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Abstract

In this paper, we survey research that studies the connection between the computa-
tional complexity of optimization problems on the one hand, and the duality gap between
the primal and dual optimization problems on the other. We further look at a similar
phenomenon in finite model theory relating to complexity.

1 Introduction

In optimization problems, the duality gap is the difference between the optimal solution
values of the primal problem and the dual problem. The relationship between the duality
gap and the computational complexity of optimization problems has been implicitly studied
for the last few decades. The connection between the two phenomenon has been subtly
acknowledged. The gap has been exploited to design good approximation algorithms for NP-
hard optimization problems [I} [0 [16]. However, we have been unable to locate a single piece
of literature that addresses this issue explicitly.

This report is an attempt to bring a great deal of evidence together and specifically address
this issue. Does the existence of polynomial time algorithms for the primal and the dual
problems mean that the duality gap is zero? Conversely, does the existence of a duality gap
imply that either the primal problem or the dual problem is (or both are) NP-hard? Is there
an inherent connection between computational complexity and strong duality (that is, zero
duality gap)?

1.1 Motivation

The apparent connection between the duality gap and computational complexity was con-
sidered more than thirty years ago. Linear Programming (LP) is a well known optimization
problem. In the mid 1970s, before Khachiyan published his ellipsoid algorithm, LP was
thought to be polynomially solvable precisely because, it obeys strong duality; that is, the
duality gap is zero. For a good description of the ellipsoid algorithm, the reader is referred to
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the good book by Fang and Puthenpura [5]. Strong duality also places the decision version
of Linear Programming in the class NP N CoNP; see Lemma [7] below.

We now provide a definition for decision problems, also known as the decision versions of
optimization problems:

Definition 1. (D1(r): Decision problem corresponding to a given minimization problem)

Given. An objective function f(x), as well as my number of constraints g(x) = b and mo
number of constraints h(x) > ¢, where x € R™ is a vector of variables, b € R™ and ¢ € R™?
are constants. Also given is a parameter v € R.

To Do. Determine if there is a feasible solution S to the given set of constraints such that
f(x) <r.

(Analogously, if the given problem is mazimization, then the corresponding decision problem
will be to determine if there is a feasible solution S such that f(x) > r, when the constraints
are g(x) =b and h(x) <c.) |

A word of caution: For decision problems, the term “feasibility” includes the constraint on
the objective function; if the objective function constraint is violated, the problem becomes
infeasible.

Let us start with the definition of the Lagrangian dual:
Definition 2. [2] (Lagrangian Dual)
Suppose we are given a minimization problem Py such as
Minimize f(x):R"™ — R,
subject to g(x) =b, h(x) >c, (1)
where x € R, b € R™ and c € R™2.

Letu € R™ and v € R™2 be two vectors of variables with v > 0.
The column vectors b = [by by -+ by, |7 and ¢ = [e1 c2 -+ cmy) 7.

For a giwven primal problem as in Py, let us define the Lagrangian dual problem Ps:
Mazximize 6(u,v)
subject to v >0, (2)
where  0(u, v) = infxern {f(x) + 2270 wilgi(x) — bi) + 2252 vi(hy(x) — i)}

Note that g;(x) — b; = 0 [hj(x) — ¢; > 0] is the i'" equality [j*" inequality] constraint.

We now turn our attention to the relationship between the duality of an optimization problem,
and membership in the complexity classes NP and CoNP of the corresponding set of decision
problems. Decision problems are those with yes/no answers, as opposed to optimization
problems that return an optimal solution (if a feasible solution exists).



2 Background: Duality and the classes NP and CoNP

Corresponding to P; defined above in (), there is a set D; of decision problems, defined as
Dy ={Di(r) | r € R}. The definition of D;(r) was provided in Definition [l

Let us now define the computational classes NP, CoNP and P. For more details, the reader
is referred to either [I] or [14].

Definition 3. It is well known that NP (respectively P) is the class of decision problems
for which there exist non-deterministic (respectively deterministic) Turing machines which
provide Yes/No answers in time that is polynomial in the size of the input instance. In
particular, for problems in P and NP, if the answer is yes, the Turing machine (TM) is able
to provide an “evidence” (in technical terms called a certificate), such as a feasible solution
to a given instance.

The class CoNP of decision problems is similar to NP, except for one key difference: the
TM is able to provide a certificate only for no answers.

From the above, it follows that for an instance of a problem in NP N CoNP, the corresponding
Turing machine can provide a certificate for both yes and no instances. [ |

For example, if D;(r) in Definition [[l above is in NP, the certificate will be a feasible solution;
that is, an x € R™ which obeys the constraints

g(x) = b, h(x) < c and f(x) > r. (3)

On the other hand, if D;(r) € CoNP, the certificate will be an x € R™ that violates at least
one of the my + mg + 1 constraints in (3]).

