arXiv:1012.5630v1l [math.AG] 27 Dec 2010

THE SLICE FILTRATION AND GROTHENDIECK-WITT
GROUPS

MARC LEVINE

ABSTRACT. Let k be a perfect field of characteristic different from two. We
show that the filtration on the Grothendieck-Witt group GW (k) induced by
the slice filtration for the sphere spectrum in the motivic stable homotopy
category is the I-adic filtration, where I is the augmentation ideal in GW (k).
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INTRODUCTION

Let k be a perfect field of characteristic different from two. A fundamental
theorem of Morel [8] [TT] states that the endomorphism ring of the motivic sphere
spectrum S € SH(k) is naturally isomorphic to the Grothendieck-Witt ring of
quadratic forms over k, GW(k). This result follows from Morel’s calculation [8|
corollary 3.43] of the corresponding bi-graded homotopy sheaves of S AG/¢ in the
unstable motivic homotopy category He (k) as the Milnor-Witt sheaves

n K forn=m>2,¢q>1,p>0,
T (57 A Grl) = {O o for m < n,p,g>0
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Evaluating at k and taking m = n, p = g gives
Endy, (1) (S™ AGpT) = KMW (k) for m > 2,¢g > 1.

Combining this with Morel’s isomorphism KW (k) 2 GW(k) and stabilizing gives
Morel’s theorem

Endsy k) (Sk) = GW (k).
This also leads to the computation of the homotopy sheaf m, ,2°GA? (in the S*-
stable homotopy category SHg:(k)) as Ké\@g/, forallg>1,p>0.

In another direction, Voevodsky [15] has defined natural towers in SH(k) and
SH g1 (k), which are analogs of the classical Postnikov tower in SH; we call each of
these towers the Tate Postnikov tower (in SH(k) or SHg1(k), as the case may be).
Just as the classical Postnikov tower measures the S™-connectivity of a spectrum,
the Tate Postnikov tower measures the S*™" connectivity of a motivic spectrum.

In particular, the tower for Sy,

...—>fn+1Sk—>fnSk—>...—>f0§k=Sk
gives a filtration on the sheaf 7 ¢Sy by
Fatem0,0Sk := im(m0,0 fnSk — 70,0Sk).-
We have a similarly defined filtration on 7, , X3°G/?, which determines Fiit 70 oSy :
by
F% Sk = lim F 9, (B°GN (K
Tate”10,09k * g Tate 7¢,q%s Tm ( )
q

Our main result is the computation of F, m, ,3°G/4, and thereby F7.. .m0 0Sk
(on perfect fields)

Theorem 1. Let k be a perfect field of characteristic # 2 and let F' be a perfect field
extension of k. Let n,p >0, ¢ > 1 be integers and let N(a,b) = max(0, min(a,b)).
Then via the identification given by Morel’s isomorphism ), ,X°GN = Ké\{‘g, we
have
Fiempp SFGRH(E) = KUY (F) - I(F)N =),
where I(F) C KMW(F) is the augmentation ideal. After stabilizing, this gives
F%ateﬁpyng}mgk(F) = Ké\{?/(F)I(F)N(n_p’n_q)a n,p,q € Z,

in particular,
3 m0.0SK(F) = I(F)max(m0),

See theorem [@.14] corollary [@.15] and corollary @16 for details.

Remark 1. In case k is a field of characteristic 0, we have a finer result, namely the
identities stated in theorem [l extend to identities on the corresponding sheaves, for
example

n corxAg _ oMW  7N(n—p,n—q)
Frawe™pp2s Gy =K, 1 ’

Of course, one can more generally consider the filtration F7,,,mq € on the homo-
topy sheaves 7, € induced by the Tate Postnikov tower for an arbitrary T-spectrum
€ € SH(k). In general, we cannot say anything about this filtration, but assum-
ing a certain connectedness condition, we can compute the filtration on the first
non-vanishing homotopy sheaves, evaluated on perfect fields.
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Theorem 2. Let k be a perfect field of characteristic # 2 and let F' be a perfect
field extension of k. Take £ € SH(k) and suppose that meyppE = 0 for a < 0,
beZ. Then forn > p,

F?‘ate”p,pg(F) = [Wn,ng 'Kﬁ{vgrﬂ (F).
For n < p, we have the identity of sheaves
FaseTp.p€ = Tpp€.

