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THE SLICE FILTRATION AND GROTHENDIECK-WITT

GROUPS

MARC LEVINE

Abstract. Let k be a perfect field of characteristic different from two. We
show that the filtration on the Grothendieck-Witt group GW(k) induced by
the slice filtration for the sphere spectrum in the motivic stable homotopy
category is the I-adic filtration, where I is the augmentation ideal in GW(k).
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Introduction

Let k be a perfect field of characteristic different from two. A fundamental
theorem of Morel [8, 11] states that the endomorphism ring of the motivic sphere
spectrum Sk ∈ SH(k) is naturally isomorphic to the Grothendieck-Witt ring of
quadratic forms over k, GW(k). This result follows from Morel’s calculation [8,
corollary 3.43] of the corresponding bi-graded homotopy sheaves of Sn∧G∧q

m in the
unstable motivic homotopy category H•(k) as the Milnor-Witt sheaves

πm+p,p(S
n ∧G∧q

m ) ∼=

{

KMW
q−p for n = m ≥ 2, q ≥ 1, p ≥ 0,

0 for m < n, p, q ≥ 0.
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Evaluating at k and taking m = n, p = q gives

EndH•(k)(S
m ∧G∧q

m ) = KMW
0 (k) for m ≥ 2, q ≥ 1.

Combining this with Morel’s isomorphism KMW
0 (k) ∼= GW(k) and stabilizing gives

Morel’s theorem

EndSH(k)(Sk) = GW(k).

This also leads to the computation of the homotopy sheaf πp,pΣ
∞
s G∧q

m (in the S1-

stable homotopy category SHS1(k)) as KMW
q−p , for all q ≥ 1, p ≥ 0.

In another direction, Voevodsky [15] has defined natural towers in SH(k) and
SHS1(k), which are analogs of the classical Postnikov tower in SH; we call each of
these towers the Tate Postnikov tower (in SH(k) or SHS1(k), as the case may be).
Just as the classical Postnikov tower measures the Sn-connectivity of a spectrum,
the Tate Postnikov tower measures the S∗,n connectivity of a motivic spectrum.

In particular, the tower for Sk

. . .→ fn+1Sk → fnSk → . . .→ f0Sk = Sk

gives a filtration on the sheaf π0,0Sk by

FnTateπ0,0Sk := im(π0,0fnSk → π0,0Sk).

We have a similarly defined filtration on πp,pΣ
∞
s G∧q

m , which determines FnTateπ0,0Sk :
by

FnTateπ0,0Sk := lim
−→
q

Fn+qTateπq,qΣ
∞
s G∧q

m (k).

Our main result is the computation of FnTateπp,pΣ
∞
s G∧q

m , and thereby FnTateπ0,0Sk
(on perfect fields)

Theorem 1. Let k be a perfect field of characteristic 6= 2 and let F be a perfect field

extension of k. Let n, p ≥ 0, q ≥ 1 be integers and let N(a, b) = max(0,min(a, b)).

Then via the identification given by Morel’s isomorphism πp,pΣ
∞
s G∧q

m
∼= KMW

q−p , we

have

Fn
Tate

πp,pΣ
∞
s G∧q

m (F ) = KMW
q−p (F ) · I(F )N(n−p,n−q),

where I(F ) ⊂ KMW
0 (F ) is the augmentation ideal. After stabilizing, this gives

Fn
Tate

πp,pΣ
q
Gm

Sk(F ) = KMW
q−p (F )I(F )N(n−p,n−q), n, p, q ∈ Z,

in particular,

Fn
Tate

π0,0Sk(F ) = I(F )max(n,0).

See theorem 9.14, corollary 9.15 and corollary 9.16 for details.

Remark 1. In case k is a field of characteristic 0, we have a finer result, namely the
identities stated in theorem 1 extend to identities on the corresponding sheaves, for
example

FnTateπp,pΣ
∞
s G∧q

m = KMW
q−p · I

N(n−p,n−q).

Of course, one can more generally consider the filtration F ∗
Tateπa,bE on the homo-

topy sheaves πa,bE induced by the Tate Postnikov tower for an arbitrary T -spectrum
E ∈ SH(k). In general, we cannot say anything about this filtration, but assum-
ing a certain connectedness condition, we can compute the filtration on the first
non-vanishing homotopy sheaves, evaluated on perfect fields.
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Theorem 2. Let k be a perfect field of characteristic 6= 2 and let F be a perfect

field extension of k. Take E ∈ SH(k) and suppose that πa+b,bE = 0 for a < 0,
b ∈ Z. Then for n > p,

Fn
Tate

πp,pE(F ) = [πn,nE ·K
MW
n−p ]

̂Tr(F ).

For n ≤ p, we have the identity of sheaves

Fn
Tate

πp,pE = πp,pE .

To explain the notation: The canonical action of π∗,∗Sk on π∗,∗E , gives, for each
finitely generated field extension L of k, a right KMW

−∗ (L)-module structure on

π∗,∗E(L), giving us the subgroup πn,nE(L) ·KMW
n−p (L) of πp,pE(L). This extends to

arbitrary field extensions of k by taking the evident colimit. Also, for each closed
point w ∈ AnF , we have a canonically defined transfer map

TrF (w)
∗ : πa,bE(F (w))→ πa,bE(F )

(see §8 for details). [πn,nE ·K
MW
n−p ]

T̂ r (F ) is the subgroup of πp,pE(F ) generated by

the subgroups TrF (w)
∗(πn,nE(F (w)) ·KMW

n−p (F (w))), as w runs over closed points
of AnF . See theorem 9.12 for details.

Theorem 1 is an easy consequence of theorem 2; one uses Morel’s unstable com-
putations of the maps Sa,b ∧ SpecF+ → Sm,n to reduce theorem 1 to its T -stable
version and then one uses the explicit presentation of KMW

∗ to compute

[KMW
q−n ·K

MW
n−p ]]

̂Tr (F ) = KMW
q−p (F )IN(n−p,n−q)(F ).

Morel’s results on strictly A1-invariant sheaves allow us to go from the statement
on functions fields to the one for the sheaves.

The restriction to perfect fields arises from a separability assumption needed to
compute the action of transfers on our selected generators for FnTateπp,pE . We avoid
characteristic two so as to have a description of the homotopy sheaves of the sphere
spectrum in terms of Milnor-Witt K-theory.

The paper is organized as follows. After setting up our notation and going over
some background material on motivic homotopy theory in section 1, we recall some
basic facts about the Tate Postnikov tower in section 2. In section 3 we prove some
connectedness results for the terms fnE, snE in the Tate Postnikov tower for an S1-
spectrum E and give a description of generators for the subgroup FnTateπ0E(F ), all
under a certain connectedness assumption on E. The generators are then factored
into a product of two terms, one depending on E, the other only on the choice of
a closed point of ∆n

F \ ∂∆
n
F . We analyze the second term in sections 4-8, our main

result being a description of this term as the nth suspension of a “symbol map”
associated to units u1, . . . , un ∈ F

×. This is the main computation achieved in this
paper. It is then relatively simple to feed this result into our description of the
generators for FnTateπ0E(F ) to prove theorems 1 and 2 in section 9; we conclude in
section 10 with some remarks on the convergence of the Tate Postnikov tower.

I thank the referee for making several helpful suggestions and for pointing out
a number of errors, including an incorrect formulation of theorem 2, in an earlier
version of this paper. Finally, I wish to thank the editors for giving me the oppor-
tunity of contributing to this volume. As a small token of my gratitude to Eckart
for all of his aid and support over many years, I dedicate this article to his memory.
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1. Background and notation

Unless we specify otherwise, k will be a fixed perfect base field, without restric-
tion on the characteristic. For details on the following constructions, we refer the
reader to [3, 4, 5, 8, 9, 11, 12].

We write [n] := {0, . . . , n} (including [−1] = ∅) and let ∆ be the category with
objects [n], n = 0, 1, . . ., and morphisms [n] → [m] the order-preserving maps of
sets. Given a category C, the category of simplicial objects in C is as usual the
category of functors ∆op → C.

Spc will denote the category of simplicial sets, Spc• the category of pointed
simplicial sets, H := Spc[WE−1] the classical unstable homotopy category and
H• := Spc•[WE−1] the pointed version. We denote the suspension operator −∧S1

by Σs. Spt is the category of suspension spectra and SH := Spt[WE−1] the
classical stable homotopy category.

The motivic versions are as follows: Sm/k is the category of smooth finite type
k-schemes. Spc(k) is the category of Spc-valued presheaves on Sm/k, Spc•(k) the
Spc•-valued presheaves, and SptS1(k) the Spt-valued presheaves. These all come
with “motivic” model structures (see for example [5]); we denote the corresponding
homotopy categories by H(k), H•(k) and SHS1(k), respectively. Sending X ∈
Sm/k to the sheaf of sets on Sm/k represented by X (also denoted X) gives an
embedding of Sm/k to Spc(k); we have the similarly defined embedding of the
category of smooth pointed schemes over k into Spc•(k). All these categories are
equipped with an internal Hom, denoted Hom.

Let Gm be the pointed k-scheme (A1 \ 0, 1). In H•(k) we have the objects
Sa+b,b := ΣasG

∧b
m , for b ≥ 1, Sn,0 := Sn = Σns Spec k+. If X is a scheme with a

k-point x, we write (X, x) for the corresponding object in Spc•(k) or H•(k). For
a cofibration Y → X in Spc(k), we usually give the quotient X/Y the canonical
base-point Y/Y, but on occasion, we will give X/Y a base-point coming from a
point x ∈ X (k); we write this as (X/Y, x).

We let T := A1/(A1 \ {0}) and let SptT (k) denote the category of T -spectra,
i.e., spectra in Spc•(k) with respect to the T -suspension functor ΣT := − ∧ T .
SptT (k) has a motivic model structure (see [5]) and SH(k) is the homotopy cat-
egory. We can also form the category of spectra in SptS1(k) with respect to ΣT ;
with an appropriate model structure the resulting homotopy category is equivalent
to SH(k). We will ignore the subtleties of this distinction and simply identify the
two homotopy categories.

Both SHS1(k) and SH(k) are triangulated categories with suspension functor
Σs. We have the triangle of infinite suspension functors Σ∞ and their right adjoints
Ω∞

H•(k)
Σ∞

s //

Σ∞

T %%J
J

J
J

J
J

J
J

J

SHS1(k)

Σ∞

T

��

SH(k)

H•(k) SHS1(k)
Ω∞

soo

SH(k)

Ω∞

T

OO

Ω∞

T

eeJ
J
J
J
J
J
J
J
J

both commutative up to natural isomorphism. These are all left, resp. right derived
versions of Quillen adjoint pairs of functors on the underlying model categories. We
note that the suspension functor ΣGm

is invertible on SH(k).
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For X ∈ H•(k), we have the bi-graded homotopy sheaf πa,bX , defined for b ≥ 0,
a− b ≥ 0, as the Nisnevich sheaf associated to the presheaf on Sm/k

U 7→ HomH•(k)(Σ
a−b
s ΣbGm

U+,X ).

These extend in the usual way to bi-graded homotopy sheaves πa,bE for E ∈
SHS1(k), b ≥ 0, a ∈ Z, and πa,bE for E ∈ SH(k), a, b ∈ Z, by taking the Nis-
nevich sheaf associated to

U 7→ HomSH
S1(k)(Σ

a−b
s ΣbGm

Σ∞
s U+, E) or U 7→ HomSH(k)(Σ

a−b
s ΣbGm

Σ∞
T U+, E),

as the case may be. We write πn for πn,0; for e.g. E ∈ SptS1(k) fibrant, πnE is
the Nisnevich sheaf associated to the presheaf U 7→ πn(E(U)).

For F a finitely generated field extension of k, we may view SpecF as the generic
point of some X ∈ Sm/k. Thus, for a Nisnevich sheaf S on Sm/k, we may define
S(F ) as the stalk of S at SpecF ∈ X . For an arbitrary field extension F of k (not
necessarily finitely generated over k), we define S(F ) as the colimit over S(Fα), as
Fα runs over subfields of F containing k and finitely generated over k.

2. The homotopy coniveau tower

Our computations rely heavily on our model for the Tate Postnikov tower in
SHS1(k), which we briefly recall (for details, we refer the reader to [6]). We start
by recalling the Tate Postnikov tower in SHS1(k) and introducing some notation.

Fix a perfect base-field k. Let

ΣT : SHS1(k)→ SHS1(k)

be the T -suspension functor. For n ≥ 0, we let ΣnTSHS1(k) be the localizing subcat-
egory of SHS1(k) generated by infinite suspension spectra of the form ΣnTΣ

∞
s X+,

with X ∈ Sm/k. We note that Σ0
TSHS1(k) = SHS1(k). The inclusion functor

in : ΣnTSHS1(k)→ SHS1(k) admits, by results of Neeman [13], a right adjoint rn;
define the functor fn : SHS1(k) → SHS1(k) by fn := in ◦ rn. The unit for the
adjunction gives us the natural morphism

ρn : fnE → E

for E ∈ SHS1(k); similarly, the inclusion ΣmT SHS1(k) ⊂ ΣnTSHS1(k) for n < m
gives the natural transformation fmE → fnE, forming the Tate Postnikov tower

. . .→ fn+1E → fnE → . . .→ f0E = E.

We complete fn+1E → fnE to a distinguished triangle

fn+1E → fnE → snE → fn+1E[1];

this turns out to be functorial in E. The object snE is the nth slice of E.
There is an analogous construction in SH(k): For n ∈ Z, let ΣnTSH

eff (k) ⊂
SH(k) be the localizing category generated by the T -suspension spectra ΣnTΣ

∞
T X+,

for X ∈ Sm/k. As above, the inclusion in : ΣnTSH
eff (k) → SH(k) admits a left

adjoint rn, giving us the truncation functor fn and the Postnikov tower

. . .→ fn+1E → fnE → . . .→ E .

Note that this tower is in general infinite in both directions. We define the layer
snE as above.

By [6, theorem 7.4.1], the 0-space functor Ω∞
T sends ΣnTSH

eff (k) to ΣnTSHS1(k).
This fact, together with the universal properties of the truncation functors fn in
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SHS1(k) and SH(k), plus the fact that Ω∞
T is a right adjoint, gives the canonical

isomorphism for n ≥ 0

(2.1) fnΩ
∞
T E
∼= Ω∞

T fnE .

Furthermore, for E ∈ SHS1(k), we have (by [6, theorem 7.4.2]) the canonical
isomorphism

(2.2) ΩGm
fnE = fn−1ΩGm

E.

As ΩGm
: SH(k)→ SH(k) is an auto-equivalence, and restricts to an equivalence

ΩGm
: ΣnTSH

eff (k)→ Σn−1
T SHeff (k),

the analogous identity in SH(k) holds as well.

