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Abstract. If w = uα for α ∈ Σ = {1, 2} and u ∈ Σ∗, then w is said to be a

simple right extension of u and denoted by u ≺ w. Let k be a positive integer

and P k(ε) denote the set of all C∞-words of height k. Set u1, u2, · · · , um ∈
P k(ε), if u1 ≺ u2 ≺ · · · ≺ um and there is no element v of P k(ε) such that

v ≺ u1 or um ≺ v, then u1 ≺ u2 ≺ · · · ≺ um is said to be a maximal right

smooth extension (MRSE) chains of height k. In this paper, we show that

MRSE chains of height k constitutes a partition of smooth words of height k

and give the formula of the number of MRSE chains of height k for each positive

integer k. Moreover, since there exist the minimal height h1 and maximal height

h2 of smooth words of length n for each positive integer n, we find that MRSE

chains of heights h1−1 and h2+1 are good candidates to be used to establish the

lower and upper bounds of the number of smooth words of length n respectively,

which is simpler and more intuitionistic than the previous methods.
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1. Introduction

Let Σ = {1, 2}, Σ∗ denotes the free monoid over Σ with ε as the empty word. If

w = w1w2 · · ·wn, wi ∈ Σ for i = 1, 2, · · · , n, then n is called the length of the word w

and denoted by |w|. For i = 1, 2, let |w|i be the number of i which occurs in w, then

|w| = |w|1 + |w|2.
Given a word w ∈ Σ∗, a factor or subword u of w is a word u ∈ Σ∗ such that

w = xuy for x, y ∈ Σ∗, if x = ε, then u is said to be a prefix of w. A run or block is a

maximal factor of the form u = αk, α ∈ Σ. The complement of u = u1u2 · · ·un ∈ Σ∗

is the word ū = ū1ū2 · · · ūn, where 1̄ = 2, 2̄ = 1.

The Kolakoski sequence K which Kolakoski introduced in [13], is the infinite

sequence over the alphabet Σ

K = 1
︸︷︷︸

1

22
︸︷︷︸

2

11
︸︷︷︸

2

2
︸︷︷︸

1

1
︸︷︷︸

1

22
︸︷︷︸

2

1
︸︷︷︸

1

22
︸︷︷︸

2

11
︸︷︷︸

2

2
︸︷︷︸

1

11
︸︷︷︸

2

22
︸︷︷︸

2

· · ·
︸︷︷︸

···=K

which starts with 1 and equals the sequence defined by its run lengths.

I would like to thank Prof. Jeffrey O. Shallit for introducing me the Kolakoski

sequence K and eight questions on it in personal communications (Feb. 15, 1990),

the fourth and eighth problems of them are respectively as follows:

(1) Prove or disprove: |Ki|1 ∼ |Ki|2, which is almost equivalent to Keane’s ques-

tion.

(2) Prove or disprove: |Ki| ∼ α(3/2)i (This would imply (1)), where α seems to

be about 0.873. Does α = (3 +
√
5)/6 ?

whereK0 = 2 and defineKn+1 as the string of 1
′ and 2′ obtained by using the elements

of Kn as replication factors for the appropriate prefix of the infinite sequence 1212 · · · .
The intriguing Kolakoski sequence K has received a remarkable attention [1, 3,

5, 11, 15, 16]. For exploring two unsolved problems, both wether K is recurrent and

whether K is invariant under complement, raised by Kimberling in [12], Dekking pro-

posed the notion of C∞-word in [6]. Chvátal in [4] obtained that the letter frequencies

of C∞-words are between 0.499162 and 0.500838.

We say that a finite word w ∈ Σ∗ in which neither 111 or 222 occurs is differen-

tiable, and its derivative, denoted by D(w), is the word whose jth symbol equals the

length of the jth run of w, discarding the first and/or the last run if it has length

one.

If a word w is arbitrarily often differentiable, then w is said to be a C∞-word (or

smooth word) and the set of all C∞-word is denoted by C∞.

A word v such that D(v) = w is said to be a primitive of w. Thus 11, 22, 211,

112, 221, 122, 2112, 1221 are the primitives of 2. It is easy to see that for any word



w ∈ C∞, there are at most 8 primitives and the difference of lengths of two primitives

of w is at most 2.

The height of a nonempty smooth word w is the smallest integer k such that

Dk(w) = ε and the height of the empty word ε is zero. We write ht(w) for the height

of w. For example, for the smooth word w = 12212212, D4(w) = ε, so ht(w)=4.