To explain the notation: The canonical action of 7, .Sy on 7. &, gives, for each
finitely generated field extension L of k, a right K™W (L)-module structure on
e «E(L), giving us the subgroup m, ,&(L) - KMW (L) of ) ,E(L). This extends to
arbitrary field extensions of k by taking the evident colimit. Also, for each closed
point w € A%, we have a canonically defined transfer map

Tre(w)* : mebE(F(w)) = mebE(F)

(see R for details). [m), nE -K%_VZ]AT’" (F') is the subgroup of 7, ,E(F) generated by
the subgroups Trp(w)* (mpnE(F(w)) - KM (F(w))), as w runs over closed points
of A%. See theorem for details.

Theorem [I]is an easy consequence of theorem 2} one uses Morel’s unstable com-
putations of the maps S*? A Spec Fy — S™" to reduce theorem [ to its T-stable
version and then one uses the explicit presentation of KW to compute

B - KA (F) = KW () 1Y rem o) (),
Morel’s results on strictly Al-invariant sheaves allow us to go from the statement
on functions fields to the one for the sheaves.

The restriction to perfect fields arises from a separability assumption needed to
compute the action of transfers on our selected generators for Fif,, . mp €. We avoid
characteristic two so as to have a description of the homotopy sheaves of the sphere
spectrum in terms of Milnor-Witt K-theory.

The paper is organized as follows. After setting up our notation and going over
some background material on motivic homotopy theory in section[I we recall some
basic facts about the Tate Postnikov tower in section Pl In section [3] we prove some
connectedness results for the terms f, E, s, E in the Tate Postnikov tower for an S'-
spectrum E and give a description of generators for the subgroup FJ,, . moE(F), all
under a certain connectedness assumption on E. The generators are then factored
into a product of two terms, one depending on E, the other only on the choice of
a closed point of A%\ OA%. We analyze the second term in sections @8 our main
result being a description of this term as the nth suspension of a “symbol map”
associated to units w1, ..., u, € F*. This is the main computation achieved in this
paper. It is then relatively simple to feed this result into our description of the
generators for Ff, moE(F) to prove theorems [l and 2lin section B} we conclude in
section [I0] with some remarks on the convergence of the Tate Postnikov tower.

I thank the referee for making several helpful suggestions and for pointing out
a number of errors, including an incorrect formulation of theorem 2] in an earlier
version of this paper. Finally, I wish to thank the editors for giving me the oppor-
tunity of contributing to this volume. As a small token of my gratitude to Eckart
for all of his aid and support over many years, I dedicate this article to his memory.
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1. BACKGROUND AND NOTATION

Unless we specify otherwise, k will be a fixed perfect base field, without restric-
tion on the characteristic. For details on the following constructions, we refer the
reader to 3] 4 Bl 8, @ 111, 12].

We write [n] := {0,...,n} (including [—1] = @) and let A be the category with
objects [n], n = 0,1,..., and morphisms [n] — [m] the order-preserving maps of
sets. Given a category C, the category of simplicial objects in C is as usual the
category of functors A°? — C.

Spc will denote the category of simplicial sets, Spc, the category of pointed
simplicial sets, H := Spc[WE~!] the classical unstable homotopy category and
He := Spc,[W E~1] the pointed version. We denote the suspension operator — A S*
by ¥,. Spt is the category of suspension spectra and SH := Spt[WE~!] the
classical stable homotopy category.

The motivic versions are as follows: Sm/k is the category of smooth finite type
k-schemes. Spc(k) is the category of Spc-valued presheaves on Sm/k, Spc, (k) the
Spc,-valued presheaves, and Sptg: (k) the Spt-valued presheaves. These all come
with “motivic” model structures (see for example [5]); we denote the corresponding
homotopy categories by H(k), He(k) and SHg:(k), respectively. Sending X €
Sm/k to the sheaf of sets on Sm/k represented by X (also denoted X) gives an
embedding of Sm/k to Spc(k); we have the similarly defined embedding of the
category of smooth pointed schemes over k into Spc, (k). All these categories are
equipped with an internal Hom, denoted Hom.

Let G, be the pointed k-scheme (A!\ 0,1). In H.(k) we have the objects
Satbb .= yeGAb for b > 1, S0 := " = X" Speck,. If X is a scheme with a
k-point x, we write (X, z) for the corresponding object in Spc,(k) or He(k). For
a cofibration ) — X in Spc(k), we usually give the quotient X'/) the canonical
base-point J/Y, but on occasion, we will give X'/} a base-point coming from a
point x € X (k); we write this as (X/Y, ).