Definition 2.1. For a ∈ Z, b ≥ 0, E ∈ SHS1(k), define the filtration FnTateπa,bE,
n ≥ 0, of πa,bE by

FnTateπa,bE := im(πa,bfnE → πa,bE).

Similarly, for E ∈ SH(k), a, b, n ∈ Z, define

FnTateπa,bE := im(πa,bfnE → πa,bE).

The main object of this paper is to understand FnTateπ0E for suitable E. For
later use, we note the following

Lemma 2.2. 1. For E ∈ SHS1(k), n, p, a, b ∈ Z with n, p, b, n− p, b − p ≥ 0, the
adjunction isomorphism πa,bE ∼= πa−p.b−pΩ

p
Gm
E induces an isomorphism

Fn
Tate

πa,bE ∼= Fn−p
Tate

πa−p,b−pΩ
p
Gm
E.

Similarly, for E ∈ SH(k), n, p, a, b ∈ Z, the adjunction isomorphism πa,bE ∼=
πa−p.b−pΩ

p
Gm
E induces an isomorphism

Fn
Tate

πa,bE ∼= Fn−p
Tate

πa−p,b−pΩ
p
Gm
E .

2. For E ∈ SH(k), a, b, n ∈ Z, with b, n ≥ 0, we have a canonical isomorphism

ϕE,a,b,n : πa,bfnE → πa,bΩ
∞
T fnE ,

inducing an isomorphism Fn
Tate

πa,bE ∼= Fn
Tate

πa,bΩ
∞
T E.

Proof. (1) By (2.2), adjunction induces isomorphisms

FnTateπa,bE := im(πa,bfnE → πa,bE)

∼= im(πa−p,b−pΩ
p
Gm
fnE → πa−p,b−pΩ

p
Gm
E)

= im(πa−p,b−pfn−pΩ
p
Gm
E → πa−p,b−pΩ

p
Gm
E)

= Fn−pTateπa−p,b−pΩ
p
Gm
E.

The proof for E ∈ SH(k) is the same.
For (2), the isomorphism ϕE,a,b,n arises from (2.1) and the adjunction isomor-

phism

HomSH
S1(k)(Σ

∞
s Σa−bs ΣbGm

U+, fnΩ
∞
T E) ∼= HomSH

S1(k)(Σ
∞
s Σa−bs ΣbGm

U+,Ω
∞
T fnE)

∼= HomSH(k)(Σ
∞
T Σa−bs ΣbGm

U+, E).

�
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We now turn to a discussion of our model for fnE(X), X ∈ Sm/k. We
start with the cosimplicial scheme n 7→ ∆n, with ∆n the algebraic n-simplex

Spec k[t0, . . . , tn]/
∑

i ti − 1. The cosimplicial structure is given by sending a map
g : [n]→ [m] to the map g : ∆n → ∆m determined by

g∗(ti) =

{

∑

j,g(j)=i tj if g−1(i) 6= ∅

0 else.

A face of ∆m is a closed subscheme F defined by equations ti1 = . . . = tir = 0;
we let ∂∆n ⊂ ∆n be the closed subscheme defined by

∏n
i=0 ti = 0, i.e., ∂∆n is the

union of all the proper faces.

Take X ∈ Sm/k. We let S
(q)
X (m) denote the set of closed subsets W ⊂ X ×∆m

such that codimX×FW ∩X×F ≥ q for all faces F ⊂ ∆m (including F = ∆m). We

make S
(q)
X (m) into a partially ordered set via inclusions of closed subsets. Sending

m to S
(q)
X (m) and g : [n] → [m] to g−1 : S

(q)
X (m) → S

(q)
X (n) gives us the simplicial

poset S
(q)
X .

Now take E ∈ SptS1(k). For X ∈ Sm/k and closed subset W ⊂ X , we have the
spectrum with supports EW (X) defined as the homotopy fiber of the restriction
map E(X)→ E(X \W ). This construction is functorial in the pair (X,W ), where
we define a map f : (Y, T ) → (X,W ) as a morphism f : Y → X in Sm/k with
f−1(W ) ⊂ T .

Define

E(q)(X,m) := hocolim
W∈S

(q)
X

(m)

EW (X ×∆m).

The fact that m 7→ S
(q)
X (m) is a simplicial poset, and (Y, T ) 7→ ET (Y ) is a functor

from the category of pairs to spectra shows thatm 7→ E(q)(X,m) defines a simplicial
spectrum. We denote the associated total spectrum by E(q)(X).

For q ≥ q′, the inclusions S
(q)
X (m) ⊂ S

(q′)
X (m) induces a map of simplicial posets

S
(q)
X ⊂ S

(q′)
X and thus a morphism of spectra iq′,q : E

(q)(X) → E(q′)(X). We have
as well the natural map

ǫX : E(X)→ Tot(E(X ×∆∗)) = E(0)(X),

which is a weak equivalence if E is homotopy invariant. Together, this forms the
augmented homotopy coniveau tower tower

E(∗)(X) := . . .→ E(q+1)(X)
iq
−→ E(q)(X)

iq−1
−−−→ . . . E(1)(X)

i0−→ E(0)(X)
ǫX←−− E(X)

with iq := iq,q+1. Thus, for homotopy invariant E, we have the homotopy coniveau
tower in SH

E(∗)(X) := . . .→ E(q+1)(X)
iq
−→ E(q)(X)

iq−1
−−−→ . . . E(1)(X)

i0−→ E(0)(X) ∼= E(X).

Letting Sm//k denote the subcategory of Sm/k with the same objects and with
morphisms the smooth morphisms, it is not hard to see that sending X to E(∗)(X)
defines a functor from Sm//kop to augmented towers of spectra.

On the other hand, for E ∈ SptS1(k), we have the (augmented) Tate Postnikov
tower

f∗E := . . .→ fq+1E → fqE → . . .→ f0E ∼= E

in SHS1(k), which we may evaluate at X ∈ Sm/k, giving the tower f∗E(X) in
SH, augmented over E(X).
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As a direct consequence of our main result (theorem 7.1.1) from [6] we have

Theorem 2.3. Let E be a quasi-fibrant object in SptS1(k) for the model structure

described in [4], and take X ∈ Sm/k. Then there is an isomorphism of augmented

towers in SH

(f∗E)(X) ∼= E(∗)(X)

over the identity on E(X), which is natural with respect to smooth morphisms in

Sm/k.

In particular, we may use the explicit model E(q)(X) to understand (fqE)(X).

Remark 2.4. For X,Y ∈ Sm/k with given k-points x ∈ X(k), y ∈ Y (k), we have a
natural isomorphism in SHS1(k)

Σ∞
s (X ∧ Y )⊕ Σ∞

s (X ∨ Y ) ∼= Σ∞
s (X × Y )

i.e. Σ∞
s (X ∧Y ) is a canonically defined summand of Σ∞

s (X ×Y ). In particular for
E a quasi-fibrant object of SptS1(k), we have a natural isomorphism in SH

Hom(Σ∞
s (X ∧ Y ), E) ∼= hofib (E(X × Y )→ hofib(E(X)⊕ E(Y )→ E(k)))

where the maps are induced by the evident restriction maps. In particular, we may
define E(X ∧ Y ) via the above isomorphism, and our comparison results for Tate
Postnikov tower and homotopy coniveau tower extend to values at smash products
of smooth pointed schemes over k.

3. Connectedness and generators for π0

As in section 2, our base-field k is perfect. We fix a quasi-fibrant S1-spectrum
E ∈ SptS1(k).

Lemma 3.1. Let F be a finitely generated field extension of k, x ∈ AnF a closed

point. Then for every m > 0, the map

i0∗ : E(x,0)(An × AmF )→ E(x×FA
m
F )(An × AmF )

induced by the map of pairs

idAn×Am : (An × AmF , x× AmF )→ (An × AmF , (x, 0))

is the zero-map in SH. In particular, the induced map on homotopy groups is the

zero map.

Proof. We use the Morel-Voevodsky purity isomorphisms in H•(k) [12, Theorem
3.2.23], with the isomorphisms defined via a fixed choice of generators for the max-
imal ideal mx ⊂ OAn

F
,x and m0 ⊂ OAm,0

AnF × Am/(AnF × Am \ {(x, 0)}) ∼= Σn+mT (x, 0)+
∼= ΣnTx× Am/(x× Am \ {(x, 0)})

AnF × Am/(AnF × Am \ x× Am) ∼= ΣnTx× Am+ .

Via these isomorphisms, the quotient map

q : AnF × Am/(AnF × Am \ x× Am)→ AnF × Am/(AnF × Am \ {(x, 0})

is isomorphic to the nth T -suspension of the quotient map

q′ : x× Am+ → x× Am/(x× Am \ {(x, 0)})
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As i0∗ is the map induced by applying Hom(−, E) to Σ∞
s q, we need only show

that q′ factors through the map x × Am+ → ∗ (in H•(k)). This follows from the
commutative diagram

x× 1+
i

∼
//

��

x× Am+

q′

��

∗ // x× Am/(x× Am \ {(x, 0)}),

where 1 = (1, . . . , 1) ∈ Am, since i is an isomorphism in H•(k) by homotopy
invariance. �

We have the re-indexed homotopy sheaves Πn,m(E) := πn+m,m(E). We have as
well the sheaf πnE := πn,0E; we call E m-connected if πn(E) = 0 for all n ≤ m.

Since E(n)(X) = Tot[m 7→ E(n)(X,m)], we have the strongly convergent spectral
sequence

(3.1) E1
p,q(X) = πqE

(n)(X, p) =⇒ πp+qE
(n)(X),

Now take X = SpecF , F a finitely generated field over k. For dimensional reasons,

we have S
(n)
F (p) = ∅ for p < n, and we therefore have an edge homomorphism

ǫ−n : πq−nE
(n)(X,n)→ πqE

(n)(X).

Furthermore, S
(n)
F (n) is the set of closed points w ∈ ∆n

F \ ∂∆
n
F , so ǫ−n can be

written as

ǫ−n : ⊕w∈(∆n
F
\∂∆n

F
)(n)πq−nE

w(∆n
F )→ πqE

(n)(F );

here Y (a) denotes the set of codimension a points on a scheme Y .
Via the weak equivalence E(n)(F ) ∼= fnE(F ), we have the canonical map

ǫ−n : ⊕w∈(∆n
F
\∂∆n

F
)(n)πq−nE

w(∆n
F )→ πqfnE(F ).

Similarly, composing with fnE → snE, we have the canonical map

ǫ−n : ⊕w∈(∆n
F
\∂∆n

F
)(n)πq−nE

w(∆n
F )→ πqsnE(F ).

Proposition 3.2. Let E ∈ SptS1(k) be quasi-fibrant. Suppose Πa,∗E(F ) = 0 for

all a < 0 and for all finitely generated field extensions F of k. Then for n ≥ 0:

1. Πa,∗fnE and Πa,∗snE are zero for all a < 0. In particular, fnE and snE
are −1-connected.

2. For each finitely generated field F over k, the edge homomorphisms

ǫ−n : ⊕w∈(∆n
F
\∂∆n

F
)(n)π−nE

w(∆n
F )→ π0(fnE)(F )

ǫ−n : ⊕w∈(∆n
F
\∂∆n

F
)(n)π−nE

w(∆n
F )→ π0(snE)(F )

are surjections.

Proof. Using the distinguished triangle

fn+1E → fnE → snE → Σsfn+1E

we see that it suffices to prove the statements for fnE.
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Using the isomorphism (2.2), we see that for (1), it suffices to show that fnE is
−1-connected. By a theorem of Morel [11, lemma 3.3.6], it suffices to show that
fnE(F ) is −1-connected for all finitely generated field extensions F of k.

We first show that, for each p ≥ n,

a. πqE
(n)(F, p) = 0 for q < −p

b. The natural map

⊕
W∈S

(n)
F

(p),w∈W∩(∆p

F
)(p)

π−pE
w(∆p

F )→ π−pE
(n)(F, p)

is surjective.

For (a), let W ⊂ ∆p
F be a closed subset. We have the Gersten spectral sequence

Ea,b1 = ⊕w∈W∩(∆p

F
)(a)π−a−bE

w(SpecO∆p

F
,w) =⇒ π−a−bE

W (∆p
F ).

Since E is quasi-fibrant, and ∆p
F is smooth over k, we have an isomorphism (via

Morel-Voevodsky purity [12, Theorem 3.2.23])

πm(Ew(SpecO∆p

F
,w)) ∼= πm(E(w+ ∧ S

2a,a)),

where a = codim∆p

F
w. But

πm(E(w+ ∧ S
2a,a)) = (πm+2a,aE)(F (w))

which is zero for m+ a < 0. Since 0 ≤ a ≤ p, we see that, for m < −p,

πmE
W (∆p

F ) = 0.

AsE(n)(F, p) is a colimit overEW (∆p
F ) withW ∈ S

(n)
F (p), it follows that πmE

(n)(F, p) =
0 for m < −p, proving (a).

The same computation shows that π−p(E
w(SpecO∆p

F
,w)) = 0 if codim∆p

F
w < p,

so (b) follows from the Gersten spectral sequence.
Using the strongly convergent spectral sequence (3.1), we see that (a) implies

that πqE
(n)(F ) = 0 for q < 0.

Next, we show that

c. π−pE
(n)(F, p) = 0 for p > n.

For this, it suffices by (b) to show that for w ∈W ∩ (∆p
F )

(p) with W ∈ S
(n)
F (p) and

with p > n, the map

(3.2) π−pE
w(∆p

F )→ π−pE
(n)(F, p)

is the zero map. To see this, note that W does not intersect any face T of ∆p
F

having dimF T < n. Thus, there is a linear W ′ ∼= Ap−nF ′ ⊂ ∆p
F containing w (for

F ′ some extension field of F contained in F (w)) with W ′ ∈ S
(n)
F (p): for a suitable

degeneracy map σ : ∆p → ∆n one takes W ′ = σ−1(σ(w)). By lemma 3.1, the

map Ew(∆p
F ) → EW

′

(∆p
F ) is the zero map in SH; passing to the limit over all

W ′′ ∈ S
(n)
F (p), we see that (3.2) is the zero map, as claimed.

In the spectral sequence (3.1), we have E1
p,−p = 0 for p > n; we also have

E1
p,−p = 0 for p < n since S

(n)
F (p) = ∅ if p < n for dimensional reasons. Thus,

the only term contributing to π0E
(n)(F ) is E1

n,−n. As the spectral sequence is
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strongly convergent, the edge homomorphism in the spectral sequence (3.1) induces
a surjection

⊕
w∈S

(n)
F

(n)
π−nE

w(∆n
F )→ π0E

(n)(F ).

Combining this with theorem 2.3 gives us the surjection

⊕
w∈S

(n)
F

(n)
π−nE

w(∆n
F )→ π0(fnE(F )).

Similarly, the vanishing πpE
(n)(F ) = 0 for p < 0 shows that fnE(F ) is -1 connected.