2. Maximal right smooth extension chains

Let N be the set of all positive integers and P k(ε) denote the set of all smooth words

of height k for k ∈ N , then

P (ε) = {1, 2, 12, 21}, (1)

P 2(ε) = {121, 212, 11, 22, 211, 122, 112, 221, 2112, 1221, 1211, 12112,
2122, 21221, 1121, 21121, 2212, 12212}. (2)

Definition 1. Let w, u, v ∈ Σ∗ if w = uv, then w is said to be a right extension of

u. Especially, if v = α ∈ Σ, then w is said to be a simple right extension of u, and is

denoted by u ≺ w.

Definition 2. Let u1, u2, · · · , um ∈ P k(ε), where k ∈ N .

u1 ≺ u2 ≺ · · · ≺ um, (3)

and there is no element v of P k(ε) such that

v ≺ u1 or um ≺ v, (4)

then (3) is said to be a maximal right smooth extension (MRSE) chain of the height k.

Moreover, u1 and um are respectively called the first and last members of the MRSE

chain (3).

Let Hk denote the set of all MRSE chains of the height k. For ξ ∈ Hk, ξ = u1 ≺
u2 ≺ · · · ≺ um, the complement of ξ is ū1 ≺ ū2 ≺ · · · ≺ ūm, and is denoted by ξ̄.

It is clear that ξ̄ is also a MRSE chain of the height k. In addition, for A ⊆ Hk,

Ā = {ξ̄ : ξ ∈ A}.

Definition 3. For ξ ∈ Hk+1, ξ = u1 ≺ u2 ≺ · · · ≺ um, where k ∈ N . If there is an

element η = v1 ≺ v2 ≺ · · · ≺ vn ∈ Hk such that u1, u2, · · · , um are all the primitives

of v1, v2, · · · , vn, then ξ is said to be a primitive of η.



For example, ξ = 121 ≺ 1211 ≺ 12112 ∈ H2 is a primitive of η = 1 ≺ 12 ∈ H1,

ξ̄ = 212 ≺ 2122 ≺ 21221 ∈ H2.

For a set A, let |A| denote the cardinal number of A. Next we establish the

formula of the number of the members of Hk. For this reason, let

Hk
1 = {ξ ∈ Hk : ξ = u1 ≺ u2 ≺ · · · ≺ um and first(u1) = 1}; (5)

Hk
2 = {ξ ∈ Hk : ξ = u1 ≺ u2 ≺ · · · ≺ um and first(u1) = 2}. (6)

It immediately follows that

Hk
1 = H̄k

2 ; (7)

Hk = Hk
1 ∪Hk

2 ; (8)

|Hk
1 | = |Hk

2 |. (9)

From (1) and (2) we have

H1 = {1 ≺ 12, 2 ≺ 21}; (10)

H1

1 = {1 ≺ 12};
H1

2 = {2 ≺ 21};
H2 = {121 ≺ 1211 ≺ 12112, 212 ≺ 2122 ≺ 21221, 11 ≺ 112 ≺ 1121,

22 ≺ 221 ≺ 2212, 211 ≺ 2112 ≺ 21121, 122 ≺ 1221 ≺ 12212}; (11)

H2

1 = {121 ≺ 1211 ≺ 12112, 11 ≺ 112 ≺ 1121, 122 ≺ 1221 ≺ 12212};
H2

2 = {212 ≺ 2122 ≺ 21221, 22 ≺ 221 ≺ 2212, 211 ≺ 2112 ≺ 21121}.

Thus from (10) and (11), ones see that every MRSE chain of height k is uniquely

determined by its first member u1 and each member of P k(ε) exactly belongs to one

MRSE chain of height k for k = 1, 2 and

|H2| = 3|H1|. (12)

Actually, the above result holds for every k ∈ N .

Theorem 4. Hk is stated as above. Then each member of P k(ε) exactly belongs to

one MRSE chain of height k, that is, Hk gives a partition of the smooth words of

height k and

|Hk| = 2 · 3k−1 for all k ∈ N . (13)

Proof. We proceed by induction on k. From (12) it follows that (13) holds for

k = 1, 2. Assume that (13) holds for k = n− 1 ≥ 1.