Remark 4. For problems in NP, for Yes instances, extracting a solution from the certificate
is not always an efficient (polynomial time) task. Similarly, in the case of CoNP, pinpointing
a violation from a Turing machine certz’ﬁcat is not guaranteed to be efficient either.

Remark 5. P C NP, because any computation that can be carried out by a deterministic
TM can also be carried out by a mon-deterministic TM. The problems in P are decidable
deterministically in polynomial time.

The class P is the same as its complement Co-P. That is, P is closed under complementation.

Furthermore, Co-P (= P) is a subset of CoNP. We know that P is a subset of NP. Hence
P C NP N CoNP. Thus for an instance of a problem in P, the corresponding Turing machine
can provide a certificate for both yes and no instances. [ |

We are now ready to define what is meant by a tight dual, and how it relates to the intersection
class of problems, NP N CoNP. Note that for two problems to be tight duals, it is sufficient
if they are tight with respect to just one type of duality (such as Lagrangian duality, for
example).

Definition 6. We say that two optimization problems P, and P, are dual to each other if
the dual of one problem is the other.

"We thank WenXun Xing and PingKe Li for ponting out the above.



Suppose P, and P, are dual to each other, with zero duality gap; that is, P, and P, are tight
duals. For any r € R, let Dq(r) and Dy(r) be the decision versions of P, and Py respectively.

Let TD be the class of all decision problems whose optimization versions have tight duals.
That is, TD is the set of all problems D,(r) and Dy(r) for any r € R. [

One way in which duality gaps are related to the classes NP and CoNP is as follows:
Lemma 7. [Tj] TD C NP N CoNP.

From Remark [fl and Lemmal[7, we know that both TD and P are subsets of NP N CoNP. But
is there a containment relationship between TD and P? That is, is either TD C P or P C
TD? This is the subject of further study in this paper, with particular reference to Lagrangian
duality.

Remark 8. We should mention that in several cases, given a primal problem P, even if we
are able to find a dual problem D such that the dual of P is D, it does not necessarily follow
that the dual of D is P. That is,the dual of the dual need not be the primal. P and D are
not necessarily duals of each other. We do not include such (P,D) pairs in TD. Among
primal-dual pairs of problems, TD is a restricted class.

3 Lack of Strong Duality results in NP hardness

In this section, we will review results from the literature, which show that the lack of strong
duality imply that the optimization problem in question is NP-hard, assuming that the primal
problem obeys the constraint qualification assumption as stated below in Definition [Tl Here
we work with Lagrangian duality. Results for other types of duality such as Fenchel, geometric
and canonical dualities require further investigation.

Let us define what we mean by weak duality (as opposed to tight duality or strong duality):
Definition 9. Given a primal problem Py and a dual problem Ps, as defined in Definition[3,

the pair (P, Py) is said to obey weak duality if the following condition is satisfied for any
feasible solution x to the primal and any feasible solution (u, v) to the dual:

O(u,v) < f(x). (4)

In Definition (@) above, if the inequality is replaced by an equality, then the primal and dual
problems are said to be obey strong duality.

The following theorem from [2] guarantees that the feasible solutions to Lagrangian dual
problems (Il) and (2]) indeed obey weak duality:

Theorem 10. If x is a feasible solution to the primal problem in (1) and (u, v) is a feasible
solution to the dual problem in (2), then f(x) > 6(u,v). ]

We shall now define a special type of convex program, one with an assumption about the
existence of a feasible solution in the interior of the domain:



Definition 11. Convex program with constraint qualification.
Given. A convex set X C R", two convex functions f(x) : R™ — R and g(x) : R® — R™1, as
well as an affine function h(x) : R™ — R™2.
Constraint qualification assumption. There is an x9 € X such that g(x0) < 0, h(xg) =0,
and 0 € int h(X), where h(X) = ﬂ h(x).

xeX

To do. Minimize f(x), subject to
g(x) <0, h(x) =0 and x € X.

For the remainder of this section, we will assume primal constraint qualification; that is,
we assume that constraint qualification is applied to the primal optimization problem. The
following theorem provides sufficient conditions under which strong duality can occur:

Theorem 12. Strong Duality [2]. If (i) the primal problem is given as in Definition [11,
and (ii) the primal and dual problems have feasible solutions, then the primal and dual optimal
solution values are equal (that is, the duality gap is zero):

inf{f(x):x € X, g(x) <0, h(x) =0} =sup{f(u,v) : v > 0},

mi m2
where 0(u,v), the dual objective function, is equal to ig’({f(x) + Z u;gi(x) + Zvjhj (x)}.
* =1 =1

Using the contrapositive statement of Theorem 12| we get the following result:

Corollary 13. (to Theorem [12) If there exists a duality gap using Lagrangian duals, then
either the primal or the dual is not a convexr optimization problem. (Remember, we are
assuming constraint qualification.)

