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THE AUTOMORPHISM GROUP OF THE GROUP OF
UNITRIANGULAR MATRICES OVER A FIELD

AYAN MAHALANOBIS

ABSTRACT. This paper finds the generators of the automorphism grotipeof
group of unitriangular matrices over a field. Most of this @ajs an exposition
of the work of V.M. LevEhuk, part of which is in Russian. Som®ofs are of

my own.

1. INTRODUCTION

The automorphism group of the group of unitriangular masiover a field was
studied by many [547]. In this direction, the first paper wafkussian, published
by Pavlov in 1953. Pavlov studies the automorphism groupnifiangular ma-
trices over a finite field of odd prime order. Weit [7] descalibe automorphism
group of the group of unitriangular matrices over an finitédfief odd characteris-
tic. Maginnis [6] describes it for the field of two elementsidimally LevEhuk [5]
describes the automorphism group of the group of unitritargmatrices over an
arbitrary ring. In this expository article, we will studyetautomorphism group of
the group of unitriangular matrices over an arbitrary figld

To start, we denote the algebra of all lower niltraingulatnioas overF', of size
d, by NT(d,F). This is the set of all matrices that have zero on and above the
diagonal, and arbitrary field element (possible non-zeedw the main diagonal.

It is known to be anilpotent algebraA/¢ = 0, for all M € NT(d, F). Where0 is

the zero matrix of sizd. The general method, that we describe below, works only
whend is greater than 4. The case®t= 3 andd = 4 can be computed by hand
and was done by Levchukl[5]. Henceforth, we assumedhat.

One can define two operations on the se{#l|F).

. The first operation is, defined as..b = a + b + ab.

: The second operation is defined as * b = ab — ba.
It is known that(NT(d,F),.) is isomorphic to UTd, F), the group of (lower)
unitriangular matrices The isomorphism being — 1 + z, where 1 is the iden-
tity matrix of sized. This groups is also known as tlassociated groupf the
ring NT(d, F). In this paper, we will denote the associated group of &F) by
UT(d,F).
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The second operation is a Lie bracket, it is known (N (d, F), +, %) is a Lie
algebra. In this paper, we will denote this Lie algebra by TF). It is not hard
to see, in the light of Equations 3 ahd 4 later, that this Lgehta is the same as
the graded Lie Algebra of the group UT, F).

Fori > j andx € F, we define the matrix unite; ; to be thed x d matrix with
x inthe (7, ) position and) everywhere else.

The defining relationsin these three algebraic objects are the relations in the
field F and the following:
The algebra NTd, F).

N | xye;; whenever j =k
@) (e ) (yew,) = { 0  otherwise
The group UTd, F).
) (zeij)« (yeij) = (x +y)ei;
xrye;;  Whenever j =k
3 [weij,yer ] = § —xyer,; Whenever =1
0 otherwise

The Lie algebra NT(d, F).

xye;; Whenever j =k
4 (we;j) * (yery) = § —wxyer; whenever i=1]
0 otherwise

From the Relationl3, it follows, that a set of generators fier UT(d, F), is of
the formze; 1, € Fandi = 1,2,...,d — 1. This is actually a set ahinimal
generators. Since the commutator relation and the relaiidine Lie algebra are
the same, the same set acts as generators for the Lie algelvedl.a

Define

e = {M =" mijei; € UTAF); myj =0, i—j<k},

in other words, thdy = UT(d,F). The subgroud’; is the commutator of
UT(d,F). It consists of all lower niltriangular matrices with thesfirsubdiago-
nal entries zero. The first subdiagonal can be specified bgnafles(i, 7) with
i—7 = 1. Similarly T's consists of all matrices with the first two subdiagonals zero
and so on. It follows thal'; = 0.

