Maximal right smooth extension chains

Yun Bao Huang
Department of Mathematics
Hangzhou Normal University
Xiasha Economic Development Area
Hangzhou, Zhejiang 310036, China
huangyunbao@sina.com
huangyunbao@gmail.com

2010.12.26

Abstract

If $w=u \alpha$ for $\alpha \in \Sigma=\{1,2\}$ and $u \in \Sigma^{*}$, then w is said to be a simple right extension of u and denoted by $u \prec w$. Let k be a positive integer and $P^{k}(\varepsilon)$ denote the set of all C^{∞}-words of height k. Set $u_{1}, u_{2}, \cdots, u_{m} \in$ $P^{k}(\varepsilon)$, if $u_{1} \prec u_{2} \prec \cdots \prec u_{m}$ and there is no element v of $P^{k}(\varepsilon)$ such that $v \prec u_{1}$ or $u_{m} \prec v$, then $u_{1} \prec u_{2} \prec \cdots \prec u_{m}$ is said to be a maximal right smooth extension (MRSE) chains of height k. In this paper, we show that MRSE chains of height k constitutes a partition of smooth words of height k and give the formula of the number of MRSE chains of height k for each positive integer k. Moreover, since there exist the minimal height h_{1} and maximal height h_{2} of smooth words of length n for each positive integer n, we find that MRSE chains of heights $h_{1}-1$ and $h_{2}+1$ are good candidates to be used to establish the lower and upper bounds of the number of smooth words of length n respectively, which is simpler and more intuitionistic than the previous methods.

Keywords: smooth word; primitive; height; MRSE chain.

1. Introduction

Let $\Sigma=\{1,2\}, \Sigma^{*}$ denotes the free monoid over Σ with ε as the empty word. If $w=w_{1} w_{2} \cdots w_{n}, w_{i} \in \Sigma$ for $i=1,2, \cdots, n$, then n is called the length of the word w and denoted by $|w|$. For $i=1,2$, let $|w|_{i}$ be the number of i which occurs in w, then $|w|=|w|_{1}+|w|_{2}$.

Given a word $w \in \Sigma^{*}$, a factor or subword u of w is a word $u \in \Sigma^{*}$ such that $w=x u y$ for $x, y \in \Sigma^{*}$, if $x=\varepsilon$, then u is said to be a prefix of w. A run or block is a maximal factor of the form $u=\alpha^{k}, \alpha \in \Sigma$. The complement of $u=u_{1} u_{2} \cdots u_{n} \in \Sigma^{*}$ is the word $\bar{u}=\bar{u}_{1} \bar{u}_{2} \cdots \bar{u}_{n}$, where $\overline{1}=2, \overline{2}=1$.

The Kolakoski sequence K which Kolakoski introduced in [13], is the infinite sequence over the alphabet Σ

which starts with 1 and equals the sequence defined by its run lengths.
I would like to thank Prof. Jeffrey O. Shallit for introducing me the Kolakoski sequence K and eight questions on it in personal communications (Feb. 15, 1990), the fourth and eighth problems of them are respectively as follows:
(1) Prove or disprove: $\left|K_{i}\right|_{1} \sim\left|K_{i}\right|_{2}$, which is almost equivalent to Keane's question.
(2) Prove or disprove: $\left|K_{i}\right| \sim \alpha(3 / 2)^{i}$ (This would imply (1)), where α seems to be about 0.873 . Does $\alpha=(3+\sqrt{5}) / 6$?
where $K_{0}=2$ and define K_{n+1} as the string of 1^{\prime} and 2^{\prime} obtained by using the elements of K_{n} as replication factors for the appropriate prefix of the infinite sequence $1212 \cdots$.

The intriguing Kolakoski sequence K has received a remarkable attention $[1,3$, $5,11,15,16]$. For exploring two unsolved problems, both wether K is recurrent and whether K is invariant under complement, raised by Kimberling in [12], Dekking proposed the notion of C^{∞}-word in [6]. Chvátal in [4] obtained that the letter frequencies of C^{∞}-words are between 0.499162 and 0.500838 .

We say that a finite word $w \in \Sigma^{*}$ in which neither 111 or 222 occurs is differentiable, and its derivative, denoted by $D(w)$, is the word whose j th symbol equals the length of the j th run of w, discarding the first and/or the last run if it has length one.

If a word w is arbitrarily often differentiable, then w is said to be a C^{∞}-word (or smooth word) and the set of all C^{∞}-word is denoted by \mathcal{C}^{∞}.

