THE SLICE FILTRATION AND GROTHENDIECK-WITT GROUPS

MARC LEVINE

Abstract

Let k be a perfect field of characteristic different from two. We show that the filtration on the Grothendieck-Witt group GW (k) induced by the slice filtration for the sphere spectrum in the motivic stable homotopy category is the I-adic filtration, where I is the augmentation ideal in GW (k).

Contents

Introduction 1

1. Background and notation 42. The homotopy coniveau tower
2. Connectedness and generators for π_{0} 8
3. The Pontryagin-Thom collapse map 12
4. $\left(\mathbb{P}^{n} / H, 1\right)$ and $\Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n}$ 15
5. The suspension of a symbol 20
6. Computing the collapse map 25
7. Transfers and \mathbb{P}^{1}-suspension 26
8. Conclusion 28
9. Epilog: Convergence questions 39
References 40

Introduction

Let k be a perfect field of characteristic different from two. A fundamental theorem of Morel [8, [11] states that the endomorphism ring of the motivic sphere spectrum $\mathbb{S}_{k} \in \mathcal{S H}(k)$ is naturally isomorphic to the Grothendieck-Witt ring of quadratic forms over $k, \mathrm{GW}(k)$. This result follows from Morel's calculation [8, corollary 3.43] of the corresponding bi-graded homotopy sheaves of $S^{n} \wedge \mathbb{G}_{m}^{\wedge q}$ in the unstable motivic homotopy category $\mathcal{H}_{\bullet}(k)$ as the Milnor-Witt sheaves

$$
\pi_{m+p, p}\left(S^{n} \wedge \mathbb{G}_{m}^{\wedge q}\right) \cong \begin{cases}\underline{K}_{q-p}^{M W} & \text { for } n=m \geq 2, q \geq 1, p \geq 0 \\ 0 & \text { for } m<n, p, q \geq 0\end{cases}
$$

[^0]Evaluating at k and taking $m=n, p=q$ gives

$$
\operatorname{End}_{\mathcal{H} \cdot(k)}\left(S^{m} \wedge \mathbb{G}_{m}^{\wedge q}\right)=K_{0}^{M W}(k) \text { for } m \geq 2, q \geq 1
$$

Combining this with Morel's isomorphism $K_{0}^{M W}(k) \cong \mathrm{GW}(k)$ and stabilizing gives Morel's theorem

$$
\operatorname{End}_{\mathcal{S H}(k)}\left(\mathbb{S}_{k}\right)=\mathrm{GW}(k)
$$

This also leads to the computation of the homotopy sheaf $\pi_{p, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}$ (in the S^{1} stable homotopy category $\left.\mathcal{S H}_{S^{1}}(k)\right)$ as $\underline{K}_{q-p}^{M W}$, for all $q \geq 1, p \geq 0$.

In another direction, Voevodsky [15] has defined natural towers in $\mathcal{S H}(k)$ and $\mathcal{S H} S_{S^{1}}(k)$, which are analogs of the classical Postnikov tower in $\mathcal{S H}$; we call each of these towers the Tate Postnikov tower (in $\mathcal{S H}(k)$ or $\mathcal{S H}_{S^{1}}(k)$, as the case may be). Just as the classical Postnikov tower measures the S^{n}-connectivity of a spectrum, the Tate Postnikov tower measures the $S^{*, n}$ connectivity of a motivic spectrum.

In particular, the tower for \mathbb{S}_{k}

$$
\ldots \rightarrow f_{n+1} \mathbb{S}_{k} \rightarrow f_{n} \mathbb{S}_{k} \rightarrow \ldots \rightarrow f_{0} \mathbb{S}_{k}=\mathbb{S}_{k}
$$

gives a filtration on the sheaf $\pi_{0,0} \mathbb{S}_{k}$ by

$$
F_{\text {Tate }}^{n} \pi_{0,0} \mathbb{S}_{k}:=\operatorname{im}\left(\pi_{0,0} f_{n} \mathbb{S}_{k} \rightarrow \pi_{0,0} \mathbb{S}_{k}\right)
$$

We have a similarly defined filtration on $\pi_{p, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}$, which determines $F_{\text {Tate }}^{n} \pi_{0,0} \mathbb{S}_{k}$: by

$$
F_{\text {Tate }}^{n} \pi_{0,0} \mathbb{S}_{k}:=\underset{q}{\lim } F_{\text {Tate }}^{n+q} \pi_{q, q} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}(k)
$$

Our main result is the computation of $F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}$, and thereby $F_{\text {Tate }}^{n} \pi_{0,0} \mathbb{S}_{k}$ (on perfect fields)

Theorem 1. Let k be a perfect field of characteristic $\neq 2$ and let F be a perfect field extension of k. Let $n, p \geq 0, q \geq 1$ be integers and let $N(a, b)=\max (0, \min (a, b))$. Then via the identification given by Morel's isomorphism $\pi_{p, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q} \cong \underline{K}_{q-p}^{M W}$, we have

$$
F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}(F)=K_{q-p}^{M W}(F) \cdot I(F)^{N(n-p, n-q)}
$$

where $I(F) \subset K_{0}^{M W}(F)$ is the augmentation ideal. After stabilizing, this gives

$$
F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)=K_{q-p}^{M W}(F) I(F)^{N(n-p, n-q)}, n, p, q \in \mathbb{Z}
$$

in particular,

$$
F_{\text {Tate }}^{n} \pi_{0,0} \mathbb{S}_{k}(F)=I(F)^{\max (n, 0)}
$$

See theorem 9.14 , corollary 9.15 and corollary 9.16 for details.
Remark 1. In case k is a field of characteristic 0 , we have a finer result, namely the identities stated in theorem 1 extend to identities on the corresponding sheaves, for example

$$
F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}=\underline{K}_{q-p}^{M W} \cdot \mathcal{I}^{N(n-p, n-q)}
$$

Of course, one can more generally consider the filtration $F_{\text {Tate }}^{*} \pi_{a, b} \mathcal{E}$ on the homotopy sheaves $\pi_{a, b} \mathcal{E}$ induced by the Tate Postnikov tower for an arbitrary T-spectrum $\mathcal{E} \in \mathcal{S H}(k)$. In general, we cannot say anything about this filtration, but assuming a certain connectedness condition, we can compute the filtration on the first non-vanishing homotopy sheaves, evaluated on perfect fields.

Theorem 2. Let k be a perfect field of characteristic $\neq 2$ and let F be a perfect field extension of k. Take $\mathcal{E} \in \mathcal{S H}(k)$ and suppose that $\pi_{a+b, b} \mathcal{E}=0$ for $a<0$, $b \in \mathbb{Z}$. Then for $n>p$,

$$
F_{\text {Tate }}^{n} \pi_{p, p} \mathcal{E}(F)=\left[\pi_{n, n} \mathcal{E} \cdot \underline{K}_{n-p}^{M W}\right]^{T_{r}}(F)
$$

For $n \leq p$, we have the identity of sheaves

$$
F_{\text {Tate }}^{n} \pi_{p, p} \mathcal{E}=\pi_{p, p} \mathcal{E}
$$

To explain the notation: The canonical action of $\pi_{*, *} \mathbb{S}_{k}$ on $\pi_{*, *} \mathcal{E}$, gives, for each finitely generated field extension L of k, a right $K_{-*}^{M W}(L)$-module structure on $\pi_{*, *} \mathcal{E}(L)$, giving us the subgroup $\pi_{n, n} \mathcal{E}(L) \cdot K_{n-p}^{M W}(L)$ of $\pi_{p, p} \mathcal{E}(L)$. This extends to arbitrary field extensions of k by taking the evident colimit. Also, for each closed point $w \in \mathbb{A}_{F}^{n}$, we have a canonically defined transfer map

$$
\operatorname{Tr}_{F}(w)^{*}: \pi_{a, b} \mathcal{E}(F(w)) \rightarrow \pi_{a, b} \mathcal{E}(F)
$$

(see $\mathbb{\oint} 8$ for details). $\left[\pi_{n, n} \mathcal{E} \cdot \underline{K}_{n-p}^{M W^{2}}{ }^{T_{r}}(F)\right.$ is the subgroup of $\pi_{p, p} \mathcal{E}(F)$ generated by the subgroups $\operatorname{Tr}_{F}(w)^{*}\left(\pi_{n, n} \mathcal{E}(F(w)) \cdot K_{n-p}^{M W}(F(w))\right)$, as w runs over closed points of \mathbb{A}_{F}^{n}. See theorem 9.12 for details.

Theorem 1 is an easy consequence of theorem 2; one uses Morel's unstable computations of the maps $S^{a, b} \wedge \operatorname{Spec} F_{+} \rightarrow S^{m, n}$ to reduce theorem 1 to its T-stable version and then one uses the explicit presentation of $K_{*}^{M W}$ to compute

$$
\left.\left.\left[\underline{K}_{q-n}^{M W} \cdot \underline{K}_{n-p}^{M W}\right]\right]\right]^{T r}(F)=K_{q-p}^{M W}(F) I^{N(n-p, n-q)}(F) .
$$

Morel's results on strictly \mathbb{A}^{1}-invariant sheaves allow us to go from the statement on functions fields to the one for the sheaves.

The restriction to perfect fields arises from a separability assumption needed to compute the action of transfers on our selected generators for $F_{\text {Tate }}^{n} \pi_{p, p} \mathcal{E}$. We avoid characteristic two so as to have a description of the homotopy sheaves of the sphere spectrum in terms of Milnor-Witt K-theory.

The paper is organized as follows. After setting up our notation and going over some background material on motivic homotopy theory in section 1, we recall some basic facts about the Tate Postnikov tower in section 2. In section 3 we prove some connectedness results for the terms $f_{n} E, s_{n} E$ in the Tate Postnikov tower for an S^{1} spectrum E and give a description of generators for the subgroup $F_{\text {Tate }}^{n} \pi_{0} E(F)$, all under a certain connectedness assumption on E. The generators are then factored into a product of two terms, one depending on E, the other only on the choice of a closed point of $\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}$. We analyze the second term in sections 448 , our main result being a description of this term as the nth suspension of a "symbol map" associated to units $u_{1}, \ldots, u_{n} \in F^{\times}$. This is the main computation achieved in this paper. It is then relatively simple to feed this result into our description of the generators for $F_{\text {Tate }}^{n} \pi_{0} E(F)$ to prove theorems 1 and 2 in section 9 we conclude in section 10 with some remarks on the convergence of the Tate Postnikov tower.

I thank the referee for making several helpful suggestions and for pointing out a number of errors, including an incorrect formulation of theorem 2, in an earlier version of this paper. Finally, I wish to thank the editors for giving me the opportunity of contributing to this volume. As a small token of my gratitude to Eckart for all of his aid and support over many years, I dedicate this article to his memory.

1. Background and notation

Unless we specify otherwise, k will be a fixed perfect base field, without restriction on the characteristic. For details on the following constructions, we refer the reader to [3, 4, 5, 8, 9, 11, 12].

We write $[n]:=\{0, \ldots, n\}$ (including $[-1]=\emptyset$) and let Δ be the category with objects $[n], n=0,1, \ldots$, and morphisms $[n] \rightarrow[m]$ the order-preserving maps of sets. Given a category \mathcal{C}, the category of simplicial objects in \mathcal{C} is as usual the category of functors $\Delta^{\mathrm{op}} \rightarrow \mathcal{C}$.

Spc will denote the category of simplicial sets, Spc. the category of pointed simplicial sets, $\mathcal{H}:=\mathbf{S p c}\left[W E^{-1}\right]$ the classical unstable homotopy category and $\mathcal{H}_{\bullet}:=\mathbf{S p c}_{\bullet}\left[W E^{-1}\right]$ the pointed version. We denote the suspension operator $-\wedge S^{1}$ by Σ_{s}. Spt is the category of suspension spectra and $\mathcal{S H}:=\boldsymbol{\operatorname { S p t }}\left[W E^{-1}\right]$ the classical stable homotopy category.

The motivic versions are as follows: $\mathbf{S m} / k$ is the category of smooth finite type k-schemes. $\mathbf{S p c}(k)$ is the category of $\mathbf{S p c}$-valued presheaves on $\mathbf{S m} / k, \mathbf{S p c} .(k)$ the $\mathbf{S p c}_{\bullet}$-valued presheaves, and $\mathbf{S p t}_{S^{1}}(k)$ the $\mathbf{S p t}$-valued presheaves. These all come with "motivic" model structures (see for example [5]); we denote the corresponding homotopy categories by $\mathcal{H}(k), \mathcal{H}_{\bullet}(k)$ and $\mathcal{S H}_{S^{1}}(k)$, respectively. Sending $X \in$ $\mathbf{S m} / k$ to the sheaf of sets on $\mathbf{S m} / k$ represented by X (also denoted X) gives an embedding of $\mathbf{S m} / k$ to $\mathbf{S p c}(k)$; we have the similarly defined embedding of the category of smooth pointed schemes over k into $\mathbf{S p c .}_{.}(k)$. All these categories are equipped with an internal Hom, denoted $\mathcal{H o m}$.

Let \mathbb{G}_{m} be the pointed k-scheme $\left(\mathbb{A}^{1} \backslash 0,1\right)$. In $\mathcal{H}_{\bullet}(k)$ we have the objects $S^{a+b, b}:=\Sigma_{s}^{a} \mathbb{G}_{m}^{\wedge b}$, for $b \geq 1, S^{n, 0}:=S^{n}=\Sigma_{s}^{n} \operatorname{Spec} k_{+}$. If X is a scheme with a k-point x, we write (X, x) for the corresponding object in $\mathbf{S p c}_{\bullet}(k)$ or $\mathcal{H}_{\bullet}(k)$. For a cofibration $\mathcal{Y} \rightarrow \mathcal{X}$ in $\operatorname{Spc}(k)$, we usually give the quotient $\mathcal{X} / \mathcal{Y}$ the canonical base-point $\mathcal{Y} / \mathcal{Y}$, but on occasion, we will give $\mathcal{X} / \mathcal{Y}$ a base-point coming from a point $x \in \mathcal{X}(k)$; we write this as $(\mathcal{X} / \mathcal{Y}, x)$.

We let $T:=\mathbb{A}^{1} /\left(\mathbb{A}^{1} \backslash\{0\}\right)$ and let $\mathbf{S p t}_{T}(k)$ denote the category of T-spectra, i.e., spectra in $\mathbf{S p c}_{\boldsymbol{\bullet}}(k)$ with respect to the T-suspension functor $\Sigma_{T}:=-\wedge T$. $\mathbf{S p t}_{T}(k)$ has a motivic model structure (see [5]) and $\mathcal{S H}(k)$ is the homotopy category. We can also form the category of spectra in $\mathbf{S p t}_{S^{1}}(k)$ with respect to Σ_{T}; with an appropriate model structure the resulting homotopy category is equivalent to $\mathcal{S H}(k)$. We will ignore the subtleties of this distinction and simply identify the two homotopy categories.

Both $\mathcal{S H}_{S^{1}}(k)$ and $\mathcal{S H}(k)$ are triangulated categories with suspension functor Σ_{s}. We have the triangle of infinite suspension functors Σ^{∞} and their right adjoints Ω^{∞}

both commutative up to natural isomorphism. These are all left, resp. right derived versions of Quillen adjoint pairs of functors on the underlying model categories. We note that the suspension functor $\Sigma_{\mathbb{G}_{m}}$ is invertible on $\mathcal{S H}(k)$.

For $\mathcal{X} \in \mathcal{H}_{\bullet}(k)$, we have the bi-graded homotopy sheaf $\pi_{a, b} \mathcal{X}$, defined for $b \geq 0$, $a-b \geq 0$, as the Nisnevich sheaf associated to the presheaf on $\mathbf{S m} / k$

$$
U \mapsto \operatorname{Hom}_{\mathcal{H} \cdot(k)}\left(\Sigma_{s}^{a-b} \Sigma_{\mathbb{G}_{m}}^{b} U_{+}, \mathcal{X}\right)
$$

These extend in the usual way to bi-graded homotopy sheaves $\pi_{a, b} E$ for $E \in$ $\mathcal{S H}{ }_{S^{1}}(k), b \geq 0, a \in \mathbb{Z}$, and $\pi_{a, b} \mathcal{E}$ for $\mathcal{E} \in \mathcal{S H}(k), a, b \in \mathbb{Z}$, by taking the Nisnevich sheaf associated to

$$
U \mapsto \operatorname{Hom}_{\mathcal{S} \mathcal{H}_{S^{1}}(k)}\left(\Sigma_{s}^{a-b} \Sigma_{\mathbb{G}_{m}}^{b} \Sigma_{s}^{\infty} U_{+}, E\right) \text { or } U \mapsto \operatorname{Hom}_{\mathcal{S H}(k)}\left(\Sigma_{s}^{a-b} \Sigma_{\mathbb{G}_{m}}^{b} \Sigma_{T}^{\infty} U_{+}, \mathcal{E}\right)
$$

as the case may be. We write π_{n} for $\pi_{n, 0}$; for e.g. $E \in \mathbf{S p t}_{S^{1}}(k)$ fibrant, $\pi_{n} E$ is the Nisnevich sheaf associated to the presheaf $U \mapsto \pi_{n}(E(U))$.

For F a finitely generated field extension of k, we may view $\operatorname{Spec} F$ as the generic point of some $X \in \mathbf{S m} / k$. Thus, for a Nisnevich sheaf \mathcal{S} on $\mathbf{S m} / k$, we may define $\mathcal{S}(F)$ as the stalk of \mathcal{S} at $\operatorname{Spec} F \in X$. For an arbitrary field extension F of k (not necessarily finitely generated over k), we define $\mathcal{S}(F)$ as the colimit over $\mathcal{S}\left(F_{\alpha}\right)$, as F_{α} runs over subfields of F containing k and finitely generated over k.

2. The homotopy coniveau tower

Our computations rely heavily on our model for the Tate Postnikov tower in $\mathcal{S H}_{S^{1}}(k)$, which we briefly recall (for details, we refer the reader to [6]). We start by recalling the Tate Postnikov tower in $\mathcal{S H}_{S^{1}}(k)$ and introducing some notation.

Fix a perfect base-field k. Let

$$
\Sigma_{T}: \mathcal{S H}_{S^{1}}(k) \rightarrow \mathcal{S} \mathcal{H}_{S^{1}}(k)
$$

be the T-suspension functor. For $n \geq 0$, we let $\Sigma_{T}^{n} \mathcal{S H}_{S^{1}}(k)$ be the localizing subcategory of $\mathcal{S H}_{S^{1}}(k)$ generated by infinite suspension spectra of the form $\Sigma_{T}^{n} \Sigma_{s}^{\infty} X_{+}$, with $X \in \operatorname{Sm} / k$. We note that $\Sigma_{T}^{0} \mathcal{S H}_{S^{1}}(k)=\mathcal{S H}_{S^{1}}(k)$. The inclusion functor $i_{n}: \Sigma_{T}^{n} \mathcal{S H}_{S^{1}}(k) \rightarrow \mathcal{S H}_{S^{1}}(k)$ admits, by results of Neeman [13], a right adjoint r_{n}; define the functor $f_{n}: \mathcal{S H}_{S^{1}}(k) \rightarrow \mathcal{S H}_{S^{1}}(k)$ by $f_{n}:=i_{n} \circ r_{n}$. The unit for the adjunction gives us the natural morphism

$$
\rho_{n}: f_{n} E \rightarrow E
$$

for $E \in \mathcal{S H}_{S^{1}}(k)$; similarly, the inclusion $\Sigma_{T}^{m} \mathcal{S H}_{S^{1}}(k) \subset \Sigma_{T}^{n} \mathcal{S H}_{S^{1}}(k)$ for $n<m$ gives the natural transformation $f_{m} E \rightarrow f_{n} E$, forming the Tate Postnikov tower

$$
\ldots \rightarrow f_{n+1} E \rightarrow f_{n} E \rightarrow \ldots \rightarrow f_{0} E=E .
$$

We complete $f_{n+1} E \rightarrow f_{n} E$ to a distinguished triangle

$$
f_{n+1} E \rightarrow f_{n} E \rightarrow s_{n} E \rightarrow f_{n+1} E[1] ;
$$

this turns out to be functorial in E. The object $s_{n} E$ is the $n t h$ slice of E.
There is an analogous construction in $\mathcal{S H}(k)$: For $n \in \mathbb{Z}$, let $\Sigma_{T}^{n} \mathcal{S} \mathcal{H}^{e f f}(k) \subset$ $\mathcal{S H}(k)$ be the localizing category generated by the T-suspension spectra $\Sigma_{T}^{n} \Sigma_{T}^{\infty} X_{+}$, for $X \in \mathbf{S m} / k$. As above, the inclusion $i_{n}: \Sigma_{T}^{n} \mathcal{S} \mathcal{H}^{\text {eff }}(k) \rightarrow \mathcal{S H}(k)$ admits a left adjoint r_{n}, giving us the truncation functor f_{n} and the Postnikov tower

$$
\ldots \rightarrow f_{n+1} \mathcal{E} \rightarrow f_{n} \mathcal{E} \rightarrow \ldots \rightarrow \mathcal{E}
$$

Note that this tower is in general infinite in both directions. We define the layer $s_{n} \mathcal{E}$ as above.