�

We thus have generators ⊕w∈(∆n
F
\∂∆n

F
)(n)π−nE

w(∆n
F ) for π0fnE(F ), and hence

for our main object of study, FnTateπ0E(F ). We examine the composition

(3.3) π−nE
w(∆n

F )
ǫ−n
−−→ π0fnE(F )

ρn
−→ π0E(F )

more closely.
Fix a closed point w in ∆n

F \ ∂∆
n
F . We have the quotient map

cw : ∆n
F /∂∆

n
F → ∆n

F /(∆
n
F \ w)

and the canonical identification

Ew(∆n
F ) = Hom(Σ∞

s ∆n
F /(∆

n
F \ w), E).

Thus, given an element τ ∈ π−n(Ew(∆n
F )), we have the corresponding morphism

τ : Σ∞
s ∆n

F /(∆
n
F \ w)→ ΣnsE

and we may compose with cw to give the map

τ ◦ Σ∞
s cw : Σ∞

s ∆n
F /∂∆

n
F → ΣnsE.

As each of the faces of ∆n
F are affine spaces over F , we have a canonical isomor-

phism

σF : Σns SpecF+ → ∆n
F /∂∆

n
F

in H•(k) (see the beginning of §4 for details), giving us the element

π(τ) := τ ◦ Σ∞
s (cw ◦ σF ) ∈ πn(Σ

n
sE(F )) = π0(E(F )).

The following result is a direct consequence of the definitions:

Lemma 3.3. For τ ∈ π−n(Ew(∆n
F )), π(τ) = ρn(ǫ−n(τ)).

On the other hand, we have the Morel-Voevodsky purity isomorphism (loc. cit.)

(3.4) MVw : ∆n
F /(∆

n
F \ w)→ w+ ∧ S

2n,n.

The definition ofMVw requires some additional choices; we complete our definition
of MVw in §5, where it is written as MVw = (idw+ ∧ α) ◦mvw (see definition 4.3
and (5.3)).

In any case, via MVw, we may factor π(τ) as

π(τ) := τ ◦ Σ∞
s (cw ◦ σF )

= (τ ◦ Σ∞
s MV −1

w ) ◦ Σ∞
s (MVw ◦ cw ◦ σF )

The term τ ◦ Σ∞
s MV −1

w is the morphism

τ ◦ Σ∞
s MV −1

w : Σ∞
s w+ ∧ S

2n,n → ΣnsE
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which we may interpret as an element of π−n(Ω
n
TE(w)), while the morphism Σ∞

s (MVw◦
cw ◦ σF ) is the infinite suspension of the map

(3.5) QF (w) :=MVw ◦ cw ◦ σF : Σns SpecF+ → w+ ∧ S
2n,n.

Conversely, given any element ξ ∈ π−n(ΩnTE(w)), which we write as a morphism

ξ : w+ ∧ S
2n,n → ΣnsE

we recover an element τ ∈ π−n(Ew(∆n
F )) as τ := ξ◦Σ∞

s MVw, and thus the element

ξ ◦ Σ∞
s QF (w) ∈ πn(Σ

n
sE(F )) = π0E(F )

is in FnTateπ0E(F ).
Putting this all together, we have

Proposition 3.4. Let F be a finitely generated field extension of k and let E ∈
SptS1(k) be quasi-fibrant.

1. Let w be a closed point of ∆n
F \ ∂∆

n
F , and take ξw ∈ π−n(Ω

n
TE(w)). Then

ξw ◦ Σ∞
s QF (w) is in Fn

Tate
π0E(F ).

2. Suppose that Πa,∗E = 0 for all a < 0. Then Fn
Tate

π0E(F ) is generated by

elements of the form ξw ◦ Σ∞
s QF (w), ξw ∈ π−n(Ω

n
TE(w)), as w runs over closed

points of ∆n
F \ ∂∆

n
F .

Remark 3.5. The proposition extends without change to arbitrary field extensions
F of k, by a simple limit argument.

The next few sections will be devoted to giving explicit formulas for the map
QF (w). In case w is an F -point of ∆n \ ∂∆n, we are able to do so directly; in
general, we will need to pass to an n-fold P1-suspension before we can give an
explicit formula. We will then conclude with the proof of our main result in §9.

4. The Pontryagin-Thom collapse map

We recall a special case of Pontryagin-Thom construction in H•(k).
Let Vn be the open subscheme ∆n \ ∂∆n of ∆n; we use barycentric coordinates

u0, . . . , un on Vn, giving us the identification

Vn = Spec k[u0, . . . , un, (u0 · . . . · un)
−1]/

∑

i

ui − 1.

We let H ⊂ Pn be the hyperplane
∑n

i=1Xi = X0 and let 1 := (1 :1 : . . . : 1) ∈ Pn(k).

Definition 4.1. Let F be finitely generated field extension of k and let w be a
closed point of VnF . The Pontryagin-Thom collapse map associated to w:

PTF (w) : Σ
n
s SpecF+ → (PnF (w)/HF (w), 1).

is the composition in H•(k)

Σns SpecF+
σF

∼
// ∆n

F /∂∆
n
F

cw−−→ ∆n
F /(∆

n
F \ {w})

mvw

∼
// (PnF (w)/HF (w), 1)

for specific choices of the isomorphisms in this composition, to be filled in below.
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The map σF is the standard one given by the contractibility of ∆n and all its
faces, which gives an isomorphism in H•(k) of ∆

n/∂∆n with the constant presheaf
on the simplicial space ∆n/∂∆n:

∆n([m]) := Hom∆([m], [n])

and ∂∆n([m]) ⊂ ∆n([m]) the set of non-surjective maps f : [m] → [n]. The
isomorphism ΣnS0 ∼= ∆n/∂∆n in H• thus gives the isomorphism

σ : ΣnS0 → ∆n/∂∆n

in H•(k) and thereby gives rise to the isomorphism in H•(k)

(4.1) σF : Σns SpecF+ = SpecF+ ∧ ΣnS0 id∧σ
−−−→ SpecF+ ∧∆n/∂∆n = ∆n

F /∂∆
n
F .

The map cw is the quotient map. The isomorphism

mvw : ∆n
F /∆

n
F \ {w} → (PnF (w)/HF (w), 1)

is the Morel-Voevodsky purity isomorphism. This map depends in general on the
choice of an isomorphism ψw : mw/m

2
w → F (w)n, where mw ⊂ O∆n

F
,w is the

maximal ideal; in addition, we need to make explicit the role of the chosen base-
point 1. For this, we go through the construction of the purity isomorphism, giving
the explicit choices which lead to a well-defined choice of isomorphism mvw.

We give Vn×A1×∆n coordinates u0, . . . , un, x, t0, . . . , tn, with the ui the barycen-
tric coordinates on Vn, x the standard coordinate on A1 and the ti the barycentric
coordinates on ∆n. Let

(X0, X1, . . . , Xn) := (x,
t1 − u1
u0

, . . . ,
tn − un
u0

).

The construction of mvw uses the blow-up of A1 ×∆n
F along 0× w

µw : Bl0×wA
1 ×∆n

F → A1 ×∆n
F .

Let Ew ⊂ Bl0×wA1 ×∆n
F be the exceptional divisor. Then Ew is an F (w)-scheme.

Suppose first that w is separable over F . The closed point 0 × w of A1 × ∆n
F

has the canonical lifting to the closed point 0 × w of A1 × ∆n
F (w); let m0×w ⊂

OA1×∆n
F
,0×w and m′

0×w ⊂ OA1×∆n
F (w)

,0×w denote the respective maximal ideals.

As w is separable over F , the projection p : A1 × ∆n
F (w) → A1 × ∆n

F induces an

isomorphism of graded F (0× w)-algebras

p∗ : ⊕m≥0m
m
0×w/m

m+1
0×w → ⊕m≥0m

′m
0×w/m

′m+1
0×w .

The functions (X0, X1(w), . . . , Xn(w)) give generators for the maximal ideal
m′

0×w; as

Ew = ProjF (0×w) ⊕m≥0 m
m
0×w/m

m+1
0×w

∼= ProjF (0×w) ⊕m≥0 m
′m
0×w/m

′m+1
0×w

the image (x0, x1(w), . . . , xn(w)) of (X0, X1(w), . . . , Xn(w)) in m′
0×w/m

2
0×w give

homogeneous coordinates for Ew, defining an isomorphism

qw := (x0 :x1(w) : . . . :xn(w)) : Ew → PnF (w).

Let H(w) ⊂ Ew be the pull-back of HF (w) via qw, and let 1w = q−1
w (1).

The proper transform µ−1
w [A1 × w] ⊂ Bl0×wA1 × ∆n

F maps isomorphically to
A1 × w via µw, and intersects Ew in a closed point w̄ lying over 0× w.

Lemma 4.2. 1. For all w ∈ VnF , we have 1w 6= w̄ and w̄ 6∈ H(w).
2. qw(w̄) = (1 :0 : . . . : 0)
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Proof. Clearly (2) implies (1). For (2), qw(w̄) is the image of 1× w under

(X0 :X1(w) : . . . :Xn(w)) : A
1 ×∆n

F (w) \ {0× w} → PnF (w),

which is (1 : 0 : . . . : 0). �

Additionally, the quotient map

rw : (PnF (w)/HF (w), 1)→ PnF (w)/(P
n
F (w) \ {(1 : 0 : . . . : 0)})

is an isomorphism in H•(k), since projection from (1 :0 : . . . : 0) realizes PnF (w) \ {(1 :

0 : . . . : 0)} as an A1-bundle over Pn−1
F (w) with section HF (w).

This gives us the sequence of isomorphisms in H•(k):

Ew/(Ew \ {w̄})
qw
−−→ PnF (w)/(P

n
F (w) \ {(1 : 0 : . . . : 0)})

rw←−− (PnF (w)/HF (w), 1).

In case w is not separable over F , we choose any set of parameters X1(w), . . .,
Xn(w) for mw such that, taking X0 = x, the isomorphism Ew → Pnw defined by the
sequence x0, x1(w), . . . , xn(w) satisfies the condition of lemma 4.2 (F is infinite, so
(1) is satisfied for a general choice; the condition (2) is satisfied for all choices). We
then proceed as above.

Morel-Voevodsky show that the inclusions iw : Ew → Bl0×wA
1 × ∆n

F and i1 :
∆n
F = 1×∆n

F → A1 ×∆n
F induce isomorphisms

īw : Ew/(Ew \ {w̄})→ Bl0×wA
1 ×∆n

F /(Bl0×wA
1 ×∆n

F \ µ
−1
w [A1 × w])

ī1 : ∆n
F /(∆

n
F \ {w})→ Bl0×wA

1 ×∆n
F /(Bl0×wA

1 ×∆n
F \ µ

−1
w [A1 × w])

in H•(k) (see the proof of [12, Theorem 3.2.23]).

Definition 4.3. The purity isomorphism

mvw : ∆n
F /(∆

n
F \ {w})

∼
−→ (PnF (w)/HF (w), 1).

is defined as the composition

∆n
F /(∆

n
F \ {w})

ī1

∼
// Bl0×wA

1 ×∆n
F /(Bl0×wA

1 ×∆n
F \ µ

−1
w [A1 × w])

īw

∼
oo Ew/(Ew \ {w̄})

qw

∼
// PnF (w)/P

n
F (w) \ {(1 : 0 : . . . : 0)}

rw

∼
oo (PnF (w)/H1F (w), 1).

In case w is an F -rational point of ∆n
F , we have another description of mvw.

The map

q−1
w ◦ (X0 :X1(w) : . . . :Xn(w)) : A

1 ×∆n
F (w) \ {0× w} → Ew

extends to a morphism

pw : Bl0×wA
1 ×∆n

F → Ew

making Bl0×wA1×∆n
F an A1-bundle over Ew with section iw, and thus pw induces

an isomorphism in H•(k)

p̄w : Bl0×wA
1 ×∆n

F /(Bl0×wA
1 ×∆n

F \ µ
−1
w [A1 × w])→ Ew/(Ew \ {w̄})

inverse to īw. Thus
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Lemma 4.4. Suppose w is in ∆n(F ). Then

mvw = r−1
w ◦ qw ◦ p̄w ◦ ī1.

We can further simplify the above description of mvw by noting:

Lemma 4.5. Suppose w is in ∆n(F ). Let

(4.2) ϕw : ∆n
F /(∆

n
F \ {w})→ PnF /P

n
F \ {(1 : 0 : . . . : 0)}

be the map induced by

(1 :X1(w) : . . . :Xn(w)) : ∆
n
F → PnF .

Then ϕw = qw ◦ p̄w ◦ ◦ī1, hence mvw = r−1
w ◦ ϕw.

Proof. The identity mvw = r−1
w ◦ ϕw follows directly from our description above of

the maps qw and p̄w and lemma 4.4. �

Altogether, this gives us the formula, for w ∈ ∆n(F ),

(4.3) PTF (w) = r−1
w ◦ ϕw ◦ cw ◦ σF .

5. (Pn/H, 1) and ΣnsG
∧n
m

Our main task in this section is to construct an explicit isomorphism

α : (Pn/H, 1)
∼
−→ ΣnsG

∧n
m .

We first recall some elementary constructions involving homotopy colimits over
subcategories of the n-cube. Let C be a small category and let F : C → Spc(k) be
a functor. Let N : ∆op → Sets be the nerve of C. For

σ = (s0
f1−→ s1 → . . .

fn−→ sn) ∈ Nn(C)

define F(σ) := F(s0). Bousfield-Kan [2] define hocolimF to be the simplicial object
of Spc(k) with n-simplices

hocolimFn := ∐σ∈Nn(C)F(σ);

for g : [n]→ [m] in ∆,

hocolimF(g) : hocolimFm → hocolimFn

is the map sending (F(s0), σ = (s0, . . . , sm)) to (F(s′0), σ
′ = (s′0, . . . , s

′
n)), with

σ′ = N (g)(σ), s′0 = sg(0) and the map F(s0)→ F(s′0) is F(s0 → sg(0)). hocolimF
is the geometric realization of hocolimF .

For a functor F : C → Spc•(k) we use essentially the same definition of
hocolimF as a simplicial object of Spc•(k), replacing disjoint union ∐ with pointed
union ∨, and we use the pointed version of geometric realization to define hocolimF
in Spc•(k). Concretely, hocolimF is the co-equalizer of

∨g:[n]→[m]hocolimFm ∧∆n
+

//
// ∨n hocolimFn ∧∆n

+

The essential property of hocolim we will need is the following:

Proposition 5.1 ([2]). Let C be a finite category, F ,G : C → Spc•(k) functors,

and ϑ : F → G a natural transformation. Suppose that ϑ(c) : F(c) → G(c) is an

isomorphism in H•(k) for each c ∈ C. Then

hocolimϑ : hocolimF → hocolimG

is an isomorphism in H•(k). The analogous result holds after replacing Spc•(k)
and H•(k) with Spc(k) and H(k).
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This is of course just a special case of the general result valid for functors from
a small (not just finite) category to a proper simplicial model category. See for
example [4] for details.