A word v such that $D(v)=w$ is said to be a primitive of w. Thus 11, 22, 211, $112,221,122,2112,1221$ are the primitives of 2 . It is easy to see that for any word
$w \in \mathcal{C}^{\infty}$, there are at most 8 primitives and the difference of lengths of two primitives of w is at most 2 .

The height of a nonempty smooth word w is the smallest integer k such that $D^{k}(w)=\varepsilon$ and the height of the empty word ε is zero. We write $h t(w)$ for the height of w. For example, for the smooth word $w=12212212, D^{4}(w)=\varepsilon$, so $h t(w)=4$.

2. Maximal right smooth extension chains

Let \mathcal{N} be the set of all positive integers and $P^{k}(\varepsilon)$ denote the set of all smooth words of height k for $k \in \mathcal{N}$, then

$$
\begin{align*}
P(\varepsilon)= & \{1,2,12,21\} \tag{1}\\
P^{2}(\varepsilon)= & \{121,212,11,22,211,122,112,221,2112,1221,1211,12112 \\
& 2122,21221,1121,21121,2212,12212\} \tag{2}
\end{align*}
$$

Definition 1. Let $w, u, v \in \Sigma^{*}$ if $w=u v$, then w is said to be a right extension of u. Especially, if $v=\alpha \in \Sigma$, then w is said to be a simple right extension of u, and is denoted by $u \prec w$.

Definition 2. Let $u_{1}, u_{2}, \cdots, u_{m} \in P^{k}(\varepsilon)$, where $k \in \mathcal{N}$.

$$
\begin{equation*}
u_{1} \prec u_{2} \prec \cdots \prec u_{m}, \tag{3}
\end{equation*}
$$

and there is no element v of $P^{k}(\varepsilon)$ such that

$$
\begin{equation*}
v \prec u_{1} \text { or } u_{m} \prec v, \tag{4}
\end{equation*}
$$

then (3) is said to be a maximal right smooth extension (MRSE) chain of the height k. Moreover, u_{1} and u_{m} are respectively called the first and last members of the MRSE chain (3).

Let H^{k} denote the set of all MRSE chains of the height k. For $\xi \in H^{k}, \xi=u_{1} \prec$ $u_{2} \prec \cdots \prec u_{m}$, the complement of ξ is $\bar{u}_{1} \prec \bar{u}_{2} \prec \cdots \prec \bar{u}_{m}$, and is denoted by $\bar{\xi}$. It is clear that $\bar{\xi}$ is also a $M R S E$ chain of the height k. In addition, for $A \subseteq H^{k}$, $\bar{A}=\{\bar{\xi}: \xi \in A\}$.

Definition 3. For $\xi \in H^{k+1}$, $\xi=u_{1} \prec u_{2} \prec \cdots \prec u_{m}$, where $k \in \mathcal{N}$. If there is an element $\eta=v_{1} \prec v_{2} \prec \cdots \prec v_{n} \in H^{k}$ such that $u_{1}, u_{2}, \cdots, u_{m}$ are all the primitives of $v_{1}, v_{2}, \cdots, v_{n}$, then ξ is said to be a primitive of η.

For example, $\xi=121 \prec 1211 \prec 12112 \in H^{2}$ is a primitive of $\eta=1 \prec 12 \in H^{1}$, $\bar{\xi}=212 \prec 2122 \prec 21221 \in H^{2}$.

For a set A, let $|A|$ denote the cardinal number of A. Next we establish the formula of the number of the members of H^{k}. For this reason, let

$$
\begin{align*}
& H_{1}^{k}=\left\{\xi \in H^{k}: \xi=u_{1} \prec u_{2} \prec \cdots \prec u_{m} \text { and } \operatorname{first}\left(u_{1}\right)=1\right\} ; \tag{5}\\
& H_{2}^{k}=\left\{\xi \in H^{k}: \xi=u_{1} \prec u_{2} \prec \cdots \prec u_{m} \text { and } \operatorname{first}\left(u_{1}\right)=2\right\} . \tag{6}
\end{align*}
$$

It immediately follows that

$$
\begin{align*}
H_{1}^{k} & =\bar{H}_{2}^{k} \tag{7}\\
H^{k} & =H_{1}^{k} \cup H_{2}^{k} \tag{8}\\
\left|H_{1}^{k}\right| & =\left|H_{2}^{k}\right| \tag{9}
\end{align*}
$$