By [6, theorem 7.4.1], the 0-space functor Ω_{T}^{∞} sends $\Sigma_{T}^{n} \mathcal{S H}{ }^{e f f}(k)$ to $\Sigma_{T}^{n} \mathcal{S} \mathcal{H}_{S^{1}}(k)$. This fact, together with the universal properties of the truncation functors f_{n} in
$\mathcal{S H} S_{S^{1}}(k)$ and $\mathcal{S H}(k)$, plus the fact that Ω_{T}^{∞} is a right adjoint, gives the canonical isomorphism for $n \geq 0$

$$
\begin{equation*}
f_{n} \Omega_{T}^{\infty} \mathcal{E} \cong \Omega_{T}^{\infty} f_{n} \mathcal{E} \tag{2.1}
\end{equation*}
$$

Furthermore, for $E \in \mathcal{S H}_{S^{1}}(k)$, we have (by [6] theorem 7.4.2]) the canonical isomorphism

$$
\begin{equation*}
\Omega_{\mathbb{G}_{m}} f_{n} E=f_{n-1} \Omega_{\mathbb{G}_{m}} E . \tag{2.2}
\end{equation*}
$$

As $\Omega_{\mathbb{G}_{m}}: \mathcal{S H}(k) \rightarrow \mathcal{S H}(k)$ is an auto-equivalence, and restricts to an equivalence

$$
\Omega_{\mathbb{G}_{m}}: \Sigma_{T}^{n} \mathcal{S} \mathcal{H}^{e f f}(k) \rightarrow \Sigma_{T}^{n-1} \mathcal{S} \mathcal{H}^{e f f}(k)
$$

the analogous identity in $\mathcal{S H}(k)$ holds as well.
Definition 2.1. For $a \in \mathbb{Z}, b \geq 0, E \in \mathcal{S} \mathcal{H}_{S^{1}}(k)$, define the filtration $F_{\text {Tate }}^{n} \pi_{a, b} E$, $n \geq 0$, of $\pi_{a, b} E$ by

$$
F_{\text {Tate }}^{n} \pi_{a, b} E:=\operatorname{im}\left(\pi_{a, b} f_{n} E \rightarrow \pi_{a, b} E\right)
$$

Similarly, for $\mathcal{E} \in \mathcal{S H}(k), a, b, n \in \mathbb{Z}$, define

$$
F_{\mathrm{Tate}}^{n} \pi_{a, b} \mathcal{E}:=\operatorname{im}\left(\pi_{a, b} f_{n} \mathcal{E} \rightarrow \pi_{a, b} \mathcal{E}\right)
$$

The main object of this paper is to understand $F_{\text {Tate }}^{n} \pi_{0} E$ for suitable E. For later use, we note the following

Lemma 2.2. 1. For $E \in \mathcal{S H}_{S^{1}}(k), n, p, a, b \in \mathbb{Z}$ with $n, p, b, n-p, b-p \geq 0$, the adjunction isomorphism $\pi_{a, b} E \cong \pi_{a-p . b-p} \Omega_{\mathbb{G}_{m}}^{p} E$ induces an isomorphism

$$
F_{\text {Tate }}^{n} \pi_{a, b} E \cong F_{\text {Tate }}^{n-p} \pi_{a-p, b-p} \Omega_{\mathbb{G}_{m}}^{p} E .
$$

Similarly, for $\mathcal{E} \in \mathcal{S H}(k), n, p, a, b \in \mathbb{Z}$, the adjunction isomorphism $\pi_{a, b} \mathcal{E} \cong$ $\pi_{a-p . b-p} \Omega_{\mathbb{G}_{m}}^{p} \mathcal{E}$ induces an isomorphism

$$
F_{\text {Tate }}^{n} \pi_{a, b} \mathcal{E} \cong F_{\text {Tate }}^{n-p} \pi_{a-p, b-p} \Omega_{\mathbb{G}_{m}}^{p} \mathcal{E} .
$$

2. For $\mathcal{E} \in \mathcal{S H}(k), a, b, n \in \mathbb{Z}$, with $b, n \geq 0$, we have a canonical isomorphism

$$
\varphi_{\mathcal{E}, a, b, n}: \pi_{a, b} f_{n} \mathcal{E} \rightarrow \pi_{a, b} \Omega_{T}^{\infty} f_{n} \mathcal{E}
$$

inducing an isomorphism $F_{\text {Tate }}^{n} \pi_{a, b} \mathcal{E} \cong F_{\text {Tate }}^{n} \pi_{a, b} \Omega_{T}^{\infty} \mathcal{E}$.
Proof. (1) By (2.2), adjunction induces isomorphisms

$$
\begin{aligned}
F_{\text {Tate }}^{n} \pi_{a, b} E & :=\operatorname{im}\left(\pi_{a, b} f_{n} E \rightarrow \pi_{a, b} E\right) \\
& \cong \operatorname{im}\left(\pi_{a-p, b-p} \Omega_{\mathbb{G}_{m}}^{p} f_{n} E \rightarrow \pi_{a-p, b-p} \Omega_{\mathbb{G}_{m}}^{p} E\right) \\
& =\operatorname{im}\left(\pi_{a-p, b-p} f_{n-p} \Omega_{\mathbb{G}_{m}}^{p} E \rightarrow \pi_{a-p, b-p} \Omega_{\mathbb{G}_{m}}^{p} E\right) \\
& =F_{\text {Tate }}^{n-p} \pi_{a-p, b-p} \Omega_{\mathbb{G}_{m}}^{p} E .
\end{aligned}
$$

The proof for $\mathcal{E} \in \mathcal{S H}(k)$ is the same.
For (2), the isomorphism $\varphi_{\mathcal{E}, a, b, n}$ arises from (2.1) and the adjunction isomorphism

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{H H}_{S^{1}}(k)}\left(\Sigma_{s}^{\infty} \Sigma_{s}^{a-b} \Sigma_{\mathbb{G}_{m}}^{b} U_{+}, f_{n} \Omega_{T}^{\infty} \mathcal{E}\right) & \cong \operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(\Sigma_{s}^{\infty} \Sigma_{s}^{a-b} \Sigma_{\mathbb{G}_{m}}^{b} U_{+}, \Omega_{T}^{\infty} f_{n} \mathcal{E}\right) \\
& \cong \operatorname{Hom}_{\mathcal{S H}(k)}\left(\Sigma_{T}^{\infty} \Sigma_{s}^{a-b} \Sigma_{\mathbb{G}_{m}}^{b} U_{+}, \mathcal{E}\right)
\end{aligned}
$$

We now turn to a discussion of our model for $f_{n} E(X), X \in \mathbf{S m} / k$. We start with the cosimplicial scheme $n \mapsto \Delta^{n}$, with Δ^{n} the algebraic n-simplex Spec $k\left[t_{0}, \ldots, t_{n}\right] / \sum_{i} t_{i}-1$. The cosimplicial structure is given by sending a map $g:[n] \rightarrow[m]$ to the map $g: \Delta^{n} \rightarrow \Delta^{m}$ determined by

$$
g^{*}\left(t_{i}\right)= \begin{cases}\sum_{j, g(j)=i} t_{j} & \text { if } g^{-1}(i) \neq \emptyset \\ 0 & \text { else }\end{cases}
$$

A face of Δ^{m} is a closed subscheme F defined by equations $t_{i_{1}}=\ldots=t_{i_{r}}=0$; we let $\partial \Delta^{n} \subset \Delta^{n}$ be the closed subscheme defined by $\prod_{i=0}^{n} t_{i}=0$, i.e., $\partial \Delta^{n}$ is the union of all the proper faces.

Take $X \in \mathbf{S m} / k$. We let $\mathcal{S}_{X}^{(q)}(m)$ denote the set of closed subsets $W \subset X \times \Delta^{m}$ such that $\operatorname{codim}_{X \times F} W \cap X \times F \geq q$ for all faces $F \subset \Delta^{m}$ (including $F=\Delta^{m}$). We make $\mathcal{S}_{X}^{(q)}(m)$ into a partially ordered set via inclusions of closed subsets. Sending m to $\mathcal{S}_{X}^{(q)}(m)$ and $g:[n] \rightarrow[m]$ to $g^{-1}: \mathcal{S}_{X}^{(q)}(m) \rightarrow \mathcal{S}_{X}^{(q)}(n)$ gives us the simplicial poset $\mathcal{S}_{X}^{(q)}$.

Now take $E \in \mathbf{S p t}_{S^{1}}(k)$. For $X \in \mathbf{S m} / k$ and closed subset $W \subset X$, we have the spectrum with supports $E^{W}(X)$ defined as the homotopy fiber of the restriction map $E(X) \rightarrow E(X \backslash W)$. This construction is functorial in the pair (X, W), where we define a map $f:(Y, T) \rightarrow(X, W)$ as a morphism $f: Y \rightarrow X$ in $\mathbf{S m} / k$ with $f^{-1}(W) \subset T$.

Define

$$
E^{(q)}(X, m):=\underset{W \in \mathcal{S}_{X}^{(q)}(m)}{\operatorname{hocolim}} E^{W}\left(X \times \Delta^{m}\right)
$$

The fact that $m \mapsto \mathcal{S}_{X}^{(q)}(m)$ is a simplicial poset, and $(Y, T) \mapsto E^{T}(Y)$ is a functor from the category of pairs to spectra shows that $m \mapsto E^{(q)}(X, m)$ defines a simplicial spectrum. We denote the associated total spectrum by $E^{(q)}(X)$.

For $q \geq q^{\prime}$, the inclusions $\mathcal{S}_{X}^{(q)}(m) \subset \mathcal{S}_{X}^{\left(q^{\prime}\right)}(m)$ induces a map of simplicial posets $\mathcal{S}_{X}^{(q)} \subset \mathcal{S}_{X}^{\left(q^{\prime}\right)}$ and thus a morphism of spectra $i_{q^{\prime}, q}: E^{(q)}(X) \rightarrow E^{\left(q^{\prime}\right)}(X)$. We have as well the natural map

$$
\epsilon_{X}: E(X) \rightarrow \operatorname{Tot}\left(E\left(X \times \Delta^{*}\right)\right)=E^{(0)}(X)
$$

which is a weak equivalence if E is homotopy invariant. Together, this forms the augmented homotopy coniveau tower tower

$$
E^{(*)}(X):=\ldots \rightarrow E^{(q+1)}(X) \xrightarrow{i_{q}} E^{(q)}(X) \xrightarrow{i_{q-1}} \ldots E^{(1)}(X) \xrightarrow{i_{0}} E^{(0)}(X) \stackrel{\epsilon_{X}}{\leftrightarrows} E(X)
$$

with $i_{q}:=i_{q, q+1}$. Thus, for homotopy invariant E, we have the homotopy coniveau tower in $\mathcal{S H}$

$$
E^{(*)}(X):=\ldots \rightarrow E^{(q+1)}(X) \xrightarrow{i_{q}} E^{(q)}(X) \xrightarrow{i_{q-1}} \ldots E^{(1)}(X) \xrightarrow{i_{0}} E^{(0)}(X) \cong E(X)
$$

Letting $\mathbf{S m} / / k$ denote the subcategory of $\mathbf{S m} / k$ with the same objects and with morphisms the smooth morphisms, it is not hard to see that sending X to $E^{(*)}(X)$ defines a functor from $\mathbf{S m} / / k^{\text {op }}$ to augmented towers of spectra.

On the other hand, for $E \in \mathbf{S p t}_{S^{1}}(k)$, we have the (augmented) Tate Postnikov tower

$$
f_{*} E:=\ldots \rightarrow f_{q+1} E \rightarrow f_{q} E \rightarrow \ldots \rightarrow f_{0} E \cong E
$$

in $\mathcal{S H}_{S^{1}}(k)$, which we may evaluate at $X \in \mathbf{S m} / k$, giving the tower $f_{*} E(X)$ in $\mathcal{S H}$, augmented over $E(X)$.

As a direct consequence of our main result (theorem 7.1.1) from [6] we have
Theorem 2.3. Let E be a quasi-fibrant object in $\mathbf{S p t}_{S^{1}}(k)$ for the model structure described in [4, and take $X \in \mathbf{S m} / k$. Then there is an isomorphism of augmented towers in $\mathcal{S H}$

$$
\left(f_{*} E\right)(X) \cong E^{(*)}(X)
$$

over the identity on $E(X)$, which is natural with respect to smooth morphisms in Sm / k.

In particular, we may use the explicit model $E^{(q)}(X)$ to understand $\left(f_{q} E\right)(X)$.
Remark 2.4. For $X, Y \in \mathbf{S m} / k$ with given k-points $x \in X(k), y \in Y(k)$, we have a natural isomorphism in $\mathcal{S H}_{S^{1}}(k)$

$$
\Sigma_{s}^{\infty}(X \wedge Y) \oplus \Sigma_{s}^{\infty}(X \vee Y) \cong \Sigma_{s}^{\infty}(X \times Y)
$$

i.e. $\Sigma_{s}^{\infty}(X \wedge Y)$ is a canonically defined summand of $\Sigma_{s}^{\infty}(X \times Y)$. In particular for E a quasi-fibrant object of $\mathbf{S p t}_{S^{1}}(k)$, we have a natural isomorphism in $\mathcal{S H}$

$$
\mathcal{H o m}\left(\Sigma_{s}^{\infty}(X \wedge Y), E\right) \cong \operatorname{hofib}(E(X \times Y) \rightarrow \operatorname{hofib}(E(X) \oplus E(Y) \rightarrow E(k)))
$$

where the maps are induced by the evident restriction maps. In particular, we may define $E(X \wedge Y)$ via the above isomorphism, and our comparison results for Tate Postnikov tower and homotopy coniveau tower extend to values at smash products of smooth pointed schemes over k.

3. Connectedness and generators for π_{0}

As in section 2 our base-field k is perfect. We fix a quasi-fibrant S^{1}-spectrum $E \in \mathbf{S p t}_{S^{1}}(k)$.

Lemma 3.1. Let F be a finitely generated field extension of $k, x \in \mathbb{A}_{F}^{n}$ a closed point. Then for every $m>0$, the map

$$
i_{0 *}: E^{(x, 0)}\left(\mathbb{A}^{n} \times \mathbb{A}_{F}^{m}\right) \rightarrow E^{\left(x \times_{F} \mathbb{A}_{F}^{m}\right)}\left(\mathbb{A}^{n} \times \mathbb{A}_{F}^{m}\right)
$$

induced by the map of pairs

$$
\operatorname{id}_{\mathbb{A}^{n} \times \mathbb{A}^{m}}:\left(\mathbb{A}^{n} \times \mathbb{A}_{F}^{m}, x \times \mathbb{A}_{F}^{m}\right) \rightarrow\left(\mathbb{A}^{n} \times \mathbb{A}_{F}^{m},(x, 0)\right)
$$

is the zero-map in $\mathcal{S H}$. In particular, the induced map on homotopy groups is the zero map.

Proof. We use the Morel-Voevodsky purity isomorphisms in $\mathcal{H}_{\bullet}(k)$ [12, Theorem 3.2.23], with the isomorphisms defined via a fixed choice of generators for the maximal ideal $m_{x} \subset \mathcal{O}_{\mathbb{A}_{F}^{n}, x}$ and $m_{0} \subset \mathcal{O}_{\mathbb{A}^{m}, 0}$

$$
\begin{aligned}
\mathbb{A}_{F}^{n} \times \mathbb{A}^{m} /\left(\mathbb{A}_{F}^{n} \times \mathbb{A}^{m} \backslash\{(x, 0)\}\right) & \cong \Sigma_{T}^{n+m}(x, 0)_{+} \\
& \cong \Sigma_{T}^{n} x \times \mathbb{A}^{m} /\left(x \times \mathbb{A}^{m} \backslash\{(x, 0)\}\right) \\
\mathbb{A}_{F}^{n} \times \mathbb{A}^{m} /\left(\mathbb{A}_{F}^{n} \times \mathbb{A}^{m} \backslash x \times \mathbb{A}^{m}\right) & \cong \Sigma_{T}^{n} x \times \mathbb{A}_{+}^{m} .
\end{aligned}
$$

Via these isomorphisms, the quotient map

$$
q: \mathbb{A}_{F}^{n} \times \mathbb{A}^{m} /\left(\mathbb{A}_{F}^{n} \times \mathbb{A}^{m} \backslash x \times \mathbb{A}^{m}\right) \rightarrow \mathbb{A}_{F}^{n} \times \mathbb{A}^{m} /\left(\mathbb{A}_{F}^{n} \times \mathbb{A}^{m} \backslash\{(x, 0\})\right.
$$

is isomorphic to the nth T-suspension of the quotient map

$$
q^{\prime}: x \times \mathbb{A}_{+}^{m} \rightarrow x \times \mathbb{A}^{m} /\left(x \times \mathbb{A}^{m} \backslash\{(x, 0)\}\right)
$$

As $i_{0 *}$ is the map induced by applying $\mathcal{H o m}(-, E)$ to $\Sigma_{s}^{\infty} q$, we need only show that q^{\prime} factors through the map $x \times \mathbb{A}_{+}^{m} \rightarrow *\left(\right.$ in $\left.\mathcal{H}_{\bullet}(k)\right)$. This follows from the commutative diagram

where $1=(1, \ldots, 1) \in \mathbb{A}^{m}$, since i is an isomorphism in $\mathcal{H}_{\bullet}(k)$ by homotopy invariance.

We have the re-indexed homotopy sheaves $\Pi_{n, m}(E):=\pi_{n+m, m}(E)$. We have as well the sheaf $\pi_{n} E:=\pi_{n, 0} E$; we call $E m$-connected if $\pi_{n}(E)=0$ for all $n \leq m$.

Since $E^{(n)}(X)=\operatorname{Tot}\left[m \mapsto E^{(n)}(X, m)\right]$, we have the strongly convergent spectral sequence

$$
\begin{equation*}
E_{p, q}^{1}(X)=\pi_{q} E^{(n)}(X, p) \Longrightarrow \pi_{p+q} E^{(n)}(X) \tag{3.1}
\end{equation*}
$$

Now take $X=\operatorname{Spec} F, F$ a finitely generated field over k. For dimensional reasons, we have $\mathcal{S}_{F}^{(n)}(p)=\emptyset$ for $p<n$, and we therefore have an edge homomorphism

$$
\epsilon_{-n}: \pi_{q-n} E^{(n)}(X, n) \rightarrow \pi_{q} E^{(n)}(X)
$$

Furthermore, $\mathcal{S}_{F}^{(n)}(n)$ is the set of closed points $w \in \Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}$, so ϵ_{-n} can be written as

$$
\epsilon_{-n}: \oplus_{w \in\left(\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}\right)^{(n)}} \pi_{q-n} E^{w}\left(\Delta_{F}^{n}\right) \rightarrow \pi_{q} E^{(n)}(F)
$$

here $Y^{(a)}$ denotes the set of codimension a points on a scheme Y.
Via the weak equivalence $E^{(n)}(F) \cong f_{n} E(F)$, we have the canonical map

$$
\epsilon_{-n}: \oplus_{w \in\left(\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}\right)^{(n)}} \pi_{q-n} E^{w}\left(\Delta_{F}^{n}\right) \rightarrow \pi_{q} f_{n} E(F)
$$

Similarly, composing with $f_{n} E \rightarrow s_{n} E$, we have the canonical map

$$
\epsilon_{-n}: \oplus_{w \in\left(\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}\right)^{(n)}} \pi_{q-n} E^{w}\left(\Delta_{F}^{n}\right) \rightarrow \pi_{q} s_{n} E(F)
$$

Proposition 3.2. Let $E \in \mathbf{S p t}_{S^{1}}(k)$ be quasi-fibrant. Suppose $\Pi_{a, *} E(F)=0$ for all $a<0$ and for all finitely generated field extensions F of k. Then for $n \geq 0$:

1. $\Pi_{a, *} f_{n} E$ and $\Pi_{a, *} s_{n} E$ are zero for all $a<0$. In particular, $f_{n} E$ and $s_{n} E$ are -1-connected.
2. For each finitely generated field F over k, the edge homomorphisms

$$
\begin{aligned}
& \epsilon_{-n}: \oplus_{w \in\left(\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}\right)^{(n)} \pi_{-n} E^{w}\left(\Delta_{F}^{n}\right) \rightarrow \pi_{0}\left(f_{n} E\right)(F), ~}^{\text {(}} \\
& \epsilon_{-n}: \oplus_{w \in\left(\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}\right)^{(n)} \pi_{-n} E^{w}\left(\Delta_{F}^{n}\right) \rightarrow \pi_{0}\left(s_{n} E\right)(F), ~}^{\text {(}}
\end{aligned}
$$

are surjections.
Proof. Using the distinguished triangle

$$
f_{n+1} E \rightarrow f_{n} E \rightarrow s_{n} E \rightarrow \Sigma_{s} f_{n+1} E
$$

we see that it suffices to prove the statements for $f_{n} E$.

Using the isomorphism (2.2), we see that for (1), it suffices to show that $f_{n} E$ is -1-connected. By a theorem of Morel [11, lemma 3.3.6], it suffices to show that $f_{n} E(F)$ is -1-connected for all finitely generated field extensions F of k.

We first show that, for each $p \geq n$,
a. $\pi_{q} E^{(n)}(F, p)=0$ for $q<-p$
b. The natural map

$$
\oplus_{W \in \mathcal{S}_{F}^{(n)}(p), w \in W \cap\left(\Delta_{F}^{p}\right)^{(p)}} \pi_{-p} E^{w}\left(\Delta_{F}^{p}\right) \rightarrow \pi_{-p} E^{(n)}(F, p)
$$

is surjective.

For (a), let $W \subset \Delta_{F}^{p}$ be a closed subset. We have the Gersten spectral sequence

$$
E_{1}^{a, b}=\oplus_{w \in W \cap\left(\Delta_{F}^{p}\right)^{(a)}} \pi_{-a-b} E^{w}\left(\operatorname{Spec} \mathcal{O}_{\Delta_{F}^{p}, w}\right) \Longrightarrow \pi_{-a-b} E^{W}\left(\Delta_{F}^{p}\right)
$$

Since E is quasi-fibrant, and Δ_{F}^{p} is smooth over k, we have an isomorphism (via Morel-Voevodsky purity [12, Theorem 3.2.23])

$$
\pi_{m}\left(E^{w}\left(\operatorname{Spec} \mathcal{O}_{\Delta_{F}^{p}, w}\right)\right) \cong \pi_{m}\left(E\left(w_{+} \wedge S^{2 a, a}\right)\right)
$$

where $a=\operatorname{codim}_{\Delta_{F}^{p}} w$. But

$$
\pi_{m}\left(E\left(w_{+} \wedge S^{2 a, a}\right)\right)=\left(\pi_{m+2 a, a} E\right)(F(w))
$$

which is zero for $m+a<0$. Since $0 \leq a \leq p$, we see that, for $m<-p$,

$$
\pi_{m} E^{W}\left(\Delta_{F}^{p}\right)=0
$$

As $E^{(n)}(F, p)$ is a colimit over $E^{W}\left(\Delta_{F}^{p}\right)$ with $W \in \mathcal{S}_{F}^{(n)}(p)$, it follows that $\pi_{m} E^{(n)}(F, p)=$ 0 for $m<-p$, proving (a).

The same computation shows that $\pi_{-p}\left(E^{w}\left(\operatorname{Spec} \mathcal{O}_{\Delta_{F}^{p}, w}\right)\right)=0$ if $\operatorname{codim}_{\Delta_{F}^{p}} w<p$, so (b) follows from the Gersten spectral sequence.

Using the strongly convergent spectral sequence (3.1), we see that (a) implies that $\pi_{q} E^{(n)}(F)=0$ for $q<0$.

Next, we show that

$$
\text { c. } \pi_{-p} E^{(n)}(F, p)=0 \text { for } p>n \text {. }
$$

For this, it suffices by (b) to show that for $w \in W \cap\left(\Delta_{F}^{p}\right)^{(p)}$ with $W \in \mathcal{S}_{F}^{(n)}(p)$ and with $p>n$, the map

$$
\begin{equation*}
\pi_{-p} E^{w}\left(\Delta_{F}^{p}\right) \rightarrow \pi_{-p} E^{(n)}(F, p) \tag{3.2}
\end{equation*}
$$

is the zero map. To see this, note that W does not intersect any face T of Δ_{F}^{p} having $\operatorname{dim}_{F} T<n$. Thus, there is a linear $W^{\prime} \cong \mathbb{A}_{F^{\prime}}^{p-n} \subset \Delta_{F}^{p}$ containing w (for F^{\prime} some extension field of F contained in $\left.F(w)\right)$ with $W^{\prime} \in \mathcal{S}_{F}^{(n)}(p)$: for a suitable degeneracy map $\sigma: \Delta^{p} \rightarrow \Delta^{n}$ one takes $W^{\prime}=\sigma^{-1}(\sigma(w))$. By lemma 3.1, the $\operatorname{map} E^{w}\left(\Delta_{F}^{p}\right) \rightarrow E^{W^{\prime}}\left(\Delta_{F}^{p}\right)$ is the zero map in $\mathcal{S H}$; passing to the limit over all $W^{\prime \prime} \in \mathcal{S}_{F}^{(n)}(p)$, we see that (3.2) is the zero map, as claimed.