We let T := A'/(A!\ {0}) and let Spt,(k) denote the category of T-spectra,
i.e., spectra in Spc,(k) with respect to the T-suspension functor X := — A T.
Spt, (k) has a motivic model structure (see [5]) and SH(k) is the homotopy cat-
egory. We can also form the category of spectra in Sptgi (k) with respect to Xp;
with an appropriate model structure the resulting homotopy category is equivalent
to SH(k). We will ignore the subtleties of this distinction and simply identify the
two homotopy categories.

Both SHgi(k) and SH(k) are triangulated categories with suspension functor
3s. We have the triangle of infinite suspension functors 3°° and their right adjoints
QOO

oo oo

Ho(k) —s SHai (k) Ha(k) e SHan (k)

P Qs
=T l rﬂk

SH(k) SH(k)

both commutative up to natural isomorphism. These are all left, resp. right derived
versions of Quillen adjoint pairs of functors on the underlying model categories. We
note that the suspension functor ¢, is invertible on SH(k).
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For X € Ho(k), we have the bi-graded homotopy sheaf 7, X, defined for b > 0,
a —b >0, as the Nisnevich sheaf associated to the presheaf on Sm/k

U — Homgy, (20728 UL, X).
These extend in the usual way to bi-graded homotopy sheaves m,,FE for E €

SHsi(k), b > 0, a € Z, and 7€ for € € SH(k), a,b € Z, by taking the Nis-
nevich sheaf associated to

U = Homgsy, (1) (305, BXU4, E) or U v Homgy ) (825, BFU4, ),

as the case may be. We write m,, for m, o; for e.g. E € Sptg:(k) fibrant, 7, E is
the Nisnevich sheaf associated to the presheaf U — 7, (E(U)).

For F a finitely generated field extension of k, we may view Spec F' as the generic
point of some X € Sm/k. Thus, for a Nisnevich sheaf S on Sm/k, we may define
S(F) as the stalk of S at Spec F' € X. For an arbitrary field extension F of k (not
necessarily finitely generated over k), we define S(F') as the colimit over S(F,,), as
F,, runs over subfields of F' containing k and finitely generated over k.

2. THE HOMOTOPY CONIVEAU TOWER

Our computations rely heavily on our model for the Tate Postnikov tower in
SHs1(k), which we briefly recall (for details, we refer the reader to [6]). We start
by recalling the Tate Postnikov tower in SH g1 (k) and introducing some notation.

Fix a perfect base-field k. Let

Y 87‘[51 (k) — SHsl (k)

be the T-suspension functor. For n > 0, we let L.SH g1 (k) be the localizing subcat-
egory of SHg1(k) generated by infinite suspension spectra of the form XXX,
with X € Sm/k. We note that ¥%.8H g1 (k) = SHg1(k). The inclusion functor
in : 2SH g1 (k) = SHer (k) admits, by results of Neeman [I3], a right adjoint ry;
define the functor f, : SHsi(k) — SHgs1(k) by fn := in o ry. The unit for the
adjunction gives us the natural morphism

pn: fnbl — FE

for E € SHgi(k); similarly, the inclusion X SHgi (k) C LhSHgi (k) for n < m
gives the natural transformation f,,E — fnE, forming the Tate Postnikov tower

cii = foiB = foE— ... = foE=F.
We complete f,1E — fpoFE to a distinguished triangle
fo1E = foE — spE — fr1 E[1];

this turns out to be functorial in E. The object s, E is the nth slice of E.

There is an analogous construction in SH(k): For n € Z, let SESH I (k)
SH(k) be the localizing category generated by the T-suspension spectra L7257 X
for X € Sm/k. As above, the inclusion i, : SESHY (k) — SH(k) admits a left
adjoint r,, giving us the truncation functor f,, and the Postnikov tower

cii > fop1l = fRE— .. €&

Note that this tower is in general infinite in both directions. We define the layer
s, € as above.

By [6, theorem 7.4.1], the O-space functor Q% sends S2SH (k) to XSH g1 (k).
This fact, together with the universal properties of the truncation functors f, in
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SHs1(k) and SH(k), plus the fact that Q is a right adjoint, gives the canonical
isomorphism for n > 0

(2.1) [ QP E = QF fLE.