From (1) and (2) we have

$$
\begin{align*}
H^{1}= & \{1 \prec 12,2 \prec 21\} ; \tag{10}\\
H_{1}^{1}= & \{1 \prec 12\} ; \\
H_{2}^{1}= & \{2 \prec 21\} ; \\
H^{2}= & \{121 \prec 1211 \prec 12112,212 \prec 2122 \prec 21221,11 \prec 112 \prec 1121, \\
& 22 \prec 221 \prec 2212,211 \prec 2112 \prec 21121,122 \prec 1221 \prec 12212\} ; \tag{11}\\
H_{1}^{2}= & \{121 \prec 1211 \prec 12112,11 \prec 112 \prec 1121,122 \prec 1221 \prec 12212\} ; \\
H_{2}^{2}= & \{212 \prec 2122 \prec 21221,22 \prec 221 \prec 2212,211 \prec 2112 \prec 21121\} .
\end{align*}
$$

Thus from (10) and (11), ones see that every MRSE chain of height k is uniquely determined by its first member u_{1} and each member of $P^{k}(\varepsilon)$ exactly belongs to one $M R S E$ chain of height k for $k=1,2$ and

$$
\begin{equation*}
\left|H^{2}\right|=3\left|H^{1}\right| . \tag{12}
\end{equation*}
$$

Actually, the above result holds for every $k \in \mathcal{N}$.

Theorem 4. H^{k} is stated as above. Then each member of $P^{k}(\varepsilon)$ exactly belongs to one MRSE chain of height k, that is, H^{k} gives a partition of the smooth words of height k and

$$
\begin{equation*}
\left|H^{k}\right|=2 \cdot 3^{k-1} \text { for all } k \in \mathcal{N} \tag{13}
\end{equation*}
$$

Proof. We proceed by induction on k. From (12) it follows that (13) holds for $k=1,2$. Assume that (13) holds for $k=n-1 \geq 1$.

Now we consider the case for $k=n$. Since for each $\eta=u_{1} \prec u_{2} \prec \cdots \prec u_{m} \in$ H_{1}^{n-1}, from the definition 2 and (5), we see that first $\left(u_{1}\right)=\operatorname{first}\left(u_{2}\right)=\cdots=$ $\operatorname{first}\left(u_{m}\right)=1$, and $u_{i+1}=u_{i} \alpha$ where $i=1,2, \cdots, m-1, \alpha=1,2$. Thus if $\alpha=1$ then the two primitives $p\left(u_{i+1}\right)$ of u_{i+1} are

$$
\begin{aligned}
p\left(u_{i+1}\right) & =\bar{\beta} \Delta_{\beta}^{-1}\left(u_{i+1}\right) \gamma \\
& =\bar{\beta} \Delta_{\beta}^{-1}\left(u_{i}\right) \bar{\gamma} \gamma \\
& =p\left(u_{i}\right) \gamma, \text { where } \beta, \gamma \in \Sigma,
\end{aligned}
$$

so $p\left(u_{i}\right) \prec p\left(u_{i+1}\right)$.
If $\alpha=2$ then the four primitives $p_{t}\left(u_{i+1}\right)$ of u_{i+1} are

$$
\begin{aligned}
p_{t}\left(u_{i+1}\right) & =\bar{\beta} \Delta_{\beta}^{-1}\left(u_{i+1}\right) \gamma^{t} \\
& =\bar{\beta} \Delta_{\beta}^{-1}\left(u_{i}\right) \bar{\gamma}^{2} \gamma^{t} \\
& =p\left(u_{i}\right) \bar{\gamma} \gamma^{t}, \text { where } \beta=1,2, t=0,1
\end{aligned}
$$

hence $p\left(u_{i}\right) \prec p_{0}\left(u_{i+1}\right) \prec p_{1}\left(u_{i+1}\right)$. Therefore, η has exactly two primitives and the primitives of u_{1}, u_{2}, \cdots, and u_{m} all occur in the two primitives of η.

For example, $\eta=121 \prec 1211 \prec 12112 \in H_{1}^{2}$ has exactly two primitives:

$$
\mu=121121 \prec 1211212 \prec 12112122 \prec 121121221 \text { and } \bar{\mu} .
$$

Analogously, we can see that each member η of H_{2}^{n-1} has exactly four primitives and the primitives of u_{1}, u_{2}, \cdots, and u_{m} all occur in the four primitives of η.