In the spectral sequence (3.1), we have $E_{p,-p}^{1}=0$ for $p>n$; we also have $E_{p,-p}^{1}=0$ for $p<n$ since $\mathcal{S}_{F}^{(n)}(p)=\emptyset$ if $p<n$ for dimensional reasons. Thus, the only term contributing to $\pi_{0} E^{(n)}(F)$ is $E_{n,-n}^{1}$. As the spectral sequence is
strongly convergent, the edge homomorphism in the spectral sequence (3.1) induces a surjection

$$
\oplus_{w \in \mathcal{S}_{F}^{(n)}(n)} \pi_{-n} E^{w}\left(\Delta_{F}^{n}\right) \rightarrow \pi_{0} E^{(n)}(F)
$$

Combining this with theorem 2.3 gives us the surjection

$$
\oplus_{w \in \mathcal{S}_{F}^{(n)}(n)} \pi_{-n} E^{w}\left(\Delta_{F}^{n}\right) \rightarrow \pi_{0}\left(f_{n} E(F)\right)
$$

Similarly, the vanishing $\pi_{p} E^{(n)}(F)=0$ for $p<0$ shows that $f_{n} E(F)$ is -1 connected.
 for our main object of study, $F_{\text {Tate }}^{n} \pi_{0} E(F)$. We examine the composition

$$
\begin{equation*}
\pi_{-n} E^{w}\left(\Delta_{F}^{n}\right) \xrightarrow{\epsilon_{-n}} \pi_{0} f_{n} E(F) \xrightarrow{\rho_{n}} \pi_{0} E(F) \tag{3.3}
\end{equation*}
$$

more closely.
Fix a closed point w in $\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}$. We have the quotient map

$$
c_{w}: \Delta_{F}^{n} / \partial \Delta_{F}^{n} \rightarrow \Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash w\right)
$$

and the canonical identification

$$
E^{w}\left(\Delta_{F}^{n}\right)=\mathcal{H o m}\left(\Sigma_{s}^{\infty} \Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash w\right), E\right)
$$

Thus, given an element $\tau \in \pi_{-n}\left(E^{w}\left(\Delta_{F}^{n}\right)\right)$, we have the corresponding morphism

$$
\tau: \Sigma_{s}^{\infty} \Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash w\right) \rightarrow \Sigma_{s}^{n} E
$$

and we may compose with c_{w} to give the map

$$
\tau \circ \Sigma_{s}^{\infty} c_{w}: \Sigma_{s}^{\infty} \Delta_{F}^{n} / \partial \Delta_{F}^{n} \rightarrow \Sigma_{s}^{n} E
$$

As each of the faces of Δ_{F}^{n} are affine spaces over F, we have a canonical isomorphism

$$
\sigma_{F}: \Sigma_{s}^{n} \operatorname{Spec} F_{+} \rightarrow \Delta_{F}^{n} / \partial \Delta_{F}^{n}
$$

in $\mathcal{H}_{\bullet}(k)$ (see the beginning of 4 for details), giving us the element

$$
\pi(\tau):=\tau \circ \Sigma_{s}^{\infty}\left(c_{w} \circ \sigma_{F}\right) \in \pi_{n}\left(\Sigma_{s}^{n} E(F)\right)=\pi_{0}(E(F))
$$

The following result is a direct consequence of the definitions:
Lemma 3.3. For $\tau \in \pi_{-n}\left(E^{w}\left(\Delta_{F}^{n}\right)\right), \pi(\tau)=\rho_{n}\left(\epsilon_{-n}(\tau)\right)$.
On the other hand, we have the Morel-Voevodsky purity isomorphism (loc. cit.)

$$
\begin{equation*}
M V_{w}: \Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash w\right) \rightarrow w_{+} \wedge S^{2 n, n} \tag{3.4}
\end{equation*}
$$

The definition of $M V_{w}$ requires some additional choices; we complete our definition of $M V_{w}$ in 95 where it is written as $M V_{w}=\left(\mathrm{id}_{w_{+}} \wedge \alpha\right) \circ m v_{w}$ (see definition 4.3 and (5.3)).

In any case, via $M V_{w}$, we may factor $\pi(\tau)$ as

$$
\begin{aligned}
\pi(\tau) & :=\tau \circ \Sigma_{s}^{\infty}\left(c_{w} \circ \sigma_{F}\right) \\
& =\left(\tau \circ \Sigma_{s}^{\infty} M V_{w}^{-1}\right) \circ \Sigma_{s}^{\infty}\left(M V_{w} \circ c_{w} \circ \sigma_{F}\right)
\end{aligned}
$$

The term $\tau \circ \Sigma_{s}^{\infty} M V_{w}^{-1}$ is the morphism

$$
\tau \circ \Sigma_{s}^{\infty} M V_{w}^{-1}: \Sigma_{s}^{\infty} w_{+} \wedge S^{2 n, n} \rightarrow \Sigma_{s}^{n} E
$$

which we may interpret as an element of $\pi_{-n}\left(\Omega_{T}^{n} E(w)\right)$, while the morphism $\Sigma_{s}^{\infty}\left(M V_{w} \circ\right.$ $\left.c_{w} \circ \sigma_{F}\right)$ is the infinite suspension of the map

$$
\begin{equation*}
Q_{F}(w):=M V_{w} \circ c_{w} \circ \sigma_{F}: \Sigma_{s}^{n} \operatorname{Spec} F_{+} \rightarrow w_{+} \wedge S^{2 n, n} \tag{3.5}
\end{equation*}
$$

Conversely, given any element $\xi \in \pi_{-n}\left(\Omega_{T}^{n} E(w)\right)$, which we write as a morphism

$$
\xi: w_{+} \wedge S^{2 n, n} \rightarrow \Sigma_{s}^{n} E
$$

we recover an element $\tau \in \pi_{-n}\left(E^{w}\left(\Delta_{F}^{n}\right)\right)$ as $\tau:=\xi \circ \Sigma_{s}^{\infty} M V_{w}$, and thus the element

$$
\xi \circ \Sigma_{s}^{\infty} Q_{F}(w) \in \pi_{n}\left(\Sigma_{s}^{n} E(F)\right)=\pi_{0} E(F)
$$

is in $F_{\text {Tate }}^{n} \pi_{0} E(F)$.
Putting this all together, we have
Proposition 3.4. Let F be a finitely generated field extension of k and let $E \in$ $\mathbf{S p t}_{S^{1}}(k)$ be quasi-fibrant.

1. Let w be a closed point of $\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}$, and take $\xi_{w} \in \pi_{-n}\left(\Omega_{T}^{n} E(w)\right)$. Then $\xi_{w} \circ \Sigma_{s}^{\infty} Q_{F}(w)$ is in $F_{\text {Tate }}^{n} \pi_{0} E(F)$.
2. Suppose that $\Pi_{a, *} E=0$ for all $a<0$. Then $F_{\text {Tate }}^{n} \pi_{0} E(F)$ is generated by elements of the form $\xi_{w} \circ \Sigma_{s}^{\infty} Q_{F}(w), \xi_{w} \in \pi_{-n}\left(\Omega_{T}^{n} E(w)\right)$, as w runs over closed points of $\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}$.

Remark 3.5. The proposition extends without change to arbitrary field extensions F of k, by a simple limit argument.

The next few sections will be devoted to giving explicit formulas for the map $Q_{F}(w)$. In case w is an F-point of $\Delta^{n} \backslash \partial \Delta^{n}$, we are able to do so directly; in general, we will need to pass to an n-fold \mathbb{P}^{1}-suspension before we can give an explicit formula. We will then conclude with the proof of our main result in $\$ 9$

4. The Pontryagin-Thom collapse map

We recall a special case of Pontryagin-Thom construction in $\mathcal{H}_{\bullet}(k)$.
Let V_{n} be the open subscheme $\Delta^{n} \backslash \partial \Delta^{n}$ of Δ^{n}; we use barycentric coordinates u_{0}, \ldots, u_{n} on V_{n}, giving us the identification

$$
V_{n}=\operatorname{Spec} k\left[u_{0}, \ldots, u_{n},\left(u_{0} \cdot \ldots \cdot u_{n}\right)^{-1}\right] / \sum_{i} u_{i}-1
$$

We let $H \subset \mathbb{P}^{n}$ be the hyperplane $\sum_{i=1}^{n} X_{i}=X_{0}$ and let $1:=(1: 1: \ldots: 1) \in \mathbb{P}^{n}(k)$.
Definition 4.1. Let F be finitely generated field extension of k and let w be a closed point of $V_{n F}$. The Pontryagin-Thom collapse map associated to w :

$$
P T_{F}(w): \Sigma_{s}^{n} \operatorname{Spec} F_{+} \rightarrow\left(\mathbb{P}_{F(w)}^{n} / H_{F(w)}, 1\right)
$$

is the composition in $\mathcal{H}_{\bullet}(k)$

$$
\Sigma_{s}^{n} \operatorname{Spec} F_{+} \xrightarrow[\sim]{\sigma_{F}} \Delta_{F}^{n} / \partial \Delta_{F}^{n} \xrightarrow{c_{w}} \Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash\{w\}\right) \xrightarrow[\sim]{m v_{w}}\left(\mathbb{P}_{F(w)}^{n} / H_{F(w)}, 1\right)
$$

for specific choices of the isomorphisms in this composition, to be filled in below.

The map σ_{F} is the standard one given by the contractibility of Δ^{n} and all its faces, which gives an isomorphism in $\mathcal{H}_{\bullet}(k)$ of $\Delta^{n} / \partial \Delta^{n}$ with the constant presheaf on the simplicial space $\Delta_{n} / \partial \Delta_{n}$:

$$
\Delta_{n}([m]):=\operatorname{Hom}_{\Delta}([m],[n])
$$

and $\partial \Delta_{n}([m]) \subset \Delta_{n}([m])$ the set of non-surjective maps $f:[m] \rightarrow[n]$. The isomorphism $\Sigma^{n} S^{0} \cong \Delta_{n} / \partial \Delta_{n}$ in \mathcal{H}_{\bullet} thus gives the isomorphism

$$
\sigma: \Sigma^{n} S^{0} \rightarrow \Delta^{n} / \partial \Delta^{n}
$$

in $\mathcal{H}_{\bullet}(k)$ and thereby gives rise to the isomorphism in $\mathcal{H}_{\bullet}(k)$

$$
\begin{equation*}
\sigma_{F}: \Sigma_{s}^{n} \operatorname{Spec} F_{+}=\operatorname{Spec} F_{+} \wedge \Sigma^{n} S^{0} \xrightarrow{\mathrm{id} \wedge \sigma} \operatorname{Spec} F_{+} \wedge \Delta^{n} / \partial \Delta^{n}=\Delta_{F}^{n} / \partial \Delta_{F}^{n} \tag{4.1}
\end{equation*}
$$

The map c_{w} is the quotient map. The isomorphism

$$
m v_{w}: \Delta_{F}^{n} / \Delta_{F}^{n} \backslash\{w\} \rightarrow\left(\mathbb{P}_{F(w)}^{n} / H_{F(w)}, 1\right)
$$

is the Morel-Voevodsky purity isomorphism. This map depends in general on the choice of an isomorphism $\psi_{w}: m_{w} / m_{w}^{2} \rightarrow F(w)^{n}$, where $m_{w} \subset \mathcal{O}_{\Delta_{F}^{n}, w}$ is the maximal ideal; in addition, we need to make explicit the role of the chosen basepoint 1. For this, we go through the construction of the purity isomorphism, giving the explicit choices which lead to a well-defined choice of isomorphism $m v_{w}$.

We give $V_{n} \times \mathbb{A}^{1} \times \Delta^{n}$ coordinates $u_{0}, \ldots, u_{n}, x, t_{0}, \ldots, t_{n}$, with the u_{i} the barycentric coordinates on V_{n}, x the standard coordinate on \mathbb{A}^{1} and the t_{i} the barycentric coordinates on Δ^{n}. Let

$$
\left(X_{0}, X_{1}, \ldots, X_{n}\right):=\left(x, \frac{t_{1}-u_{1}}{u_{0}}, \ldots, \frac{t_{n}-u_{n}}{u_{0}}\right)
$$

The construction of $m v_{w}$ uses the blow-up of $\mathbb{A}^{1} \times \Delta_{F}^{n}$ along $0 \times w$

$$
\mu_{w}: \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} \rightarrow \mathbb{A}^{1} \times \Delta_{F}^{n}
$$

Let $E_{w} \subset \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n}$ be the exceptional divisor. Then E_{w} is an $F(w)$-scheme.
Suppose first that w is separable over F. The closed point $0 \times w$ of $\mathbb{A}^{1} \times \Delta_{F}^{n}$ has the canonical lifting to the closed point $0 \times w$ of $\mathbb{A}^{1} \times \Delta_{F(w)}^{n}$; let $m_{0 \times w} \subset$ $\mathcal{O}_{\mathbb{A}^{1} \times \Delta_{F}^{n}, 0 \times w}$ and $m_{0 \times w}^{\prime} \subset \mathcal{O}_{\mathbb{A}^{1} \times \Delta_{F(w)}^{n}, 0 \times w}$ denote the respective maximal ideals. As w is separable over F, the projection $p: \mathbb{A}^{1} \times \Delta_{F(w)}^{n} \rightarrow \mathbb{A}^{1} \times \Delta_{F}^{n}$ induces an isomorphism of graded $F(0 \times w)$-algebras

$$
p^{*}: \oplus_{m \geq 0} m_{0 \times w}^{m} / m_{0 \times w}^{m+1} \rightarrow \oplus_{m \geq 0} m_{0 \times w}^{\prime m} / m_{0 \times w}^{\prime m+1}
$$

The functions $\left(X_{0}, X_{1}(w), \ldots, X_{n}(w)\right)$ give generators for the maximal ideal $m_{0 \times w}^{\prime}$; as

$$
E_{w}=\operatorname{Proj}_{F(0 \times w)} \oplus_{m \geq 0} m_{0 \times w}^{m} / m_{0 \times w}^{m+1} \cong \operatorname{Proj}_{F(0 \times w)} \oplus_{m \geq 0} m_{0 \times w}^{\prime m} / m_{0 \times w}^{\prime m+1}
$$

the image $\left(x_{0}, x_{1}(w), \ldots, x_{n}(w)\right)$ of $\left(X_{0}, X_{1}(w), \ldots, X_{n}(w)\right)$ in $m_{0 \times w}^{\prime} / m_{0 \times w}^{2}$ give homogeneous coordinates for E_{w}, defining an isomorphism

$$
q_{w}:=\left(x_{0}: x_{1}(w): \ldots: x_{n}(w)\right): E_{w} \rightarrow \mathbb{P}_{F(w)}^{n}
$$

Let $H(w) \subset E_{w}$ be the pull-back of $H_{F(w)}$ via q_{w}, and let $1_{w}=q_{w}^{-1}(1)$.
The proper transform $\mu_{w}^{-1}\left[\mathbb{A}^{1} \times w\right] \subset \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n}$ maps isomorphically to $\mathbb{A}^{1} \times w$ via μ_{w}, and intersects E_{w} in a closed point \bar{w} lying over $0 \times w$.

Lemma 4.2. 1. For all $w \in V_{n F}$, we have $1_{w} \neq \bar{w}$ and $\bar{w} \notin H(w)$.
2. $q_{w}(\bar{w})=(1: 0: \ldots: 0)$

Proof. Clearly (2) implies (1). For (2), $q_{w}(\bar{w})$ is the image of $1 \times w$ under

$$
\left(X_{0}: X_{1}(w): \ldots: X_{n}(w)\right): \mathbb{A}^{1} \times \Delta_{F(w)}^{n} \backslash\{0 \times w\} \rightarrow \mathbb{P}_{F(w)}^{n},
$$

which is $(1: 0: \ldots: 0)$.
Additionally, the quotient map

$$
r_{w}:\left(\mathbb{P}_{F(w)}^{n} / H_{F(w)}, 1\right) \rightarrow \mathbb{P}_{F(w)}^{n} /\left(\mathbb{P}_{F(w)}^{n} \backslash\{(1: 0: \ldots: 0)\}\right)
$$

is an isomorphism in $\mathcal{H}_{\bullet}(k)$, since projection from $(1: 0: \ldots: 0)$ realizes $\mathbb{P}_{F(w)}^{n} \backslash\{(1$: $0: \ldots: 0)\}$ as an \mathbb{A}^{1}-bundle over $\mathbb{P}_{F(w)}^{n-1}$ with section $H_{F(w)}$.

This gives us the sequence of isomorphisms in $\mathcal{H}_{\bullet}(k)$:

$$
E_{w} /\left(E_{w} \backslash\{\bar{w}\}\right) \xrightarrow{q_{w}} \mathbb{P}_{F(w)}^{n} /\left(\mathbb{P}_{F(w)}^{n} \backslash\{(1: 0: \ldots: 0)\}\right) \stackrel{r_{w}}{\longleftarrow}\left(\mathbb{P}_{F(w)}^{n} / H_{F(w)}, 1\right)
$$

In case w is not separable over F, we choose any set of parameters $X_{1}(w), \ldots$, $X_{n}(w)$ for m_{w} such that, taking $X_{0}=x$, the isomorphism $E_{w} \rightarrow \mathbb{P}_{w}^{n}$ defined by the sequence $x_{0}, x_{1}(w), \ldots, x_{n}(w)$ satisfies the condition of lemma 4.2 (F is infinite, so (1) is satisfied for a general choice; the condition (2) is satisfied for all choices). We then proceed as above.

Morel-Voevodsky show that the inclusions $i_{w}: E_{w} \rightarrow \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n}$ and i_{1} : $\Delta_{F}^{n}=1 \times \Delta_{F}^{n} \rightarrow \mathbb{A}^{1} \times \Delta_{F}^{n}$ induce isomorphisms

$$
\begin{aligned}
& \bar{i}_{w}: E_{w} /\left(E_{w} \backslash\{\bar{w}\}\right) \rightarrow \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} /\left(\mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} \backslash \mu_{w}^{-1}\left[\mathbb{A}^{1} \times w\right]\right) \\
& \bar{i}_{1}: \Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash\{w\}\right) \rightarrow \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} /\left(\mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} \backslash \mu_{w}^{-1}\left[\mathbb{A}^{1} \times w\right]\right)
\end{aligned}
$$

in $\mathcal{H}_{\bullet}(k)$ (see the proof of [12, Theorem 3.2.23]).
Definition 4.3. The purity isomorphism

$$
m v_{w}: \Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash\{w\}\right) \xrightarrow{\sim}\left(\mathbb{P}_{F(w)}^{n} / H_{F(w)}, 1\right)
$$

is defined as the composition

$$
\begin{aligned}
\Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash\{w\}\right) & \stackrel{\bar{i}_{1}}{\sim} \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} /\left(\mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} \backslash \mu_{w}^{-1}\left[\mathbb{A}^{1} \times w\right]\right) \\
& \stackrel{\bar{i}_{w}}{\sim} \\
& \stackrel{q_{w}}{\sim} E_{w} /\left(E_{w} \backslash\{\bar{w}\}\right) \\
& \stackrel{r_{w}}{\sim}{ }_{F(w)}^{\sim} / \mathbb{P}_{F(w)}^{n} \backslash\{(1: 0: \ldots: 0)\} \\
\sim & \left.\mathbb{P}_{F(w)}^{n} / H_{1 F(w)}, 1\right)
\end{aligned}
$$

In case w is an F-rational point of Δ_{F}^{n}, we have another description of $m v_{w}$. The map

$$
q_{w}^{-1} \circ\left(X_{0}: X_{1}(w): \ldots: X_{n}(w)\right): \mathbb{A}^{1} \times \Delta_{F(w)}^{n} \backslash\{0 \times w\} \rightarrow E_{w}
$$

extends to a morphism

$$
p_{w}: \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} \rightarrow E_{w}
$$

making $\mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n}$ an \mathbb{A}^{1}-bundle over E_{w} with section i_{w}, and thus p_{w} induces an isomorphism in $\mathcal{H}_{\bullet}(k)$

$$
\bar{p}_{w}: \mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} /\left(\mathrm{Bl}_{0 \times w} \mathbb{A}^{1} \times \Delta_{F}^{n} \backslash \mu_{w}^{-1}\left[\mathbb{A}^{1} \times w\right]\right) \rightarrow E_{w} /\left(E_{w} \backslash\{\bar{w}\}\right)
$$

inverse to \bar{i}_{w}. Thus

Lemma 4.4. Suppose w is in $\Delta^{n}(F)$. Then

$$
m v_{w}=r_{w}^{-1} \circ q_{w} \circ \bar{p}_{w} \circ \bar{i}_{1} .
$$

We can further simplify the above description of $m v_{w}$ by noting:
Lemma 4.5. Suppose w is in $\Delta^{n}(F)$. Let

$$
\begin{equation*}
\varphi_{w}: \Delta_{F}^{n} /\left(\Delta_{F}^{n} \backslash\{w\}\right) \rightarrow \mathbb{P}_{F}^{n} / \mathbb{P}_{F}^{n} \backslash\{(1: 0: \ldots: 0)\} \tag{4.2}
\end{equation*}
$$

be the map induced by

$$
\left(1: X_{1}(w): \ldots: X_{n}(w)\right): \Delta_{F}^{n} \rightarrow \mathbb{P}_{F}^{n}
$$

Then $\varphi_{w}=q_{w} \circ \bar{p}_{w} \circ \circ \bar{i}_{1}$, hence $m v_{w}=r_{w}^{-1} \circ \varphi_{w}$.
Proof. The identity $m v_{w}=r_{w}^{-1} \circ \varphi_{w}$ follows directly from our description above of the maps q_{w} and \bar{p}_{w} and lemma 4.4.

Altogether, this gives us the formula, for $w \in \Delta^{n}(F)$,

$$
\begin{gather*}
P T_{F}(w)=r_{w}^{-1} \circ \varphi_{w} \circ c_{w} \circ \sigma_{F} \tag{4.3}\\
\text { 5. }\left(\mathbb{P}^{n} / H, 1\right) \text { AND } \Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n}
\end{gather*}
$$

Our main task in this section is to construct an explicit isomorphism

$$
\alpha:\left(\mathbb{P}^{n} / H, 1\right) \xrightarrow{\sim} \Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n} .
$$

We first recall some elementary constructions involving homotopy colimits over subcategories of the n-cube. Let \mathcal{C} be a small category and let $\mathcal{F}: \mathcal{C} \rightarrow \mathbf{S p c}(k)$ be a functor. Let $\mathcal{N}: \Delta^{\mathrm{op}} \rightarrow$ Sets be the nerve of \mathcal{C}. For

$$
\sigma=\left(s_{0} \xrightarrow{f_{1}} s_{1} \rightarrow \ldots \xrightarrow{f_{n}} s_{n}\right) \in \mathcal{N}_{n}(\mathcal{C})
$$

define $\mathcal{F}(\sigma):=\mathcal{F}\left(s_{0}\right)$. Bousfield-Kan [2] define hocolim \mathcal{F} to be the simplicial object of $\boldsymbol{\operatorname { S p c }}(k)$ with n-simplices

$$
\underline{\text { hocolim }} \mathcal{F}_{n}:=\amalg_{\sigma \in \mathcal{N}_{n}(\mathcal{C})} \mathcal{F}(\sigma) ;
$$

for $g:[n] \rightarrow[m]$ in Δ,

$$
\underline{\operatorname{hocolim}} \mathcal{F}(g): \underline{\text { hocolim }} \mathcal{F}_{m} \rightarrow \underline{\text { hocolim }} \mathcal{F}_{n}
$$

is the map sending $\left(\mathcal{F}\left(s_{0}\right), \sigma=\left(s_{0}, \ldots, s_{m}\right)\right)$ to $\left(\mathcal{F}\left(s_{0}^{\prime}\right), \sigma^{\prime}=\left(s_{0}^{\prime}, \ldots, s_{n}^{\prime}\right)\right)$, with $\sigma^{\prime}=\mathcal{N}(g)(\sigma), s_{0}^{\prime}=s_{g(0)}$ and the map $\mathcal{F}\left(s_{0}\right) \rightarrow \mathcal{F}\left(s_{0}^{\prime}\right)$ is $\mathcal{F}\left(s_{0} \rightarrow s_{g(0)}\right)$. $\operatorname{hocolim} \mathcal{F}$ is the geometric realization of hocolim \mathcal{F}.