Remark 5.2. Let F : C → Spc(k) be a functor. Suppose our index category C is a

product C1×C2. We may form the bi-simplicial object hocolim2 F of Spc(k), with
(n,m)-simplices

hocolim2 Fn,m := ∐(σ1,σ2)∈N (C1)n×N (C2)mF(σ1, σ2)

where F(σ1, σ2) = F(s0×s′0) if σ = (s0 → . . .) and σ′ = (s′0 → . . .); the morphisms
are defined similarly.

As N (C1 × C2) is the diagonal simplicial set associated to the bi-simplicial set
N (C1)×N (C2), it follows that hocolimF is the diagonal simplicial object of Spc(k)
associated to the bi-simplicial object hocolim2 F , and thus we have the natural
isomorphism of geometric realizations

hocolimF = |hocolimF| ∼= |hocolim2 F|

in Spc(k). Similar remarks hold in the pointed case.

Let �n+1 be the poset of subsets of [n], ordered under inclusion. For J ⊂ J ′ ⊂
{0, . . . , n}, we let �

n+1
J≤∗≤J′ be the full subcategory of subsets I with J ⊂ I ⊂ J ′,

�
n+1
J<∗≤J′ the full subcategory of subsets I with J ( I ⊂ J ′, etc. We sometimes

omit J if J = ∅ or J ′ if J ′ = [n].
If |J | = r+1, we let i′J : {0, . . . , r} → J be the unique order-preserving bijection,

and let iJ : �r+1 → �
n+1
∗≤J be the resulting isomorphism of categories. Clearly iJ

induces the isomorphism of subcategories iJ : �r+1
∗<[r] → �

n+1
∗<J .

We will be using the following elementary constructions. Let F : �
r+1
<[r] →

Spc•(k) be a functor and take n > r. Identifying �
r+1
∗<[r] with �

n+1
∗<[r] via the

inclusion [r] ⊂ [n], extend F to a functor

σn−rF : �n+1
∗<[n] → Spc•(k)

by setting σn−rF(J) = ∗ if J is not a proper subset of [r].
Similarly, let G : �r+1

∗<[r]×�
s → Spc•(k) be a functor and take n > r. Identifying

�
r+1
∗<[r] × �

s with a full subcategory of �r+1
∗<[r] × �

n−r+s via the inclusion [s] ⊂

[n− r + s], extend G to a functor

cn−rG : �r+1
∗<[r] ×�

n−r+s → Spc•(k)

by setting cn−rG(J, I) = ∗ if I 6⊂ [s].

Example 5.3. Let X be in Spc•(k). Noting that �1
∗<[0] is the one-point category,

we write X for the functor �
1
∗<[0] → Spc•(k) with value X . This gives us the

functors

cnX : �n+1 → Spc•(k),

σnX : �n+1
∗<[n] → Spc•(k).

Explicitly, cnX (∅) = σnX (∅) = X and both functors have value ∗ at J 6= ∅.
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Lemma 5.4. There are natural isomorphisms

Πc : hocolim cn−rG → hocolimG ∧ ([0, 1], 1)∧n−r

Πσ : hocolimσn−rF → Σn−rs hocolimF .

in Spc•(k)

Proof. We proceed by induction on n− r; it suffices to handle the case r = n− 1.
We first take care of the isomorphism Πc.

Via remark 5.2, it suffices to give an isomorphism

|hocolim2 c1G| ∼= hocolimG ∧ ([0, 1], 1),

where we use the product decomposition �
r+1
∗<[r] ×�

s+1 = (�r+1
∗<[r] ×�

s)×�
1. Fix

an m simplex σ of N (�r+1
∗<[r] ×�

s) and let

cGσ : �1 → Spc•(k)

be the functor cGσ(∅) = G(σ) ∧∆m
+ , cGσ([0]) = ∗. Then

hocolim cGσ ∼= G(σ) ∧∆m
+ ∧ ([0, 1], 1)

with the isomorphism natural in σ. The result follows directly from this.
Next, given F : �n<[n−1] → Spc•(k), let c

′F : �n → Spc•(k) be the extension

of F to �
n defined by setting c′F([n − 1]) = ∗. We claim there is a natural

isomorphism
hocolim c′F ∼= hocolimF ∧ ([0, 1], 1)

in Spc•(k).
Indeed, we have the bijection (for m > 0)

N (�n)m = N (�n∗<[n−1])m ∐N (�n∗<[n−1])m−1

with the first component coming from the inclusion of �n∗<[n−1] in �
n, and the

second arising by sending σ = (s0 → . . .→ sm−1) to (s0 → . . .→ sm−1 → [n− 1]).
For m = 0, the same construction gives

N (�n)0 = N (�n∗<[n−1])0 ∐ {[n− 1]}.

As, for a simplicial set C, the m-simplices of C× [0, 1]/C× 1 have exactly the same
description, our claim follows easily.

Finally, we can write the category �
n+1
∗<[n] as a (strict) pushout

�
n+1
∗<[n] = �

n ∐�n
∗<[n]

�
n
∗<[n] ×�

1.

This leads to an isomorphism of hocolimσ1F as a pushout

hocolimσ1F ∼= hocolim c′F ∨hocolimF hocolim cF

∼= hocolimF ∧ ([0, 1], 1) ∨hocolimF∧0+ hocolimF ∧ ([0, 1], 1)

= Σ1
s hocolimF .

�

As in section 4, let H ⊂ Pn be the hyperplane
∑n

i=1Xi = X0 and let 1 := (1 :

1 : . . . : 1) ∈ Pn(k). We define an isomorphism α : (Pn/H, 1)
∼
−→ ΣnsG

∧n
m in H•(k) as

follows:
Let Ui ⊂ Pn be the standard affine open subset Xi 6= 0. We identify Ui with An

in the usual way via coordinates (X0/Xi, . . . ˆXi/Xi, . . . , Xn/Xi), which we write
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as xi1, . . . , x
i
n, or simply x1, . . . , xn. For each index set I ⊂ {0, . . . , n}, we have the

intersection

UI := ∩i∈IUi.

For I = {i1 < . . . < ir}, we use coordinates in Ui1 to identify

UI ∼= Spec k[x1, . . . , xn, x
−1
i2
, . . . , x−1

ir
] ∼= An−|I|+1 ×G|I|−1

m .

The open cover U := {U0, . . . , Un} of Pn identifies Pn (in H(k)) with the homo-
topy colimit over �n+1

∗<[n] of the functor

PnU : �n+1
∗<[n] → Spc(k)

PnU (J) := UJc .

We thus have the functor

PnU ,1 : �n+1
∗<[n] → Spc•(k)

PnU ,1(J) := (UJc , 1)

and the isomorphism in H•(k), hocolimPnU ,1
∼= (Pn, 1).

Next, we note that the hyperplane H ⊂ Pn is covered by the affine open subsets
U1, . . . , Un. The open cover U1 := {H∩U1, . . . , H∩Un} of H identifies H (in H(k))
with the homotopy colimit over �n+1

∗<[n] of the functor

HU1 :�n+1
∗<[n] → Spc(k)

HU1(J) :=

{

H ∩ UJc for 0 ∈ J

∅ for 0 6∈ J.

Let

PnU ,1/HU1 : �n+1
∗<[n] → Spc•(k)

be the functor defined by

PnU ,1/HU1(J) :=

{

(UJc/H ∩ UJc , 1) for 0 ∈ J

(UJc , 1) for 0 6∈ J.

By our discussion, the maps PnU ,1/HU1(J) → (Pn/H, 1) induced by the inclusions

UJc →֒ Pn give rise to an isomorphism in H•(k)

ǫ1 : hocolimPnU ,1/HU1 → (Pn/H, 1).

To simplify the notation, we denote PnU ,1/HU1 by F for the next few paragraphs.

We claim that, for each J 6= ∅ with 0 6∈ J , we have (UJ/(H ∩ UJ), 1) ∼= ∗ in
H•(k). Indeed, suppose for example that n ∈ J , and use coordinates (xn1 , . . . , x

n
n) =

(X0/Xn, . . . , Xn−1/Xn) on UJ . We have the projection

p : UJ → UJ ∩ (X0 = 0)

p(xn1 , . . . , x
n
n) = (0, xn2 , . . . , x

n
n).

Since 0 6∈ J , xn1 is not inverted on UJ , and thus p makes UJ an A1-bundle over
UJ ∩ (X0 = 0). p has the section

s(0, xn2 , . . . , x
n
n) := (1 +

n
∑

i=2

xni , x
n
2 , . . . , x

n
n),
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identifying UJ ∩ (X0 = 0) with H ∩ UJ ; this together with homotopy invariance in
H•(k) proves our claim. Thus F(J) ∼= ∗ in H•(k) for all J with 0 ∈ J . In addition
F({1, 2, . . . , n}) = (U0, ∗) ∼= (An, ∗), which is also isomorphic to ∗ in H•(k).

Let i0 : �n∗<[n−1] → �
n+1
∗<[n] inclusion functor induced by the inclusion [n− 1]→

[n] sending i ∈ [n − 1] to i + 1, and let ω : �n+1
∗<[n] → �

n+1
∗<[n] be the automorphism

induced by the cyclic permutation ω of [n],

ω(i) :=

{

i+ 1 for 0 ≤ i < n

0 for i = n.

Let

F|0 : �
n
∗<[n−1] → Spc•(k)

be the functor F ◦ i0. We have the evident quotient map q : F ◦ ω → σ1F|0, which
by our discussion above is a term-wise isomorphism in H•(k). By lemma 5.4, q
induces the isomorphisms in H•(k)

(5.1) hocolimF → hocolimσ1F|0 → Σ1
s hocolimF|0.

We now turn to the functor F|0. This is just the punctured n-cube corresponding
to the open cover U ′ := {U0∩U1, . . . , U0∩Un} of U0 \ (1 : 0 : . . . : 0) (with base-point
1), i.e. (An \ 0, 1). We thus have the isomorphism in H•(k)

hocolimF|0
∼= (U0 \ (1 : 0 : . . . : 0), 1) ∼= (An \ 0, 1).

Let C ⊂ U0\(1 : 0 : . . . : 0) be the union of the affine hyperplanes x0i = 1, i = 1, . . . , n.
As the inclusion 1 → C is an isomorphism in H(k), we have the isomorphism in
H•(k)

(U0 \ (1 : 0 : . . . : 0), 1) ∼= U0 \ (1 : 0 : . . . : 0)/C.

Letting F̄|0 be the quotient of F|0 given by

F̄|0(J) = Ui0(J)c/C ∩ Ui0(J)c ,

we thus have the isomorphisms in H•(k)

hocolimF|0
∼= hocolim F̄|0

∼= U0 \ (1 : 0 : . . . : 0)/C.

On the other hand, for each J ( {1, . . . , n}, the inclusion C ∩U0∩UJ → U0∩UJ
is an isomorphism in H(k), and thus F̄|0(J) ∼= ∗ for all J 6= ∅. Since F̄|0(∅) ∼= G∧n

m

we have the quotient map F̄|0 → σn−1G∧n
m ; our discussion together with lemma 5.4

thus gives us the isomorphism in H•(k)

hocolimF|0
∼= hocolim F̄|0

∼= Σn−1
s G∧n

m .

Together with (5.1), this gives us the sequence of isomorphisms in H•(k)

(Pn/H, 1) ∼= hocolimPnU ,1/HU1
∼= Σs hocolimF|0

∼= ΣnsG
∧n
m .

We denote the composition by

(5.2) α : (Pn/H, 1)
∼
−→ ΣnsG

∧n
m .

Now that we have defined α, we can complete our definition of the purity iso-
morphism (3.4):

(5.3) MVw := (idw+ ∧ α) ◦mvv

(see definition 4.3 for the definition of mvw).
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Remark 5.5. Take n > 1. Let H∞ ⊂ Pn be the hyperplane X0 = 0 and for let
C1 ⊂ U1 be the union of the hyperplanes x1i = 1, i = 1, . . . , n. Let G∞n : �n+1

∗<[n] →

Spc•(k) be the functor

G∞n (J) :=

{

UJc/H∞ ∩ UJc for 1 ∈ J

UJc/[(H∞ ∪ C1) ∩ UJc ] for 1 6∈ J.

We note that the inclusion (0 : 1 : 0 : . . . : 0)→ H∞ ∩ C1 is an A1-weak equivalence;
using this it is easy to modify the arguments used in this section to show that the
identity map G∞(∅) → G∧n

m extends to a map of functors G∞n → σnG∧n
m , which is

a termwise isomorphism in H•(k), giving us the isomorphism

hocolimG∞n ∼= ΣnsG
∧n
m

in H•(k). Furthermore, we have the sequence of isomorphisms in H•(k):

Pn/H∞ → Pn/[H∞ ∐C1∩H∞∩U1 C1]→ hocolimG∞n .

Putting these together gives us the isomorphism

(5.4) α∞ : Pn/H∞ → ΣnsG
∧n
m

in H•(k).
For n = 1, we note that H = 1, so (P1/H, 1) = (P1, H). To define α∞, we just

compose α : (P1/H, 1) → ΣsGm with the isomorphism τ : (P1, H∞) → (P1, H)
given by

τ(X0 :X1) = (X1 −X0 :X1).

We will use these models for ΣnsG
∧n
m to construct transfer maps in §8.

6. The suspension of a symbol

Let ρ̃ : Vn → Gnm be the map

ρ(u0, . . . , un) := (−
u1
u0
, . . . ,−

un
u0

).

Composing with the quotient map Gnm → G∧n
m gives us the map ρ : Vn+ → G∧n

m .
Our next main task is to give an explicit algebro-geometric description of Σns ρ.
More generally, for f : T → Vn a morphism in Sm/k, we will give a description of
Σns (ρ◦f). We begin by giving a description of ΣnsT+ as a certain homotopy colimit.

For this, consider the scheme A1 ×∆n, with coordinates x, t0, . . . , tn:

A1 ×∆n = Spec k[x, t0, . . . , tn]/
∑

i

ti − 1.

For i = 1, . . . , n, let U ′
i ⊂ A1 × ∆n be the subscheme defined by ti = 0, and

let U ′
0 ⊂ A1 × ∆n be the subscheme defined by x = 1. For I ⊂ {0, . . . , n}, let

U ′
I := ∩i∈IU

′
i , the intersection taking place in A1×∆n. This gives us the punctured

n+ 1-cube

ĜTn : �n+1
∗<[n] → Spc(k)

with ĜTn (J) := T × U ′
Jc .

As above, use barycentric coordinates u0, . . . , un for Vn. We pull these back to
T via f , and write ui for f

∗(ui), letting the context make the meaning clear. Set

(X0, X1, . . . , Xn) := (x,
t1 − u1
u0

, . . . ,
tn − un
u0

)
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and set

(xi1, . . . , x
i
n) := (X0/Xi, . . . , X̂i/Xi, . . . , Xn/Xi); i = 0, . . . , n.