Furthermore, for E € SHgi(k), we have (by [0, theorem 7.4.2]) the canonical
isomorphism

(2.2) Qg,, fnE = fn-196,, E.

As Qg,, : SH(k) — SH(k) is an auto-equivalence, and restricts to an equivalence
g, : SESH (k) — S5 SH T (),

the analogous identity in SH(k) holds as well.

Definition 2.1. Fora € Z, b > 0, E € SHg1(k), define the filtration Ff  mq s E,
n >0, of 7y p E by

FloteTapE == 1m(mg p fnE — TapE).
Similarly, for & € SH(k), a,b,n € Z, define

FroieTa b€ = 1m(mg b fn€ — ma pE).

The main object of this paper is to understand Fi,, moF for suitable E. For
later use, we note the following

Lemma 2.2. 1. For E € SHs(k), n,p,a,b € Z with n,p,b,n —p,b—p > 0, the
adjunction isomorphism mq B = ﬂ'a,p,b,pﬂémE induces an isomorphism

n ~ n—p '4
FTateTraqu - FTateﬂ-a*va*PQGmE'

Similarly, for € € SH(k), n,p,a,b € Z, the adjunction isomorphism ma € =
wa_p,b_pﬂf}mé' induces an isomorphism

FiroteTap€ = F;(;tzwa—p7b—pﬂémg'
2. For & € SH(k), a,b,n € Z, with b,n > 0, we have a canonical isomorphism
Ve abn  TapfnE = TapQF fn€,
inducing an isomorphism F,, 7o p€ = Fi ma pQFE.
Proof. (1) By [22), adjunction induces isomorphisms
FroieTabE = 1im(mg p fn B — T pE)
= im(ﬁa_ﬂb_pﬂéman — T‘—a—p,b—pQ%mE)
= im(ﬁa,pyb,pfn,pﬂémb—] — ﬂ'a,pyb,pﬂfém E)
= Flae Ta—pb—S2,, E-

The proof for £ € SH(k) is the same.
For (2), the isomorphism ¢g 4.5 arises from (21 and the adjunction isomor-
phism

Homsy,_, (1) (B2BbEl Uy, [ Q7€) Homsﬂsl(m(zfzg*zém Uy, QF £2€)
= Homsw ) (EF S "5E, Ut €).
0
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We now turn to a discussion of our model for f,E(X), X € Sm/k. We
start with the cosimplicial scheme n +— A™ with A™ the algebraic n-simplex
Speck[to, ..., tn]/ >, t: — 1. The cosimplicial structure is given by sending a map
g : [n] = [m] to the map g : A™ — A™ determined by

g (t:) = {Ea‘,gm—i t; if g7 (i) #0

0 else.

A face of A™ is a closed subscheme F' defined by equations t;, = ... =t;. = 0;
we let OA™ C A™ be the closed subscheme defined by []"" ,¢; = 0, i.e., DA™ is the
union of all the proper faces.

Take X € Sm/k. We let Sgg) (m) denote the set of closed subsets W C X x A™
such that codimyx x pIWNX x F > ¢ for all faces F C A™ (including F' = A™). We
make Sgg) (m) into a partially ordered set via inclusions of closed subsets. Sending
m to Sg?) (m) and g : [n] — [m] to g~ : Sg?) (m) — Sg?) (n) gives us the simplicial
poset Sgg).

Now take E € Sptgi (k). For X € Sm/k and closed subset W C X, we have the
spectrum with supports E" (X) defined as the homotopy fiber of the restriction
map E(X) — E(X \ W). This construction is functorial in the pair (X, W), where
we define a map f : (Y,T) — (X,W) as a morphism f : ¥ — X in Sm/k with
ftw) cT.

Define

E@(X,m):= hocolim EW (X x A™).
wes'? (m)
The fact that m — Sg?) (m) is a simplicial poset, and (Y,T) — ET(Y) is a functor
from the category of pairs to spectra shows that m +— E(®) (X, m) defines a simplicial
spectrum. We denote the associated total spectrum by E(@(X).