For a functor $\mathcal{F}: \mathcal{C} \rightarrow \mathbf{S p c}_{\mathbf{\bullet}}(k)$ we use essentially the same definition of
 union \vee, and we use the pointed version of geometric realization to define hocolim \mathcal{F} in Spc. (k). Concretely, $\operatorname{hocolim} \mathcal{F}$ is the co-equalizer of

$$
\vee_{g:[n] \rightarrow[m]} \underline{\text { hocolim }} \mathcal{F}_{m} \wedge \Delta_{+}^{n} \longrightarrow \vee_{n} \underline{\text { hocolim }} \mathcal{F}_{n} \wedge \Delta_{+}^{n}
$$

The essential property of hocolim we will need is the following:
Proposition 5.1 ([2]). Let \mathcal{C} be a finite category, $\mathcal{F}, \mathcal{G}: \mathcal{C} \rightarrow \mathbf{S p c} .(k)$ functors, and $\vartheta: \mathcal{F} \rightarrow \mathcal{G}$ a natural transformation. Suppose that $\vartheta(c): \mathcal{F}(c) \rightarrow \mathcal{G}(c)$ is an isomorphism in $\mathcal{H}_{\bullet}(k)$ for each $c \in \mathcal{C}$. Then

$$
\operatorname{hocolim} \vartheta: \operatorname{hocolim} \mathcal{F} \rightarrow \operatorname{hocolim} \mathcal{G}
$$

is an isomorphism in $\mathcal{H}_{\bullet}(k)$. The analogous result holds after replacing $\mathbf{S p c}_{\bullet}(k)$ and $\mathcal{H}_{\bullet}(k)$ with $\mathbf{S p c}(k)$ and $\mathcal{H}(k)$.

This is of course just a special case of the general result valid for functors from a small (not just finite) category to a proper simplicial model category. See for example 4] for details.

Remark 5.2. Let $\mathcal{F}: \mathcal{C} \rightarrow \mathbf{S p c}(k)$ be a functor. Suppose our index category \mathcal{C} is a product $\mathcal{C}_{1} \times \mathcal{C}_{2}$. We may form the bi-simplicial object hocolim $^{2} \mathcal{F}$ of $\operatorname{Spc}(k)$, with (n, m)-simplices

$$
\underline{\text { hocolim }}^{2} \mathcal{F}_{n, m}:=\amalg_{\left(\sigma_{1}, \sigma_{2}\right) \in \mathcal{N}\left(C_{1}\right)_{n} \times \mathcal{N}\left(C_{2}\right)_{m}} \mathcal{F}\left(\sigma_{1}, \sigma_{2}\right)
$$

where $\mathcal{F}\left(\sigma_{1}, \sigma_{2}\right)=\mathcal{F}\left(s_{0} \times s_{0}^{\prime}\right)$ if $\sigma=\left(s_{0} \rightarrow \ldots\right)$ and $\sigma^{\prime}=\left(s_{0}^{\prime} \rightarrow \ldots\right)$; the morphisms are defined similarly.

As $\mathcal{N}\left(\mathcal{C}_{1} \times \mathcal{C}_{2}\right)$ is the diagonal simplicial set associated to the bi-simplicial set $\mathcal{N}\left(\mathcal{C}_{1}\right) \times \mathcal{N}\left(\mathcal{C}_{2}\right)$, it follows that hocolim \mathcal{F} is the diagonal simplicial object of $\operatorname{Spc}(k)$ associated to the bi-simplicial object $\underline{\text { hocolim }}^{2} \mathcal{F}$, and thus we have the natural isomorphism of geometric realizations

$$
\operatorname{hocolim} \mathcal{F}=|\underline{\operatorname{hocolim}} \mathcal{F}| \cong\left|{\underline{\text { hocolim }^{2}} \mathcal{F} \mid}_{\mathcal{F}}\right|
$$

in $\mathbf{S p c}(k)$. Similar remarks hold in the pointed case.
Let \square^{n+1} be the poset of subsets of $[n]$, ordered under inclusion. For $J \subset J^{\prime} \subset$ $\{0, \ldots, n\}$, we let $\square_{J \leq * \leq J^{\prime}}^{n+1}$ be the full subcategory of subsets I with $J \subset I \subset J^{\prime}$, $\square_{J<* \leq J^{\prime}}^{n+1}$ the full subcategory of subsets I with $J \subsetneq I \subset J^{\prime}$, etc. We sometimes omit J if $J=\emptyset$ or J^{\prime} if $J^{\prime}=[n]$.

If $|J|=r+1$, we let $i_{J}^{\prime}:\{0, \ldots, r\} \rightarrow J$ be the unique order-preserving bijection, and let $i_{J}: \square^{r+1} \rightarrow \square_{* \leq J}^{n+1}$ be the resulting isomorphism of categories. Clearly i_{J} induces the isomorphism of subcategories $i_{J}: \square_{*<[r]}^{r+1} \rightarrow \square_{*<J}^{n+1}$.

We will be using the following elementary constructions. Let $\mathcal{F}: \square_{<[r]}^{r+1} \rightarrow$ Spc. (k) be a functor and take $n>r$. Identifying $\square_{*<[r]}^{r+1}$ with $\square_{*<[r]}^{n+1}$ via the inclusion $[r] \subset[n]$, extend \mathcal{F} to a functor

$$
\sigma^{n-r} \mathcal{F}: \square_{*<[n]}^{n+1} \rightarrow \mathbf{S p c}_{\bullet}(k)
$$

by setting $\sigma^{n-r} \mathcal{F}(J)=*$ if J is not a proper subset of $[r]$.
Similarly, let $\mathcal{G}: \square_{*<[r]}^{r+1} \times \square^{s} \rightarrow \mathbf{S p c} .(k)$ be a functor and take $n>r$. Identifying $\square_{*<[r]}^{r+1} \times \square^{s}$ with a full subcategory of $\square_{*<[r]}^{r+1} \times \square^{n-r+s}$ via the inclusion $[s] \subset$ $[n-r+s]$, extend \mathcal{G} to a functor

$$
c^{n-r} \mathcal{G}: \square_{*<[r]}^{r+1} \times \square^{n-r+s} \rightarrow \mathbf{S p c}_{\bullet}(k)
$$

by setting $c^{n-r} \mathcal{G}(J, I)=*$ if $I \not \subset[s]$.
Example 5.3. Let \mathcal{X} be in $\mathbf{S p c} .(k)$. Noting that $\square_{*<[0]}^{1}$ is the one-point category, we write \mathcal{X} for the functor $\square_{*<[0]}^{1} \rightarrow \mathbf{S p c} .(k)$ with value \mathcal{X}. This gives us the functors

$$
\begin{aligned}
& c^{n} \mathcal{X}: \square^{n+1} \rightarrow \operatorname{Spc}_{\bullet}(k), \\
& \sigma^{n} \mathcal{X}: \square_{*<[n]}^{n+1} \rightarrow \text { Spc }_{\bullet}(k) .
\end{aligned}
$$

Explicitly, $c^{n} \mathcal{X}(\emptyset)=\sigma^{n} \mathcal{X}(\emptyset)=\mathcal{X}$ and both functors have value $*$ at $J \neq \emptyset$.

Lemma 5.4. There are natural isomorphisms

$$
\begin{aligned}
& \Pi_{c}: \operatorname{hocolim} c^{n-r} \mathcal{G} \rightarrow \operatorname{hocolim} \mathcal{G} \wedge([0,1], 1)^{\wedge n-r} \\
& \Pi_{\sigma}: \operatorname{hocolim} \sigma^{n-r} \mathcal{F} \rightarrow \Sigma_{s}^{n-r} \operatorname{hocolim} \mathcal{F}
\end{aligned}
$$

in Spc. $_{\text {. }}(k)$
Proof. We proceed by induction on $n-r$; it suffices to handle the case $r=n-1$. We first take care of the isomorphism Π_{c}.

Via remark 5.2 it suffices to give an isomorphism

$$
\mid \text { hocolim }^{2} c^{1} \mathcal{G} \mid \cong \operatorname{hocolim} \mathcal{G} \wedge([0,1], 1)
$$

where we use the product decomposition $\square_{*<[r]}^{r+1} \times \square^{s+1}=\left(\square_{*<[r]}^{r+1} \times \square^{s}\right) \times \square^{1}$. Fix an m simplex σ of $\mathcal{N}\left(\square_{*<[r]}^{r+1} \times \square^{s}\right)$ and let

$$
c \mathcal{G}_{\sigma}: \square^{1} \rightarrow \mathbf{S p c}_{\bullet}(k)
$$

be the functor $c \mathcal{G}_{\sigma}(\emptyset)=\mathcal{G}(\sigma) \wedge \Delta_{+}^{m}, c \mathcal{G}_{\sigma}([0])=*$. Then

$$
\operatorname{hocolim} c \mathcal{G}_{\sigma} \cong \mathcal{G}(\sigma) \wedge \Delta_{+}^{m} \wedge([0,1], 1)
$$

with the isomorphism natural in σ. The result follows directly from this.
Next, given $\mathcal{F}: \square_{<[n-1]}^{n} \rightarrow \mathbf{S p c}_{\bullet}(k)$, let $c^{\prime} \mathcal{F}: \square^{n} \rightarrow \mathbf{S p c}_{\boldsymbol{\bullet}}(k)$ be the extension of \mathcal{F} to \square^{n} defined by setting $c^{\prime} \mathcal{F}([n-1])=*$. We claim there is a natural isomorphism

$$
\operatorname{hocolim} c^{\prime} \mathcal{F} \cong \operatorname{hocolim} \mathcal{F} \wedge([0,1], 1)
$$

in $\mathbf{S p c}_{\boldsymbol{\bullet}}(k)$.
Indeed, we have the bijection (for $m>0$)

$$
\mathcal{N}\left(\square^{n}\right)_{m}=\mathcal{N}\left(\square_{*<[n-1]}^{n}\right)_{m} \amalg \mathcal{N}\left(\square_{*<[n-1]}^{n}\right)_{m-1}
$$

with the first component coming from the inclusion of $\square_{*<[n-1]}^{n}$ in \square^{n}, and the second arising by sending $\sigma=\left(s_{0} \rightarrow \ldots \rightarrow s_{m-1}\right)$ to $\left(s_{0} \rightarrow \ldots \rightarrow s_{m-1} \rightarrow[n-1]\right)$. For $m=0$, the same construction gives

$$
\mathcal{N}\left(\square^{n}\right)_{0}=\mathcal{N}\left(\square_{*<[n-1]}^{n}\right)_{0} \amalg\{[n-1]\} .
$$

As, for a simplicial set C, the m-simplices of $C \times[0,1] / C \times 1$ have exactly the same description, our claim follows easily.

Finally, we can write the category $\square_{*<[n]}^{n+1}$ as a (strict) pushout

$$
\square_{*<[n]}^{n+1}=\square^{n} \amalg_{\square_{*<[n]}^{n}} \square_{*<[n]}^{n} \times \square^{1} .
$$

This leads to an isomorphism of hocolim $\sigma^{1} \mathcal{F}$ as a pushout

$$
\begin{aligned}
\operatorname{hocolim} \sigma^{1} \mathcal{F} & \cong \operatorname{hocolim} c^{\prime} \mathcal{F} \vee_{\text {hocolim }} \mathcal{F} \operatorname{hocolim} c \mathcal{F} \\
& \cong \operatorname{hocolim} \mathcal{F} \wedge([0,1], 1) \vee_{\text {hocolim } \mathcal{F} \wedge 0_{+}} \operatorname{hocolim} \mathcal{F} \wedge([0,1], 1) \\
& =\Sigma_{s}^{1} \operatorname{hocolim} \mathcal{F}
\end{aligned}
$$

As in section 4, let $H \subset \mathbb{P}^{n}$ be the hyperplane $\sum_{i=1}^{n} X_{i}=X_{0}$ and let $1:=(1$: $1: \ldots: 1) \in \mathbb{P}^{n}(k)$. We define an isomorphism $\alpha:\left(\mathbb{P}^{n} / H, 1\right) \xrightarrow{\sim} \Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n}$ in $\mathcal{H}_{\bullet}(k)$ as follows:

Let $U_{i} \subset \mathbb{P}^{n}$ be the standard affine open subset $X_{i} \neq 0$. We identify U_{i} with \mathbb{A}^{n} in the usual way via coordinates $\left(X_{0} / X_{i}, \ldots X_{i} \hat{/} X_{i}, \ldots, X_{n} / X_{i}\right)$, which we write
as $x_{1}^{i}, \ldots, x_{n}^{i}$, or simply x_{1}, \ldots, x_{n}. For each index set $I \subset\{0, \ldots, n\}$, we have the intersection

$$
U_{I}:=\cap_{i \in I} U_{i} .
$$

For $I=\left\{i_{1}<\ldots<i_{r}\right\}$, we use coordinates in $U_{i_{1}}$ to identify

$$
U_{I} \cong \operatorname{Spec} k\left[x_{1}, \ldots, x_{n}, x_{i_{2}}^{-1}, \ldots, x_{i_{r}}^{-1}\right] \cong \mathbb{A}^{n-|I|+1} \times \mathbb{G}_{m}^{|I|-1}
$$

The open cover $\mathcal{U}:=\left\{U_{0}, \ldots, U_{n}\right\}$ of \mathbb{P}^{n} identifies \mathbb{P}^{n} (in $\left.\mathcal{H}(k)\right)$ with the homotopy colimit over $\square_{*<[n]}^{n+1}$ of the functor

$$
\begin{aligned}
\mathcal{P}_{\mathcal{U}}^{n}: \square_{*<[n]}^{n+1} & \rightarrow \mathbf{S p c}(k) \\
\mathcal{P}_{\mathcal{U}}^{n}(J) & :=U_{J^{c}} .
\end{aligned}
$$

We thus have the functor

$$
\begin{aligned}
\mathcal{P}_{\mathcal{U}, 1}^{n} & : \square_{*<[n]}^{n+1}
\end{aligned} \rightarrow \operatorname{Spc}_{\bullet}(k), \mathcal{P}_{\mathcal{U}, 1}^{n}(J):=\left(U_{J^{c}}, 1\right)
$$

and the isomorphism in $\mathcal{H}_{\bullet}(k)$, hocolim $\mathcal{P}_{\mathcal{U}, 1}^{n} \cong\left(\mathbb{P}^{n}, 1\right)$.
Next, we note that the hyperplane $H \subset \mathbb{P}^{n}$ is covered by the affine open subsets U_{1}, \ldots, U_{n}. The open cover $\mathcal{U}_{1}:=\left\{H \cap U_{1}, \ldots, H \cap U_{n}\right\}$ of H identifies H (in $\mathcal{H}(k)$) with the homotopy colimit over $\square_{*<[n]}^{n+1}$ of the functor

$$
\begin{aligned}
\mathcal{H}_{\mathcal{U}_{1}} & : \square_{*<[n]}^{n+1} \rightarrow \mathbf{S p c}(k) \\
\mathcal{H}_{\mathcal{U}_{1}}(J) & := \begin{cases}H \cap U_{J^{c}} & \text { for } 0 \in J \\
\emptyset & \text { for } 0 \notin J\end{cases}
\end{aligned}
$$

Let

$$
\mathcal{P}_{\mathcal{U}, 1}^{n} / \mathcal{H}_{\mathcal{U}_{1}}: \square_{*<[n]}^{n+1} \rightarrow \text { Spc }_{\bullet}(k)
$$

be the functor defined by

$$
\mathcal{P}_{\mathcal{U}, 1}^{n} / \mathcal{H}_{\mathcal{U}_{1}}(J):= \begin{cases}\left(U_{J^{c}} / H \cap U_{J^{c}}, 1\right) & \text { for } 0 \in J \\ \left(U_{J^{c}}, 1\right) & \text { for } 0 \notin J .\end{cases}
$$

By our discussion, the maps $\mathcal{P}_{\mathcal{U}, 1}^{n} / \mathcal{H}_{\mathcal{U}_{1}}(J) \rightarrow\left(\mathbb{P}^{n} / H, 1\right)$ induced by the inclusions $U_{J^{c}} \hookrightarrow \mathbb{P}^{n}$ give rise to an isomorphism in $\mathcal{H}_{\bullet}(k)$

$$
\epsilon_{1}: \operatorname{hocolim} \mathcal{P}_{\mathcal{U}, 1}^{n} / \mathcal{H}_{\mathcal{U}_{1}} \rightarrow\left(\mathbb{P}^{n} / H, 1\right)
$$

To simplify the notation, we denote $\mathcal{P}_{\mathcal{U}, 1}^{n} / \mathcal{H}_{\mathcal{U}_{1}}$ by \mathcal{F} for the next few paragraphs.
We claim that, for each $J \neq \emptyset$ with $0 \notin J$, we have $\left(U_{J} /\left(H \cap U_{J}\right), 1\right) \cong *$ in $\mathcal{H}_{\bullet}(k)$. Indeed, suppose for example that $n \in J$, and use coordinates $\left(x_{1}^{n}, \ldots, x_{n}^{n}\right)=$ $\left(X_{0} / X_{n}, \ldots, X_{n-1} / X_{n}\right)$ on U_{J}. We have the projection

$$
\begin{aligned}
& p: U_{J} \rightarrow U_{J} \cap\left(X_{0}=0\right) \\
& p\left(x_{1}^{n}, \ldots, x_{n}^{n}\right)=\left(0, x_{2}^{n}, \ldots, x_{n}^{n}\right)
\end{aligned}
$$

Since $0 \notin J, x_{1}^{n}$ is not inverted on U_{J}, and thus p makes U_{J} an \mathbb{A}^{1}-bundle over $U_{J} \cap\left(X_{0}=0\right) . p$ has the section

$$
s\left(0, x_{2}^{n}, \ldots, x_{n}^{n}\right):=\left(1+\sum_{i=2}^{n} x_{i}^{n}, x_{2}^{n}, \ldots, x_{n}^{n}\right)
$$

identifying $U_{J} \cap\left(X_{0}=0\right)$ with $H \cap U_{J}$; this together with homotopy invariance in $\mathcal{H}_{\bullet}(k)$ proves our claim. Thus $\mathcal{F}(J) \cong *$ in $\mathcal{H}_{\bullet}(k)$ for all J with $0 \in J$. In addition $\mathcal{F}(\{1,2, \ldots, n\})=\left(U_{0}, *\right) \cong\left(\mathbb{A}^{n}, *\right)$, which is also isomorphic to $*$ in $\mathcal{H}_{\bullet}(k)$.

Let $i_{0}: \square_{*<[n-1]}^{n} \rightarrow \square_{*<[n]}^{n+1}$ inclusion functor induced by the inclusion $[n-1] \rightarrow$ [n] sending $i \in[n-1]$ to $i+1$, and let $\omega: \square_{*<[n]}^{n+1} \rightarrow \square_{*<[n]}^{n+1}$ be the automorphism induced by the cyclic permutation ω of $[n]$,

$$
\omega(i):= \begin{cases}i+1 & \text { for } 0 \leq i<n \\ 0 & \text { for } i=n\end{cases}
$$

Let

$$
\mathcal{F}_{\mid 0}: \square_{*<[n-1]}^{n} \rightarrow \mathbf{S p c}_{\bullet}(k)
$$

be the functor $\mathcal{F} \circ i_{0}$. We have the evident quotient map $q: \mathcal{F} \circ \omega \rightarrow \sigma^{1} \mathcal{F}_{10}$, which by our discussion above is a term-wise isomorphism in $\mathcal{H}_{\bullet}(k)$. By lemma 5.4 q induces the isomorphisms in $\mathcal{H}_{\bullet}(k)$

$$
\begin{equation*}
\operatorname{hocolim} \mathcal{F} \rightarrow \operatorname{hocolim} \sigma^{1} \mathcal{F}_{\mid 0} \rightarrow \Sigma_{s}^{1} \operatorname{hocolim} \mathcal{F}_{\mid 0} \tag{5.1}
\end{equation*}
$$

We now turn to the functor $\mathcal{F}_{\mid 0}$. This is just the punctured n-cube corresponding to the open cover $\mathcal{U}^{\prime}:=\left\{U_{0} \cap U_{1}, \ldots, U_{0} \cap U_{n}\right\}$ of $U_{0} \backslash(1: 0: \ldots: 0)$ (with base-point 1), i.e. $\left(\mathbb{A}^{n} \backslash 0,1\right)$. We thus have the isomorphism in $\mathcal{H}_{\bullet}(k)$

$$
\operatorname{hocolim} \mathcal{F}_{\mid 0} \cong\left(U_{0} \backslash(1: 0: \ldots: 0), 1\right) \cong\left(\mathbb{A}^{n} \backslash 0,1\right)
$$

Let $C \subset U_{0} \backslash(1: 0: \ldots: 0)$ be the union of the affine hyperplanes $x_{i}^{0}=1, i=1, \ldots, n$. As the inclusion $1 \rightarrow C$ is an isomorphism in $\mathcal{H}(k)$, we have the isomorphism in $\mathcal{H}_{\bullet}(k)$

$$
\left(U_{0} \backslash(1: 0: \ldots: 0), 1\right) \cong U_{0} \backslash(1: 0: \ldots: 0) / C
$$

Letting $\overline{\mathcal{F}}_{\mid 0}$ be the quotient of $\mathcal{F}_{\mid 0}$ given by

$$
\overline{\mathcal{F}}_{\mid 0}(J)=U_{i_{0}(J)^{c}} / C \cap U_{i_{0}(J)^{c}}
$$

we thus have the isomorphisms in $\mathcal{H}_{\bullet}(k)$

$$
\operatorname{hocolim} \mathcal{F}_{\mid 0} \cong \operatorname{hocolim} \overline{\mathcal{F}}_{\mid 0} \cong U_{0} \backslash(1: 0: \ldots: 0) / C
$$

On the other hand, for each $J \subsetneq\{1, \ldots, n\}$, the inclusion $C \cap U_{0} \cap U_{J} \rightarrow U_{0} \cap U_{J}$ is an isomorphism in $\mathcal{H}(k)$, and thus $\overline{\mathcal{F}}_{\mid 0}(J) \cong *$ for all $J \neq \emptyset$. Since $\overline{\mathcal{F}}_{\mid 0}(\emptyset) \cong \mathbb{G}_{m}^{\wedge n}$ we have the quotient map $\overline{\mathcal{F}}_{10} \rightarrow \sigma^{n-1} \mathbb{G}_{m}^{\wedge n}$; our discussion together with lemma 5.4 thus gives us the isomorphism in $\mathcal{H}_{\bullet}(k)$

$$
\operatorname{hocolim} \mathcal{F}_{\mid 0} \cong \operatorname{hocolim} \overline{\mathcal{F}}_{\mid 0} \cong \Sigma_{s}^{n-1} \mathbb{G}_{m}^{\wedge n}
$$

Together with (5.1), this gives us the sequence of isomorphisms in $\mathcal{H}_{\bullet}(k)$

$$
\left(\mathbb{P}^{n} / H, 1\right) \cong \operatorname{hocolim} \mathcal{P}_{\mathcal{U}, 1}^{n} / \mathcal{H}_{\mathcal{U}_{1}} \cong \Sigma_{s} \operatorname{hocolim} \mathcal{F}_{\mid 0} \cong \Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n}
$$

We denote the composition by

$$
\begin{equation*}
\alpha:\left(\mathbb{P}^{n} / H, 1\right) \xrightarrow{\sim} \Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n} . \tag{5.2}
\end{equation*}
$$

Now that we have defined α, we can complete our definition of the purity isomorphism (3.4):

$$
\begin{equation*}
M V_{w}:=\left(\operatorname{id}_{w_{+}} \wedge \alpha\right) \circ m v_{v} \tag{5.3}
\end{equation*}
$$

(see definition 4.3 for the definition of $m v_{w}$).