It follows from RelatioriB, ifi — j = k1 andk — | = ko and[ze; ;, yey ] is non-
zero, then the commutator igje; ; or xyey, ;. In both these cases,— [ ork — j
equalsk; + ko. Taking these into account, one can prove the next propasiti

Proposition 1.1. In UT(d, F), the lower central series and the upper central series

are identical and is of the form U, F) =T1 > Ty > ... > T3 1 > T3 =0.
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There is an interesting and useful connection between thmalsubgroups of
UT(d,F) and ideals of NT(d, F). The connection can be motivated by a simple
observation: Lel + Lisin UT(d,F), i.e.,L € NT(d,F). Then

(5) (T4e;) ' A+L)(1+eij) =14+ L+ (Lxey),

which implies that under suitable conditions, elements moemal subgroup of
UT(d,F) are closed under Lie bracket. Conversely, under suitabiéiton, an
ideal of NT*(d, F) is a normal subgroup of U&, F).

Furthermore one should also notice, if a subgrddmf UT(d, F) is abelian,
then we havél + L)(1+ M) = (1+ M)(1 + L) for1+ L,1+ M € H; which
implies thatL « M = 0, i.e., if a subgroup is abelian and an ideal, then that ideal i
abelian as well and vice versa.

Notice that, in the motivation above, we have representedlament of the
group UT(d, F) asl + L, whereL € NT(d,F). This is not necessary, we can use
L and the operation. However, sincel + L makes the group operation matrix
multiplication, this makes our motivation transparentorirnow on, elements in
UT(d, F) will be represented as elements of (dJF), with the operation.

Fori > j, let us definéN; ; to be the subset of N, F') with all rows less then
thei™ row zero and all columns greater than gf&column zero. It is a rectangle
and Weir [7] calls it gpartition subgroup. It is straightforward to see tid ; is
an abelian (two-sided) ideal of the ring NT F'). From this it follows thaiN; ; is
an abelian ideal of NT(d, F).

Lemma 1.2.If H is a maximal abelian normal subgroup of {TF') or a maximal
abelian ideal of NT(d, F), then

e H>C H.
e H2 C Nyj.
e ayf + fya=0fora, B € Handy € NT(d,F).

Proof. From maximality, it follows thatHd contains the annihilator of the ring
NT(d,F), i.e., the subsefz | zy = 0 = yx, forally € NT(d,F)}. We show that
H? is contained in the annihilator. We only work with the asatail group, the
proof for Lie algebra is identical.

Since H is normal, for anyw, 5 € H andy = ze;; € NT(d, F), o commutes
with (—xe;;) . 5. (vei;). This implies that

a. (B4 B(weij) — (zei)B) = (B+ B(weij) — (wei)B) » v
SinceH is abelianaf = S,

(aB(weij) + (zeij)Ba) — (alzes)B + Blzeij)a) =0
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Now notice that the matrix represented in the first pareighegs non-zero ele-
ments only on thez'th row and thejth column. On the other hand the matrix rep-
resented by the second parenthesis has botlz'lththew and thejth column zero.
Hence the equality is possible only when both the matricezearo.

This implies thatw3(xe;;) = 0 = (ze;j)Ba fori > jandi = 2,3,...,d and
j=1,2,...,d—1. ltis also clear thatvy3 + Sya = 0 for v = we; ;.

Notice that for anyl x d matrix A, Ae; ; is the matrix with only thg’" column
non-zero and the contents are the contents of'theolumn. ThusaB(ze;;) = 0
implies that thei column of a3 is zero fori = 2,3,...,d. Similarly one can
show, that thgi™™ row is zero forj = 1,2,...,d — 1. Then it follows thatH? C
Ngi.

Since any matrix in NTd, F') can be written as a linear combination of elemen-
tary matricesee; ;, the proof thatif? is contained in the annihilator is complete.
Furthermore, sincél is closed under addition, we hawe/s + 8ya = 0, for all
v e NT(d, F) °

Theorem 1.3(Levchuk, 1976) A maximal abelian normal subgroups of UTF)
is also a maximal abelian ideals of N, F') and vice versa.

Proof. Let N be a maximal abelian normal subgroup of dJF'). Then construct
the subgroup

N =(NU{a- 8}, a,€N)
Clearly N’ is an abelian subgroup. Since matrix multiplication disttes over
addition, the subgroupV’ is normal. SinceV is contained inV’, the maximality
implies thatV = N’ and soN contains the sum of any two of its elements.