For g > ¢, the inclusions Sgg) (m) C Sgg,)(m) induces a map of simplicial posets
Sgg) C Sgg ) and thus a morphism of spectra ig.q: B@(X) = EW)(X). We have
as well the natural map

ex 1 E(X) — Tot(E(X x A*)) = EQ(X),

which is a weak equivalence if F is homotopy invariant. Together, this forms the
augmented homotopy coniveau tower tower

EW(X):=... - B« (x) % po(x) 2t (X)L BO(X) <X B(X)

with ¢4 := iq,¢+1. Thus, for homotopy invariant E, we have the homotopy coniveau
tower in SH

EW(X):=... = B« (x) 4 po(x) 2t pOx) Ly pO(X) = B(X).

Letting Sm//k denote the subcategory of Sm/k with the same objects and with
morphisms the smooth morphisms, it is not hard to see that sending X to E*) (X)
defines a functor from Sm//k°P to augmented towers of spectra.

On the other hand, for E € Sptg.(k), we have the (augmented) Tate Postnikov
tower

fiBi=... = feriE = ffE—...= ffE=2E

in SHg1(k), which we may evaluate at X € Sm/k, giving the tower f,F(X) in
SH, augmented over E(X).
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As a direct consequence of our main result (theorem 7.1.1) from [6] we have

Theorem 2.3. Let E be a quasi-fibrant object in Sptgi (k) for the model structure
described in [], and take X € Sm/k. Then there is an isomorphism of augmented
towers in SH

(£ B)(X) = E®(X)
over the identity on E(X), which is natural with respect to smooth morphisms in
Sm/k.

In particular, we may use the explicit model E@ (X) to understand (f,F)(X).
Remark 2.4. For X,Y € Sm/k with given k-points x € X (k), y € Y (k), we have a
natural isomorphism in SHg1 (k)

EXP(XAY)oXZX(XVY)2EP(X xY)
ie. X (X AY) is a canonically defined summand of 33°(X x Y'). In particular for
E a quasi-fibrant object of Sptgi(k), we have a natural isomorphism in SH
Hom(EX (X AY), E) = hofib (E(X xY) — hofib(E(X) @ E(Y) — E(k)))
where the maps are induced by the evident restriction maps. In particular, we may
define E(X AY) via the above isomorphism, and our comparison results for Tate

Postnikov tower and homotopy coniveau tower extend to values at smash products
of smooth pointed schemes over k.

3. CONNECTEDNESS AND GENERATORS FOR 7

As in section Bl our base-field k is perfect. We fix a quasi-fibrant S'-spectrum
E e Sptsl (k)

Lemma 3.1. Let F' be a finitely generated field extension of k, x € A’k a closed
point. Then for every m > 0, the map
iow - E@O (A x A) — BE@XFAR) (AT x AT
induced by the map of pairs
idgnxam @ (A" X Az x AT) — (A" x AR, (2,0))

is the zero-map in SH. In particular, the induced map on homotopy groups is the
zero map.

Proof. We use the Morel-Voevodsky purity isomorphisms in He(k) [12, Theorem
3.2.23], with the isomorphisms defined via a fixed choice of generators for the max-
imal ideal m, C Op » and mo C Opm o

A x A™ /(A x A™\ {(2,0)}) = B3 (2,0) 4
= ¥he x A" /(x x A™\ {(z,0)})
AL x A™ /(A x A™\ z x A™) = Xhx x AT
Via these isomorphisms, the quotient map
q: AR x A™/(AR x AT\ z x A™) = A% x AT /(A% x A"\ {(z,0})
is isomorphic to the nth T-suspension of the quotient map

q':xxAT%xxAm/(xxAm\{(x,O)})
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As g, is the map induced by applying Hom(—, E) to £°q, we need only show
that ¢’ factors through the map x x A" — * (in Hq(k)). This follows from the
commutative diagram

px 1y AT

| b

¥ — T X Am/(ﬂf X Am \ {(ZE,O)}),

where 1 = (1,...,1) € A™ since i is an isomorphism in He(k) by homotopy
invariance. O

We have the re-indexed homotopy sheaves II,, p,(E) := Tpitm.m(E). We have as
well the sheaf 1, F := 7, oE; we call E m-connected if 7, (E) = 0 for all n <m.

Since E™ (X)) = Tot[m + E (X, m)], we have the strongly convergent spectral
sequence

(3.1) E) (X) =1, E™(X,p) = mpi e B (X),

Now take X = Spec F', F' a finitely generated field over k. For dimensional reasons,
we have S;,ﬂn) (p) = 0 for p < n, and we therefore have an edge homomorphism

€ n Ty nEM™ (X, n) = 1, BM(X).