Remark 5.5. Take $n>1$. Let $H_{\infty} \subset \mathbb{P}^{n}$ be the hyperplane $X_{0}=0$ and for let $C_{1} \subset U_{1}$ be the union of the hyperplanes $x_{i}^{1}=1, i=1, \ldots, n$. Let $\mathcal{G}_{n}^{\infty}: \square_{*<[n]}^{n+1} \rightarrow$ Spc. (k) be the functor

$$
\mathcal{G}_{n}^{\infty}(J):= \begin{cases}U_{J^{c}} / H_{\infty} \cap U_{J^{c}} & \text { for } 1 \in J \\ U_{J^{c}} /\left[\left(H_{\infty} \cup C_{1}\right) \cap U_{J^{c}}\right] & \text { for } 1 \notin J\end{cases}
$$

We note that the inclusion $(0: 1: 0: \ldots: 0) \rightarrow H_{\infty} \cap C_{1}$ is an \mathbb{A}^{1}-weak equivalence; using this it is easy to modify the arguments used in this section to show that the identity $\operatorname{map} \mathcal{G}^{\infty}(\emptyset) \rightarrow \mathbb{G}_{m}^{\wedge n}$ extends to a map of functors $\mathcal{G}_{n}^{\infty} \rightarrow \sigma^{n} \mathbb{G}_{m}^{\wedge n}$, which is a termwise isomorphism in $\mathcal{H}_{\bullet}(k)$, giving us the isomorphism

$$
\operatorname{hocolim} \mathcal{G}_{n}^{\infty} \cong \Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n}
$$

in $\mathcal{H}_{\bullet}(k)$. Furthermore, we have the sequence of isomorphisms in $\mathcal{H}_{\bullet}(k)$:

$$
\mathbb{P}^{n} / H_{\infty} \rightarrow \mathbb{P}^{n} /\left[H_{\infty} \amalg_{C_{1} \cap H_{\infty} \cap U_{1}} C_{1}\right] \rightarrow \operatorname{hocolim} \mathcal{G}_{n}^{\infty}
$$

Putting these together gives us the isomorphism

$$
\begin{equation*}
\alpha_{\infty}: \mathbb{P}^{n} / H_{\infty} \rightarrow \Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n} \tag{5.4}
\end{equation*}
$$

in $\mathcal{H}_{\bullet}(k)$.
For $n=1$, we note that $H=1$, so $\left(\mathbb{P}^{1} / H, 1\right)=\left(\mathbb{P}^{1}, H\right)$. To define α_{∞}, we just compose $\alpha:\left(\mathbb{P}^{1} / H, 1\right) \rightarrow \Sigma_{s} \mathbb{G}_{m}$ with the isomorphism $\tau:\left(\mathbb{P}^{1}, H_{\infty}\right) \rightarrow\left(\mathbb{P}^{1}, H\right)$ given by

$$
\tau\left(X_{0}: X_{1}\right)=\left(X_{1}-X_{0}: X_{1}\right)
$$

We will use these models for $\Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n}$ to construct transfer maps in $\$ 8$

6. The suspension of a symbol

Let $\tilde{\rho}: V_{n} \rightarrow \mathbb{G}_{m}^{n}$ be the map

$$
\rho\left(u_{0}, \ldots, u_{n}\right):=\left(-\frac{u_{1}}{u_{0}}, \ldots,-\frac{u_{n}}{u_{0}}\right) .
$$

Composing with the quotient map $\mathbb{G}_{m}^{n} \rightarrow \mathbb{G}_{m}^{\wedge n}$ gives us the map $\rho: V_{n+} \rightarrow \mathbb{G}_{m}^{\wedge n}$. Our next main task is to give an explicit algebro-geometric description of $\Sigma_{s}^{n} \rho$. More generally, for $f: T \rightarrow V_{n}$ a morphism in $\mathbf{S m} / k$, we will give a description of $\Sigma_{s}^{n}(\rho \circ f)$. We begin by giving a description of $\Sigma_{s}^{n} T_{+}$as a certain homotopy colimit.

For this, consider the scheme $\mathbb{A}^{1} \times \Delta^{n}$, with coordinates x, t_{0}, \ldots, t_{n} :

$$
\mathbb{A}^{1} \times \Delta^{n}=\operatorname{Spec} k\left[x, t_{0}, \ldots, t_{n}\right] / \sum_{i} t_{i}-1
$$

For $i=1, \ldots, n$, let $U_{i}^{\prime} \subset \mathbb{A}^{1} \times \Delta^{n}$ be the subscheme defined by $t_{i}=0$, and let $U_{0}^{\prime} \subset \mathbb{A}^{1} \times \Delta^{n}$ be the subscheme defined by $x=1$. For $I \subset\{0, \ldots, n\}$, let $U_{I}^{\prime}:=\cap_{i \in I} U_{i}^{\prime}$, the intersection taking place in $\mathbb{A}^{1} \times \Delta^{n}$. This gives us the punctured $n+1$-cube

$$
\hat{\mathcal{G}}_{n}^{T}: \square_{*<[n]}^{n+1} \rightarrow \mathbf{S p c}(k)
$$

with $\hat{\mathcal{G}}_{n}^{T}(J):=T \times U_{J^{c}}^{\prime}$.
As above, use barycentric coordinates u_{0}, \ldots, u_{n} for V_{n}. We pull these back to T via f, and write u_{i} for $f^{*}\left(u_{i}\right)$, letting the context make the meaning clear. Set

$$
\left(X_{0}, X_{1}, \ldots, X_{n}\right):=\left(x, \frac{t_{1}-u_{1}}{u_{0}}, \ldots, \frac{t_{n}-u_{n}}{u_{0}}\right)
$$

and set

$$
\left(x_{1}^{i}, \ldots, x_{n}^{i}\right):=\left(X_{0} / X_{i}, \ldots, \widehat{X_{i} / X_{i}}, \ldots, X_{n} / X_{i}\right) ; \quad i=0, \ldots, n
$$

Inside $T \times \mathbb{A}^{1} \times \Delta^{n}$, we have the "hyperplane" $H(T)$ defined by

$$
\sum_{i=1}^{n} X_{i}=X_{0}
$$

Fix an index $I=\left(i_{0}, \ldots, i_{r}\right)$ with $0 \leq i_{0}<\ldots<i_{r} \leq n$, and write the complement of I in $\{0, \ldots, n\}$ as $I^{c}=\left(j_{1}, \ldots, j_{n-r}\right)$ with $j_{1}<\ldots<j_{n-r}$. We have the isomorphism

$$
\varphi_{I}:=\operatorname{id} \times\left(x_{j_{1}}^{i_{0}}, \ldots, x_{j_{n-r}}^{i_{0}}\right): T \times U_{I}^{\prime} \rightarrow T \times \mathbb{A}^{n-r}
$$

In addition, let $H_{I} \subset \mathbb{A}^{n-r}$ be the hyperplane defined by

$$
\sum_{\ell=1}^{n-r} x_{\ell}=1 \text { if } i_{0}=0, \quad \sum_{\ell=2}^{n-r} x_{\ell}=x_{1} \text { if } i_{0}>0
$$

Then φ_{I} restricts to an isomorphism of $H(T) \cap T \times U_{I}^{\prime}$ with $T \times H_{I}$, and thus the projection $p_{1}: H(T) \cap T \times U_{I}^{\prime} \rightarrow T$ and inclusion $\iota: H(T) \cap T \times U_{I}^{\prime} \rightarrow T \times U_{I}^{\prime}$ are isomorphisms in $\mathcal{H}(k)$.

For $J \subsetneq[n], J \neq \emptyset$, define $\mathcal{G}_{n}^{T \prime}(J)$ to be the pushout in the diagram

Since ι is a cofibration and a weak equivalence in $\operatorname{Spc}(k)$, so is s_{J}. As p_{1} is also a weak equivalence in $\operatorname{Spc}(k), i(J)$ is a weak equivalence in $\mathbf{S p c}(k)$ as well.

We set

$$
\mathcal{G}_{n}^{T \prime}(\emptyset):=\hat{\mathcal{G}}_{n}^{T}(\emptyset)=T \times U_{[n]}^{\prime} \cong T .
$$

This defines for us the functor

$$
\mathcal{G}_{n}^{T \prime}: \square_{*<[n]}^{n+1} \rightarrow \mathbf{S p c}(k)
$$

that fits into a diagram (T the constant functor)

with i and s term-wise isomorphisms in $\mathcal{H}(k)$ and s a term-wise cofibration in $\operatorname{Spc}(k)$.

For $n=1$, define

$$
\mathcal{G}_{1}^{T}(J):= \begin{cases}\mathcal{G}_{1}^{T^{\prime}}(J) / s(T) & \text { for } J \neq \emptyset \\ \mathcal{G}_{1}^{T \prime}(\emptyset)_{+} \cong T_{+} & \text {for } J=\emptyset\end{cases}
$$

giving us the functor

$$
\mathcal{G}_{1}^{T}: \square_{*<[1]}^{2} \rightarrow \operatorname{Spc}_{\bullet}(k)
$$

For $n>1$, take $\emptyset \neq J \subset[n]$ and let $\Pi_{J}^{\prime} \subset \mathbb{P}^{n}$ be the dimension $n-|J|$ linear subspace defined by $\cap_{j \in J}\left(X_{j}=0\right)$. Let $\Pi_{J} \subset \mathbb{P}^{n}$ be the dimension $n-|J|+1$ linear space spanned by 1 and Π_{J}^{\prime} and let $\mathbb{A}_{J} \subset \Pi_{J}$ be the affine space $\Pi_{J} \backslash \Pi_{J}^{\prime}$. Since Π_{J}^{\prime} is not contained in H, the intersection $\mathbb{A}_{J} \cap H$ is a codimension one affine space $\mathbb{A}_{J, H}$ in \mathbb{A}_{J}. Clearly $\mathbb{A}_{J} \supset \mathbb{A}_{J^{\prime}}$ for $J \subset J^{\prime}$, so we have the functor

$$
\begin{aligned}
\mathbb{A} / \mathbb{A}_{H}: \square_{*<[n]}^{n+1} & \rightarrow \mathbf{S p c}(k) \\
J & \mapsto \mathbb{A}_{J^{c}} / \mathbb{A}_{J^{c}, H}
\end{aligned}
$$

Let $*_{J}$ be the base-point in $\mathbb{A}_{J} / \mathbb{A}_{J, H}$ and let $s_{J}^{\prime}: T \rightarrow T \times \mathbb{A}_{J} / \mathbb{A}_{J, H}$ be the morphism identifying T with $T \times *_{J}$. Let 1_{J} be the image of $1 \in \mathbb{A}_{J}$ in the quotient $\mathbb{A}_{J} / \mathbb{A}_{J, H}$. We have the morphism $s_{J, 1}^{\prime}: T \rightarrow T \times \mathbb{A}_{J} / \mathbb{A}_{J, H}$ identifying T with $T \times 1_{J}$. For $J \neq \emptyset$, let $\mathcal{G}_{n}^{T}(J)$ be the push-out in the diagram

where $p: T \rightarrow *$ is the canonical map; we give $\mathcal{G}_{n}^{T}(J)$ the base-point $*$. We set $\mathcal{G}_{n}^{T}(\emptyset)=T_{+}$with its canonical base-point. Using the functoriality of $\mathcal{G}_{n}^{T \prime}$ and $\mathbb{A} / \mathbb{A}_{H}$ defines the functor

$$
\begin{equation*}
\mathcal{G}_{n}^{T}: \square_{*<[n]}^{n+1} \rightarrow \mathbf{S p c}_{\bullet}(k) \tag{6.1}
\end{equation*}
$$

Lemma 6.1. For each $J \neq \emptyset, \mathcal{G}_{n}^{T}(J) \cong *$ in $\mathcal{H}_{\bullet}(k)$.
Proof. Take $J \subset[n], J \neq \emptyset$. For $n=1, s: T \rightarrow \mathcal{G}_{1}^{T \prime}(J)$ is a cofibration and weak equivalence in $\mathbf{S p c}(k)$, and thus the quotient $\mathcal{G}_{1}^{T \prime}(J) / T$ is contractible.

For $n>1$, the morphisms $s_{J}: T \rightarrow \mathcal{G}_{n}^{T \prime}(J), s_{J}^{\prime}: T \rightarrow T \times \mathbb{A}_{J} / \mathbb{A}_{J, H}$ and $s_{J, 1}^{\prime}: T \rightarrow T \times \mathbb{A}_{J} / \mathbb{A}_{J, H}$ are cofibrations and weak equivalences in $\operatorname{Spc}(k)$; since $1_{J} \notin \mathbb{A}_{J, H}$, the map

$$
s_{J}^{\prime} \times s_{J, 1}^{\prime}: T \amalg T \rightarrow T \times \mathbb{A}_{J} / \mathbb{A}_{J, H}
$$

is a cofibration.
Let $\mathcal{G}_{n}^{T \prime \prime}(J)$ be the push-out in the diagram

Then ι is a cofibration and a weak equivalence, hence the same is true for the composition

$$
T \xrightarrow{s_{J, 1}^{\prime}} T \times \mathbb{A}_{J} / \mathbb{A}_{J, H} \xrightarrow{\iota} \mathcal{G}_{n}^{T \prime \prime}(J)
$$

As $\mathcal{G}_{n}^{T}(J)=\mathcal{G}_{n}^{T \prime \prime}(J) / T$, it follows that $\mathcal{G}_{n}^{T}(J)$ is contractible.
Letting $\mathcal{T}: \square_{*<[0]}^{1} \rightarrow \mathbf{S p c} .(k)$ be the functor $\mathcal{T}(\emptyset)=T_{+}$, we have the evident quotient map $\mathcal{G}_{n}^{T} \rightarrow \sigma^{n} \mathcal{T}$, i.e., we send $\mathcal{G}_{n}(\emptyset)=T_{+}$to $\sigma^{n} \mathcal{T}(\emptyset)=T_{+}$by the identity map, and the other maps are the canonical ones $\mathcal{G}_{n}^{T}(I) \rightarrow *$.

By lemma 5.4 and lemma 6.1 this map induces an isomorphism

$$
\begin{equation*}
\beta^{T}: \operatorname{hocolim} \mathcal{G}_{n}^{T} \rightarrow \Sigma_{s}^{n} T_{+} \tag{6.2}
\end{equation*}
$$

in $\mathcal{H}_{\bullet}(k)$.
Remark 6.2. The functors $\mathcal{G}_{n}^{T}, \mathcal{G}_{n}^{T \prime}$ and $\hat{\mathcal{G}}_{n}^{T}$ are all functors in T, where for example $g: T^{\prime} \rightarrow T$ gives the morphism $\hat{\mathcal{G}}_{n}(f): \hat{\mathcal{G}}_{n}^{T^{\prime}} \rightarrow \hat{\mathcal{G}}_{n}^{T}$ by the collection of maps

$$
f \times \mathrm{id}: T^{\prime} \times U_{J^{c}}^{\prime} \rightarrow T \times U_{J^{c}}^{\prime}
$$

The $\operatorname{map} \mathcal{G}_{n}^{T \prime} \rightarrow \mathcal{G}_{n}^{T}$ is natural in T, as is the map β^{T}.
Let $\Delta\left(V_{n}\right) \subset V_{n} \times \Delta^{n}$ be the graph of the inclusion $V_{n} \rightarrow \Delta^{n}$; by a slight abuse of notation, we write $0 \times \Delta\left(V_{n}\right) \subset V_{n} \times \mathbb{A}^{1} \times \Delta^{n}$ for the image of $0 \times \Delta\left(V_{n}\right) \subset$ $\mathbb{A}^{1} \times V_{n} \times \Delta^{n}$ under the exchange of factors $\mathbb{A}^{1} \times V_{n} \times \Delta^{n} \rightarrow V_{n} \times \mathbb{A}^{1} \times \Delta^{n}$.

Define the morphism $\varphi: V_{n} \times \mathbb{A}^{1} \times \Delta^{n} \backslash 0 \times \Delta\left(V_{n}\right) \rightarrow \mathbb{P}^{n}$ by

$$
\varphi\left(u_{0}, \ldots, u_{n}, x, t_{0}, \ldots, t_{n}\right):=\left(X_{0}: X_{1}: \ldots: X_{n}\right)
$$

where as above $X_{0}=x, X_{i}=\left(t_{i}-u_{i}\right) / u_{0}, i=1, \ldots, n$.
Since $V_{n} \times U_{i}^{\prime} \cap 0 \times \Delta\left(V_{n}\right)=\emptyset$ for each $i=0, \ldots, n$, the restriction of φ to $\cup_{i=0}^{n} V_{n} \times U_{i}^{\prime}$ is thus a morphism, and therefore gives a well-defined morphism of functors $\square_{*<[n]}^{n+1} \rightarrow \mathbf{S p c}(k), \tilde{\varphi}_{*}: \hat{\mathcal{G}}_{n}^{V_{n}} \rightarrow \mathbb{P}^{n}$, where \mathbb{P}^{n} is the constant functor.

Given a morphism $f: T \rightarrow V_{n}$, we compose $\tilde{\varphi}_{J}$ with $f \times \mathrm{id}$, giving the morphism of functors $\tilde{\varphi}_{*}^{T}: \hat{\mathcal{G}}_{n}^{T} \rightarrow \mathbb{P}^{n}$. Adjoining the projections $T \times U_{J^{c}}^{\prime} \rightarrow T$ gives us the morphism of functors $\left(p_{1}, \tilde{\varphi}_{*}^{T}\right): \hat{\mathcal{G}}_{n}^{T} \rightarrow T \times \mathbb{P}^{n}$. Passing to the quotients, $\left(p_{1}, \tilde{\varphi}_{*}^{T}\right)$ induces the map of functors $\left(p_{1}, \varphi_{*}^{T \prime}\right): \mathcal{G}_{n}^{\prime T} \rightarrow T \times\left(\mathbb{P}^{n} / H\right)$.

We extend $\left(p_{1}, \varphi_{*}^{T \prime}\right)$ to a map of functors $\square_{*<[n]}^{n+1} \rightarrow \mathbf{S p c} \bullet(k)$

$$
p_{1} \wedge \varphi_{*}^{T}: \mathcal{G}_{n}^{T} \rightarrow T_{+} \wedge\left(\mathbb{P}^{n} / H, 1\right)
$$

by using the inclusions $\mathbb{A}_{J^{c}} \rightarrow \mathbb{P}^{n}$, and sending the base-point in T_{+}to the basepoint in $T_{+} \wedge\left(\mathbb{P}^{n} / H, 1\right)$. This gives us the map in $\mathbf{S p c}_{\bullet}(k)$

$$
\begin{equation*}
\Phi^{T}: \operatorname{hocolim} \mathcal{G}_{n}^{T} \rightarrow T_{+} \wedge\left(\mathbb{P}^{n} / H, 1\right) \tag{6.3}
\end{equation*}
$$

Lemma 6.3. Let $f: T \rightarrow V_{n}$ be a morphism in $\mathbf{S m} / k$. Then the diagram

commutes in $\mathcal{H}_{\bullet}(k)$.
Proof. We work through our description of α and β^{T}, adding some intermediate steps.

We introduce an additional functor

$$
\begin{aligned}
\left(\mathcal{P}^{n} / \mathcal{H}_{\mathcal{U}}, 1\right): & : \square_{*<[n]}^{n+1} \rightarrow \mathbf{S p c}_{\bullet}(k) \\
& J \mapsto\left(U_{J^{c}} / H \cap U_{J^{c}}, 1\right)
\end{aligned}
$$

By Mayer-Vietoris, the canonical map hocolim $\left(\mathcal{P}^{n} / \mathcal{H}_{\mathcal{U}}, 1\right) \xrightarrow{\epsilon}\left(\mathbb{P}^{n} / H, 1\right)$ induced by the cover \mathcal{U} is an isomorphism in $\mathcal{H}_{\bullet}(k)$. The collection of quotient maps $U_{J^{c}} \rightarrow$ $U_{J^{c}} / H \cap U_{J^{c}}$ or identity maps give the map $\gamma: \mathcal{P}_{\mathcal{U}, 1}^{n} / \mathcal{H}_{\mathcal{U}_{1}} \rightarrow\left(\mathcal{P}^{n} / \mathcal{H}_{\mathcal{U}}, 1\right)$.

We also have the functor $\sigma^{n} \mathbb{G}_{m}^{\wedge n}$. Identifying $U_{0 \ldots n}$ with \mathbb{G}_{m}^{n} via the coordinates $\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$, the quotient map $U_{0 \ldots n} \cong \mathbb{G}_{m}^{n} \rightarrow \mathbb{G}_{m}^{\wedge n}$ extends canonically to the quotient map $\delta: \mathcal{P}_{\mathcal{U}, 1}^{n} / \mathcal{H}_{\mathcal{U}_{1}} \rightarrow \sigma^{n} \mathbb{G}_{m}^{\wedge n}$. From our discussion on the isomorphism α, we have the commutative diagram of isomorphisms in $\mathcal{H}_{\bullet}(k)$

Note that, for each $J \neq \emptyset,[n]$, we have $\mathbb{A}_{J} \subset U_{J}$, since for $j \in J$, the intersection $\Pi_{J} \cap\left(X_{j}=0\right)$ is equal to Π_{J}^{\prime}. Also, the map $\tilde{\varphi}_{J}: \tilde{\mathcal{G}}_{n}(J) \rightarrow \mathbb{P}^{n}$ has image contained in $U_{J c}$. We define the map of functors

$$
\psi_{*}^{T}: \mathcal{G}_{n}^{T} \rightarrow T_{+} \wedge\left(\mathcal{P}^{n} / \mathcal{H}_{\mathcal{U}}, 1\right)
$$

as follows: for $J \neq \emptyset,[n]$, we use the map

$$
\left(p_{1}, \varphi_{J}^{T \prime}\right): \mathcal{G}_{n}^{T \prime}(J) \rightarrow T \times U_{J^{c}} /\left(U_{J^{c}} \cap H\right)
$$

on $\mathcal{G}_{n}^{T \prime}(J)$, and the map

$$
T \times \mathbb{A}_{J^{c}} \xrightarrow{\mathrm{id} \times i_{J}} T \times U_{J^{c}}
$$

induced by the inclusion $i_{J}: \mathbb{A}_{J^{c}} \hookrightarrow U_{J^{c}}$. One checks that these descend to a well defined map on the quotient

$$
\psi_{J}^{T}: \mathcal{G}_{n}^{T}(J) \rightarrow T_{+} \wedge\left(\mathcal{P}^{n} / \mathcal{H}_{\mathcal{U}}, 1\right)(J)
$$

For $J=\emptyset$, we use

$$
\left(\mathrm{id}_{T}, \varphi_{\emptyset}^{T \prime}\right): T \rightarrow T \times U_{0 \ldots n} / H \cap U_{0 \ldots n}
$$

This gives us the commutative diagram of functors

which induces the commutative diagram (in $\left.\mathcal{H}_{\bullet}(k)\right)$ on the homotopy colimits

$$
\begin{aligned}
& \operatorname{hocolim} \mathcal{G}_{n}^{T} \xrightarrow{\Psi^{T}} T_{+} \wedge \operatorname{hocolim}\left(\mathcal{P}^{n} / \mathcal{H}_{\mathcal{U}}, 1\right)
\end{aligned}
$$

Combining this with our diagram (6.4) and noting that $\Phi^{T}=(\mathrm{id} \wedge \epsilon) \circ \Psi^{T}$ yields the commutative diagram in $\mathcal{H}_{\bullet}(k)$

completing the proof.