To show that it is closed under Lie bracket, notice thdtjs normal implies
(—ze;j) « o (weyj) isin N. This implies thaiv + (o * ze;;) isin N. SinceN is
closed under additiony * xe;; isin N.

The fact thatV is an abelian ideal follows from the fact that is an abelian
group.

Conversely, assume thais a maximal abelian ideal of the Lie ring N{d, F).
Then from Lemmd_1]2/> C I. This proves thatl is a subring, this implies
that it is closed under. So/ is a subgroup, and sinee* ze;; € I, fora € I
andze;; € NT(d,F), a(ze;;) — (zei;)a € I. This shows that is a normal
subgroup. °

2. MAXIMAL ABELIAN IDEALS OF NT*(d,F)

Notice that the centralizer of any set in the ring ({JF), the associated group
UT(d,F), and the Lie ring NT(d, F) is identical. Let us look at the centralizer

of N, ;. Notice that, if( am,nem,n> N;j = Ni; < > am,nem,n>. Then the
m>n m>n

left hand side is a linear combination of the rows\gf; and the right hand side is a
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linear combination of columns a¥; ;. Since the entries aW; ; are arbitrary field
elements, the only way that this is possible is #hat,IN; ; = 0 andN; je,, , = 0
for m > n. So to find the centralizer is to look fen,n with m > n, such that
emnlNij = 0= Nj jenn. NOW itis easy to see that the centralizer

C(Nij) =Njiri-1-

SinceC (N;11,;) = Njq14, if N1 is properly contained in an abelian ideal, then
that ideal is contained in the centralizer; which is impbotgsi This proves that

(6) Nit1,i
is a maximal abelian ideal of NTd, F) fori = 1,2,...,d—1. Further notice that,
'y = Niy11 + Nigoo+ ...+ Ng gk,

taking intersection of partition subgroups, itis easy ®t&atC (I'y,) = Ng—g+1,k-
In particular, ifd is even, i.e.d = 2k for some integek, thenC (I'y) = Nj41 %

2.1. Are there any other maximal abelian ideals of NT'(d,F)? Let H be a
maximal abelian ideal of NTd, F). Following Levchuk[[4], we definél; ; to be
a subset oF', whose elements are in tlig j) position of a matrix belonging tél.

Let m be the smallest, and be the largest integer such that, ; # 0 and
Hg, # 0. SinceH is an ideal, fori > j > 1 andi < m, H xe;; € H. This
implies thatH; je; 1 € H. Now fori < m, H; 1 = 0, henceH; ; = 0 for i < m.

Similarly, one can show thaf; ; = 0 for j > n by looking at the fact/{ e, ; €
H.

Two things can happen, either< m orn > m. In the first case, it is clear that
H is contained irN,;, ,,—1 and is thusN,;, ,,—1.

If we assume that > m, then the description aff is bit involved. It gives rise
to maximal abelian ideals @xceptionakype.

First notice, ifn = m, thenH,,, ; = 0for j > 1 andH;,, = 0fori < d. This
follows from the fact that7? C N, ; (see LemmaT]2).

In this case® = m), leto,, 5 € H. Thenax 3 = 0. Ifwe writea = )" «; je; ;
i>j
andg = >~ B jeij, thenay, 184, —Bnica,, = 0. Now notice thatf being closed
>3
under addition, we can assume that; andog,, are non zero. This implies that
the maximal abelian ided¥ is of the form: for a fixed: € F

@) {Nit1,i—1+xei1 +xceq;; xe€F}.

Now let us consider the casef> m, in this case we first show that> m+1
is impossible.

Forn > m, we show that,, ; = 0 for i > 1. Notice that forn > m > i > 1,
enm * (H xe;1) € H. SinceH = H = 0, this implies thatH; ,, H,,, ;eq41 = 0.
SinceH,,, # 0, Hp,; = 0 fori > 1.
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In a similar way, looking atg ; * (H * ey ) € H shows us thatf;,, = 0 for
j <d.

Thenforn > m+1, (H * €y m+1) * €mi1,m € H. Thisimplies thatfg ,.eq , €
H. The fact that + H = 0, gives us thatd, , H,, 1e41 = 0. However this is
impossible. Hence > m + 1 is impossible.