Furthermore, Sl([,") (n) is the set of closed points w € A% \ A%, so e_, can be
written as

€—n : @we(Ag\aA’Fl)W)qunEw(A?“) - qu(") (F);

here Y@ denotes the set of codimension a points on a scheme Y.
Via the weak equivalence E (F) 2 f, E(F), we have the canonical map

€-n : Dyeap\onn)mTg-nEY (AR) = 7 fnE(F).
Similarly, composing with f,F — s, FE, we have the canonical map

€—n: @we(Ag\aA’})("”qunEw(A%) — mgsn E(F).
Proposition 3.2. Let E € Sptg: (k) be quasi-fibrant. Suppose I1, E(F) =0 for
all a < 0 and for all finitely generated field extensions F of k. Then for n > 0:

1. Iy fnE and I, .8, E are zero for all a < 0. In particular, f,E and s,E
are —1-connected.

2. For each finitely generated field F' over k, the edge homomorphisms
€n : Bue(ap\oan)mT—nEY(AF) = mo(fnE)(F)
€—n @we(A;\aA})m)W—nEw(A}) — o(sn ) (F)
are surjections.
Proof. Using the distinguished triangle
ol = o = sy B = X fn B

we see that it suffices to prove the statements for f,E.
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Using the isomorphism (22), we see that for (1), it suffices to show that f,F is
—1-connected. By a theorem of Morel [I1, lemma 3.3.6], it suffices to show that
fnE(F) is —1-connected for all finitely generated field extensions F of k.

We first show that, for each p > n,

a. qu(”)(F,p) =0forqg< —p
b. The natural map

® (» W—pEw(A%) - w_pE(”)(R D)

wes™ (p),weWn(AL)
is surjective.

For (a), let W C A% be a closed subset. We have the Gersten spectral sequence
B = Buwewn(ar )@ T-a—bE" (Spec Opr ) = T_apEV (AL).

Since E is quasi-fibrant, and A%, is smooth over k, we have an isomorphism (via
Morel-Voevodsky purity [12] Theorem 3.2.23])

T (" (Spec O g, o)) = o (B(wy A §242)),
where a = codimAz}w. But
7Tm(E(’LU+ N S2a,a>) - (7Tm+2a,aE)(F(w))
which is zero for m + a < 0. Since 0 < a < p, we see that, for m < —p,
T EY (AL) = 0.

As EM(F, p) is a colimit over EV (AF.) with W € SJ(;") (p), it follows that 7, E(™ (F, p) =
0 for m < —p, proving (a).

The same computation shows that 7_,(E" (Spec Oaz ,,)) = 0 if codimpr w < p,
so (b) follows from the Gersten spectral sequence.

Using the strongly convergent spectral sequence (B.I]), we see that (a) implies
that 7, £ (F) = 0 for ¢ < 0.

Next, we show that

c. 7_pyEM™(F,p) =0 for p > n.

For this, it suffices by (b) to show that for w € W N (A2)®) with W € Sl(pn) (p) and
with p > n, the map

(3.2) T_pEY(AY) = 7, EM™(F,p)

is the zero map. To see this, note that W does not intersect any face T of A%,
having dimp 7" < n. Thus, there is a linear W’ = AL,"™ C A% containing w (for
F’ some extension field of F' contained in F'(w)) with W’ € Sl(pn) (p): for a suitable
degeneracy map o : AP — A" one takes W' = o71(o(w)). By lemma [B1] the
map EY(AL) — EW' (AL.) is the zero map in SH; passing to the limit over all
w" e S;,ﬂn) (p), we see that ([B.2)) is the zero map, as claimed.

In the spectral sequence ([BI)), we have E! = 0 for p > n; we also have
E) _, = 0 for p < n since Sl(pn) (p) = 0 if p < n for dimensional reasons. Thus,

the only term contributing to moE™ (F) is E} _,. As the spectral sequence is
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strongly convergent, the edge homomorphism in the spectral sequence [B1]) induces
a surjection

® T_nEY(A}) = moEM (F).

wES}")(n)
Combining this with theorem 23] gives us the surjection

EBweS}n)(n)W_nEw(A?) — 7TO(an(F))

Similarly, the vanishing 7, E(™)(F) = 0 for p < 0 shows that f,, E(F) is -1 connected.
O

We thus have generators ©,,e(an\oan)m T—nE" (A%) for mo f E(F), and hence
for our main object of study, F, moE(F). We examine the composition