Now we consider the case for k = n. Since for each η = u1 ≺ u2 ≺ · · · ≺ um ∈
Hn−1

1 , from the definition 2 and (5), we see that first(u1) = first(u2) = · · · =

first(um) = 1, and ui+1 = uiα where i = 1, 2, · · · , m − 1, α = 1, 2. Thus if α = 1

then the two primitives p(ui+1) of ui+1 are

p(ui+1) = β̄∆−1

β (ui+1)γ

= β̄∆−1

β (ui)γ̄γ

= p(ui)γ, where β, γ ∈ Σ,

so p(ui) ≺ p(ui+1).

If α = 2 then the four primitives pt(ui+1) of ui+1 are

pt(ui+1) = β̄∆−1

β (ui+1)γ
t

= β̄∆−1

β (ui)γ̄
2γt

= p(ui)γ̄γ
t, where β = 1, 2, t = 0, 1,

hence p(ui) ≺ p0(ui+1) ≺ p1(ui+1). Therefore, η has exactly two primitives and the

primitives of u1, u2, · · · , and um all occur in the two primitives of η.

For example, η = 121 ≺ 1211 ≺ 12112 ∈ H2
1 has exactly two primitives:

µ = 121121 ≺ 1211212 ≺ 12112122 ≺ 121121221 and µ̄.

Analogously, we can see that each member η of Hn−1

2 has exactly four primitives

and the primitives of u1, u2, · · · , and um all occur in the four primitives of η.

For example, η = 212 ≺ 2122 ≺ 21221 ∈ H2
2 has exactly four primitives:

ξ1 = 22122 ≺ 221221 ≺ 2212211 ≺ 22122112 ≺ 221221121;

ξ2 = 122122 ≺ 1221221 ≺ 12212211 ≺ 122122112 ≺ 221221121 and ξ̄1, ξ̄2.

Thus, by the induction hypothesis, it follows from (8) and (9) that

|Hn| = |Hn
1 |+ |Hn

2 |
= 2 · |Hn−1

1 |+ 4 · |Hn−1

2 |
= 3 · (|Hn−1

1 |+ |Hn−1

2 |)
= 3 · |Hn−1|
= 2 · 3n−1. �

3. The number of smooth words of length n

Let γ(n) denote the number of smooth words of length n and pK(n) the number of

subwords of length n which occur in K.



Dekking in [6] proved that there is a suitable positive constant c such that

c · n2.15 ≤ γ(n) ≤ n7.2 and brought forward the conjecture that there is a suitable

positive constant c satisfying pK(n) ∼ c · nq(n → ∞), where q = (log 3)/ log(3/2).

Recall from [18] that a C∞-word w is left doubly extendable (LDE) if both 1w and

2w are C∞, and a C∞-word w is fully extendable (FE) if 1w1, 1w2, 2w1, and 2w2 all

are C∞-words. For each nonnegative integer k, let A(k) be the minimum length and

B(k) the maximum length of an FE word of height k.

Weakley in [18] proved that there are positive constants c1 and c2 such that for

each n satisfying B(k − 1) + 1 ≤ n ≤ A(k) + 1 for some k, c1 · nq ≤ γ(n) ≤ c2 · nq.

It is a pity that we don’t know how many positive integers n fulfil the conditions

required. Set γ′(n) = γ(n+ 1)− γ(n), Weakley in [18] gave

γ(n) = γ(0) +
n−1∑

i=0

γ′(i) for n ≥ 2. (14)

Let F (n) denote the number of LDE-words of height n, Shen and Huang in [14,

Proposition 3.2] established

F (n) = 4 · 3n−1 for each positive integer n. (15)

Huang and Weakley in [9] combined (14) with (15) to show that

Theorem 5 ([9] Theorem 4). Let ξ be a positive real number and N a positive integer

such that for all LDE words u with |u| > N we have |u|2/|u| > (1/2)− ξ. Then there

are positive constants c1, c2 such that for all positive integers n,

c1 · n
log 3

log((3/2)+ξ+(2/N)) < γ(n) < c2 · n
log 3

log((3/2)−ξ) .

Let γa,b(n) denote the number of smooth words of length n over 2-letter alphabet

{a, b} for positive integers a < b, Huang in [10] obtained

Theorem 6. For any positive real number ξ and positive integer n0 satisfying |u|b/|u| >
ξ for every LFE word u with |u| > n0, there exist two suitable constants c1 and c2

such that

c1 · n
log(2b−1)

log(1+(a+b−2)(1−ξ)) ≤ γa,b(n) ≤ c2 · n
log(2b−1)

log(1+(a+b−2)ξ)

for every positive integer n.

Now we are in a position to use the number of MRSE chains of the suitable height

k to bound the number of smooth words of length n, which is simpler than the ones

used in [9, 10].