The Subset Sum problem is defined as follows: Given a set S of positive integers {dy, da, - -, d}
and another positive integer dy, is there a subset P of S, such that the sum of the integers in
P equals dy?

Using a polynomial time reduction from the Subset Sum problem to a non-convex optimization
problem, Murty and Kabadi (1987) showed the following:

Theorem 14. [12] If an optimization problem is non-convez, it is NP-hard.

(The converse is not true. A convex optimization problem in general is NP-hard, for example,
Standard Quadratic Programming. See [11].)

From Corollary [13] and Theorem [I4] it follows that

Theorem 15. Assuming constraint qualification, if there exists a duality gap using La-
grangian duals, then either the primal or the dual is NP-hard.

These results are true for Lagrangian duality. For other types of duality such as Fenchel,
geometric and canonical dualities, this requires further investigation.

We should mention that there are quite a few papers in the literature on convezification;
that is, in some cases, an original non-convex formulation has been shown to have an equiv-
alent convex formulation, which sometimes makes the problem amenable to polynomial time
solvability. Some authors call this “hidden convexity”; see [3] and [4].



4 Does Strong Duality Imply Polynomial Time Solvability?

At this time, such a proof (of whether a duality gap of zero implies polynomial time solvability
of the primal and the dual problems) appears possible only for very simple problems, since
estimating the duality gap appears extremely challenging for many problems.

Some of the problems where this is true include Convex Programming (and in particular,
Linear Programming), mainly by using Interior Point algorithms. For example, see the book
by Nesterov and Nemirovskii [13].

More investigation is needed to answer to this question in general.

However, there have been some results recently using Canonical duality for certain types of

quadratic programs [6l [I7]. Consider a standard quadratic programming (primal) problem:
Maximize P(x) = 3x’ Ax + b{x
subject to bZ-Tx <g¢, 1<i<m,

(5)

where A = AT ¢ R™*" b; e R* for 1 <i < m, and x € R". A is a symmetric matrix. We
can write the Lagrangian function as

m T m
L(X, )\) = %XTAX + (bo + Z >\zbz> X — Z )\Z’Ci, A > 0. (6)
=1 =1

The first order necessary condition among the Karush-Kuhn-Tucker (KKT) conditions yields

Ax 4+ by + Z Aib; = 0, from which we get the value of x as
i=1

x =47t (bo +> Aibi> , (7)
i=1

assuming that A is an invertible matrix. Substituting this value of x back into the Lagrangian
function yields

m T m m
QM) = —% (bo +> )\ibi) A7 <bo +)° Aibi) =) e, (8)
i=1 i=1 i=1

We then get a dual problem, the canonical dual P?%, as follows:

Maximize Q(A), (©)
subject to A >0 and A > 0.

(The relation A > 0 means the matrix A should be positive definite.)

Now, Q()) is a concave function, to be maximized in the dual variable A; hence P9 can be
solved efficiently, since we are maximizing a concave function. Thus in general, we can get a
lower bound for the primal problem quickly; and in some cases, we can get a strong dual with
zero duality gap, which provides an optimal solution for the primal problem in polynomial
time.



4.1 Preliminary Results:
Canonical Duality and the Complexity Classes NP and CoNP

We now turn our attention to the relationship between the duality of an optimization problem,
and membership in the complexity classes NP (and CoNP) of the corresponding set of decision
problems. Recall that decision problems are those with Yes/No answers.

We consider quadratic programmingE problems with a single quadratic constraint [I7]. The
primal problem Py is given by:

Minimize P(x) = ixTAx — fIx

10
subject to %XTBX < u, (10)

where A and B are non-zero n x n symmetric matrices, f € R", and p € R. (A, B, f and
are given.) Corresponding to the primal Py, the canonical dual problem P4 is as follows:

Maximize P%(c) = —%fT(A +0B)" Y — po (11)
subject to o€ F={oc>0| A+ 0B > 0},

assuming that F is non-empty. The following theorem appeared in [17]:

Theorem 16. (Strong duality theorem) When the mazimum value P%(c*) in (I1) is finite,
strong duality between the primal problem Py and the dual problem P% holds, and the optimal
solution for Py is given by z* = (A + o*B)7If.