Now we show that, i = m+1, then2F = 0, i.e.,F has characteristi2. Since
H,,1 andH,,,, are both non-zero. SincH is closed under addition, there is a
matrix € H, wherea = " «; je; j andoy, 1 # 0 andog m41 # 0.

i>7

From Lemma 1R, we kn]ow thatv(zey,+1.m ) = 0 for anyz € F, which says
that2z (g m+10m,1€45) = 0. Sincez is arbitrary, we haveF = 0.

From Lemm&ZIRH? C Ny 1, thisimplies,H,,+1; = 0fori > 1andH,,, =0

forj < d. Leta = " a4 je; jisin H. SinceH is closed under addition, we may
i>j
assume thad,,, 1, 1,1, g,m andoyg ;41 are all nonzero. The( e, 1,m) *
H =0, implies that(a * €, 41,,m) * 5 = 0, wheres = > ; je; ;. Thisis the same
i>j

as saying thatvg y,+16m,1 + am,184,m+1 = 0. This implies that there isac F
such thatvg 41 = caum, 1.

Then the maximal abelian ide&l is of the form: forac € Fandi = 2,3,...,d—
2,

(8) Nij2-1+aeiy11 +beq; +xei1 + cregir1; a,b,x €F.

So by now we have proved a theorem.

Theorem 2.1(Weir, 1955; Levchuk 1976)The maximal abelian ideals of the Lie
ring NT*(d, F) are of the following form: [(6),[(7) and(8) above. Theé (8) accu
only when the field is of characteristic 2.

3. THE AUTOMORPHISM GROUP ORUT(d, F)

In this section we describe all the automorphisms of the gtdti(d, F). The
automorphisms are as follows:

Extremal automorphisms — Autg: These automorphisms arise from the max-
imal abelian ideals of exceptional type. As we saw, the makiabelian
ideals of exceptional type are different for a field of ch&sdstic 2. So,
we will have two different types of automorphisms. One foereharac-
teristic and other for the field of odd characteristic.

Odd Characteristic:

(9) Teg 1 > xeg 1 +axreqo + :U’\ed,l

Wherez? : F — F is a map that satisfies the equation+ y)* —

a* — y* = axy anda = 2* — 2(1*). All other generators remain

fixed.
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(10)

(11)

(12)

Similarly, one can defineey 41 = req 41+ azes_11+ 3 eq 1. All
other generators remain fixed and theatisfies the above relations.
If F is of even characteristic, then = 0*. It is easy to see that,
since0® = 0, a = 0. So in the case of the characteristic of the field
to be even, the extremal automorphisms become the centaahat
phisms.
Clearly automorphisms of this form generate a subgroup @ffuh
automorphism group of U, F), denoted by Aut and is isomorphic
toFT o F™ .

Even Characteristic:

Teg 1 > xeg 1 + areqy

all other generators remain fixed. Similarly one can defing; | —
xeqqd—1 + axeq—1,1. Again this automorphism group Agitis isomor-
phic toF+ @ FT™. We will later show that these automorphisms are
only possible when the fielH is the field of two element&,.

Flip automorphism — Aut z: This automorphism is given by flipping the ma-

trix by the anti-diagonal and is given by the equation:

Teij > Tld—j+1,d—i+1

This is clearly an automorphism of order 2 and forms a sulmafuthe
automorphism group and will be denoted by Aut

Diagonal automorphisms — Aup: This automorphism is conjugation by a

diagonal matrix. Diagonal matrices are defined as matricids anly
non-zero terms in the main diagonal and everything else. Zeev D =
[x1,22,...,24] be a diagonal matrix, with, z,, ..., z, as the non-zero
diagonal entries in the respective rows. Then'ze; ;D = d; 'xdje; ;.
So a diagonal matrix mape; ; +— d; 'zdje; ;. The kernel of this map is
the set of all scalar matrices, i.&; = 2 = --- = x4. Thisis clearly a
subgroup of the automorphism group, which is of the fdfrh x F* x
... x F* (d — 1times), and will be denoted as Aut

Field automorphisms — Aut,: This automorphisms can be described as

TCiy1,4 > x“eiﬂ,i 1= 1, 2, . ,d — 1.