Inside T × A1 ×∆n, we have the “hyperplane” H(T ) defined by

n
∑

i=1

Xi = X0.

Fix an index I = (i0, . . . , ir) with 0 ≤ i0 < . . . < ir ≤ n, and write the comple-
ment of I in {0, . . . , n} as Ic = (j1, . . . , jn−r) with j1 < . . . < jn−r. We have the
isomorphism

ϕI := id× (xi0j1 , . . . , x
i0
jn−r

) : T × U ′
I → T × An−r.

In addition, let HI ⊂ An−r be the hyperplane defined by

n−r
∑

ℓ=1

xℓ = 1 if i0 = 0,

n−r
∑

ℓ=2

xℓ = x1 if i0 > 0.

Then ϕI restricts to an isomorphism of H(T ) ∩ T × U ′
I with T ×HI , and thus the

projection p1 : H(T ) ∩ T × U ′
I → T and inclusion ι : H(T ) ∩ T × U ′

I → T × U ′
I are

isomorphisms in H(k).
For J ( [n], J 6= ∅, define GT ′

n (J) to be the pushout in the diagram

H(T ) ∩ T × U ′
Jc

�

� ι //

p1

��

ĜTn (J)

i(J)

��
�

�

�

T × U ′
Jc

T sJ
//______ GT ′
n (J).

Since ι is a cofibration and a weak equivalence in Spc(k), so is sJ . As p1 is also a
weak equivalence in Spc(k), i(J) is a weak equivalence in Spc(k) as well.

We set

GT ′
n (∅) := ĜTn (∅) = T × U ′

[n]
∼= T.

This defines for us the functor

GT ′
n : �n+1

∗<[n] → Spc(k)

that fits into a diagram (T the constant functor)

ĜTn

i

��

T s
// GT ′
n

with i and s term-wise isomorphisms in H(k) and s a term-wise cofibration in
Spc(k).

For n = 1, define

GT1 (J) :=

{

GT ′
1 (J)/s(T ) for J 6= ∅

GT ′
1 (∅)+ ∼= T+ for J = ∅.

giving us the functor

GT1 : �2
∗<[1] → Spc•(k)
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For n > 1, take ∅ 6= J ⊂ [n] and let Π′
J ⊂ Pn be the dimension n − |J | linear

subspace defined by ∩j∈J (Xj = 0). Let ΠJ ⊂ Pn be the dimension n − |J | + 1
linear space spanned by 1 and Π′

J and let AJ ⊂ ΠJ be the affine space ΠJ \ Π′
J .

Since Π′
J is not contained in H , the intersection AJ ∩H is a codimension one affine

space AJ,H in AJ . Clearly AJ ⊃ AJ′ for J ⊂ J ′, so we have the functor

A/AH : �n+1
∗<[n] → Spc(k)

J 7→ AJc/AJc,H .

Let ∗J be the base-point in AJ/AJ,H and let s′J : T → T × AJ/AJ,H be the
morphism identifying T with T ×∗J . Let 1J be the image of 1 ∈ AJ in the quotient
AJ/AJ,H . We have the morphism s′J,1 : T → T × AJ/AJ,H identifying T with

T × 1J . For J 6= ∅, let GTn (J) be the push-out in the diagram

T ∐ T
s′Jc×s′Jc,1

//

sJ∐p

��

T × AJc/AJc,H

��
�

�

�

GT ′
n (J) ∐ ∗ //_____ GTn (J).

where p : T → ∗ is the canonical map; we give GTn (J) the base-point ∗. We set
GTn (∅) = T+ with its canonical base-point. Using the functoriality of GT ′

n and A/AH
defines the functor

(6.1) GTn : �n+1
∗<[n] → Spc•(k).

Lemma 6.1. For each J 6= ∅, GTn (J)
∼= ∗ in H•(k).

Proof. Take J ⊂ [n], J 6= ∅. For n = 1, s : T → GT ′
1 (J) is a cofibration and weak

equivalence in Spc(k), and thus the quotient GT ′
1 (J)/T is contractible.

For n > 1, the morphisms sJ : T → GT ′
n (J), s′J : T → T × AJ/AJ,H and

s′J,1 : T → T × AJ/AJ,H are cofibrations and weak equivalences in Spc(k); since
1J 6∈ AJ,H , the map

s′J × s
′
J,1 : T ∐ T → T × AJ/AJ,H

is a cofibration.
Let GT ′′

n (J) be the push-out in the diagram

T
s′Jc

//

sJ

��

T × AJc/AJc,H

ι

��
�

�

�

GT ′
n (J) //_____ GT ′′

n (J).

Then ι is a cofibration and a weak equivalence, hence the same is true for the
composition

T
s′J,1
−−→ T × AJ/AJ,H

ι
−→ GT ′′

n (J).

As GTn (J) = G
T ′′
n (J)/T , it follows that GTn (J) is contractible. �

Letting T : �1
∗<[0] → Spc•(k) be the functor T (∅) = T+, we have the evident

quotient map GTn → σnT , i.e., we send Gn(∅) = T+ to σnT (∅) = T+ by the identity
map, and the other maps are the canonical ones GTn (I)→ ∗.



THE SLICE FILTRATION AND GROTHENDIECK-WITT GROUPS 23

By lemma 5.4 and lemma 6.1, this map induces an isomorphism

(6.2) βT : hocolimGTn → ΣnsT+

in H•(k).

Remark 6.2. The functors GTn , G
T ′
n and ĜTn are all functors in T , where for example

g : T ′ → T gives the morphism Ĝn(f) : ĜT
′

n → Ĝ
T
n by the collection of maps

f × id : T ′ × U ′
Jc → T × U ′

Jc .

The map GT ′
n → G

T
n is natural in T , as is the map βT .

Let ∆(Vn) ⊂ Vn ×∆n be the graph of the inclusion Vn → ∆n; by a slight abuse
of notation, we write 0 × ∆(Vn) ⊂ Vn × A1 × ∆n for the image of 0 × ∆(Vn) ⊂
A1 × Vn ×∆n under the exchange of factors A1 × Vn ×∆n → Vn × A1 ×∆n.

Define the morphism ϕ : Vn × A1 ×∆n \ 0×∆(Vn)→ Pn by

ϕ(u0, . . . , un, x, t0, . . . , tn) := (X0 :X1 : . . . :Xn),

where as above X0 = x, Xi = (ti − ui)/u0, i = 1, . . . , n.
Since Vn × U ′

i ∩ 0 × ∆(Vn) = ∅ for each i = 0, . . . , n, the restriction of ϕ to
∪ni=0Vn × U

′
i is thus a morphism, and therefore gives a well-defined morphism of

functors �n+1
∗<[n] → Spc(k), ϕ̃∗ : ĜVn

n → Pn, where Pn is the constant functor.

Given a morphism f : T → Vn, we compose ϕ̃J with f × id, giving the morphism
of functors ϕ̃T∗ : ĜTn → Pn. Adjoining the projections T × U ′

Jc → T gives us the

morphism of functors (p1, ϕ̃
T
∗ ) : Ĝ

T
n → T × Pn. Passing to the quotients, (p1, ϕ̃

T
∗ )

induces the map of functors (p1, ϕ
T ′
∗ ) : G′Tn → T × (Pn/H).

We extend (p1, ϕ
T ′
∗ ) to a map of functors �n+1

∗<[n] → Spc•(k)

p1 ∧ ϕ
T
∗ : GTn → T+ ∧ (Pn/H, 1)

by using the inclusions AJc → Pn, and sending the base-point in T+ to the base-
point in T+ ∧ (Pn/H, 1). This gives us the map in Spc•(k)

(6.3) ΦT : hocolimGTn → T+ ∧ (Pn/H, 1).

Lemma 6.3. Let f : T → Vn be a morphism in Sm/k. Then the diagram

Σns T+
Σn

s (idT+∧ρ◦f)
// T+ ∧ ΣnsG

∧n
m

hocolimGTn
ΦT

//

βT

OO

T+ ∧ (Pn/H, 1)

id∧α

OO

commutes in H•(k).

Proof. We work through our description of α and βT , adding some intermediate
steps.

We introduce an additional functor

(Pn/HU , 1) :�
n+1
∗<[n] → Spc•(k)

J 7→ (UJc/H ∩ UJc , 1)

By Mayer-Vietoris, the canonical map hocolim(Pn/HU , 1)
ǫ
−→ (Pn/H, 1) induced by

the cover U is an isomorphism in H•(k). The collection of quotient maps UJc →
UJc/H ∩ UJc or identity maps give the map γ : PnU ,1/HU1 → (Pn/HU , 1).
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We also have the functor σnG∧n
m . Identifying U0...n with Gnm via the coordinates

(x01, . . . , x
0
n), the quotient map U0...n

∼= Gnm → G∧n
m extends canonically to the

quotient map δ : PnU ,1/HU1 → σnG∧n
m . From our discussion on the isomorphism α,

we have the commutative diagram of isomorphisms in H•(k)
(6.4)

(Pn/H, 1)

α

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

hocolim(Pn/HU , 1)

ǫ

55kkkkkkkkkkkkkkk

hocolimPnU ,1/HU1γ
oo

ǫ1

OO

δ
// hocolimσnG∧n

m ϑ
// ΣnnG

∧n
m .

Note that, for each J 6= ∅, [n], we have AJ ⊂ UJ , since for j ∈ J , the intersection
ΠJ ∩ (Xj = 0) is equal to Π′

J . Also, the map ϕ̃J : G̃n(J)→ Pn has image contained
in UJc . We define the map of functors

ψT∗ : GTn → T+ ∧ (Pn/HU , 1)

as follows: for J 6= ∅, [n], we use the map

(p1, ϕ
T ′
J ) : GT ′

n (J)→ T × UJc/(UJc ∩H)

on GT ′
n (J), and the map

T × AJc
id×iJ−−−−→ T × UJc

induced by the inclusion iJ : AJc →֒ UJc . One checks that these descend to a well
defined map on the quotient

ψTJ : GTn (J)→ T+ ∧ (Pn/HU , 1)(J).

For J = ∅, we use

(idT , ϕ
T ′
∅ ) : T → T × U0...n/H ∩ U0...n

This gives us the commutative diagram of functors

GTn
ψT

∗ //

��

T+ ∧ (Pn/HU , 1)

T+ ∧ PnU ,1/HU1

id∧γ

OO

id∧δ

��

σnT
idT∧σn(ρ◦f)

// T+ ∧ σnG∧n
m

which induces the commutative diagram (in H•(k)) on the homotopy colimits

hocolimGTn
ΨT

//

βT

��

T+ ∧ hocolim(Pn/HU , 1)

id∧ϑ◦δ◦γ−1

��

ΣnsT+
Σn

s (id∧ρ◦f)
// T+ ∧ ΣnsG

∧n
m .
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Combining this with our diagram (6.4) and noting that ΦT = (id ∧ ǫ) ◦ ΨT yields
the commutative diagram in H•(k)

hocolimGTn
ΨT

//

ΦT

++

βT

��

T+ ∧ hocolim(Pn/HU , 1)

id∧(ϑ◦δ◦γ−1)

��

id∧ǫ // T+ ∧ (Pn/H, 1)

id∧α
uujjjjjjjjjjjjjjj

ΣnsT+
Σn

s (id∧ρ◦f)
// T+ ∧ ΣnsG

∧n
m ,

completing the proof. �

7. Computing the collapse map

We retain the notation from §§4, 5 and 6. Our task in this section is to use
lemma 6.3 to give an explicit computation of QF (w) as the nth suspension of a
map ρw : SpecF+ → w+ ∧G∧n

m , at least for w an F -point of ∆n \ ∂∆n. In general,
we will need to take a further P1-suspension before desuspending, which we do in
the next section.

For F a finitely generated field extension of k and w a closed point of ∆n
F \∂∆

n
F ,

we have the Pontryagin-Thom collapse map (definition 4.1)

PTF (w) : Σ
n
s SpecF+ → (PnF (w)/HF (w), 1).

We have as well the map (3.5)

QF (w) : Σ
n
s SpecF+ → w+ ∧ ΣnsG

∧n
m = w+ ∧ S

2n,n

It follows from the definition of MVw (5.3), PTF (w) and mvw (definition 4.3) that

(7.1) QF (w) = (idw+ ∧ α) ◦ PTF (w),

where we identify (PnF (w)/HF (w), 1) with w+∧(Pn/H, 1) and where α : (Pn/H, 1)→

ΣnsG
∧n
m is the isomorphism (5.2).

Consider an F -point w : SpecF → ∆n of ∆n. Given elements z1, . . . , zn of F×,
we have the corresponding map

[z1] ∧F . . . ∧F [zn] : SpecF+ → SpecF+ ∧G∧n
m

given as the composition

SpecF+
id∧(z1,...,zn)
−−−−−−−−→ SpecF+ ∧ (Gnm, 1)→ SpecF+ ∧G∧n

m .

We use the notation ∧F to denote the smash product for points F -schemes (X, x),
(Y, y):

(X, x) ∧F (Y, y) := X ×F Y/(X ×F y ∨ x×F Y ),

and note that [z1] ∧F . . . ∧F [zn] really is the ∧F -product of the maps [zi].

Proposition 7.1. Take w = (w0, . . . , wn) ∈ (∆n \ ∂∆n)(F ). Then

QF (w) = Σns [−w1/w0] ∧F . . . ∧F [−wn/w0].

Proof. We have for each Vn-scheme T → Vn the functor (6.1); applying this con-
struction for the morphism w : SpecF → Vn, gives us the functor

Gwn : �n+1
∗<[n] → Spc•(k).