That is, Py and P? are tight duals. Combining this result with Lemma [7 above, we can
conclude that

Remark 17. Decision versions of Problems Py in (1) and P in (6) are members of the
intersection class NP N CoNP.

Furthermore, from Theorem 3 in [I7], it is easy to see that problems Py and P, can be solved
in polynomial time. The authors in [I7] use what they call a “boundarification” technique
which moves the analytical solution T to a global minimizer z* on the boundary of the primal
domain. This strengthens the conjecture that

Conjecture 18. If two optimization problems P, and P, are such that one of them is the
dual of the other, that is, they exhibit strong duality, then both are polynomially solvable.

The observations above are for quadratic programming problems with a single quadratic
constraint. It would be interesting to see what happens for quadratic programming problems
with two constraints, whether strong duality still holds, and whether both the primal and the
dual are still polynomially solvable.

Ramana [15] exhibited strong duality for the semidefinite programming (SDP) problem. How-
ever, the complexity of SDP is unknown; the author in [I5] showed that the decision version
of SDP is NP-complete if and only if NP = CoNP.

2Thanks to Shu-Cherng Fang for his input here.



5 Descriptive Complexity and Fixed Points

On a final note, we would like to briefly describe a similar phenomenon which occurs in the field
of Descriptive Complexity, which is the application of Finite Model theory to computational
complexity. In particular, we would like to mention least fixed point (LFP) computation. A
full description would be beyond the scope of this paper. However, we would like to briefly
mention a few related concepts and phenomenon.

For a good description of least fixed points (LFP) in existential second order (ESO) logic, the
reader is referred to [7] (chapters 2 and 3) and [8]. If the input structures are ordered, then
expressions in LFP logic can describe polynomial time (PTIME) computation [7].

The input instance to an LFP computation consists of a structure A, which includes a domain
set A and a set of (first order) relations R;, each with arity r;, 1 < ¢ < J. The LFP
computation works by a stagewise addition of tuples from A, to a new relation P (of some arity
k). If P; represents the relation (set of tuples) after stage i, then P; C P, ;. The transition
from P; to P;1; is through an operator ®, such that P,;; = ®(F;). At the beginning, P is
empty, that is, Py = (). For some value of i, say when ¢ = f, if Py = P11, a fized point has
been reached.

Without going into details, let us just say that such a fixed point, reached as above, is also
a least fixed point (LFP) if the operator ® can be chosen in a particular manner. The
interested reader is referred to [7] (chapter 2) for details.

Note that the number of elements in P can be at most |A|* (where |A| is the number of
elements in A), which is polynomial in the size of the domain. Hence f < |A[¥, so an LFP is
achieved within a polynomial number of stages.

Similar to LFP, we can also define a greatest fixed point (GFP). This is obtained by doing
the reverse; we start with the entire set A* of k-ary tuples from the universe A, and then
removing tuples from P in stages. At the beginning, Py = A¥. In further stages, P; D Piy.
The GFP is reached at stage g if Py, = Pyi1.

The logic that includes LFP and GFP expressions is known as LFP logic. It expresses
decision problems (those with a Yes/No answer), such as those in Definitions [[land Bl To be
feasible, a solution should also obey the objective function constraint (f(x) > K or f(x) < K).

The LFP computation expresses decision problems based on maximization. Before the fixed
point is reached, the solution is infeasible; that is, the number of tuples in the fixed point
relation P is insufficient. However, once the fixed point is reached, the solution becomes
feasible. Similarly, the GFP computation expresses decision problems based on minimization.

Problem. An interesting problem arising in LFP Logic is this: For what type of primal-dual
optimization problem pairs will the LFP and GFP computation meet at the same fixed point?
Does this mean that such a pair is polynomially solvable?

6 Conclusion and Further Study

In this paper, we have touched the tip of the iceberg on a very interesting problem, that of
connecting the computational hardness of an optimization problem with its duality charac-
teristics. A lot more study is required in this area.



Another issue is that of saddle point for Lagrangian duals. This is a decidable problem; we
can do brute force and find the primal and dual optimal solutions; this will tell us if there is
a duality gap. If the gap is zero, then there is a saddle point.

(Jeroslow [10] showed that the integer programming problem with quadratic constraints is
undecidable if the number of variables is unbounded, which is an extreme condition. However,
if each variable has a finite upper and lower bound, then the number of solutions is finite and
thus it is possible to determine the best solution in finite time.)

However, this problem would be NP-complete, unless we can tell whether it has a saddle point
by looking at the structure of the problem or by running a polynomial time algorithm.

We hope that this paper would motivate further research into this interesting topic.
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