7. Computing the collapse map

We retain the notation from $\S \S 4$, 5 and 6. Our task in this section is to use lemma 6.3 to give an explicit computation of $Q_{F}(w)$ as the nth suspension of a $\operatorname{map} \rho_{w}: \operatorname{Spec} F_{+} \rightarrow w_{+} \wedge \mathbb{G}_{m}^{\wedge n}$, at least for w an F-point of $\Delta^{n} \backslash \partial \Delta^{n}$. In general, we will need to take a further \mathbb{P}^{1}-suspension before desuspending, which we do in the next section.

For F a finitely generated field extension of k and w a closed point of $\Delta_{F}^{n} \backslash \partial \Delta_{F}^{n}$, we have the Pontryagin-Thom collapse map (definition 4.1)

$$
P T_{F}(w): \Sigma_{s}^{n} \operatorname{Spec} F_{+} \rightarrow\left(\mathbb{P}_{F(w)}^{n} / H_{F(w)}, 1\right)
$$

We have as well the map (3.5)

$$
Q_{F}(w): \Sigma_{s}^{n} \operatorname{Spec} F_{+} \rightarrow w_{+} \wedge \Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n}=w_{+} \wedge S^{2 n, n}
$$

It follows from the definition of $M V_{w}$ (5.3), $P T_{F}(w)$ and $m v_{w}$ (definition 4.3) that

$$
\begin{equation*}
Q_{F}(w)=\left(\operatorname{id}_{w_{+}} \wedge \alpha\right) \circ P T_{F}(w) \tag{7.1}
\end{equation*}
$$

where we identify $\left(\mathbb{P}_{F(w)}^{n} / H_{F(w)}, 1\right)$ with $w_{+} \wedge\left(\mathbb{P}^{n} / H, 1\right)$ and where $\alpha:\left(\mathbb{P}^{n} / H, 1\right) \rightarrow$ $\Sigma_{s}^{n} \mathbb{G}_{m}^{\wedge n}$ is the isomorphism (5.2).

Consider an F-point $w: \operatorname{Spec} F \rightarrow \Delta^{n}$ of Δ^{n}. Given elements z_{1}, \ldots, z_{n} of F^{\times}, we have the corresponding map

$$
\left[z_{1}\right] \wedge_{F} \ldots \wedge_{F}\left[z_{n}\right]: \operatorname{Spec} F_{+} \rightarrow \operatorname{Spec} F_{+} \wedge \mathbb{G}_{m}^{\wedge n}
$$

given as the composition

$$
\operatorname{Spec} F_{+} \xrightarrow{\operatorname{id} \wedge\left(z_{1}, \ldots, z_{n}\right)} \operatorname{Spec} F_{+} \wedge\left(\mathbb{G}_{m}^{n}, 1\right) \rightarrow \operatorname{Spec} F_{+} \wedge \mathbb{G}_{m}^{\wedge n}
$$

We use the notation \wedge_{F} to denote the smash product for points F-schemes (X, x), (Y, y) :

$$
(X, x) \wedge_{F}(Y, y):=X \times_{F} Y /\left(X \times_{F} y \vee x \times_{F} Y\right)
$$

and note that $\left[z_{1}\right] \wedge_{F} \ldots \wedge_{F}\left[z_{n}\right]$ really is the \wedge_{F}-product of the maps $\left[z_{i}\right]$.
Proposition 7.1. Take $w=\left(w_{0}, \ldots, w_{n}\right) \in\left(\Delta^{n} \backslash \partial \Delta^{n}\right)(F)$. Then

$$
Q_{F}(w)=\Sigma_{s}^{n}\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right] .
$$

Proof. We have for each V_{n}-scheme $T \rightarrow V_{n}$ the functor (6.1); applying this construction for the morphism $w: \operatorname{Spec} F \rightarrow V_{n}$, gives us the functor

$$
\mathcal{G}_{n}^{w}: \square_{*<[n]}^{n+1} \rightarrow \text { Spc }_{\bullet}(k) .
$$

We recall the subschemes $U_{i}^{\prime}, i=0, \ldots, n$ and H of $\mathbb{A}^{1} \times \Delta^{n}$ from 6 ,

We note that $U_{0}^{\prime}=1 \times \Delta^{n}, H \cap U_{0}^{\prime}$ is the face $t_{0}=0$, and that $U_{0}^{\prime} \cap U_{i}^{\prime}$ is the face $t_{i}=0$, for $i=1, \ldots, n$. Thus, collapsing the $U_{i}^{\prime}, i=1, \ldots, n, H \cap U_{0}^{\prime}$ and all the \mathbb{A}_{J} to a point, and sending U_{0}^{\prime} to Δ^{n} by the projection map gives a well defined morphism in Spc. (k),

$$
a: \operatorname{hocolim} \mathcal{G}_{n}^{w} \rightarrow \operatorname{Spec} F_{+} \wedge \Delta^{n} / \partial \Delta^{n}
$$

which is an isomorphism in $\mathcal{H}_{\bullet}(k)$. In addition, we have the commutative diagram of isomorphisms in $\mathcal{H}_{\bullet}(k)$

where σ^{F} is the isomorphism (4.1) and β^{w} is the isomorphism (6.2).
Let

$$
\tilde{r}_{w}: \operatorname{Spec} F_{+} \wedge\left(\mathbb{P}^{n} / H, 1\right) \rightarrow \mathbb{P}_{F}^{n} /\left(\mathbb{P}_{F}^{n} \backslash\{(1: 0: \ldots: 0)\}\right)
$$

be the composition of the isomorphism Spec $F_{+} \wedge\left(\mathbb{P}^{n} / H, 1\right) \cong\left(\mathbb{P}_{F}^{n} / H_{F}, 1\right)$ followed by the quotient map $r_{w}:\left(\mathbb{P}_{F}^{n} / H_{F}, 1\right) \rightarrow \mathbb{P}_{F}^{n} /\left(\mathbb{P}_{F}^{n} \backslash\{(1: 0: \ldots: 0)\}\right)$. It follows directly from the definition of the map Φ^{w} (6.3) and the map φ_{w} (4.2) that the diagram

commutes. Combining this with the diagram (7.2) and our description (4.3) of $P T_{F}(w)$ gives us the commutative diagram

But by lemma 6.3,

$$
\left(\Sigma_{s}^{n}\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right]\right) \circ \beta^{w}=\left(\operatorname{id}_{\operatorname{Spec} F_{+}} \wedge \alpha\right) \circ \Phi^{w}
$$

since β^{w} is an isomorphism, this gives us

$$
\Sigma_{s}^{n}\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right]=\left(\operatorname{id}_{\text {Spec } F_{+}} \wedge \alpha\right) \circ P T_{F}(w)
$$

Our formula (7.1) for $Q_{F}(w)$ completes the proof.

8. Transfers and \mathbb{P}^{1}-Suspension

We now consider the general case of a closed point $w \in V_{n F} \subset \Delta_{F}^{n}$.
Consider the map

$$
\begin{aligned}
& j: \Delta^{n} \rightarrow \mathbb{P}^{n} \\
& j\left(t_{0}, \ldots, t_{n}\right):=\left(1: t_{1}, \ldots: t_{n}\right)
\end{aligned}
$$

j is an open immersion, identifying Δ^{n} with U_{0} and V_{n} with $U_{0 \ldots n} \backslash H \subset \mathbb{P}^{n}$.

We define the transfer map

$$
\operatorname{Tr}_{F}(w): S^{2 n, n} \wedge \operatorname{Spec} F_{+} \rightarrow S^{2 n, n} \wedge \operatorname{Spec} F(w)_{+}
$$

associated to a closed point $w \in \mathbb{A}_{F}^{n}$, separable over F, as the composition

$$
\begin{aligned}
& S^{2 n, n} \wedge \text { Spec } F_{+}\left.\stackrel{\alpha_{\infty} \wedge \mathrm{idd}}{\sim} \mathbb{P}_{F}^{n} / H_{\infty F} \xrightarrow{c_{j w}} \mathbb{P}_{F}^{n} / \mathbb{P}_{F}^{n} \backslash\{j(w)\}\right) \stackrel{\bar{p} \circ \bar{j}}{\sim} \Delta_{F(w)}^{n} /\left(\Delta_{F(w)}^{n} \backslash\{w\}\right) \\
& \xrightarrow[\sim]{m v_{w}^{\infty}} \mathbb{P}_{F(w)}^{n} / H_{\infty F(w)} \xrightarrow[\sim]{\alpha_{\infty} \wedge \mathrm{id}} S^{2 n, n} \wedge \operatorname{Spec} F(w)_{+}
\end{aligned}
$$

The map \bar{j} is induced from j, \bar{p} is induced from the projection $p: \Delta_{F(w)}^{n} \rightarrow \Delta_{F}^{n}$, and $w \in \Delta_{F(w)}^{n}$ is the canonical lifting of $w \in \Delta_{F}^{n}$ to $\Delta_{F(w)}^{n}=w \times_{F} \Delta_{F}^{n}$. The map $\bar{p} \circ \bar{j}$ is an isomorphism by Nisnevich excision (which is where we use the separability of w over $F)$. The map $m v_{w}^{\infty}$ is the Morel-Voevodsky purity isomorphism, where we use the generators $\left(t_{1}-w_{1}, \ldots, t_{n}-w_{n}\right)$ for m_{w}, together with the isomorphism

$$
r_{w}: \mathbb{P}_{F(w)}^{n} / H_{\infty F(w)} \rightarrow \mathbb{P}_{F(w)}^{n} /\left(\mathbb{P}_{F(w)}^{n} \backslash(1: 0: \ldots: 0)\right)
$$

induced by the identity on $\mathbb{P}_{F(w)}^{n}$. The map α_{∞} is the isomorphism (5.4).
Lemma 8.1. Suppose that w is in $V_{n}(F)$. Then $\operatorname{Tr}_{F}(w)=\mathrm{id}$.
Proof. Let $w_{0}=(1: 0: \ldots: 0) \in U_{0} \subset \mathbb{P}^{n}(k)$, giving us the purity isomorphism

$$
m v_{w_{0}}^{\infty}: U_{0} /\left(U_{0} \backslash w_{0}\right) \rightarrow \mathbb{P}^{n} / H_{\infty}
$$

defined via the choice of generators $\left(x_{1}, \ldots, x_{n}\right)$ for $m_{w_{0}}$. The morphism

$$
\left(x: x_{1}: \ldots: x_{n}\right): \mathbb{A}^{1} \times U_{0} \backslash 0 \times w_{0} \rightarrow \mathbb{P}^{n}
$$

extends to an \mathbb{A}^{1}-bundle

$$
\pi:=\left(x: x_{1}: \ldots: x_{n}\right): \mathrm{Bl}_{0 \times w_{0}} \mathbb{A}^{1} \times U_{0} \rightarrow \mathbb{P}^{n}
$$

Furthermore, the restriction of π to $1 \times U_{0}$ extends to the identity map $\mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$. From this, it follows that morphism in $\mathcal{H}_{\bullet}(k)$,

$$
\operatorname{Tr}_{F}\left(w_{0}\right): S^{2 n, n} \rightarrow S^{2 n, n}
$$

is the identity. On the other hand, let $T_{w}: \mathbb{P}_{F}^{n} \rightarrow \mathbb{P}_{F}^{n}$ be the automorphism extending translation by w on U_{0}. Then T_{w} acts by the identity on $\mathbb{P}_{F}^{n} / H_{\infty}$, as we can extend T_{w} to the \mathbb{A}^{1} family of automorphisms $t \mapsto T_{t w}$ connecting T_{w} with id. Furthermore, $T_{-w}^{*}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}-w_{1}, \ldots, x_{n}-w_{n}\right)$. From this it follows that

$$
\operatorname{Tr}_{F}(w)=T_{w} \circ \operatorname{Tr}_{F}\left(w_{0}\right) \circ T_{-w}=\mathrm{id}
$$

Proposition 8.2. Let $w=\left(w_{0}, \ldots, w_{n}\right)$ be a closed point of $V_{n F}$, separable over F. Then the $S^{2 n, n}$-suspension of $Q_{F}(w)$:

$$
\operatorname{id}_{S^{2 n, n}} \wedge Q_{F}(w): S^{2 n, n} \wedge \operatorname{Spec} F_{+} \wedge S^{n, 0} \rightarrow S^{2 n, n} \wedge w_{+} \wedge S^{2 n, n}
$$

is equal to the map $\Sigma_{s}^{n}\left(\left(\operatorname{id}_{S^{2 n, n}} \wedge\left[-w_{1} / w_{0}\right] \wedge_{F(w)} \ldots \wedge_{F(w)}\left[-w_{n} / w_{0}\right]\right) \circ \operatorname{Tr}_{F}(w)\right)$.

Proof. Write $*_{F}$ for Spec F. We have the commutative diagram

the commutativity follows either by definition of $\operatorname{Tr}_{F}(w)$, or by identities of the form $(a \wedge 1) \circ(1 \wedge b)=(1 \wedge b) \circ(a \wedge 1)$, or (in the bottom pentagon) lemma 8.1 The composition along the left-hand side is $\operatorname{id}_{S^{2 n, n}} \wedge\left[\left(\mathrm{id}_{w_{+}} \wedge \alpha\right) \circ P T_{F}(w)\right]$; along the right-hand side we have $\operatorname{id}_{S^{2 n, n}} \wedge\left[\left(\operatorname{id}_{w_{+}} \wedge \alpha\right) \circ P T_{F(w)}(w)\right]$. Since w is $F(w)$ rational, we may apply proposition 7.1 and our formula (7.1) for $Q_{F}(w)$ to complete the proof.

9. Conclusion

We can now put all the pieces together. For $E \in \mathbf{S p t}_{S^{1}}(k)$ fibrant, we have the associated fibrant object $\Omega_{T}^{n} E:=\mathcal{H o m}_{\mathbf{S p t}(k)}\left(S^{2 n, n}, E\right)$, that is, $\Omega_{T}^{n} E$ is the presheaf $\left(\Omega_{T}^{n} E\right)(X):=E\left(X_{+} \wedge S^{2 n, n}\right)$. For each $n \geq 1$, we have the canonical map

$$
\iota_{n}: E \rightarrow \Omega_{T}^{n} \Sigma_{T}^{n} E
$$

Replacing $S^{2 n, n}$ with $S^{n, n}=\mathbb{G}_{m}^{\wedge n}$, we have the fibrant object

$$
\Omega_{\mathbb{G}_{m}}^{n} E:=\mathcal{H o m}_{\mathbf{S p t}(k)}\left(S^{n, n}, E\right)
$$

defined as the presheaf $\left(\Omega_{\mathbb{G}_{m}}^{n} E\right)(X):=E\left(X_{+} \wedge \mathbb{G}_{m}^{\wedge n}\right)$.
Given a closed point $w \in V_{n F}$, we define the map

$$
\operatorname{Tr}_{F}(w)^{*}: \pi_{m}\left(\Omega_{T}^{n} E(w)\right) \rightarrow \pi_{m}\left(\Omega_{T}^{n} E(F)\right)
$$

as the composition

$$
\begin{aligned}
\pi_{m}\left(\Omega_{T}^{n} E(w)\right) & =\operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(\Sigma_{s}^{\infty}\left(S^{2 n, n} \wedge w_{+}\right), \Sigma_{s}^{-m} E\right) \\
& \xrightarrow[s]{\left.\Sigma_{s}^{\infty}\left(T r_{F}(w)\right)\right)^{*}} \operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(\Sigma_{s}^{\infty}\left(S^{2 n, n} \wedge \operatorname{Spec} F_{+}\right), \Sigma_{s}^{-m} E\right) \\
& =\pi_{m}\left(\Omega_{T}^{n} E(F)\right)
\end{aligned}
$$

Definition 9.1. Take $E \in \mathcal{S H}_{S^{1}}(k)$ and let $n \geq 1$ be an integer. An n-fold T delooping of E is an an object $\omega_{T}^{-n} E$ of $\mathcal{S H}_{S^{1}}(k)$ and an isomorphism $\iota_{n}: E \rightarrow$ $\Omega_{T}^{n} \omega_{T}^{-n} E$ in $\mathcal{S H}_{S^{1}}(k)$.

Given an n-fold T-delooping of $E, \iota_{n}: E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E$, the map $\operatorname{Tr}_{F}(w)^{*}$ for $\Omega_{T}^{n} \omega_{T}^{-n} E$ induces the "transfer map"

$$
\iota_{n}^{-1} \circ \operatorname{Tr}_{F}(w)^{*} \circ \iota_{n}: \pi_{m}(E(w)) \rightarrow \pi_{m}(E(F))
$$

which we write simply as $\operatorname{Tr}_{F}(w)^{*}$.
Remarks 9.2. 1. The transfer map $\operatorname{Tr}_{F}(w)^{*}: \pi_{m}(E(w)) \rightarrow \pi_{m}(E(F))$ may possibly depend on the choice of n-fold T-delooping, we do not have an example, however.
2. An $n-b$-fold T-delooping of E gives rise to an n-fold T-delooping of $\Omega_{\mathbb{G}_{m}}^{b} E$. Thus, via the adjunction isomorphism

$$
\Pi_{a, b} E \cong \pi_{a} \Omega_{\mathbb{G}_{m}}^{b} E
$$

we have a transfer map

$$
\operatorname{Tr}_{F}(w)^{*}: \Pi_{a, b} E(w) \rightarrow \Pi_{a, b} E(F)
$$

for w a closed point of $V_{n F}$, separable over F.
3. If $E=\Omega_{T}^{\infty} \mathcal{E}$ for some $\mathcal{E} \in \mathcal{S H}(k)$, then E admits canonical n-fold T-deloopings, namely

$$
\omega_{T}^{-n} E:=\Omega_{T}^{\infty} \Sigma_{T}^{n} \mathcal{E}
$$

Indeed, in $\mathcal{S H}(k), \Sigma_{T}$ is the inverse to Ω_{T} and Ω_{T}^{∞} commutes with Ω_{T}.
For a morphism $\varphi: \Sigma_{s}^{\infty} w_{+} \rightarrow E$, we have the suspension $\Sigma_{T}^{n} \varphi: \Sigma_{T}^{n} \Sigma_{s}^{\infty} w_{+} \rightarrow$ $\Sigma_{T}^{n} E$, the composition

$$
\Sigma_{T}^{n} \varphi \circ \Sigma_{s}^{\infty} \operatorname{Tr}_{F}(w)^{*}: \Sigma_{T}^{n} \Sigma_{s}^{\infty} \operatorname{Spec} F_{+} \rightarrow \Sigma_{T}^{n} E
$$

and the adjoint morphism

$$
\left(\Sigma_{T}^{n} \varphi \circ \Sigma_{s}^{\infty} \operatorname{Tr}_{F}(w)^{*}\right)^{\prime}: \Sigma_{s}^{\infty} \operatorname{Spec} F_{+} \rightarrow \Omega_{T}^{n} \Sigma_{T}^{n} E
$$

Suppose we have an n-fold de-looping of $E, \iota_{n}: E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E$. This gives us the adjoint

$$
\iota_{n}^{\prime}: \Sigma_{T}^{n} E \rightarrow \omega_{T}^{-n} E
$$

and

$$
\Omega_{T}^{n}{ }_{n}^{\prime}: \Omega_{T}^{n} \Sigma_{T}^{n} E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E
$$

Let $\delta_{n}: E \rightarrow \Omega_{T}^{n} \Sigma_{T}^{n} E$ be the unit for the adjunction.
Lemma 9.3. 1. $\iota_{n}=\Omega_{T}^{n} \iota_{n}^{\prime} \circ \delta_{n}$
2. $\iota_{n}^{-1} \circ \Omega_{T}^{n} \iota_{n}^{\prime} \circ\left(\Sigma_{T}^{n} \varphi \circ \Sigma_{s}^{\infty} \operatorname{Tr}_{F}(w)\right)^{\prime}=\operatorname{Tr}_{F}(w)^{*}(\varphi)$.

Proof. The two assertions follow from the universal property of adjunction.

Before proving our main results, we show that the transfer maps respect the Postnikov filtration $F_{\text {Tate }}^{*} \pi_{m} E$.

Lemma 9.4. Suppose E admits an n-fold T-delooping $\iota_{n}: E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E$. Then for each finitely generated field F over k and each closed point $w \in \mathbb{A}_{F}^{n}$ separable over F, we have

$$
\operatorname{Tr}_{F}(w)^{*}\left(F_{\text {Tate }}^{q} \pi_{m} E(w)\right) \subset F_{\text {Tate }}^{q} \pi_{m} E(F)
$$

Proof. Take $q \geq 0$, and let $\tau_{q}: f_{q} E \rightarrow E$ be the canonical morphism. As above, let $\iota_{n}^{\prime}: \Sigma_{T}^{n} E \rightarrow \omega_{T}^{-n} E$ be the adjoint of ι_{n} and let $\delta_{n}: E \rightarrow \Omega_{T}^{n} \Sigma_{T}^{n} E$ be the unit of the adjunction. By lemma 9.3 we have the factorization of ι_{n} as

$$
E \xrightarrow{\delta_{n}} \Omega_{T}^{n} \Sigma_{T}^{n} E \xrightarrow{\Omega_{T}^{n} \iota_{n}^{\prime}} \Omega_{T}^{n} \omega_{T}^{-n} E .
$$

This gives us the commutative diagram

where $\tau_{q}^{\prime}:=\Omega_{T}^{n} \iota_{n}^{\prime} \circ \Omega_{T}^{n} \Sigma_{T}^{n} \tau_{q}$. Since $\iota_{n}: E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E$ is an isomorphism, the composition

$$
\iota_{n} \circ \tau_{q}: f_{q} E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E
$$

satisfies the universal property of $f_{q} \Omega_{T}^{n} \omega_{T}^{-n} E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E$. By [6, theorem 7.4.1], $\Omega_{T}^{n} \Sigma_{T}^{n} f_{q} E$ is in $\Sigma_{T}^{q} \mathcal{S} \mathcal{H}_{S^{1}}(k)$, hence there is a canonical morphism

$$
\theta: \Omega_{T}^{n} \Sigma_{T}^{n} f_{q} E \rightarrow f_{q} E
$$

extending our first diagram to the commutative diagram

Using the universal property of τ_{q}, we see that $\theta \circ \iota_{n}=\operatorname{id}_{f_{q} E}$, i.e.,

$$
\Omega_{T}^{n} \Sigma_{T}^{n} f_{q} E=f_{q} E \oplus R
$$

and the restriction of τ_{q}^{\prime} to R is the zero map. We define the transfer map

$$
\operatorname{Tr}_{F}(w)^{*}: \pi_{m} f_{q} E(w) \rightarrow \pi_{m} f_{q} E(F)
$$

by using the transfer map for $\Omega_{T}^{n} \Sigma_{T}^{n} f_{q} E$ and this splitting.
The second diagram thus gives rise to the commutative diagram

which yields the result.

Remark 9.5. One can define transfer maps in a more general setting, that is, for a closed point $w \in \mathbb{A}_{F}^{n}$ and any choice of parameters for $m_{w} \subset \mathcal{O}_{\mathbb{A}^{n}, w}$. The same proof as used for lemma 9.4 shows that these more general transfer maps respect the filtration $F_{\text {Tate }}^{*} \pi_{m} E$.
Theorem 9.6. Let $E \in \mathbf{S p t}(k)$ be fibrant, and let F be a field extensions of k.