Theorem 7. For any positive number θ and n0 satisfying |u|2/|u| > θ for |u| > n0,

there are suitable positive constant c1, c2 such that

c1 · n
log 3

log(2−θ) ≤ γ(n) ≤ c2 · n
log 3

log(1+θ) for any positive integer n.

Proof. It is obvious that

|w| = |D(w)|+ |D(w)|2 + c for each smooth word w, where c = 0, 1, 2. (16)

First, since |u|2/|u| > θ for |u| ≥ n0, from (16) one has

|w| ≥ (1 + θ)|D(w)| for |D(w)|2/|D(w)| > θ,

which implies

|D(w)| < α|w| for |w| ≥ N0, (17)

whereN0 is a suitable fixed positive integer such that |D(w)| ≥ n0 as soon as |w| ≥ N0,

α = 1/(1 + θ).

Let s0 be the greatest height of all smooth words with length< N0 and n1 is the

least positive integer such that if |w| = n1, then the height of the smooth word w is

larger than s0. Thus for any smooth word w, if |w| ≥ n1, then from (17) one can get

|Ds(w)| < αs−s0|w|.

Hence

|Ds(w)| < 1 only if αs−s0|w| ≤ 1

⇐⇒ s ≥ log(|w|)/ log(1 + θ) + s0,

which means that the height s of w is smaller than log(|w|)/ log(1 + θ) + s0 + 1.

Therefore, the maximal height h2(n) of all smooth words of length n satisfies

h2(n) ≤ log n

log(1 + θ)
+ t2, where t2 = s0 + 1. (18)

Put k = h2(n) + 1, then the length of every smooth word of height k is greater

than n, so each smooth word of length n can be right extended to get a MRSE chain

of height k, which suggests γ(n) ≤ |Hk|. Consequently, from (13) and (18) it follows

the desired upper bound of γ(n).

Second, since the complement of any smooth word is a smooth word of the same

length, the theorem’s hypothesis implies that |D(w)|1/|D(w)| ≥ θ, so |D(w)|2/|D(w)| ≤
1− θ. From (16) it follows that

|w| ≤ β|D(w)|+ q for each C∞-word w, (19)



where β = 2− θ, q is a suitable positive constant. Thus

|w| ≤ βk−1|Dk−1(w)|+ q
βk−1 − 1

β − 1
< 2βk−1 +

qβk−1

β − 1
= (2 +

q

β − 1
)βk−1 = tβk−1,

where t = 2+ q/(β− 1), k is the height of |w|. Wherefore, the length |w| of a smooth

word w with height k is less than tβk−1 and k − 1 > (log |w| − log t)/ log β. Hence,

the smallest height h1(n) of smooth words of length n meets

h1(n) >
logn

log(2− θ)
+ t1, where t1 = 1− log t

log β
. (20)

Then the length of all smooth words with height m = h1(n) − 1 is less than

n, which means that the length of the last member last (ξ) is less than n for each

ξ ∈ Hm. Since each smooth words of length no more than n − 1 can be extended

right to a smooth word of length n, we see γ(n) ≥ |Hm|. Herewith, from (13) and

(20) we get the desired lower bound of γ(n). �

4. Concluding remarks

Let a and b be positive integers of different parities and a < b. Lately, Sing in [15]

conjectured:

There are positive constants c1, c2 such that

c1 · nδ ≤ γa,b(n) ≤ c2 · nδ, where δ =
log(a+ b)

log((a + b)/2)
.

Theorem 6 means Sing’s conjecture should be revised to be of the following form

c1 · nθ ≤ γa,b(n) ≤ c2 · nθ, where θ =
log(2b− 1)

log((a+ b)/2)
.

For 2-letter alphabet Σ = {a, b} with a < b, let P j(ε) denote the set of smooth

words of height k for j ∈ N . For α ∈ Σ, set

ξi = αi ≺ αiᾱ ≺ αiᾱ2 ≺ · · · ≺ αiᾱb−1 for 1 ≤ i ≤ b− 1.

and

H1 = {η|η = ξi or ξ̄i, i = 1, 2, · · · , b− 1}.

Let H2 denote the set of primitives of the members in H1, then it is easy to see H2

constitutes a partition of P 2(ε). So continue, we can define the set Hk for each k ∈ N
and Hk constitutes a partition of P k(ε). Using the method similar to Theorem 7, we

could establish the corresponding result to Theorem 6.
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