occurring in the first n binary digits of x:

On :=
n

∑

k=1

(1− εk).

Let qk be the address of the k-th ”1” in the binary expansion of x as a
complement of pk. Observe that

qk ≤ n if and only if In ≥ k,

pk ≤ n if and only if On ≥ k.

Then, it is easy to prove the following lemma by contradiction.

Lemma 2.6. Let f(k) = pk −
k

D0(x)
and g(k) = k

D1(x)
− qk. If f(k) → ∞ as

k → ∞, then g(k) → ∞.

Theorem 2.7. Suppose x ∈ [0, 1] satisfies aD0(x)(1 − a)D1(x) = 1/2. Let

f(k) = pk −
k

D0(x)
and suppose f(k + 1)/f(k) → 1.

1. If f(k) → ∞ as k → ∞, then

L′

a(x) =

{

+∞, if 0 < a < 1/2,

0, if 1/2 < a < 1.

2. If f(k) → −∞ as k → ∞, then

L′

a(x) =

{

0, if 0 < a < 1/2,

+∞, if 1/2 < a < 1.

Proof of Theorem 2.7.
We follow the same argument for non-dyadic points x ∈ [0, 1] as in the

proof of Theorem 2.2. Let f(k) = pk −
k

D0(x)
. Since k/pk tends to a nonzero
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limit D0(x) as k → ∞, f(k) is of smaller order than k. Then, it follows from
(9) that

La(x+ 2−pk)− La(x)

2−pk
=

[

{2(1− a)}
1

D0(x) a(1− a)−1
]k

{2(1− a)}f(k) C1(x, k)

= {2(1− a)}f(k)C1(x, k),

because

{2(1− a)}
1

D0(x)a(1− a)−1 = 1, when aD0(x)(1− a)D1(x) = 1/2.

Thus,

La(x+ 2−pk)− La(x)

2−pk+1
=

{

2
f(k+1)
f(k) (1− a)

}f(k)

· 2
1

D0(x)C1(x, k),

La(x+ 2−pk+1)− La(x)

2−pk
=

{

2
f(k)

f(k+1) (1− a)
}f(k+1)

· 2
1

D0(x)C1(x, k + 1).

Since f(k + 1)/f(k) → 1 as k → ∞, it follows from (7) and (10) that if
f(k) → ∞,

L′

a+(x) =

{

+∞, if 0 < a < 1/2,

0, if 1/2 < a < 1.

Similary, if f(k) → −∞ as k → ∞, then

L′

a+(x) =

{

0, if 0 < a < 1/2,

+∞, if 1/2 < a < 1.

Next, consider the left-hand derivative. From Lemma 2.1, we have L′

a−(x) =
L′

(1−a)+(1−x). It is clear that 1−x also satisfies aD0(1−x)(1−a)D1(1−x) = 1/2,

since Di(x) = Dj(1−x) for i 6= j. Let g(k) = k
D1(x)

−qk. Since qk = pk(1−x),

we have g(k + 1)/g(k) → 1 if f(k + 1)/f(k) → 1. It follows from Lemma
2.6 that if f(k) → ∞ or −∞, then L′

a−(x) = L′

(1−a)+(1− x) = L′

a+(x). This
concludes the proof. 2

3 Application

We apply the main result to the following simple question. In classical calcu-
lus, the chain rule is used to compute the derivative of the composition of two
differentiable functions. However, what can we say, for example, about the
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Figure 2: Graphs of (T ◦ L−1
a )(x) for a = 0.2 (left) and a = 0.4 (right)

differentiability of the composition of a nowhere differentiable function and
a singular function? For instance, let T be Takagi’s nowhere differentiable
function, which is defined by

T (x) =
∞
∑

k=0

1

2k
|2kx− ⌊2kx+ 1

2
⌋|, 0 ≤ x ≤ 1.

Is (T ◦L−1
a ) nowhere differentiable? See Figure 2. If a = 0.4, the figure of the

graph looks somewhat like Takagi’s function; on the other hand, if a = 0.2,
the shape of the graph is more like Lebesgue’s singular function. Thus, we
can guess that (T ◦ L−1

a ) might not be nowhere differentiable if a is close to
0.

Although T does not have a finite derivative anywhere, it is known to
have an improper infinite derivative at many points. In fact, Allaart and
Kawamura [1] proved that the set of points where T ′(x) = +∞ or −∞ has
Hausdorff dimension one. Note that the inverse of Lebesgue’s singular func-
tion is also singular. Hence, if we try to (naively) use the chain rule to
compute the derivative of (T ◦ L−1

a )(x), we may run into one of the indeter-
minate products +∞ · 0 or −∞ · 0.

The following theorem gives an answer to this concrete question: (T ◦
L−1
a )(x) has a finite but vanishing derivative at uncountably many points.

Theorem 3.1. Let x ∈ [0, 1], and put y = L−1
a (x). If 0 < D1(y) < 1 and

aD0(y)(1− a)D1(y) > 1/2, then

(T ◦ L−1
a )′(x) = 0. (11)

Proof.
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Define h̃ := L−1
a (x+ h)− L−1

a (x). Then we can write

T (L−1
a (x+ h))− T (L−1

a (x))

h
=

T (y + h̃)− T (y)

h̃ log2(1/|h̃|)
·
h̃ log2(1/|h̃|)

h
. (12)

Allaart and Kawamura [1] proved that if D1(x) exists and 0 < D1(x) < 1,
then

lim
h→0

T (x+ h)− T (x)

h log2(1/|h|)
= D0(x)−D1(x).

Therefore, we have

−1 ≤ lim
h→0

T (y + h̃)− T (y)

h̃ log2(1/|h̃|)
≤ 1.

A slight modification of the proof of Theorem 2.2 yields

lim
h→0

h̃ log2(1/|h̃|)

h
= 0, if aD0(y)(1− a)D1(y) > 1/2.

Substituting these results into (12) gives (11). 2
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