For example, $\eta=212 \prec 2122 \prec 21221 \in H_{2}^{2}$ has exactly four primitives:

$$
\begin{aligned}
& \xi_{1}=22122 \prec 221221 \prec 2212211 \prec 22122112 \prec 221221121 ; \\
& \xi_{2}=122122 \prec 1221221 \prec 12212211 \prec 122122112 \prec 221221121 \text { and } \bar{\xi}_{1}, \bar{\xi}_{2} .
\end{aligned}
$$

Thus, by the induction hypothesis, it follows from (8) and (9) that

$$
\begin{aligned}
\left|H^{n}\right| & =\left|H_{1}^{n}\right|+\left|H_{2}^{n}\right| \\
& =2 \cdot\left|H_{1}^{n-1}\right|+4 \cdot\left|H_{2}^{n-1}\right| \\
& =3 \cdot\left(\left|H_{1}^{n-1}\right|+\left|H_{2}^{n-1}\right|\right) \\
& =3 \cdot\left|H^{n-1}\right| \\
& =2 \cdot 3^{n-1} .
\end{aligned}
$$

3. The number of smooth words of length n

Let $\gamma(n)$ denote the number of smooth words of length n and $p_{K}(n)$ the number of subwords of length n which occur in K.

Dekking in [6] proved that there is a suitable positive constant c such that $c \cdot n^{2.15} \leq \gamma(n) \leq n^{7.2}$ and brought forward the conjecture that there is a suitable positive constant c satisfying $p_{K}(n) \sim c \cdot n^{q}(n \rightarrow \infty)$, where $q=(\log 3) / \log (3 / 2)$.

Recall from [18] that a C^{∞}-word w is left doubly extendable (LDE) if both $1 w$ and $2 w$ are C^{∞}, and a C^{∞}-word w is fully extendable (FE) if $1 w 1,1 w 2,2 w 1$, and $2 w 2$ all are C^{∞}-words. For each nonnegative integer k, let $A(k)$ be the minimum length and $B(k)$ the maximum length of an FE word of height k.

Weakley in [18] proved that there are positive constants c_{1} and c_{2} such that for each n satisfying $B(k-1)+1 \leq n \leq A(k)+1$ for some $k, c_{1} \cdot n^{q} \leq \gamma(n) \leq c_{2} \cdot n^{q}$.

It is a pity that we don't know how many positive integers n fulfil the conditions required. Set $\gamma^{\prime}(n)=\gamma(n+1)-\gamma(n)$, Weakley in [18] gave

$$
\begin{equation*}
\gamma(n)=\gamma(0)+\sum_{i=0}^{n-1} \gamma^{\prime}(i) \text { for } n \geq 2 \tag{14}
\end{equation*}
$$

Let $F(n)$ denote the number of LDE-words of height n, Shen and Huang in [14, Proposition 3.2] established

$$
\begin{equation*}
F(n)=4 \cdot 3^{n-1} \text { for each positive integer } n . \tag{15}
\end{equation*}
$$

Huang and Weakley in [9] combined (14) with (15) to show that
Theorem 5 ([9] Theorem 4). Let ξ be a positive real number and N a positive integer such that for all LDE words u with $|u|>N$ we have $|u|_{2} /|u|>(1 / 2)-\xi$. Then there are positive constants c_{1}, c_{2} such that for all positive integers n,

$$
c_{1} \cdot n^{\frac{\log 3}{\log ((3 / 2)+\xi+(2 / N))}}<\gamma(n)<c_{2} \cdot n^{\frac{\log 3}{\log (3 / 2)-\xi)}} .
$$

Let $\gamma_{a, b}(n)$ denote the number of smooth words of length n over 2-letter alphabet $\{a, b\}$ for positive integers $a<b$, Huang in [10] obtained

Theorem 6. For any positive real number ξ and positive integer n_{0} satisfying $|u|_{b} /|u|>$ ξ for every LFE word u with $|u|>n_{0}$, there exist two suitable constants c_{1} and c_{2} such that

$$
c_{1} \cdot n^{\frac{\log (2 b-1)}{\log (1+(a+b-2)(1-\xi))}} \leq \gamma_{a, b}(n) \leq c_{2} \cdot n^{\frac{\log (2 b-1)}{\log (1+(a+b-2) \xi)}}
$$

for every positive integer n.
Now we are in a position to use the number of $M R S E$ chains of the suitable height k to bound the number of smooth words of length n, which is simpler than the ones used in $[9,10]$.