1. For each $w=\left(w_{0}, \ldots, w_{n}\right) \in V_{n}(F)$, and each $\rho \in \pi_{0} \Omega_{\mathbb{G}_{m}}^{n} E(F)$, the element

$$
\rho \circ \Sigma_{s}^{\infty}\left(\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right]\right): \Sigma_{s}^{\infty} \operatorname{Spec} F_{+} \rightarrow E
$$

is in $F_{\text {Tate }}^{n} \pi_{0} E(F)$.
2. Suppose that E admits an n-fold T-delooping $\iota_{n}: E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E$. Then for $w=\left(w_{0}, \ldots, w_{n}\right)$ a closed point of $V_{n F}$, separable over F, and $\rho_{w} \in \pi_{0} \Omega_{\mathbb{G}_{m}}^{n} E(w)$

$$
\begin{equation*}
\operatorname{Tr}_{F}(w)^{*}\left[\rho_{w} \circ \Sigma_{s}^{\infty}\left(\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right]\right)\right] \tag{9.1}
\end{equation*}
$$

is in $F_{\text {Tate }}^{n} \pi_{0} E(F)$.
3. Suppose that E admits an n-fold T-delooping $\iota_{n}: E \rightarrow \Omega_{T}^{n} \omega_{T}^{-n} E$. and that $\Pi_{a, *} E=0$ for all $a<0$. Suppose further that F is perfect. Then $F_{\text {Tate }}^{n} \pi_{0} E(F)$ is generated by elements of the form (9.1), as w runs over closed point of $V_{n F}$ and ρ_{w} over elements of $\pi_{0} \Omega_{\mathbb{G}_{m}}^{n} E(w)$.
Proof. (1) follows directly from proposition 3.4 and proposition 7.1, noting that the isomorphism $\Omega_{\mathbb{G}_{m}}^{n} E \cong \Sigma_{s}^{n} \Omega_{T}^{n} E$ gives the identification

$$
\pi_{-n} \Omega_{T}^{n} E(w) \cong \pi_{0} \Omega_{\mathbb{G}_{m}}^{n} E(w) \cong \operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(\Sigma_{s}^{\infty} w_{+} \wedge \mathbb{G}_{m}^{\wedge n}, E\right)
$$

For (2), the fact that this element is in $F_{\text {Tate }}^{n} \pi_{0}(E(F))$ follows from (1) and lemma 9.4

For (3), that is, to see that these elements generate, take one of the generators $\gamma:=\xi_{w} \circ \Sigma_{s}^{\infty} Q_{F}(w)$ of $F_{\text {Tate }}^{n} \pi_{0} E(F)$, as given by proposition 3.4, that is, w is a closed point of $V_{n F}$ and ξ_{w} is in $\pi_{-n}\left(\Omega_{T}^{n} E(w)\right)=\pi_{0}\left(\Omega_{\mathfrak{G}_{m}}^{n} E(w)\right)$. Since F is perfect, w is separable over F. Take the n-fold T-suspension of γ

$$
\Sigma_{T}^{n} \gamma: \Sigma_{s}^{\infty}\left(\Sigma_{T}^{n} \operatorname{Spec} F_{+}\right) \rightarrow \Sigma_{T}^{n} E
$$

giving by adjunction and composition with $\Omega_{T}^{n}\left(\iota_{n}^{\prime}\right)$ the morphism

$$
\Omega_{T}^{n}\left(\iota_{n}^{\prime}\right) \circ\left(\Sigma_{T}^{n} \gamma\right)^{\prime}: \Sigma_{s}^{\infty} \operatorname{Spec} F_{+} \rightarrow \Omega_{T}^{n} \omega^{-n} E
$$

It follows from the universal properties of adjunction that

$$
\left(\Sigma_{T}^{n} \gamma\right)^{\prime}=\delta_{n} \circ \gamma
$$

hence by lemma 9.3 we have

$$
\begin{equation*}
\Omega_{T}^{n}\left(\iota_{n}^{\prime}\right) \circ\left(\Sigma_{T}^{n} \gamma\right)^{\prime}=\Omega_{T}^{n}\left(\iota_{n}^{\prime}\right) \circ \delta_{n} \circ \gamma=\iota_{n} \circ \gamma \tag{9.2}
\end{equation*}
$$

Write

$$
\Sigma_{T}^{n} \gamma=\left(\Sigma_{T}^{n} \xi_{w}\right) \circ\left(\Sigma_{s}^{\infty} \Sigma_{T}^{n} Q_{F}(w)\right)
$$

By proposition 8.2 we have

$$
\Sigma_{T}^{n} Q_{F}(w)=\Sigma_{s}^{n}\left(\Sigma_{T}^{n}\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right] \circ \operatorname{Tr}_{F}(w)\right)
$$

and thus

$$
\Sigma_{T}^{n} \gamma=\Sigma_{T}^{n}\left(\xi_{w} \circ \Sigma_{s}^{n}\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right]\right) \circ \Sigma_{s}^{n} \operatorname{Tr}_{F}(w)
$$

Using (9.2) and lemma 9.3, we have

$$
\begin{aligned}
\iota_{n} \circ \gamma & =\Omega_{T}^{n}\left(\iota_{n}^{\prime}\right) \circ\left(\Sigma_{T}^{n} \gamma\right)^{\prime} \\
& =\Omega_{T}^{n}\left(\iota_{n}^{\prime}\right) \circ\left[\Sigma_{T}^{n}\left(\xi_{w} \circ \Sigma_{s}^{n}\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right]\right) \circ \Sigma_{s}^{n} \operatorname{Tr}_{F}(w)\right]^{\prime} \\
& =\iota_{n} \circ \operatorname{Tr}_{F}(w)^{*}\left(\xi_{w} \circ \Sigma_{s}^{n}\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right]\right),
\end{aligned}
$$

or

$$
\gamma=\operatorname{Tr}_{F}(w)^{*}\left[\rho_{w} \circ \Sigma_{s}^{\infty}\left(\left[-w_{1} / w_{0}\right] \wedge_{F} \ldots \wedge_{F}\left[-w_{n} / w_{0}\right]\right)\right] .
$$

We now assume that $E=\Omega_{T}^{\infty} \mathcal{E}$ for some fibrant T-spectrum $\mathcal{E} \in \mathbf{S p t}_{T}(k)$. Let \mathbb{S}_{k} denote the motivic sphere spectrum in $\mathbf{S p t}_{T}(k)$, that is, \mathbb{S}_{k} is a fibrant model of the suspension spectrum $\Sigma_{T}^{\infty} S_{k}^{0}$. We proceed to re-interpret theorem 9.6 in terms of the canonical action of $\pi_{0} \Omega_{T}^{\infty} \mathbb{S}_{k}(F)$ on $\pi_{0} E(F)$, which we now recall, along with some of the fundamental computations of Morel relating the Grothendieck-Witt group with endomorphisms of the motivic sphere spectrum.

We recall the Milnor-Witt sheaves of Morel, $\underline{K}_{n}^{M W}$ (see [8, section 2] for details). The graded sheaf $\underline{K}_{*}^{M W}:=\oplus_{n \in \mathbb{Z}} \underline{K}_{n}^{M W}$ has structure of a Nisnevich sheaf of associative graded rings. For a finitely generated field F over k, the graded ring $K_{*}^{M W}(F):=\underline{K}_{*}^{M W}(F)$ has generators $[u]$ in degree 1 , for $u \in F^{\times}$, and an additional generator η in degree -1 , with relations

- $\eta[u]=[u] \eta$
- $[u][1-u]=0$ (Steinberg relation)
- $[u v]=[u]+[v]+\eta[u][v]$
- $\eta(2+\eta[-1])=0$.

For later use, we note the following result:
Lemma 9.7. Let F be a field, $u_{1}, \ldots, u_{n} \in F^{\times}$with $\sum_{i} u_{i}=1$. Then $\left[u_{1}\right] \cdot \ldots \cdot\left[u_{n}\right]=$ 0 in $K_{0}^{M W}(F)$.
Proof. We use a number of relations in $K_{*}^{M W}(F)$, proved in [8, lemma 2.5, 2.7]. For $u \in F^{\times}$we let $\langle u\rangle$ denote the element $1+\eta[u] \in K_{0}^{M W}(F)$. We have the following relations, for $a, b \in F^{\times}$,
i) $K_{0}^{M W}(F)$ is central in $K_{*}^{M W}(F)$
ii) $[a][1-a]=0$ for $a \neq 1$
iii) $[a b]=[a]+\langle a\rangle[b]$
iv) $\left[a^{-1}\right]=-<a^{-1}>[a]$
v) $[a][-a]=0$
vi) $[1]=0$.

These yield the additional relation
vii) $[a]\left[-a^{-1}\right]=0$.

This follows by noting that

$$
\begin{align*}
{[a]\left[-a^{-1}\right] } & =[a]\left(-<-a^{-1}>[-a]\right) \tag{iv}\\
& =\left(-<-a^{-1}>\right)[a][-a] \tag{i}\\
& =0 \tag{v}
\end{align*}
$$

We prove the lemma by induction on n, the case $n=1$ being the relation (vi), the case $n=2$ the Steinberg relation (ii). Induction reduces to showing

$$
[u][v]=[u+v][-v / u] \text { for } u+v \neq 0
$$

(in case $u+v=0$ we use (v) to continue the induction). For this, we have

$$
\begin{align*}
{[u][v] } & =[u][v]+<v>[u]\left[-u^{-1}\right] \tag{vii}\\
& =[u][v]+[u]<v>\left[-u^{-1}\right] \tag{i}\\
& =[u][-v / u] \tag{iii}\\
& =[u][-v / u]+<u>[1+v / u][-v / u] \tag{ii}\\
& =[u+v][-v / u] \tag{iii}
\end{align*}
$$

For $u \in F^{\times}$, let $<u>$ denote the quadratic form $u y^{2}$ in the Grothendieck-Witt group GW (F). Sending $[u] \eta$ to $\langle u\rangle-1$ extends to an isomorphism [8, lemma 2.10]

$$
\vartheta_{0}: K_{0}^{M W}(F) \rightarrow \mathrm{GW}(F) .
$$

In addition, for $n \geq 1$, the image of $\times \eta^{n}: K_{n}^{M W}(F) \rightarrow K_{0}^{M W}(F)$ is an ideal $\eta^{n} K_{n}^{M W}(F)$ in $K_{0}^{M W}(F)$ and ϑ_{0} maps $\eta^{n} K_{n}^{M W}(F)$ isomorphically onto the ideal $I(F)^{n}$, where $I(F) \subset \mathrm{GW}(F)$ is the augmentation ideal of quadratic forms of virtual rank zero.

For each $u \in F^{\times}$, we have the corresponding morphism

$$
[u]: \operatorname{Spec} F_{+} \rightarrow \mathbb{G}_{m}
$$

We have as well the canonical projection $\eta^{\prime}: \mathbb{A}^{2} \backslash\{0\} \rightarrow \mathbb{P}^{1}$. Using a construction similar to the one we used to show that $\mathbb{P}^{2} / H \cong \Sigma_{s}^{2} \mathbb{G}_{m}^{\wedge 2}$, one constructs a canonical isomorphism in $\mathcal{H}_{\bullet}(k),\left(\mathbb{A}^{2} \backslash\{0\}, 1\right) \cong \Sigma_{s}^{1} \mathbb{G}_{m}^{\wedge 2}$, and thus η^{\prime} yields the morphism

$$
\eta: \Sigma_{s}^{1} \mathbb{G}_{m}^{\wedge 2} \rightarrow \Sigma_{s}^{1} \mathbb{G}_{m}
$$

in $\mathcal{H}_{\bullet}(k)$.
For $E, F \in \mathbf{S p t}_{S^{1}}(k)$, let $\underline{\operatorname{Hom}}(E, F)$ denote the Nisnevich sheaf associated to the presheaf

$$
U \mapsto \operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(U_{+} \wedge E, F\right)
$$

We have the fundamental theorem of Morel:
Theorem 9.8 ([8, corollary 3.43]). Suppose char $k \neq 2$. Let $m, p, q \geq 0, n \geq 2$ be integers. Then sending $[u] \in K_{1}^{M W}(F)$ to the morphism $[u]$ and sending $\eta \in$ $K_{-1}^{M W}(F)$ to the morphism η yields isomorphisms

$$
\operatorname{Hom}_{\mathcal{H} \cdot(k)}\left(\operatorname{Spec} F_{+} \wedge S^{m} \wedge \mathbb{G}_{m}^{\wedge p}, S^{n} \wedge \mathbb{G}_{m}^{\wedge q}\right) \cong \begin{cases}0 & \text { if } m<n \\ K_{q-p}^{M W}(F) & \text { if } m=n \text { and } q>0\end{cases}
$$

As we will be relying on Morel's theorem, we assume for the rest of the paper that the characteristic of k is different from two.

Passing to the S^{1}-stabilization, theorem 9.8 gives

$$
\begin{array}{lr}
\Pi_{0, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}=\underline{K}_{q-p}^{M W} & \text { for } p \geq 0, q \geq 1, \tag{9.3}\\
\Pi_{a, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}=0 & \text { for } p \geq 0, q \geq 1, a<0 .
\end{array}
$$

Passing to the T-stable setting, Morel's theorem gives

$$
\begin{array}{lr}
\pi_{p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} \cong \underline{K}_{q-p}^{M W} & \text { for } p, q \in \mathbb{Z} \tag{9.4}\\
\pi_{a+p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}=0 & \text { for } p, q \in \mathbb{Z}, a<0
\end{array}
$$

Composition of morphisms gives us the (right) action of the bi-graded sheaf of rings $\pi_{*, *} \mathbb{S}_{k}$ on $\pi_{*, *} \mathcal{E}$ for each T-spectrum \mathcal{E}, and thus, the action of $\underline{K}_{-*}^{M W}$ on
$\pi_{*, *} \mathcal{E}$. If we let E be the S^{1}-spectrum $\Omega_{T}^{\infty} \mathcal{E}$, then $\Pi_{a, b} E=\pi_{a+b, b} \mathcal{E}$ for all $b \geq 0$. Thus, via lemma 2.2(2) we thus have the right multiplication

$$
\Pi_{a, b-m} E \otimes \underline{K}_{-m}^{M W} \rightarrow \Pi_{a, b} E
$$

Let $\mathcal{I} \subset \underline{K}_{0}^{M W}$ be the sheaf of augmentation ideals. The $\underline{K}_{-*}^{M W}$-module structure on $\Pi_{a, *} E$ gives us the filtration $F_{n}^{M W} \Pi_{a, b} E$ of $\Pi_{a, b} E$, defined by

$$
F_{n}^{M W} \Pi_{a, b} E:=\operatorname{im}\left[\Pi_{a, n} E \otimes \underline{K}_{n-b}^{M W} \rightarrow \Pi_{a, b} E\right] ; \quad n \geq 0
$$

Lemma 9.9. Suppose $E=\Omega_{T}^{\infty} \mathcal{E}$ for some $\mathcal{E} \in \mathcal{S H}(k)$. For integers $n, b, p \geq 0$, with $n-p, b-p \geq 0$, the adjunction isomorphism $\Pi_{a, b} E \cong \Pi_{a, b-p} \Omega_{\mathbb{G}_{m}}^{p} E$ induces an isomorphism

$$
F_{n}^{M W} \Pi_{a, b} E \cong F_{n-p}^{M W} \Pi_{a, b-p} \Omega_{\mathbb{G}_{m}}^{p} E
$$

Proof. This follows easily from the fact that the adjunction isomorphism

$$
\Pi_{a, *} E \cong \Pi_{a, *-p} \Omega_{\mathbb{G}_{m}}^{p} E
$$

is a $\underline{K}_{*}^{M W}$-module isomorphism.
Definition 9.10. Let $E=\Omega_{T}^{\infty} \mathcal{E}$ for some $\mathcal{E} \in \mathcal{S H}(k), F$ a field extension of k. Take integers a, b, n with $n, b \geq 0$. Following remark $9.2(2)$, we have the transfer maps

$$
\operatorname{Tr}_{F}(w): \Pi_{a, b} E(F(w)) \rightarrow \Pi_{a, b} E(F)
$$

for each closed point $w \in V_{n F}$, separable over F.

1. Let $F_{n}^{M W^{\wedge} T r} \Pi_{a, b} E(F)$ denote the subgroup of $\Pi_{a, b} E(F)$ generated by elements of the form

$$
\operatorname{Tr}_{F}(w)^{*}(x) ; \quad x \in F_{n}^{M W} \Pi_{a, b} E(F(w))
$$

as w runs over closed points of $V_{n F}$, separable over F.
2. Let $\left[\Pi_{a, b} E \cdot \mathcal{I}^{n}\right]^{\top r}(F)$ denote the subgroup of $\Pi_{a, b} E(F)$ generated by elements of the form

$$
\operatorname{Tr}_{F}(w)^{*}(x \cdot y) ; \quad x \in \Pi_{a, b} E(F(w)), y \in I(F(w))^{n}
$$

as w runs over closed points of $V_{n F}$, separable over F.
Remark 9.11. It follows directly from the definitions that, for w a closed point of $V_{n F}, x \in K_{n-b}^{M W}(F), y \in \Pi_{a, n} E(F(w))$, we have

$$
\operatorname{Tr}_{F}(w)^{*}\left(y \cdot p^{*} x\right)=\operatorname{Tr}_{F}(w)^{*}(y) \cdot x
$$

where $p^{*} x \in K_{n-b}^{M W}(F(w))$ is the extension of scalars of of x. In particular, [$\Pi_{a, b} E$. $\left.\mathcal{I}^{n}\right]^{T r}(F)$ is a $K_{0}^{M W}(F)$-submodule of $\Pi_{a, b} E(F)$ containing $\Pi_{a, b} E(F) I(F)^{n}$.

Theorem 9.12. Let k be a perfect field of characteristic $\neq 2$. Let $E=\Omega_{T}^{\infty} \mathcal{E}$ for some $\mathcal{E} \in \mathcal{S H}(k)$ with $\Pi_{a, b} \mathcal{E}=0$ for all $a<0, b \geq 0$. Let $n>p \geq 0$ be integers and let F be a perfect field extension of k. Then

$$
F_{\text {Tate }}^{n} \Pi_{0, p} E(F)=F_{n}^{M W^{\wedge}{ }^{r}} \Pi_{0, p} E(F) .
$$

For $p \geq n \geq 0$, we have the identity of sheaves $F_{\text {Tate }}^{n} \Pi_{0, p} E=\Pi_{0, p} E$.

Proof. First suppose $n>p$. By lemma 2.2 and lemma 9.9 we reduce to the case $p=0$.

The fact that we have an inclusion of $K_{0}^{M W}(F)$-submodules of $\Pi_{0,0} E(F)$,

$$
F_{\text {Tate }}^{n} \Pi_{0,0} E(F) \subset F_{n}^{M W^{\wedge}{ }^{r} r} \Pi_{0,0} E(F),
$$

follows from theorem 9.6. Indeed, as F is perfect, each element of the form (9.1) is of the form $\operatorname{Tr}_{F}(w)\left(\rho_{w} \cdot z\right)$, with $\rho_{w} \in \Pi_{0, n} E(w), z \in K_{n}^{M W}(F(w))$, hence in $F_{n}^{M W^{\wedge} T r} \Pi_{0,0} E(F)$.

To show the other inclusion, it suffices by lemma 9.4 and theorem 9.6 to show that, for each field K finitely generated over k, the elements $\left[-u_{1} / u_{0}\right] \cdot \ldots \cdot\left[-u_{n} / u_{0}\right]$, with $\left(u_{0}, \ldots, u_{n}\right) \in V_{n}(K)$, generate $K_{n}^{M W}(K)$ as a module over $K_{0}^{M W}(K)$.

We note that the map sending $\left(u_{0}, \ldots, u_{n}\right)$ to $\left(1 / u_{0},-u_{1} / u_{0}, \ldots,-u_{n} / u_{0}\right)$ is an involution of V_{n}, so it suffices to show that the elements $\left[u_{1}\right] \cdot \ldots \cdot\left[u_{n}\right]$, with $\left(u_{0}, \ldots, u_{n}\right) \in V_{n}(K)$, generate.

Sending $\left(u_{0}, \ldots, u_{n}\right)$ to $\left(u_{1}, \ldots, u_{n}\right)$ identifies V_{n} with $\left(\mathbb{A}^{1} \backslash\{0\}\right)^{n} \backslash H$. But by definition $K_{n}^{M W}(K)$ is generated by elements $\left[u_{1}\right] \cdot \ldots \cdot\left[u_{n}\right]$ with $u_{i} \in K^{\times}$; it thus suffices to show that $\left[u_{1}\right] \cdot \ldots \cdot\left[u_{n}\right]=0$ in $K_{n}^{M W}(K)$ if $\sum_{i} u_{i}=1$; this is lemma 9.7

If $p \geq n \geq 0$, the universal property of $f_{n} E \rightarrow E$ gives us the isomorphism for $U \in \mathbf{S m} / k$

$$
\operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(\Sigma_{s}^{\infty} \Sigma_{\mathbb{G}_{m}}^{p} U_{+}, E\right) \cong \operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(\Sigma_{s}^{\infty} \Sigma_{\mathbb{G}_{m}}^{p} U_{+}, f_{n} E\right)
$$

since $\Sigma_{s}^{\infty} \Sigma_{\mathbb{G}_{m}}^{p} U_{+}$is in $\Sigma_{T}^{p} \mathcal{S H}_{S^{1}}(k)$ for $U \in \mathbf{S m} / k$. As these groups of morphisms define the presheaves whose respective sheaves are $\Pi_{0, p} E(F)$ and $\Pi_{0, p} f_{n} E$, the map $\Pi_{0, p} f_{n} E \rightarrow \Pi_{0, p} E$ is an isomorphism, hence $F_{\text {Tate }}^{n} \Pi_{0, p} E=\Pi_{0, p} E$.

Remark 9.13. The reader may object that the collection of transfer maps used to define $F_{n}^{M W^{\wedge}{ }^{T r}} \Pi_{0, p} E(F)$ is rather artificial. However, the fact that the general transfer maps mentioned in remark 9.5 respect the filtration $F_{\text {Tate }}^{*} \pi_{m} E$, together with theorem 9.12, shows that, if we were to allow arbitrary transfer maps in our definition of $F_{n}^{M W^{\wedge} T r} \Pi_{0, p} E(F)$, we would arrive at the same subgroup of $\Pi_{0, m} E(F)$.

Our main result for a T-spectrum, theorem 2, follows easily from theorem 9.12 ,
Proof of theorem 2, Using lemma 2.2, we reduce to the case $p=0$. Essentially the same argument as used at the end of the proof of theorem 9.12 proves the part of theorem 2 for $n \leq 0$.

If $n>0$, then for $b \geq 0$, we have

$$
\begin{aligned}
& \pi_{a, b} \mathcal{E} \cong \pi_{a, b} \Omega_{T}^{\infty} \mathcal{E} \\
& \pi_{a, b} f_{n} \mathcal{E} \cong \pi_{a, b} \Omega_{T}^{\infty} f_{n} \mathcal{E} \cong \pi_{a, b} f_{n} \Omega_{T}^{\infty} \mathcal{E}
\end{aligned}
$$

Thus, in case $n>0$, theorem 2 for \mathcal{E} is equivalent to theorem 9.12 for $\Omega_{T}^{\infty} \mathcal{E}$, completing the proof.

Finally, we can prove our main result for the motivic sphere spectrum, theorem 1 Let $\mathcal{E}=\Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}$. Then Morel's isomorphism (9.4) and lemma 2.2 give

$$
\Pi_{a, b} \Omega_{T}^{\infty} \mathcal{E}= \begin{cases}\underline{K}_{q-b}^{M W} & \text { for } a=0, b \geq 0 \\ 0 & \text { for } a<0, b \geq 0\end{cases}
$$

Theorem 9.14. Let k be a perfect field of characteristic $\neq 2$.