We recall the subschemes U ′
i , i = 0, . . . , n and H of A1 ×∆n from §6.
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We note that U ′
0 = 1 ×∆n, H ∩ U ′

0 is the face t0 = 0, and that U ′
0 ∩ U

′
i is the

face ti = 0, for i = 1, . . . , n. Thus, collapsing the U ′
i , i = 1, . . . , n, H ∩ U ′

0 and all
the AJ to a point, and sending U ′

0 to ∆n by the projection map gives a well defined
morphism in Spc•(k),

a : hocolimGwn → SpecF+ ∧∆n/∂∆n,

which is an isomorphism in H•(k). In addition, we have the commutative diagram
of isomorphisms in H•(k)

(7.2) hocolimGwn
a

∼
//

βw ∼

��

SpecF+ ∧∆n/∂∆n

Σns SpecF+,

σF

∼
55lllllllllllll

where σF is the isomorphism (4.1) and βw is the isomorphism (6.2).
Let

r̃w : SpecF+ ∧ (Pn/H, 1)→ PnF /(P
n
F \ {(1 : 0 : . . . : 0)})

be the composition of the isomorphism SpecF+ ∧ (Pn/H, 1) ∼= (PnF /HF , 1) followed
by the quotient map rw : (PnF /HF , 1) → PnF /(P

n
F \ {(1 : 0 : . . . : 0)}). It follows

directly from the definition of the map Φw (6.3) and the map ϕw (4.2) that the
diagram

hocolimGwn
Φw

//

a

��

SpecF+ ∧ (Pn/H, 1)

r̃w

��

SpecF+ ∧∆n/∂∆n
cw

// ∆n
F /∆

n
F \ {w} ϕw

// PnF /(P
n
F \ {(1 : 0 : . . . : 0)}).

commutes. Combining this with the diagram (7.2) and our description (4.3) of
PTF (w) gives us the commutative diagram

Σns SpecF+

PTF (w)

))RRRRRRRRRRRRR

hocolimGwn Φw
//

βw ∼

OO

SpecF+ ∧ (Pn/H, 1)

But by lemma 6.3,

(Σns [−w1/w0] ∧F . . . ∧F [−wn/w0]) ◦ β
w = (idSpecF+ ∧ α) ◦ Φ

w;

since βw is an isomorphism, this gives us

Σns [−w1/w0] ∧F . . . ∧F [−wn/w0] = (idSpecF+ ∧ α) ◦ PTF (w).

Our formula (7.1) for QF (w) completes the proof. �

8. Transfers and P1-suspension

We now consider the general case of a closed point w ∈ VnF ⊂ ∆n
F .

Consider the map

j : ∆n → Pn

j(t0, . . . , tn) := (1 : t1, . . . : tn);

j is an open immersion, identifying ∆n with U0 and Vn with U0...n \H ⊂ Pn.
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We define the transfer map

TrF (w) : S
2n,n ∧ SpecF+ → S2n,n ∧ SpecF (w)+

associated to a closed point w ∈ AnF , separable over F , as the composition

S2n,n∧SpecF+
α∞∧id

∼
oo PnF /H∞F

cjw
−−→ PnF /P

n
F\{j(w)})

p̄◦j̄

∼
oo ∆n

F (w)/(∆
n
F (w)\{w})

mv∞w−−−→ PnF (w)/H∞F (w)
α∞∧id

∼
// S2n,n ∧ SpecF (w)+.

The map j̄ is induced from j, p̄ is induced from the projection p : ∆n
F (w) → ∆n

F , and

w ∈ ∆n
F (w) is the canonical lifting of w ∈ ∆n

F to ∆n
F (w) = w×F ∆n

F . The map p̄ ◦ j̄

is an isomorphism by Nisnevich excision (which is where we use the separability of
w over F ). The map mv∞w is the Morel-Voevodsky purity isomorphism, where we
use the generators (t1 − w1, . . . , tn − wn) for mw, together with the isomorphism

rw : PnF (w)/H∞F (w) → PnF (w)/(P
n
F (w) \ (1 : 0 : . . . : 0))

induced by the identity on PnF (w). The map α∞ is the isomorphism (5.4).

Lemma 8.1. Suppose that w is in Vn(F ). Then TrF (w) = id.

Proof. Let w0 = (1 :0 : . . . : 0) ∈ U0 ⊂ Pn(k), giving us the purity isomorphism

mv∞w0
: U0/(U0 \ w0)→ Pn/H∞

defined via the choice of generators (x1, . . . , xn) for mw0 . The morphism

(x :x1 : . . . :xn) : A
1 × U0 \ 0× w0 → Pn

extends to an A1-bundle

π := (x :x1 : . . . :xn) : Bl0×w0A
1 × U0 → Pn

Furthermore, the restriction of π to 1 × U0 extends to the identity map Pn → Pn.
From this, it follows that morphism in H•(k),

TrF (w0) : S
2n,n → S2n,n

is the identity. On the other hand, let Tw : PnF → PnF be the automorphism
extending translation by w on U0. Then Tw acts by the identity on PnF /H∞F , as
we can extend Tw to the A1 family of automorphisms t 7→ Ttw connecting Tw with
id. Furthermore, T ∗

−w(x1, . . . , xn) = (x1 − w1, . . . , xn − wn). From this it follows
that

TrF (w) = Tw ◦ TrF (w0) ◦ T−w = id.

�

Proposition 8.2. Let w = (w0, . . . , wn) be a closed point of VnF , separable over

F . Then the S2n,n-suspension of QF (w):

idS2n,n ∧QF (w) : S
2n,n ∧ SpecF+ ∧ S

n,0 → S2n,n ∧ w+ ∧ S
2n,n

is equal to the map Σns
(

(idS2n,n ∧ [−w1/w0] ∧F (w) . . . ∧F (w) [−wn/w0]) ◦ TrF (w)
)

.
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Proof. Write ∗F for SpecF . We have the commutative diagram

S2n,n ∧ ∗F+ ∧ Sn,0

α−1
∞

∧σF

��

TrF (w)∧id
// S2n,n ∧ w+ ∧ Sn,0

id∧σ

��

Pn/H∞ ∧ ∗F+ ∧∆n/∂∆n

id∧cw

��

cj(w)∧id

**UUUUUUUUUUUUUUUUU
S2n,n ∧ w+ ∧∆n/∂∆n

id∧cw

��

Pn/(Pn \ j(w)) ∧∆n/∂∆n

id∧cw

��

(α∞◦m∞

j(w))∧id
44jjjjjjjjjjjjjjjj

Pn/H∞ ∧∆n
F /(∆

n
F \w)

cj(w)∧id
//

id∧mvw

��

Pn/(Pn \ j(w)) ∧∆n/(∆n \ w)

(α∞◦m∞

j(w))∧id
**TTTTTTTTTTTTTTTT

id∧mvw

��

Pn/H∞ ∧w+ ∧ (Pn/H, 1)

cj(w)∧id
**UUUUUUUUUUUUUUUUU

α∞∧idw+
∧α

��

S2n,n ∧ w+ ∧∆n/(∆n \ w)

id∧mvw

��

Pn/(Pn \ j(w)) ∧ w+ ∧ (Pn/H, 1)

(α∞◦m∞

j(w))∧id
**TTTTTTTTTTTTTTTT

S2n,n ∧w+ ∧ (Pn/H, 1)

id∧idw+
∧α

��

S2n,n ∧ w+ ∧ S2n,n S2n,n ∧ w+ ∧ S2n,n;

the commutativity follows either by definition of TrF (w), or by identities of the
form (a ∧ 1) ◦ (1 ∧ b) = (1 ∧ b) ◦ (a ∧ 1), or (in the bottom pentagon) lemma 8.1.
The composition along the left-hand side is idS2n,n ∧ [(idw+ ∧ α) ◦ PTF (w)]; along
the right-hand side we have idS2n,n ∧ [(idw+ ∧ α) ◦ PTF (w)(w)]. Since w is F (w)-
rational, we may apply proposition 7.1 and our formula (7.1) for QF (w) to complete
the proof. �

9. Conclusion

We can now put all the pieces together. For E ∈ SptS1(k) fibrant, we have the
associated fibrant object ΩnTE := HomSpt(k)(S

2n,n, E), that is, ΩnTE is the presheaf

(ΩnTE)(X) := E(X+ ∧ S2n,n). For each n ≥ 1, we have the canonical map

ιn : E → ΩnTΣ
n
TE.

Replacing S2n,n with Sn,n = G∧n
m , we have the fibrant object

ΩnGm
E := HomSpt(k)(S

n,n, E),

defined as the presheaf (Ωn
Gm
E)(X) := E(X+ ∧G∧n

m ).
Given a closed point w ∈ VnF , we define the map

TrF (w)
∗ : πm(ΩnTE(w))→ πm(ΩnTE(F ))
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as the composition

πm(ΩnTE(w)) = HomSH
S1(k)(Σ

∞
s (S2n,n ∧ w+),Σ

−m
s E)

Σ∞

s (TrF (w)))∗

−−−−−−−−−−→ HomSH
S1(k)(Σ

∞
s (S2n,n ∧ SpecF+),Σ

−m
s E)

= πm(ΩnTE(F )).

Definition 9.1. Take E ∈ SHS1(k) and let n ≥ 1 be an integer. An n-fold T -
delooping of E is an an object ω−n

T E of SHS1(k) and an isomorphism ιn : E →
ΩnTω

−n
T E in SHS1(k).

Given an n-fold T -delooping of E, ιn : E → ΩnTω
−n
T E, the map TrF (w)

∗ for

ΩnTω
−n
T E induces the “transfer map”

ι−1
n ◦ TrF (w)

∗ ◦ ιn : πm(E(w))→ πm(E(F )),

which we write simply as TrF (w)
∗.

Remarks 9.2. 1. The transfer map TrF (w)
∗ : πm(E(w)) → πm(E(F )) may possi-

bly depend on the choice of n-fold T -delooping, we do not have an example, however.

2. An n − b-fold T -delooping of E gives rise to an n-fold T -delooping of Ωb
Gm
E.

Thus, via the adjunction isomorphism

Πa,bE ∼= πaΩ
b
Gm
E

we have a transfer map

TrF (w)
∗ : Πa,bE(w)→ Πa,bE(F )

for w a closed point of VnF , separable over F .

3. If E = Ω∞
T E for some E ∈ SH(k), then E admits canonical n-fold T -deloopings,

namely
ω−n
T E := Ω∞

T ΣnTE .

Indeed, in SH(k), ΣT is the inverse to ΩT and Ω∞
T commutes with ΩT .

For a morphism ϕ : Σ∞
s w+ → E, we have the suspension ΣnTϕ : ΣnTΣ

∞
s w+ →

ΣnTE, the composition

ΣnTϕ ◦ Σ
∞
s TrF (w)

∗ : ΣnTΣ
∞
s SpecF+ → ΣnTE

and the adjoint morphism

(ΣnTϕ ◦ Σ
∞
s TrF (w)

∗)′ : Σ∞
s SpecF+ → ΩnTΣ

n
TE.

Suppose we have an n-fold de-looping of E, ιn : E → ΩnTω
−n
T E. This gives us

the adjoint
ι′n : ΣnTE → ω−n

T E

and
ΩnT ι

′
n : ΩnTΣ

n
TE → ΩnTω

−n
T E.

Let δn : E → ΩnTΣ
n
TE be the unit for the adjunction.

Lemma 9.3. 1. ιn = ΩnT ι
′
n ◦ δn

2. ι−1
n ◦ Ω

n
T ι

′
n ◦ (Σ

n
Tϕ ◦ Σ

∞
s TrF (w))

′ = TrF (w)
∗(ϕ).

Proof. The two assertions follow from the universal property of adjunction. �
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Before proving our main results, we show that the transfer maps respect the
Postnikov filtration F ∗

TateπmE.

Lemma 9.4. Suppose E admits an n-fold T -delooping ιn : E → ΩnTω
−n
T E. Then

for each finitely generated field F over k and each closed point w ∈ AnF separable

over F , we have

TrF (w)
∗(F q

Tate
πmE(w)) ⊂ F q

Tate
πmE(F ).

Proof. Take q ≥ 0, and let τq : fqE → E be the canonical morphism. As above, let

ι′n : ΣnTE → ω−n
T E be the adjoint of ιn and let δn : E → ΩnTΣ

n
TE be the unit of the

adjunction. By lemma 9.3, we have the factorization of ιn as

E
δn−→ ΩnTΣ

n
TE

Ωn
T ι

′

n−−−→ ΩnTω
−n
T E.

This gives us the commutative diagram

fqE

δn

��

τq
// E

ιn

��

ΩnTΣ
n
T fqE

τ ′

q

// ΩnTω
−n
T E,

where τ ′q := ΩnT ι
′
n ◦ Ω

n
TΣ

n
T τq. Since ιn : E → ΩnTω

−n
T E is an isomorphism, the

composition
ιn ◦ τq : fqE → ΩnTω

−n
T E

satisfies the universal property of fqΩ
n
Tω

−n
T E → ΩnTω

−n
T E. By [6, theorem 7.4.1],

ΩnTΣ
n
T fqE is in ΣqTSHS1(k), hence there is a canonical morphism

θ : ΩnTΣ
n
T fqE → fqE

extending our first diagram to the commutative diagram

fqE

ιn

��

τq
// E

ιn

��

ΩnTΣ
n
T fqE

τ ′

q

//

θ

OO

ΩnTω
−n
T E.

ι−1
n

OO

Using the universal property of τq, we see that θ ◦ ιn = idfqE , i.e.,

ΩnTΣ
n
T fqE = fqE ⊕R

and the restriction of τ ′q to R is the zero map. We define the transfer map

TrF (w)
∗ : πmfqE(w)→ πmfqE(F )

by using the transfer map for ΩnTΣ
n
T fqE and this splitting.

The second diagram thus gives rise to the commutative diagram

πmfqE(w)

TrF (w)∗

��

τq
// πmE(w)

TrF (w)∗

��

πmfqE(F )
τq

// πmE(F ),

which yields the result. �
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Remark 9.5. One can define transfer maps in a more general setting, that is, for
a closed point w ∈ AnF and any choice of parameters for mw ⊂ OAn,w. The same
proof as used for lemma 9.4 shows that these more general transfer maps respect
the filtration F ∗

TateπmE.

Theorem 9.6. Let E ∈ Spt(k) be fibrant, and let F be a field extensions of k.

1. For each w = (w0, . . . , wn) ∈ Vn(F ), and each ρ ∈ π0ΩnGm
E(F ), the element

ρ ◦ Σ∞
s ([−w1/w0] ∧F . . . ∧F [−wn/w0]) : Σ

∞
s SpecF+ → E

is in Fn
Tate

π0E(F ).

2. Suppose that E admits an n-fold T -delooping ιn : E → ΩnTω
−n
T E. Then for

w = (w0, . . . , wn) a closed point of VnF , separable over F , and ρw ∈ π0ΩnGm
E(w)

(9.1) TrF (w)
∗[ρw ◦ Σ

∞
s ([−w1/w0] ∧F . . . ∧F [−wn/w0])]

is in Fn
Tate

π0E(F ).

3. Suppose that E admits an n-fold T -delooping ιn : E → ΩnTω
−n
T E. and that

Πa,∗E = 0 for all a < 0. Suppose further that F is perfect. Then Fn
Tate

π0E(F ) is

generated by elements of the form (9.1), as w runs over closed point of VnF and ρw
over elements of π0Ω

n
Gm
E(w).

Proof. (1) follows directly from proposition 3.4 and proposition 7.1, noting that the
isomorphism Ωn

Gm
E ∼= ΣnsΩ

n
TE gives the identification

π−nΩ
n
TE(w) ∼= π0Ω

n
Gm
E(w) ∼= HomSH

S1(k)(Σ
∞
s w+ ∧G∧n

m , E).

For (2), the fact that this element is in FnTateπ0(E(F )) follows from (1) and
lemma 9.4.