Wherey : F — F is a field automorphism.

Inner automorphisms — Aut;: This is the well known normal subgroup of

the automorphism group in any non-abelian group; where ¢~ '2g for
someg € UT(d,F) andz € UT(d, F).

Central automorphisms — Auto: Central automorphisms are the centraliz-

ers of the group of inner automorphisms in the group of autpimems.

The simplest way to explain them is to “multiply” the generatwith an
7



element of the center. In the case of UJF) itis
(13) Teit1; > Teip1i + 2eq

Where) is a linear map oF T to itself.

3.1. Why are these the only automorphisms of UTd, F)? We know that any
automorphismy of any group maps a maximal abelian normal subgroup to a max-
imal abelian normal subgroup. Out first lemma uses that tegoro

Lemma 3.1. Let ¢ be an automorphism of UT, F). ThenN?

i1, is EitherNH_l,i
OrNg_jy1,a-ifori =1,2,...,d—1.

Proof. Notice that the centralize? (') of T'y, thek™ element in the central series
is characteristic. 1t/ is even, and! = 2k for somek, thenC (I'y) = Njpi1 .
HenceNy,, , = Ni41- Further notice that for < ¢, Nij1; N Ny_ij14-; =
Ng—_it+1,i is a characteristic subgroup of Y& F'). Since flip is an automorphism
of UT(d, F), any characteristic subgroup must be symmetric about ttensledi-
agonal.

ThenN,_;11, is the maximal characteristic subgroup of (dTF) contained in
both N,y ; andNg_;41,4—;. This means that it must be contained as a max-
imal characteristic subgroup IN?,, ;. SoN?,, ; has two choicesN;,,; or
Na—it1,d—i- J

It is important to notice here thatep ; andxeg 41 are not only contained in
the maximal abelian normal subgroups ; andV; 41 . They are also contained
in the exceptional subgroups. Let us call the maximal abeal@mal subgroup of
type (1) (or of typel(B), when characteristic of the fiel@)jsontainingzes ; asAs
and the maximal abelian normal subgroup containiag;—1 asAg_;.

It is clear from the last lemma, thm;'j is eitherAs or A;_1. Then clearly, if
necessary, composingwith the flip automorphism, we claim that Ud, F)/I",
is invariant underp. We can actually say moreefﬂ,i = gMi ei+1,, mod I'y, for
1=1,2,...,d — 1. Where); : F — F is a map. Now let us try to understand the
map ;. Sinceg is an automorphism, each mapis a bijection.

Now recall the relations in U, F') (Equations P). It follows from the relation
TeijYeij = (:L' + y)ei,j, if TCiy1,; x)\iei—l—l,i then); is a linear map oF+.

Furthermore, sincére; 1, yeii—1] = [Y€it+14, xe€ii—1], grighi-1 = grighi-1,

fori = 2,3,...,d — 1. Also, SinCE[$62,1,y€372]¢ = [y€271,$63,2], a:)‘ly)‘Q =
Y,
Taking all these together, it follows thaf = k1o = ksAg = -+ = kg_2Ag_1.

Wherek; are nonzero fields elements.
So now we are in a position to claim, that composihgith a field automor-

phism and a diagonal automorphisgnmaps like the identity UTd, F) /T'5.
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As we saw from the above lemma, (after composing with the flip, if neces-
sary) mapsd, and A4, to itself. So it follows that theed , andze) ,_,; are inAs
andA,_, respectively. In case of odd characteristic, the desorim;i‘ the extremal
automorphism is obvious and is defined in Equaftibn 9.

In case of the even characteristic we need to say more. Nibi@ten the case
that the characteristic of the field being even, the maximal abelian normal sub-
group containinges ; is

Ny 1 +aes1 + bed72 + zeg 1 + creqs

wherea,b € F, c € F*, x € F. We want to know more about the automorphism
that moveses ;. Using the flip automorphism, if necessary, we can assunte tha
A = A,. So the only choice is

Teg 1 wegq + areqs + ;U)‘ed,g +ateq

where\, . : F — F. From relatiof 2, we see thé&t + 3)* = z* + ¢*. This
implies that0* = 0. Also it follows that(z + y)* = 2* 4 y* + 2*y. This implies
that (z + y)* = a* + y* + 1 zy. Puttingz = 0 andy = 1, we have tha0* = 0.
Puttingz = 1 andy = 1 we getl* = 0. Sincez* = 1}z, this implies that:* = 0,
i.e., A is the zero map.