1. For all $n>p \geq 0, q \in \mathbb{Z}$, and all perfect field extensions F of k, we have

$$
F_{T a t e}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)=K_{q-p}^{M W}(F) I(F)^{N} \subset K_{q-p}^{M W}(F)
$$

where $N=N(n-p, n-q):=\max (0, \min (n-p, n-q))$. In particular,

$$
F_{\text {Tate }}^{n} \pi_{0,0} \mathbb{S}_{k}(F)=I(F)^{n} \subset \mathrm{GW}(F)
$$

2. For $n \leq p$, we have the identity of sheaves $F_{\text {Tate }}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}=\underline{K_{q-p}}$.
3. In case k has characteristic zero, we have the identity of sheaves

$$
F_{T a t e}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}=\underline{K}_{q-p}^{M W} \mathcal{I}^{N} \subset \underline{K}_{q-p}^{M W}
$$

with N as above.
Proof. Let N be as defined in the statement of the theorem. We first note (3) follows from (1), in fact, from (1) for all fields extensions F finitely generated over k. Indeed, $F_{\text {Tate }}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}$ is the image of the map

$$
\Pi_{0, p} f_{n} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} \rightarrow \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}
$$

induced by the canonical morphism $f_{n} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} \rightarrow \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}$. By results of Morel (9, theorem 3 and lemma 5], both homotopy sheaves are strictly \mathbb{A}^{1}-invariant sheaves of abelian groups. But the category of strictly \mathbb{A}^{1}-invariant sheaves of abelian groups is abelian [9, lemma 6.2.13], hence $F_{\text {Tate }}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}$ is also strictly \mathbb{A}^{1}-invariant. It follows, e.g., from Morel's isomorphism

$$
\pi_{0} \Omega_{T}^{\infty} \sum_{\mathbb{G}_{m}}^{m} \mathbb{S} \cong \pi_{-m,-m} \mathbb{S} \cong \underline{K}_{m}^{M W}
$$

that the sheaves $\underline{K}_{m}^{M W}$ are strictly \mathbb{A}^{1}-invariant; as $\underline{K}_{q-p}^{M W} \mathcal{I}^{N}$ is the image of the map

$$
\times \eta^{M}: \underline{K}_{q-p+M}^{M W} \rightarrow \underline{K}_{q-p}^{M W},
$$

where $M=N$ if $q-p \geq 0, M=p-q+N$ if $q-p<0$, it follows that $\underline{K}_{q-p}^{M W} \mathcal{I}^{N}$ is strictly \mathbb{A}^{1}-invariant as well. Our assertion follows from the fact that a strictly \mathbb{A}^{1}-invariant sheaf \mathcal{F} is zero if and only $\mathcal{F}(k(X))=0$ for all $X \in \mathbf{S m} / k$, which in turn is an easy consequence of [11, lemma 3.3.6].

Next, suppose $n-p \leq 0$. Then $N=0$ and

$$
\begin{array}{rlr}
F_{\mathrm{Tate}}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} & =F_{\mathrm{Tate}}^{n-p} \Pi_{0,0} \Omega_{\mathbb{G}_{m}}^{p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} & \text { (lemma 2.2) } \\
& =\Pi_{0,0} \Omega_{\mathbb{G}_{m}}^{p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} & (n-p<0) \\
& =\Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} & \text { (adjunction) } \\
& =\underline{K}_{q-p}^{M W} & \text { (Morel's theorem) }
\end{array}
$$

proving (2); we may thus assume $n-p>0$.
By (9.4), we may apply theorem 9.12, which tells us that $F_{\text {Tate }}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)$ is the subgroup of $\Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)=K_{q-p}^{M W}(F)$ generated by elements of the form $\operatorname{Tr}_{F}(w)^{*}(y \cdot x)$ with

$$
\begin{aligned}
& y \in \Pi_{0, n} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F(w))=K_{q-n}^{M W}(F(w)) \\
& x \in K_{n-p}^{M W}(F(w))
\end{aligned}
$$

Suppose that $n-q<0$, so $N=0$. Then $q-n \geq 0$ and $n-p>0$, and thus the product map
$\mu_{n-p, q-n}: K_{n-p}^{M W}(F(w)) \otimes K_{q-n}^{M W}(F(w)) \rightarrow K_{q-p}^{M W}(F(w))=\Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F(w))$
is surjective. Since the map $\operatorname{Tr}_{F}(w)$ is an isomorphism for $w \in V_{n}(F)$, we see that

$$
F_{\text {Tate }}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)=\Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)
$$

Suppose $n-q \geq 0$. Then

$$
\times \eta^{n-q}: K_{0}^{M W}(F(w)) \rightarrow K_{q-n}^{M W}(F(w))
$$

is surjective. If $n-p \geq n-q$, then the image of $\mu_{n-p, q-n}$ is the same as the image of the triple product

$$
K_{q-p}^{M W}(F(w)) \otimes K_{n-q}^{M W}(F(w)) \otimes K_{q-n}^{M W}(F(w)) \rightarrow K_{q-p}^{M W}(F(w))
$$

as the image of

$$
\mu_{n-q, q-n}: K_{n-q}^{M W}(F(w)) \otimes K_{q-n}^{M W}(F(w)) \rightarrow K_{0}^{M W}(F(w))
$$

is $I(F(w))^{n-q}$, we see that the image of $\mu_{n-p, q-n}$ is $K_{q-p}^{M W}(F(w)) I(F(w))^{n-q}$ and thus

$$
F_{\mathrm{Tate}}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)=\left[\Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} \mathcal{I}^{N}\right]^{T_{r}}(F)
$$

Similarly, if $n-q \geq n-p$, then the image of $\mu_{n-p, q-n}$ is the same as the image of the triple product

$$
K_{q-p}^{M W}(F(w)) \otimes K_{n-p}^{M W}(F(w)) \otimes K_{p-n}^{M W}(F(w)) \rightarrow K_{q-p}^{M W}(F(w))
$$

which is $K_{q-p}^{M W}(F(w)) I(F(w))^{n-p}$. Thus

$$
F_{\mathrm{Tate}}^{n} \Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)=\left[\Pi_{0, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k} \mathcal{I}^{N}\right]^{\top}(F)
$$

in this case as well.
Thus, to complete the proof, it suffices to show that, for w a closed point of $V_{n F}$, and $N \geq 0$ an integer, we have

$$
\begin{equation*}
\operatorname{Tr}_{F}(w)^{*}\left(K_{q-p}^{M W}(F(w)) I(F(w))^{N}\right) \subset K_{q-p}^{M W}(F) I(F)^{N} \tag{9.5}
\end{equation*}
$$

First suppose that $q-p \geq 0$. Take a closed point $w \in V_{n F}$ and elements $x_{1}, \ldots, x_{N} \in$ $F(w)^{\times}, y \in K_{q-p}^{M W}(F(w))$. We have

$$
\begin{aligned}
\operatorname{Tr}_{F}(w)^{*}\left(y \cdot\left[x_{1}\right] \eta \cdot \ldots \cdot\left[x_{N}\right] \eta\right) & =\operatorname{Tr}_{F}(w)^{*}\left(y \cdot\left[x_{1}\right] \cdot \ldots \cdot\left[x_{N}\right] \eta^{N}\right) \\
& =\operatorname{Tr}_{F}(w)^{*}\left(y \cdot\left[x_{1}\right] \cdot \ldots \cdot\left[x_{N}\right]\right) \cdot \eta^{N}
\end{aligned}
$$

where we use remark 9.11 in the last line. Since $q-p \geq 0, K_{q-p}^{M W}(F) I(F)^{N}$ is the image in $K_{q-p}^{M W}(F)$ of the map

$$
-\times \eta^{N}: K_{q-p+N}^{M W}(F) \rightarrow K_{q-p}^{M W}(F)
$$

which verifies (9.5).
In case $q-p<0$, write $y=y_{0} \eta^{p-q}$, with $y_{0} \in K_{0}^{M W}(F(w))$. As above, we have

$$
\operatorname{Tr}_{F}(w)^{*}\left(y \cdot\left[x_{1}\right] \eta \cdot \ldots \cdot\left[x_{N}\right] \eta\right)=\operatorname{Tr}_{F}(w)^{*}\left(y_{0} \cdot\left[x_{1}\right] \cdot \ldots \cdot\left[x_{N}\right]\right) \cdot \eta^{p-q+N}
$$

which is in $\eta^{p-q} \cdot\left[K_{N}^{M N W}(F) \eta^{N}\right]=K_{q-p}^{M W}(F) I(F)^{N}$, as desired.
Theorem 9.14 yields the main result for the S^{1}-spectra $\Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}$ by using the S^{1}-stable consequences of Morel's unstable computations, theorem 9.8.

Corollary 9.15. Let k be a perfect field of characteristic $\neq 2$.

1. For all $n>p \geq 0, q \geq 1$, and all perfect field extensions F of k, we have

$$
F_{\text {Tate }}^{n} \Pi_{0, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}(F)=K_{q-p}^{M W}(F) I(F)^{N(n-p, n-q)} \subset K_{q-p}^{M W}(F)
$$

with $N(n-p, n-q)$ as in theorem 9.14.
2. For $n \leq p$, we have $F_{\text {Tate }}^{n} \Pi_{0, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}=\Pi_{0, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}$.
3. If char $k=0$, we have the identity of sheaves

$$
F_{\text {Tate }}^{n} \Pi_{0, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}=\underline{K}_{q-p}^{M W} \mathcal{I}^{N(n-p, n-q)} \subset \underline{K}_{q-p}^{M W}
$$

Proof. As in the proof of theorem 9.14 it suffices to prove (1).
The main point is that Morel's unstable computations show that the \mathbb{G}_{m}-stabilization map
$\operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(\Sigma_{s}^{m} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge p} \wedge \operatorname{Spec} F_{+}, \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}\right)$

$$
\rightarrow \operatorname{Hom}_{\mathcal{S H}_{S^{1}}(k)}\left(\Sigma_{s}^{m} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge p+1} \wedge \operatorname{Spec} F_{+}, \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q+1}\right)
$$

is an isomorphism for all $m \leq 0, p \geq 0$ and $q \geq 1$.
Let $E(p, q)=\Omega_{\mathbb{G}_{m}}^{p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}$, and let

$$
E(q-p)=\Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{-p} \Sigma_{T}^{\infty} \mathbb{G}_{m}^{\wedge q}=\Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q-p} \mathbb{S}_{k}
$$

Then

$$
\pi_{a} E(p, q)=\Pi_{a, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}
$$

Thus $\Pi_{a, *} E(p, q)=0$ for $m<0$ and so we may apply proposition 3.4 to give generators of the form $\xi_{w} \circ \Sigma_{s}^{\infty} Q_{F}(w)$ for

$$
F_{\text {Tate }}^{n-p} \Pi_{0,0} \Omega_{\mathbb{G}_{m}}^{p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}(F)=F_{\text {Tate }}^{n} \Pi_{0, p} \Sigma_{s}^{\infty} \mathbb{G}_{m}^{\wedge q}(F)
$$

But ξ_{w} is in

$$
\pi_{-n+p} \Omega_{T}^{n-p} E(p, q)(w)=\pi_{0, n-p} E(p, q)(w)
$$

Similarly, we have generators $\xi_{w}^{\prime} \circ \Sigma_{s}^{\infty} Q_{F}(w)$ for $F_{\text {Tate }}^{n-p} \pi_{0} E(p-q)(F)$, with

$$
\xi_{w}^{\prime} \in \pi_{0, n-p} E(p-q)(w)
$$

But the stabilization map

$$
\pi_{0, n-p} E(p, q)(w) \rightarrow \pi_{0, n-p} E(p+1, q+1)(w)
$$

is an isomorphism, and hence we have an isomorphism from the generators for $F_{\text {Tate }}^{n-p} \pi_{0} E(p, q)(F)$ to the generators for

$$
F_{\text {Tate }}^{n-p} \pi_{0} E(q-p)(F)=\underset{m}{\lim _{\overrightarrow{T a t e}}} F_{\mathrm{Tate}}^{n-p} \pi_{0} E(p+m, q+m)(F)
$$

As the map

$$
\pi_{0} E(p, q)(F) \rightarrow \pi_{0} E(q-p)(F)=K_{q-p}^{M W}(F)
$$

is an isomorphism, it follows that the surjection

$$
F_{\text {Tate }}^{n-p} \pi_{0} E(q-p)(F) \rightarrow F_{\text {Tate }}^{n-p} \pi_{0} E(q-p)
$$

is an isomorphism as well. By theorem 9.14, we have

$$
F_{\text {Tate }}^{n-p} \pi_{0} E(q-p)=K_{q-p}^{M W}(F) I(F)^{N} \subset K_{q-p}^{M W}(F)
$$

completing the proof.

THE SLICE FILTRATION AND GROTHENDIECK-WITT GROUPS

Theorem 9.14 also gives us the T-stable version
Corollary 9.16. Let k be a perfect field of characteristic $\neq 2$. For $n, p, q \in \mathbb{Z}$, and F a perfect field extensions of k, we have

$$
F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}(F)=K_{q-p}^{M W}(F) I(F)^{N(n-p, n-q)} \subset K_{q-p}^{M W}(F)
$$

For $n \leq p$, we have $F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}=\underline{K}_{q-p}^{M W}$. If char $k=0$, we have

$$
F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}=\underline{K}_{q-p}^{M W} \mathcal{I}^{N(n-p, n-q)} \subset \underline{K}_{q-p}^{M W}
$$

Proof. Using lemma 2.2 and lemma 9.9 as in the proof of theorem 9.12 we have

$$
F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}=F_{\text {Tate }}^{n-p+r} \pi_{r, r} \Sigma_{\mathbb{G}_{m}}^{q-p+r} \mathbb{S}_{k}
$$

for all integers r. As our assertion is also stable under this shift operation, we may assume that $p, q \geq 0$. We note that \mathbb{S}_{k} is in $\mathcal{S} \mathcal{H}^{e f f}(k)$, hence so are all $\Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}$ for $q \geq 0$, and thus

$$
F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}=\pi_{p, p} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}
$$

for $n<0, p, q \geq 0$. The truncation functors $f_{n}, n \geq 0$, on $\mathcal{S H}(k)$ and $\mathcal{S H}_{S^{1}}(k)$ commute with Ω_{T}^{∞}, and $\pi_{a, p} \Omega_{T}^{\infty} \mathcal{E}=\pi_{a, p} \mathcal{E}$ for $\mathcal{E} \in \mathcal{S H}(k), p \geq 0$. This reduces us to computing computing $F_{\text {Tate }}^{n} \pi_{p, p} \Omega_{T}^{\infty} \Sigma_{\mathbb{G}_{m}}^{q} \mathbb{S}_{k}$ for $n, p, q \geq 0$, which is theorem 9.14.

10. Epilog: Convergence questions

Voevodsky has stated a conjecture [14, conjecture 13] that would imply that for $\mathcal{E}=\Sigma_{T}^{\infty} X_{+}, X \in \mathbf{S m} / k$, the Tate Postnikov tower is convergent in the following sense: for all $a, b, n \in \mathbb{Z}$, one has

$$
\cap_{m} F_{\text {Tate }}^{m} \pi_{a, b} f_{n} \mathcal{E}=0
$$

Our computation of $F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{T}^{\infty} \mathbb{G}_{m}^{\wedge q}$ gives some evidence for this convergence conjecture.
Proposition 10.1. Let k be a perfect field with char $k \neq 2$. For all $p, q \geq 0$, and all perfect field extensions F of k, we have

$$
\cap_{n} F_{\text {Tate }}^{n} \pi_{p, p} \Sigma_{T}^{\infty} \mathbb{G}_{m}^{\wedge q}(F)=0
$$

Proof. In light of theorem 9.14, the assertion is that the $I(F)$-adic filtration on $K_{q-p}^{M W}(F)$ is separated. By [10, théorème 5.3], for $m \geq 0, K_{m}^{M W}(F)$ fits into a cartesian square of $\mathrm{GW}(F)$-modules

where $K_{m}^{M}(F)$ is the Milnor K-group, q is the quotient map and $P f$ is the map sending a symbol $\left\{u_{1}, \ldots, u_{m}\right\}$ to the class of the Pfister form $\ll u_{1}, \ldots, u_{m} \gg$ $\bmod I(F)^{m+1}$. For $m<0, K_{m}^{M W}(F)$ is isomorphic to the Witt group of $F, W(F)$, that is, the quotient of $\mathrm{GW}(k)$ by the ideal generated by the hyperbolic form $x^{2}-y^{2}$. Also, the map GW $(F) \rightarrow W(F)$ gives an isomorphism of $I(F)^{r}$ with its image in $W(F)$ for all $r \geq 1$. Thus

$$
K_{m}^{M W}(F) I(F)^{n}= \begin{cases}I(F)^{n} \subset W(F) & \text { for } m<0, n \geq 0 \\ I(F)^{n+m} \subset \operatorname{GW}(F) & \text { for } m \geq 0, n \geq 1\end{cases}
$$

The fact that $\cap_{n} I(F)^{n}=0$ in $W(F)$ or equivalently in $\mathrm{GW}(F)$ is a theorem of Arason and Pfister [1].

Remarks 10.2. 1. The proof in [10] that $K_{m}^{M W}(F)$ fits into a cartesian square as above relies the Milnor conjecture.
2. Voevodsky's conjecture [loc. cit.] asserts the convergence for a wider class of objects in $\mathcal{S H}(k)$ than just the T-suspension spectra of smooth k-schemes. The selected class is the triangulated category generated by $\Sigma_{T}^{n} \Sigma_{T}^{\infty} X_{+}, X \in \mathbf{S m} / k$, $n \in \mathbb{Z}$ and the taking of direct summands. However, as pointed out to me by Igor Kriz, the convergence fails for this larger class of objects. In fact, take \mathcal{E} to be the Moore spectrum \mathbb{S}_{k} / ℓ for some prime $\ell \neq 2$. Since $\Pi_{a, q} \mathbb{S}_{k}=0$ for $a<0$, proposition 3.2 shows that $\Pi_{a, q} f_{n} \mathbb{S}_{k}=0$ for $a<0$, and thus we have the right exact sequence for all $n \geq 0$

$$
\pi_{0,0} f_{n} \mathbb{S}_{k} \xrightarrow{\times \ell} \pi_{0,0} f_{n} \mathbb{S}_{k} \rightarrow \pi_{0,0} f_{n} \mathcal{E} \rightarrow 0
$$

In particular, we have

$$
F_{\text {Tate }}^{n} \pi_{0,0} \mathcal{E}(k)=\operatorname{im}\left(F_{\text {Tate }}^{n} \pi_{0,0} \mathbb{S}_{k}(k) \rightarrow \pi_{0,0} \mathbb{S}_{k}(k) / \ell\right)=i m\left(I(k)^{n} \rightarrow \mathrm{GW}(k) / \ell\right)
$$

Take $k=\mathbb{R}$. Then $G W(\mathbb{R})=\mathbb{Z} \oplus \mathbb{Z}$, with virtual rank and virtual index giving the two factors. The augmentation ideal $I(\mathbb{R})$ is thus isomorphic to \mathbb{Z} via the index and it is not hard to see that $I(\mathbb{R})^{n}=\left(2^{n-1}\right) \subset \mathbb{Z}=I(\mathbb{R})$. Thus $\pi_{0,0} \mathcal{E}=\mathbb{Z} / \ell \oplus \mathbb{Z} / \ell$ and the filtration $F_{\text {Tate }}^{n} \pi_{0,0} \mathcal{E}$ is constant, equal to $\mathbb{Z} / \ell=I(\mathbb{R}) / \ell$, and is therefore not separated.

The convergence property is thus not a "triangulated" one in general, and therefore seems to be quite subtle. However, if the I-adic filtration on $\mathrm{GW}(F)$ is finite (possibly of varying length depending on F) for all finitely generated F over k, then our computations (at least in characteristic zero) show that the filtration $F_{\text {Tate }}^{*} \pi_{p, p} \Sigma_{T}^{\infty} \mathbb{G}_{m}^{\wedge q}$ is at least locally finite, and thus has better triangulated properties; in particular, for $\ell \neq 2$,

$$
\pi_{0,0}\left(\mathbb{S}_{k} / \ell\right)=\mathbb{Z} / \ell, F_{\text {Tate }}^{n} \pi_{0,0}\left(\mathbb{S}_{k} / \ell\right)=0 \text { for } n>0
$$

as the augmentation ideal in $\mathrm{GW}(F)$ is purely two-primary torsion, and $\mathcal{I} \pi_{0,0} \mathbb{S}_{k} / \ell=$ 0 . One can therefore ask if Voevodsky's convergence conjecture is true if one assumes the finiteness of the $I(F)$-adic filtration on $\mathrm{GW}(F)$ for all finitely generated fields F over k.

References

[1] Arason, J. K. and Pfister, A., Beweis des Krullschen Durchschnittsatzes für den Wittring. Invent. Math. 12 (1971), 173-176.
[2] Bousfield, A. K. and Kan, D. M.Homotopy limits, completions and localizations. Lecture Notes in Mathematics, 304. Springer-Verlag, Berlin-New York, 1972.
[3] Goerss, P. G.; Jardine, J. F., Localization theories for simplicial presheaves. Canad. J. Math. 50 (1998), no. 5, 1048-1089.
[4] Jardine, J. F., Simplicial presheaves, J. Pure Appl. Algebra 47 (1987), no. 1, 35-87
[5] Jardine, J.F., Motivic symmetric spectra, Doc. Math. 5 (2000), 445-553.
[6] Levine, M., The homotopy coniveau tower. J Topology 1 (2008) 217-267.
[7] Levine, M., Chow's moving lemma in \mathbb{A}^{1}-homotopy theory. K-theory 37 (1-2) (2006) 129-209.
[8] Morel, F., \mathbb{A}^{1}-Algebraic topology over a field, preprint 19.11.2006. http://www.mathematik.uni-muenchen.de/~morel/A1homotopy.pdf
[9] Morel, F., The stable \mathbb{A}^{1}-connectivity theorems, K-theory, 2005, 35, pp 1-68.
[10] Morel, F. Sur les puissances de l'idéal fondamental de l'anneau de Witt. Comment. Math. Helv. 79 (2004), no. 4, 689-703.
[11] Morel, F., An introduction to \mathbb{A}^{1}-homotopy theory. Contemporary developments in algebraic K-theory 357-441, ICTP Lect. Notes, XV, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004.
[12] Morel, F. and Voevodsky, V., \mathbb{A}^{1}-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45-143.
[13] Neeman, A, Triangulated categories. Annals of Mathematics Studies, 148. Princeton University Press, Princeton, NJ, 2001.
[14] Voevodsky, V., Open problems in the motivic stable homotopy theory. I. Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998), 3-34, Int. Press Lect. Ser., 3, I, Int. Press, Somerville, MA, 2002.
[15] Voevodsky, V. A possible new approach to the motivic spectral sequence for algebraic K theory, Recent progress in homotopy theory (Baltimore, MD, 2000) 371-379, Contemp. Math., 293 (Amer. Math. Soc., Providence, RI, 2002).

Universität Duisburg-Essen, Fakultät Mathematik, Campus Essen, 45117 Essen, GerMANY

E-mail address: marc.levine@uni-due.de

[^0]: Date: December 30, 2010.
 2000 Mathematics Subject Classification. Primary 14C25, 19E15; Secondary 19E08 14F42, 55P42.

 Key words and phrases. Algebraic cycles, Morel-Voevodsky stable homotopy category, slice filtration.

 Research supported by the Alexander von Humboldt Foundation.