For (3), that is, to see that these elements generate, take one of the generators
γ := ξw ◦ Σ∞

s QF (w) of FnTateπ0E(F ), as given by proposition 3.4, that is, w is a
closed point of VnF and ξw is in π−n(Ω

n
TE(w)) = π0(Ω

n
Gm
E(w)). Since F is perfect,

w is separable over F . Take the n-fold T -suspension of γ

ΣnT γ : Σ∞
s (ΣnT SpecF+)→ ΣnTE,

giving by adjunction and composition with ΩnT (ι
′
n) the morphism

ΩnT (ι
′
n) ◦ (Σ

n
Tγ)

′ : Σ∞
s SpecF+ → ΩnTω

−nE.

It follows from the universal properties of adjunction that

(ΣnT γ)
′ = δn ◦ γ,

hence by lemma 9.3 we have

(9.2) ΩnT (ι
′
n) ◦ (Σ

n
Tγ)

′ = ΩnT (ι
′
n) ◦ δn ◦ γ = ιn ◦ γ.

Write
ΣnT γ = (ΣnT ξw) ◦ (Σ

∞
s ΣnTQF (w)).

By proposition 8.2 we have

ΣnTQF (w) = Σns (Σ
n
T [−w1/w0] ∧F . . . ∧F [−wn/w0] ◦ TrF (w)) ,

and thus

ΣnT γ = ΣnT (ξw ◦ Σ
n
s [−w1/w0] ∧F . . . ∧F [−wn/w0]) ◦ Σ

n
sTrF (w).



32 MARC LEVINE

Using (9.2) and lemma 9.3, we have

ιn ◦ γ = ΩnT (ι
′
n) ◦ (Σ

n
Tγ)

′

= ΩnT (ι
′
n) ◦ [Σ

n
T (ξw ◦ Σ

n
s [−w1/w0] ∧F . . . ∧F [−wn/w0]) ◦ Σ

n
sTrF (w)]

′

= ιn ◦ TrF (w)
∗(ξw ◦ Σ

n
s [−w1/w0] ∧F . . . ∧F [−wn/w0]),

or
γ = TrF (w)

∗[ρw ◦ Σ
∞
s ([−w1/w0] ∧F . . . ∧F [−wn/w0])].

�

We now assume that E = Ω∞
T E for some fibrant T -spectrum E ∈ SptT (k). Let

Sk denote the motivic sphere spectrum in SptT (k), that is, Sk is a fibrant model of
the suspension spectrum Σ∞

T S
0
k. We proceed to re-interpret theorem 9.6 in terms

of the canonical action of π0Ω
∞
T Sk(F ) on π0E(F ), which we now recall, along with

some of the fundamental computations of Morel relating the Grothendieck-Witt
group with endomorphisms of the motivic sphere spectrum.

We recall the Milnor-Witt sheaves of Morel, KMW
n (see [8, section 2] for de-

tails). The graded sheaf KMW
∗ := ⊕n∈ZK

MW
n has structure of a Nisnevich sheaf

of associative graded rings. For a finitely generated field F over k, the graded
ring KMW

∗ (F ) := KMW
∗ (F ) has generators [u] in degree 1, for u ∈ F×, and an

additional generator η in degree −1, with relations

• η[u] = [u]η
• [u][1− u] = 0 (Steinberg relation)
• [uv] = [u] + [v] + η[u][v]
• η(2 + η[−1]) = 0.

For later use, we note the following result:

Lemma 9.7. Let F be a field, u1, . . . , un ∈ F× with
∑

i ui = 1. Then [u1]·. . .·[un] =
0 in KMW

0 (F ).

Proof. We use a number of relations in KMW
∗ (F ), proved in [8, lemma 2.5, 2.7].

For u ∈ F× we let <u> denote the element 1 + η[u] ∈ KMW
0 (F ). We have the

following relations, for a, b ∈ F×,

i) KMW
0 (F ) is central in KMW

∗ (F )
ii) [a][1− a] = 0 for a 6= 1
iii) [ab] = [a] +<a>[b]
iv) [a−1] = −<a−1>[a]
v) [a][−a] = 0
vi) [1] = 0.

These yield the additional relation

vii) [a][−a−1] = 0.

This follows by noting that

[a][−a−1] = [a](−<−a−1>[−a]) (iv)

= (−<−a−1>)[a][−a] (i)

= 0 (v)

We prove the lemma by induction on n, the case n = 1 being the relation (vi),
the case n = 2 the Steinberg relation (ii). Induction reduces to showing

[u][v] = [u+ v][−v/u] for u+ v 6= 0
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(in case u+ v = 0 we use (v) to continue the induction). For this, we have

[u][v] = [u][v] +<v>[u][−u−1] (vii)

= [u][v] + [u]<v>[−u−1] (i)

= [u][−v/u] (iii)

= [u][−v/u] +<u>[1 + v/u][−v/u] (ii)

= [u+ v][−v/u] (iii)

�

For u ∈ F×, let <u> denote the quadratic form uy2 in the Grothendieck-Witt
group GW(F ). Sending [u]η to <u>−1 extends to an isomorphism [8, lemma 2.10]

ϑ0 : KMW
0 (F )→ GW(F ).

In addition, for n ≥ 1, the image of ×ηn : KMW
n (F ) → KMW

0 (F ) is an ideal
ηnKMW

n (F ) in KMW
0 (F ) and ϑ0 maps ηnKMW

n (F ) isomorphically onto the ideal
I(F )n, where I(F ) ⊂ GW(F ) is the augmentation ideal of quadratic forms of virtual
rank zero.

For each u ∈ F×, we have the corresponding morphism

[u] : SpecF+ → Gm

We have as well the canonical projection η′ : A2 \ {0} → P1. Using a construction
similar to the one we used to show that P2/H ∼= Σ2

sG
∧2
m , one constructs a canonical

isomorphism in H•(k), (A2 \ {0}, 1) ∼= Σ1
sG

∧2
m , and thus η′ yields the morphism

η : Σ1
sG

∧2
m → Σ1

sGm

in H•(k).
For E,F ∈ SptS1(k), let Hom(E,F ) denote the Nisnevich sheaf associated to

the presheaf
U 7→ HomSH

S1(k)(U+ ∧ E,F ).

We have the fundamental theorem of Morel:

Theorem 9.8 ([8, corollary 3.43]). Suppose char k 6= 2. Let m, p, q ≥ 0, n ≥ 2
be integers. Then sending [u] ∈ KMW

1 (F ) to the morphism [u] and sending η ∈
KMW

−1 (F ) to the morphism η yields isomorphisms

HomH•(k)(SpecF+ ∧ S
m ∧G∧p

m , Sn ∧G∧q
m ) ∼=

{

0 if m < n

KMW
q−p (F ) if m = n and q > 0.

As we will be relying on Morel’s theorem, we assume for the rest of the paper
that the characteristic of k is different from two.

Passing to the S1-stabilization, theorem 9.8 gives

Π0,pΣ
∞
s G∧q

m = KMW
q−p for p ≥ 0, q ≥ 1,(9.3)

Πa,pΣ
∞
s G∧q

m = 0 for p ≥ 0, q ≥ 1, a < 0.

Passing to the T -stable setting, Morel’s theorem gives

πp,pΣ
q
Gm

Sk ∼= KMW
q−p for p, q ∈ Z(9.4)

πa+p,pΣ
q
Gm

Sk = 0 for p, q ∈ Z, a < 0.

Composition of morphisms gives us the (right) action of the bi-graded sheaf of

rings π∗,∗Sk on π∗,∗E for each T -spectrum E , and thus, the action of KMW
−∗ on
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π∗,∗E . If we let E be the S1-spectrum Ω∞
T E , then Πa,bE = πa+b,bE for all b ≥ 0.

Thus, via lemma 2.2(2) we thus have the right multiplication

Πa,b−mE ⊗K
MW
−m → Πa,bE.

Let I ⊂ KMW
0 be the sheaf of augmentation ideals. The KMW

−∗ -module structure

on Πa,∗E gives us the filtration FMW
n Πa,bE of Πa,bE, defined by

FMW
n Πa,bE := im[Πa,nE ⊗K

MW
n−b → Πa,bE]; n ≥ 0.

Lemma 9.9. Suppose E = Ω∞
T E for some E ∈ SH(k). For integers n, b, p ≥ 0,

with n − p, b − p ≥ 0, the adjunction isomorphism Πa,bE ∼= Πa,b−pΩ
p
Gm
E induces

an isomorphism

FMW
n Πa,bE ∼= FMW

n−p Πa,b−pΩ
p
Gm
E.

Proof. This follows easily from the fact that the adjunction isomorphism

Πa,∗E ∼= Πa,∗−pΩ
p
Gm
E

is a KMW
∗ -module isomorphism. �

Definition 9.10. Let E = Ω∞
T E for some E ∈ SH(k), F a field extension of k.

Take integers a, b, n with n, b ≥ 0. Following remark 9.2(2), we have the transfer
maps

TrF (w) : Πa,bE(F (w))→ Πa,bE(F )

for each closed point w ∈ VnF , separable over F .

1. Let FMŴTr
n Πa,bE(F ) denote the subgroup of Πa,bE(F ) generated by elements

of the form

TrF (w)
∗(x); x ∈ FMW

n Πa,bE(F (w))

as w runs over closed points of VnF , separable over F .

2. Let [Πa,bE · In]̂Tr(F ) denote the subgroup of Πa,bE(F ) generated by elements
of the form

TrF (w)
∗(x · y); x ∈ Πa,bE(F (w)), y ∈ I(F (w))n,

as w runs over closed points of VnF , separable over F .

Remark 9.11. It follows directly from the definitions that, for w a closed point of
VnF , x ∈ KMW

n−b (F ), y ∈ Πa,nE(F (w)), we have

TrF (w)
∗(y · p∗x) = TrF (w)

∗(y) · x,

where p∗x ∈ KMW
n−b (F (w)) is the extension of scalars of of x. In particular, [Πa,bE ·

In]̂Tr(F ) is a KMW
0 (F )-submodule of Πa,bE(F ) containing Πa,bE(F )I(F )n.

Theorem 9.12. Let k be a perfect field of characteristic 6= 2. Let E = Ω∞
T E for

some E ∈ SH(k) with Πa,bE = 0 for all a < 0, b ≥ 0. Let n > p ≥ 0 be integers

and let F be a perfect field extension of k. Then

Fn
Tate

Π0,pE(F ) = FMŴTr
n Π0,pE(F ).

For p ≥ n ≥ 0, we have the identity of sheaves Fn
Tate

Π0,pE = Π0,pE.
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Proof. First suppose n > p. By lemma 2.2 and lemma 9.9, we reduce to the case
p = 0.

The fact that we have an inclusion of KMW
0 (F )-submodules of Π0,0E(F ),

FnTateΠ0,0E(F ) ⊂ FMŴTr
n Π0,0E(F ),

follows from theorem 9.6. Indeed, as F is perfect, each element of the form (9.1)
is of the form TrF (w)(ρw · z), with ρw ∈ Π0,nE(w), z ∈ KMW

n (F (w)), hence in

FMŴTr
n Π0,0E(F ).
To show the other inclusion, it suffices by lemma 9.4 and theorem 9.6 to show

that, for each fieldK finitely generated over k, the elements [−u1/u0]·. . .·[−un/u0],
with (u0, . . . , un) ∈ Vn(K), generate KMW

n (K) as a module over KMW
0 (K).

We note that the map sending (u0, . . . , un) to (1/u0,−u1/u0, . . . ,−un/u0) is
an involution of Vn, so it suffices to show that the elements [u1] · . . . · [un], with
(u0, . . . , un) ∈ Vn(K), generate.

Sending (u0, . . . , un) to (u1, . . . , un) identifies Vn with (A1 \ {0})n \H . But by
definition KMW

n (K) is generated by elements [u1] · . . . · [un] with ui ∈ K×; it thus
suffices to show that [u1] · . . . · [un] = 0 in KMW

n (K) if
∑

i ui = 1; this is lemma 9.7.
If p ≥ n ≥ 0, the universal property of fnE → E gives us the isomorphism for

U ∈ Sm/k

HomSH
S1(k)(Σ

∞
s Σp

Gm
U+, E) ∼= HomSH

S1(k)(Σ
∞
s Σp

Gm
U+, fnE),

since Σ∞
s Σp

Gm
U+ is in ΣpTSHS1(k) for U ∈ Sm/k. As these groups of morphisms

define the presheaves whose respective sheaves are Π0,pE(F ) and Π0,pfnE, the map
Π0,pfnE → Π0,pE is an isomorphism, hence FnTateΠ0,pE = Π0,pE. �

Remark 9.13. The reader may object that the collection of transfer maps used to
define FMŴTr

n Π0,pE(F ) is rather artificial. However, the fact that the general
transfer maps mentioned in remark 9.5 respect the filtration F ∗

TateπmE, together
with theorem 9.12, shows that, if we were to allow arbitrary transfer maps in our
definition of FMŴTr

n Π0,pE(F ), we would arrive at the same subgroup of Π0,mE(F ).

Our main result for a T -spectrum, theorem 2, follows easily from theorem 9.12:

Proof of theorem 2. Using lemma 2.2, we reduce to the case p = 0. Essentially the
same argument as used at the end of the proof of theorem 9.12 proves the part of
theorem 2 for n ≤ 0.

If n > 0, then for b ≥ 0, we have

πa,bE ∼= πa,bΩ
∞
T E (lemma 2.2)

πa,bfnE ∼= πa,bΩ
∞
T fnE ∼= πa,bfnΩ

∞
T E (lemma 2.2) and (2.1)

Thus, in case n > 0, theorem 2 for E is equivalent to theorem 9.12 for Ω∞
T E ,

completing the proof. �

Finally, we can prove our main result for the motivic sphere spectrum, theorem 1.
Let E = Σq

Gm
Sk. Then Morel’s isomorphism (9.4) and lemma 2.2 give

Πa,bΩ
∞
T E =

{

KMW
q−b for a = 0, b ≥ 0

0 for a < 0, b ≥ 0.
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Theorem 9.14. Let k be a perfect field of characteristic 6= 2.
1. For all n > p ≥ 0, q ∈ Z, and all perfect field extensions F of k, we have

Fn
Tate

Π0,pΩ
∞
T Σq

Gm
Sk(F ) = KMW

q−p (F )I(F )N ⊂ KMW
q−p (F ),

where N = N(n− p, n− q) := max(0,min(n− p, n− q)). In particular,

Fn
Tate

π0,0Sk(F ) = I(F )n ⊂ GW(F ).

2. For n ≤ p, we have the identity of sheaves Fn
Tate

Π0,pΩ
∞
T Σq

Gm
Sk = KMW

q−p .

3. In case k has characteristic zero, we have the identity of sheaves

Fn
Tate

Π0,pΩ
∞
T Σq

Gm
Sk = KMW

q−p I
N ⊂ KMW

q−p .

with N as above.