Once is the zero map, clearly the; ; entry is not necessary. Hence we have
the Equation_100.

From the commutator relations (Relatidn 3), we see that the

zyesq — xyez 1 + axyeqy + aryeqs.

Then interchanging: andy, we see thatzy(y — z) = 0. Sincea # 0, so in the
field F, for any two distinct element, one is zero. This meanskat Z,.

Notice that fori = s, [zei+14,yest] = zyeir1e. Soifs —t = k, then(i +
1) — 1 = k + 1. Using this idea one can clear each and every subdiagormas, o
after another, starting with = 2. This means that by suitable conjugatimaf;u

will have no non-zero entries except theé 1) entry. In the case ofegl and

meﬁ 41 One can actually clear all non-zero entries, including(thé) entry, using
conjugation. One can choose the conjugators in such a wayhisagives rise to
an inner automorphism. This proves the following lemma:

Lemma 3.2. Let 'y, be as defined. For an automorphignof UT(d, F), which
fixes UT(d, F) mod I'y, one can use inner automorphisms, such ¢hatts like
the identity moduld™y_;.

So now we have the following:

¢ Use the flip automorphism, if necessary, so Mh,i = Ny, fori =
2,3,...,d—2.
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Using extremal automorphism, if necessary, so Iﬁﬁgu = N4, for
i=1,2,...,d—1.

Use a field automorphism and a diagonal automorphism, ifssecg, so
thata:e?H’i = xe;j+1,; mod I's.

Use inner automorphisms, if necessary, so:ﬁaﬁgli = zej11,; mod I'y_y.

Use central automorphisms, if necessary, so;ﬁaﬁ;u = xej+1,. Note
that the central automorphisms correspondingdg; andzeg 4 are in-
ner automorphisms.

Now we have proved the following theorem.

Theorem 3.3. The automorphism group of U@, F) is generated by extremal
automorphisms, field automorphisms, diagonal automanphisnner automor-
phisms and central automorphisms.

Acknowledgments. Special thanks to I.B.S. Passi for his encouragement, mgadi
the whole manuscript and valuable comments.

REFERENCES

[1] You'an Cao,Automorphisms of the Lie algebra of strictly upper triarguhatrices over certain
commutative ringsLinear Algebra and its Applicatior29(2001), 175-187.

[2] Roy Dubisch and Sam Perli®n total nilpotent algebrasAmerican Journal of Mathemati@s3
(1951), 439-452.

[3] S.A.JenningsRadical rings with nilpotent associated groyfsansactions of the Royal Society
of Canada, Series IKLIX (1955), no. 3, 31-38.

[4] V.M. Levthuk, Connections between the unitriangular group and certaimgsi. | Algebra i
Logical5(1976), no. 5, 558-578, in Russian.

, Connections between a unitriangular group and certain singhap. 2: Groups of
automorphismsSiberian Journal of Mathemati@g (1983), no. 4, 543-557.

[6] J.S. MaginnisQuter automorphism of upper triangular matricdsurnal of Algebrd 61(1993),
267-270.

[7] A.J. Weir, Sylowp subgroup of the general linear group over finite fields of eueristicp,
Proceedings of the American Mathematical Soc&($955), no. 3, 454-464.

[5]

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCHPUNE, SAI TRINITY BUILD-
ING, PASHAN, PUNE 411021, INDIA
E-mail addressayanm@ i ser pune. ac.in

10



	1. Introduction
	2. Maximal abelian ideals of NT(d,F)
	2.1. Are there any other maximal abelian ideals of NT(d,F)?

	3. The automorphism group of UT(d,F)
	3.1. Why are these the only automorphisms of UT(d,F)?

	References