Theorem 7. For any positive number θ and n_{0} satisfying $|u|_{2} /|u|>\theta$ for $|u|>n_{0}$, there are suitable positive constant c_{1}, c_{2} such that

$$
c_{1} \cdot n^{\frac{\log 3}{\log (2-\theta)}} \leq \gamma(n) \leq c_{2} \cdot n^{\frac{\log 3}{\log (1+\theta)}} \text { for any positive integer } n .
$$

Proof. It is obvious that

$$
\begin{equation*}
|w|=|D(w)|+|D(w)|_{2}+c \text { for each smooth word } w, \text { where } c=0,1,2 . \tag{16}
\end{equation*}
$$

First, since $|u|_{2} /|u|>\theta$ for $|u| \geq n_{0}$, from (16) one has

$$
|w| \geq(1+\theta)|D(w)| \text { for }|D(w)|_{2} /|D(w)|>\theta,
$$

which implies

$$
\begin{equation*}
|D(w)|<\alpha|w| \text { for }|w| \geq N_{0} \tag{17}
\end{equation*}
$$

where N_{0} is a suitable fixed positive integer such that $|D(w)| \geq n_{0}$ as soon as $|w| \geq N_{0}$, $\alpha=1 /(1+\theta)$.

Let s_{0} be the greatest height of all smooth words with length $<N_{0}$ and n_{1} is the least positive integer such that if $|w|=n_{1}$, then the height of the smooth word w is larger than s_{0}. Thus for any smooth word w, if $|w| \geq n_{1}$, then from (17) one can get

$$
\left|D^{s}(w)\right|<\alpha^{s-s_{0}}|w| .
$$

Hence

$$
\begin{aligned}
\left|D^{s}(w)\right|<1 & \text { only if } \quad \alpha^{s-s_{0}}|w| \leq 1 \\
& \Longleftrightarrow \quad s \geq \log (|w|) / \log (1+\theta)+s_{0}
\end{aligned}
$$

which means that the height s of w is smaller than $\log (|w|) / \log (1+\theta)+s_{0}+1$. Therefore, the maximal height $h_{2}(n)$ of all smooth words of length n satisfies

$$
\begin{equation*}
h_{2}(n) \leq \frac{\log n}{\log (1+\theta)}+t_{2}, \text { where } t_{2}=s_{0}+1 \tag{18}
\end{equation*}
$$

Put $k=h_{2}(n)+1$, then the length of every smooth word of height k is greater than n, so each smooth word of length n can be right extended to get a MRSE chain of height k, which suggests $\gamma(n) \leq\left|H^{k}\right|$. Consequently, from (13) and (18) it follows the desired upper bound of $\gamma(n)$.

Second, since the complement of any smooth word is a smooth word of the same length, the theorem's hypothesis implies that $|D(w)|_{1} /|D(w)| \geq \theta$, so $|D(w)|_{2} /|D(w)| \leq$ $1-\theta$. From (16) it follows that

$$
\begin{equation*}
|w| \leq \beta|D(w)|+q \text { for each } C^{\infty} \text {-word } w, \tag{19}
\end{equation*}
$$

where $\beta=2-\theta, q$ is a suitable positive constant. Thus

$$
|w| \leq \beta^{k-1}\left|D^{k-1}(w)\right|+q \frac{\beta^{k-1}-1}{\beta-1}<2 \beta^{k-1}+\frac{q \beta^{k-1}}{\beta-1}=\left(2+\frac{q}{\beta-1}\right) \beta^{k-1}=t \beta^{k-1},
$$

where $t=2+q /(\beta-1), k$ is the height of $|w|$. Wherefore, the length $|w|$ of a smooth word w with height k is less than $t \beta^{k-1}$ and $k-1>(\log |w|-\log t) / \log \beta$. Hence, the smallest height $h_{1}(n)$ of smooth words of length n meets

$$
\begin{equation*}
h_{1}(n)>\frac{\log n}{\log (2-\theta)}+t_{1}, \text { where } t_{1}=1-\frac{\log t}{\log \beta} \tag{20}
\end{equation*}
$$

Then the length of all smooth words with height $m=h_{1}(n)-1$ is less than n, which means that the length of the last member last (ξ) is less than n for each $\xi \in H^{m}$. Since each smooth words of length no more than $n-1$ can be extended right to a smooth word of length n, we see $\gamma(n) \geq\left|H^{m}\right|$. Herewith, from (13) and (20) we get the desired lower bound of $\gamma(n)$.