Proof. Let N be as defined in the statement of the theorem. We first note (3)
follows from (1), in fact, from (1) for all fields extensions F finitely generated over
k. Indeed, FnTateΠ0,pΩ

∞
T Σq

Gm
Sk is the image of the map

Π0,pfnΩ
∞
T Σq

Gm
Sk → Π0,pΩ

∞
T Σq

Gm
Sk

induced by the canonical morphism fnΩ
∞
T Σq

Gm
Sk → Ω∞

T Σq
Gm

Sk. By results of

Morel [9, theorem 3 and lemma 5], both homotopy sheaves are strictly A1-invariant
sheaves of abelian groups. But the category of strictly A1-invariant sheaves of
abelian groups is abelian [9, lemma 6.2.13], hence FnTateΠ0,pΩ

∞
T Σq

Gm
Sk is also strictly

A1-invariant. It follows, e.g., from Morel’s isomorphism

π0Ω
∞
T ΣmGm

S ∼= π−m,−mS ∼= KMW
m

that the sheaves KMW
m are strictly A1-invariant; as KMW

q−p I
N is the image of the

map

×ηM :KMW
q−p+M → KMW

q−p ,

where M = N if q − p ≥ 0, M = p − q + N if q − p < 0, it follows that KMW
q−p I

N

is strictly A1-invariant as well. Our assertion follows from the fact that a strictly
A1-invariant sheaf F is zero if and only F(k(X)) = 0 for all X ∈ Sm/k, which in
turn is an easy consequence of [11, lemma 3.3.6].

Next, suppose n− p ≤ 0. Then N = 0 and

FnTateΠ0,pΩ
∞
T Σq

Gm
Sk = Fn−pTateΠ0,0Ω

p
Gm

Ω∞
T Σq

Gm
Sk (lemma 2.2)

= Π0,0Ω
p
Gm

Ω∞
T Σq

Gm
Sk (n− p < 0)

= Π0,pΩ
∞
T Σq

Gm
Sk (adjunction)

= KMW
q−p (Morel’s theorem)

proving (2); we may thus assume n− p > 0.
By (9.4), we may apply theorem 9.12, which tells us that FnTateΠ0,pΩ

∞
T Σq

Gm
Sk(F )

is the subgroup of Π0,pΩ
∞
T Σq

Gm
Sk(F ) = KMW

q−p (F ) generated by elements of the form
TrF (w)

∗(y · x) with

y ∈ Π0,nΩ
∞
T Σq

Gm
Sk(F (w)) = KMW

q−n (F (w))

x ∈ KMW
n−p (F (w)).
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Suppose that n− q < 0, so N = 0. Then q − n ≥ 0 and n− p > 0, and thus the
product map

µn−p,q−n : KMW
n−p (F (w)) ⊗K

MW
q−n (F (w))→ KMW

q−p (F (w)) = Π0,pΩ
∞
T Σq

Gm
Sk(F (w))

is surjective. Since the map TrF (w) is an isomorphism for w ∈ Vn(F ), we see that

FnTateΠ0,pΩ
∞
T Σq

Gm
Sk(F ) = Π0,pΩ

∞
T Σq

Gm
Sk(F ).

Suppose n− q ≥ 0. Then

×ηn−q : KMW
0 (F (w))→ KMW

q−n (F (w))

is surjective. If n− p ≥ n− q, then the image of µn−p,q−n is the same as the image
of the triple product

KMW
q−p (F (w)) ⊗KMW

n−q (F (w)) ⊗K
MW
q−n (F (w))→ KMW

q−p (F (w));

as the image of

µn−q,q−n : KMW
n−q (F (w)) ⊗K

MW
q−n (F (w))→ KMW

0 (F (w))

is I(F (w))n−q , we see that the image of µn−p,q−n is KMW
q−p (F (w))I(F (w))n−q and

thus

FnTateΠ0,pΩ
∞
T Σq

Gm
Sk(F ) = [Π0,pΩ

∞
T Σq

Gm
SkI

N ] T̂ r (F ).

Similarly, if n− q ≥ n− p, then the image of µn−p,q−n is the same as the image of
the triple product

KMW
q−p (F (w)) ⊗KMW

n−p (F (w)) ⊗K
MW
p−n (F (w))→ KMW

q−p (F (w))

which is KMW
q−p (F (w))I(F (w))n−p . Thus

FnTateΠ0,pΩ
∞
T Σq

Gm
Sk(F ) = [Π0,pΩ

∞
T Σq

Gm
SkI

N ]̂Tr(F )

in this case as well.
Thus, to complete the proof, it suffices to show that, for w a closed point of VnF ,

and N ≥ 0 an integer, we have

(9.5) TrF (w)
∗
(

KMW
q−p (F (w))I(F (w))N

)

⊂ KMW
q−p (F )I(F )N .

First suppose that q−p ≥ 0. Take a closed point w ∈ VnF and elements x1, . . . , xN ∈
F (w)×, y ∈ KMW

q−p (F (w)). We have

TrF (w)
∗(y · [x1]η · . . . · [xN ]η) = TrF (w)

∗(y · [x1] · . . . · [xN ]ηN )

= TrF (w)
∗(y · [x1] · . . . · [xN ]) · ηN .

where we use remark 9.11 in the last line. Since q − p ≥ 0, KMW
q−p (F )I(F )N is the

image in KMW
q−p (F ) of the map

−× ηN : KMW
q−p+N (F )→ KMW

q−p (F ),

which verifies (9.5).
In case q − p < 0, write y = y0η

p−q, with y0 ∈ KMW
0 (F (w)). As above, we have

TrF (w)
∗(y · [x1]η · . . . · [xN ]η) = TrF (w)

∗(y0 · [x1] · . . . · [xN ]) · ηp−q+N ,

which is in ηp−q · [KMNW
N (F )ηN ] = KMW

q−p (F )I(F )N , as desired. �

Theorem 9.14 yields the main result for the S1-spectra Σ∞
s G∧q

m by using the
S1-stable consequences of Morel’s unstable computations, theorem 9.8.
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Corollary 9.15. Let k be a perfect field of characteristic 6= 2.
1. For all n > p ≥ 0, q ≥ 1, and all perfect field extensions F of k, we have

Fn
Tate

Π0,pΣ
∞
s G∧q

m (F ) = KMW
q−p (F )I(F )N(n−p,n−q) ⊂ KMW

q−p (F ),

with N(n− p, n− q) as in theorem 9.14.

2. For n ≤ p, we have Fn
Tate

Π0,pΣ
∞
s G∧q

m = Π0,pΣ
∞
s G∧q

m .

3. If chark = 0, we have the identity of sheaves

Fn
Tate

Π0,pΣ
∞
s G∧q

m = KMW
q−p I

N(n−p,n−q) ⊂ KMW
q−p .

Proof. As in the proof of theorem 9.14, it suffices to prove (1).
The main point is that Morel’s unstable computations show that theGm-stabilization

map

HomSH
S1 (k)(Σ

m
s Σ∞

s G∧p
m ∧ SpecF+,Σ

∞
s G∧q

m )

→ HomSH
S1(k)(Σ

m
s Σ∞

s G∧p+1
m ∧ SpecF+,Σ

∞
s G∧q+1

m )

is an isomorphism for all m ≤ 0, p ≥ 0 and q ≥ 1.
Let E(p, q) = Ωp

Gm
Σ∞
s G∧q

m , and let

E(q − p) = Ω∞
T Σ−p

Gm
Σ∞
T G∧q

m = Ω∞
T Σq−p

Gm
Sk.

Then

πaE(p, q) = Πa,pΣ
∞
s G∧q

m .

Thus Πa,∗E(p, q) = 0 for m < 0 and so we may apply proposition 3.4 to give
generators of the form ξw ◦ Σ∞

s QF (w) for

Fn−pTateΠ0,0Ω
p
Gm

Σ∞
s G∧q

m (F ) = FnTateΠ0,pΣ
∞
s G∧q

m (F ).

But ξw is in

π−n+pΩ
n−p
T E(p, q)(w) = π0,n−pE(p, q)(w).

Similarly, we have generators ξ′w ◦ Σ
∞
s QF (w) for F

n−p
Tateπ0E(p− q)(F ), with

ξ′w ∈ π0,n−pE(p− q)(w).

But the stabilization map

π0,n−pE(p, q)(w)→ π0,n−pE(p+ 1, q + 1)(w)

is an isomorphism, and hence we have an isomorphism from the generators for
Fn−pTateπ0E(p, q)(F ) to the generators for

Fn−pTateπ0E(q − p)(F ) = lim
−→
m

Fn−pTateπ0E(p+m, q +m)(F ).

As the map

π0E(p, q)(F )→ π0E(q − p)(F ) = KMW
q−p (F )

is an isomorphism, it follows that the surjection

Fn−pTateπ0E(q − p)(F )→ Fn−pTateπ0E(q − p).

is an isomorphism as well. By theorem 9.14, we have

Fn−pTateπ0E(q − p) = KMW
q−p (F )I(F )N ⊂ KMW

q−p (F ),

completing the proof. �
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Theorem 9.14 also gives us the T -stable version

Corollary 9.16. Let k be a perfect field of characteristic 6= 2. For n, p, q ∈ Z, and
F a perfect field extensions of k, we have

Fn
Tate

πp,pΣ
q
Gm

Sk(F ) = KMW
q−p (F )I(F )N(n−p,n−q) ⊂ KMW

q−p (F )

For n ≤ p, we have Fn
Tate

πp,pΣ
q
Gm

Sk = KMW
q−p . If char k = 0, we have

Fn
Tate

πp,pΣ
q
Gm

Sk = KMW
q−p I

N(n−p,n−q) ⊂ KMW
q−p .

Proof. Using lemma 2.2 and lemma 9.9 as in the proof of theorem 9.12 we have

FnTateπp,pΣ
q
Gm

Sk = Fn−p+rTate πr,rΣ
q−p+r
Gm

Sk

for all integers r. As our assertion is also stable under this shift operation, we may
assume that p, q ≥ 0. We note that Sk is in SHeff (k), hence so are all Σq

Gm
Sk for

q ≥ 0, and thus
FnTateπp,pΣ

q
Gm

Sk = πp,pΣ
q
Gm

Sk

for n < 0, p, q ≥ 0. The truncation functors fn, n ≥ 0, on SH(k) and SHS1(k)
commute with Ω∞

T , and πa,pΩ
∞
T E = πa,pE for E ∈ SH(k), p ≥ 0. This reduces us to

computing computing FnTateπp,pΩ
∞
T Σq

Gm
Sk for n, p, q ≥ 0, which is theorem 9.14. �

10. Epilog: Convergence questions

Voevodsky has stated a conjecture [14, conjecture 13] that would imply that for
E = Σ∞

T X+, X ∈ Sm/k, the Tate Postnikov tower is convergent in the following
sense: for all a, b, n ∈ Z, one has

∩mF
m
Tateπa,bfnE = 0.

Our computation of FnTateπp,pΣ
∞
T G∧q

m gives some evidence for this convergence con-
jecture.

Proposition 10.1. Let k be a perfect field with char k 6= 2. For all p, q ≥ 0, and
all perfect field extensions F of k, we have

∩nF
n
Tate

πp,pΣ
∞
T G∧q

m (F ) = 0.

Proof. In light of theorem 9.14, the assertion is that the I(F )-adic filtration on
KMW
q−p (F ) is separated. By [10, théorème 5.3], for m ≥ 0, KMW

m (F ) fits into a
cartesian square of GW(F )-modules

KMW
m (F ) //

��

KM
m (F )

Pf

��

I(F )m
q

// I(F )m/I(F )m+1,

where KM
m (F ) is the Milnor K-group, q is the quotient map and Pf is the map

sending a symbol {u1, . . . , um} to the class of the Pfister form <<u1, . . . , um>>
mod I(F )m+1. For m < 0, KMW

m (F ) is isomorphic to the Witt group of F , W (F ),
that is, the quotient of GW(k) by the ideal generated by the hyperbolic form x2−y2.
Also, the map GW(F ) → W (F ) gives an isomorphism of I(F )r with its image in
W (F ) for all r ≥ 1. Thus

KMW
m (F )I(F )n =

{

I(F )n ⊂W (F ) for m < 0, n ≥ 0

I(F )n+m ⊂ GW(F ) for m ≥ 0, n ≥ 1.
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The fact that ∩nI(F )n = 0 in W (F ) or equivalently in GW(F ) is a theorem of
Arason and Pfister [1]. �

Remarks 10.2. 1. The proof in [10] that KMW
m (F ) fits into a cartesian square as

above relies the Milnor conjecture.

2. Voevodsky’s conjecture [loc. cit.] asserts the convergence for a wider class
of objects in SH(k) than just the T -suspension spectra of smooth k-schemes. The
selected class is the triangulated category generated by ΣnTΣ

∞
T X+, X ∈ Sm/k,

n ∈ Z and the taking of direct summands. However, as pointed out to me by Igor
Kriz, the convergence fails for this larger class of objects. In fact, take E to be the
Moore spectrum Sk/ℓ for some prime ℓ 6= 2. Since Πa,qSk = 0 for a < 0, propo-
sition 3.2 shows that Πa,qfnSk = 0 for a < 0, and thus we have the right exact
sequence for all n ≥ 0

π0,0fnSk
×ℓ
−−→ π0,0fnSk → π0,0fnE → 0.

In particular, we have

FnTateπ0,0E(k) = im (FnTateπ0,0Sk(k)→ π0,0Sk(k)/ℓ) = im (I(k)n → GW(k)/ℓ) .

Take k = R. Then GW(R) = Z⊕Z, with virtual rank and virtual index giving the
two factors. The augmentation ideal I(R) is thus isomorphic to Z via the index
and it is not hard to see that I(R)n = (2n−1) ⊂ Z = I(R). Thus π0,0E = Z/ℓ⊕Z/ℓ
and the filtration FnTateπ0,0E is constant, equal to Z/ℓ = I(R)/ℓ, and is therefore
not separated.

The convergence property is thus not a “triangulated” one in general, and there-
fore seems to be quite subtle. However, if the I-adic filtration on GW(F ) is finite
(possibly of varying length depending on F ) for all finitely generated F over k,
then our computations (at least in characteristic zero) show that the filtration
F ∗
Tateπp,pΣ

∞
T G∧q

m is at least locally finite, and thus has better triangulated proper-
ties; in particular, for ℓ 6= 2,

π0,0(Sk/ℓ) = Z/ℓ, FnTateπ0,0(Sk/ℓ) = 0 for n > 0,

as the augmentation ideal in GW(F ) is purely two-primary torsion, and Iπ0,0Sk/ℓ =
0. One can therefore ask if Voevodsky’s convergence conjecture is true if one as-
sumes the finiteness of the I(F )-adic filtration on GW(F ) for all finitely generated
fields F over k.
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