4. Concluding remarks

Let a and b be positive integers of different parities and $a<b$. Lately, Sing in [15] conjectured:

There are positive constants c_{1}, c_{2} such that

$$
c_{1} \cdot n^{\delta} \leq \gamma_{a, b}(n) \leq c_{2} \cdot n^{\delta}, \text { where } \delta=\frac{\log (a+b)}{\log ((a+b) / 2)}
$$

Theorem 6 means Sing's conjecture should be revised to be of the following form

$$
c_{1} \cdot n^{\theta} \leq \gamma_{a, b}(n) \leq c_{2} \cdot n^{\theta}, \quad \text { where } \theta=\frac{\log (2 b-1)}{\log ((a+b) / 2)}
$$

For 2-letter alphabet $\Sigma=\{a, b\}$ with $a<b$, let $P^{j}(\varepsilon)$ denote the set of smooth words of height k for $j \in \mathcal{N}$. For $\alpha \in \Sigma$, set

$$
\xi_{i}=\alpha^{i} \prec \alpha^{i} \bar{\alpha} \prec \alpha^{i} \bar{\alpha}^{2} \prec \cdots \prec \alpha^{i} \bar{\alpha}^{b-1} \text { for } 1 \leq i \leq b-1 .
$$

and

$$
H^{1}=\left\{\eta \mid \eta=\xi_{i} \text { or } \bar{\xi}_{i}, i=1,2, \cdots, b-1\right\} .
$$

Let H^{2} denote the set of primitives of the members in H^{1}, then it is easy to see H^{2} constitutes a partition of $P^{2}(\varepsilon)$. So continue, we can define the set H^{k} for each $k \in \mathcal{N}$ and H^{k} constitutes a partition of $P^{k}(\varepsilon)$. Using the method similar to Theorem 7 , we could establish the corresponding result to Theorem 6.

References

[1] S. Brlek, A. Ladouceur, A note on differentiable Palindromes, Theoret. Comput. Sci., 302 (2003), 167-178.
[2] A. Carpi, Repetitions in the Kolakoski sequence, Bull. of the EATCS, 50 (1993), 194-196.
[3] A. Carpi, On repeated factors in C^{∞}-words, Inform. Process. Lett., 52 (6) (1994), 289-294.
[4] V. Chvátal, Notes on the Kolakoski sequence, DIMACS Tech. Rep., 93-84 (1993).
[5] F. M. Dekking, Regularity and irregularity of sequences generated by automata, Séminaire de Théorie des Nombres de Bordeaux, 1979-80, exposé $\mathrm{n}^{\circ} 9,901-910$.
[6] F. M. Dekking, On the structure of selfgenerating sequences, Séminaire de Théorie des Nombres de Bordeaux, 1980-81, exposé n ${ }^{\circ}$ 31, 3101-3106.
[7] F. M. Dekking, What is the long range order in the Kolakoski sequence?, in R. V. Moody (ed.), The mathematics of long-range aperiodic order, Springer, New York, 1997, pp. 115-125.
[8] J.-M. Fédou and G. Fici, Some remarks on differentiable sequences and recursivity, J. Integer Sequences 10(3)(2010): 10.3.2.
[9] Y. B. Huang, W. D. Weakley, A note on the complexity of C^{∞}-words, Theoret. Comput. Sci., 411 (2010), 3731-3735.
[10] Y. B. Huang, The subword complexity of smooth words on 2-letter alphabets, submitted (2009.09), arXiv:1012.3229v1.
[11] M. S. Keane, Ergodic theory and subshifts of finite type, in: Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane, C. Series (Eds.), Oxford University Press, Oxford, 1991, pp. 35-70.
[12] C. Kimberling, Problem 6281, Amer. Math. Monthly, 86 (1979), 793.
[13] W. Kolakoski, Self Generating Runs, Problem 5304, Amer. Math. Monthly, 72 (1965), 674. Solution: Amer. Math. Monthly, 73 (1966), 681682.
[14] C. L. Shen, Y. B. Huang, Some properties of C^{∞}-words with applications, SEA Bull. Math., 20 (4) (1996), 19-30.
[15] B. Sing, More Kolakoski Sequences, arXiv:1009.4061v1 (2010).
[16] R. Steacy, Structure in the Kolakoski sequence, Bull. of the EATCS, 59 (1996), 173-182.
[17] B. Steinsky, A Recursive Formula for the Kolakoski Sequence, Journal of Integer Sequences, 9(3) (2006), 06.3.7.
[18] W. D. Weakley, On the Number of C^{∞}-words of Each Length, J. Comb. Theory, Ser. A, 51 (1989), 55-62.