(3.3) T n BV (AR) =2 w0 fu E(F) 22 moE(F)

more closely.
Fix a closed point w in A% \ 0AL. We have the quotient map

Cw 2 AR JOAE — AL /(AR \ w)
and the canonical identification
EY(A%) = Hom(XFT AR /(A% \ w), E).
Thus, given an element 7 € 7_, (E"(A'%L)), we have the corresponding morphism
T:XPAL/(AR\w) - XTE
and we may compose with ¢, to give the map
ToXXcy, : L°AL/OAR — XTE.
As each of the faces of A% are affine spaces over F', we have a canonical isomor-
phism
op : X7 Spec Fy — AL JOAR
in He (k) (see the beginning of §l for details), giving us the element
(1) =70 XX (cy 0o o) € My (BLE(F)) = mo(E(F)).
The following result is a direct consequence of the definitions:
Lemma 3.3. For 7 € m_,(E"(A%)), 7(7) = pn(e—n(T)).
On the other hand, we have the Morel-Voevodsky purity isomorphism (loc. cit.)
(3.4) MV, : A% /(AR w) = wy A S,

The definition of MV, requires some additional choices; we complete our definition
of MV, in g5 where it is written as MV,, = (idw, A a) o mv, (see definition

and (B.3))).

In any case, via MV,,, we may factor =(7) as
(1) =70 XX (cy 0 0oF)
=(ToXPMV, ) oXX(MV,o0c,00F)
The term 70 X° MV, ! is the morphism
To XMV, 2w, A S 5 Y
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which we may interpret as an element of w_,, (% E(w)), while the morphism 33° (M V,,0
Cw © o) is the infinite suspension of the map
(3.5) Qr(w) ;== MV, 0c,00p : X" Spec Fy — wy A S*™™.
Conversely, given any element & € m_, (7 E(w)), which we write as a morphism
E:wy ANST 5 NNE
we recover an element 7 € m_,, (E"(A%)) as 7 := {0 X° MV, and thus the element
§oXFQr(w) € T (XTE(F)) = moE(F)

isin B, moE(F).
Putting this all together, we have

Proposition 3.4. Let F' be a finitely generated field extension of k and let E €
Sptgi (k) be quasi-fibrant.

1. Let w be a closed point of Ak \ OAL, and take &, € w_n,(QFE(w)). Then
w0 X°Qr(w) is in F, moE(F).

2. Suppose that I, E = 0 for all a < 0. Then F} , moE(F) is generated by
elements of the form &, o E°Qr(w), &w € m7—n(QLE(w)), as w runs over closed
points of A%\ OAT.

Remark 3.5. The proposition extends without change to arbitrary field extensions
F of k, by a simple limit argument.

The next few sections will be devoted to giving explicit formulas for the map
Qr(w). In case w is an F-point of A™ \ JA™, we are able to do so directly; in
general, we will need to pass to an n-fold P'-suspension before we can give an
explicit formula. We will then conclude with the proof of our main result in §9

4. THE PONTRYAGIN-THOM COLLAPSE MAP

We recall a special case of Pontryagin-Thom construction in He (k).
Let V,, be the open subscheme A™\ JA™ of A™; we use barycentric coordinates
Uug, - - ., Uy 0N V,,, giving us the identification

Vi, = Spec kfug, -« -, Un, (ug - - .. -un)_l]/Zui— 1.

We let H C P" be the hyperplane Y. | X; = Xo and let 1:= (1:1:...:1) € P"(k).

Definition 4.1. Let F' be finitely generated field extension of k and let w be a
closed point of V,,p. The Pontryagin-Thom collapse map associated to w:

PTr(w) : 3¢ Spec Fy — (Pyy)/Hp(w): 1)
is the composition in He(k)

MUy

S Spec Fy ——— ARJOAL 25 AL/(AR N\ {w}) —=% (Pp(w)/ Hr(w), 1)

for specific choices of the isomorphisms in this composition, to be filled in below.
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The map op is the standard one given by the contractibility of A™ and all its
faces, which gives an isomorphism in He (k) of A™/OA™ with the constant presheaf
on the simplicial space A, /0A,;:

An([m]) := Homa([m], [n])

and 0A,([m]) C An([m]) the set of non-surjective maps f : [m] — [n]. The
isomorphism ¥"S% = A, /OA,, in H, thus gives the isomorphism
o:¥"S% - A" /HA"
in He (k) and thereby gives rise to the isomorphism in He (k)
(4.1) op: X" Spec Fy = Spec Fy A XS0 192% Spec Fy A A" JOA™ = AL JOAT.
The map ¢, is the quotient map. The isomorphism

mvy, : A /AR \ {w} = Py /Hr(w), 1)

is the Morel-Voevodsky purity isomorphism. This map depends in general on the
choice of an isomorphism vy, : m.,/m?2 — F(w)", where m,, C Oarn w is the
maximal ideal; in addition, we need to make explicit the role of the chosen base-
point 1. For this, we go through the construction of the purity isomorphism, giving
the explicit choices which lead to a well-defined choice of isomorphism muwy,,.

We give V,, x A x A™ coordinates ug, . . . , Un, 2, to, - . . , tn, with the u; the barycen-
tric coordinates on V;,, x the standard coordinate on A! and the ¢; the barycentric
coordinates on A™. Let

tl — Ui tn — Un

Xo, X1,..., X)) == (z, .
( 0y A1, ) ) (I o U )

The construction of muv,, uses the blow-up of A x A% along 0 x w
o © BloxwAl x Ap — Al x A%

Let E,, C BloxywAl x A" be the exceptional divisor. Then E,, is an F(w)-scheme.
Suppose first that w is separable over F. The closed point 0 x w of Al x A’
has the canonical lifting to the closed point 0 x w of Al x A’}(w); let moxw C

Onixan oxw and My < OAlxNFl( 10X denote the respective maximal ideals.
As w is separable over F, the projection p : Al x A’}(w) — Al x A" induces an
isomorphism of graded F(0 x w)-algebras

1 / / 1
p* : @mZOmTOan/mZ)nX+w - GBmZOmOrZw/mOtTU '
The functions (X, X1(w),...,Xn(w)) give generators for the maximal ideal
My 0; 3

_ . m m—+1 ~ . "m !m+-1
E, = PrOJF(OXw) Dm>0 mOXw/mOXw = PrOJF(OXw) Dm>0 mOXw/mOXw

the image (zg,z1(w),...,zn(w)) of (Xo, X1(w),..., Xn(w)) in mfy,,/méy, give
homogeneous coordinates for F,,, defining an isomorphism
G = (zo: (W) 12 (W) T By — Plhy,y.

Let H(w) C Ey, be the pull-back of Hp(,) via gy, and let 1,, = g, (1).
The proper transform g, [A! x w] C Blox,A! x A% maps isomorphically to
Al X w via iy, and intersects E,, in a closed point @ lying over 0 x w.

Lemma 4.2. . For all w € V,r, we have 1,, # @ and @ ¢ H(w).
2. qw(w) =(1:0:...:0)
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Proof. Clearly (2) implies (1). For (2), g, (w) is the image of 1 X w under
(Xo: X1 (w):...: Xp(w)) : Al x Ay \ {0 x w} = Py

Additionally, the quotient map
Tw (P /HEw): 1) = Phw)/ Pray \ {(1:0:...:0)})

is an isomorphism in H, (k), since projection from (1:0:...:0) realizes Pp,, \ {(1:
0:...:0)} as an Al-bundle over ]P’;a) with section Hp(y).

This gives us the sequence of isomorphisms in He(k):

Ew/(Ew\ {@}) * Py (Ppewy \ {(1:0:...:0)}) o~ (Pp(wy/ HF(w): 1)-

In case w is not separable over F', we choose any set of parameters X;(w), ...,
X (w) for m,, such that, taking Xy = x, the isomorphism E,, — P defined by the
sequence xg, z1(w), ..., 2, (w) satisfies the condition of lemma 2] (F is infinite, so
(1) is satisfied for a general choice; the condition (2) is satisfied for all choices). We
then proceed as above.

Morel-Voevodsky show that the inclusions i, : E, — Bloyxw,Al X A% and 9 :
A% =1x A% — Al x A% induce isomorphisms

iw: Buw/(Ey \ {0}) = BloxwA! x A%/ (BloxwA® x A%\ pi'[AY x w)])
B ARJ(AB {w}) = BloxuAl x A/(BloxyAl x AL\ i [AL x u])
in Hae(k) (see the proof of [I2] Theorem 3.2.23]).
Definition 4.3. The purity isomorphism
muy : AR /(AR \{w}) = (Ph(u)/Hrw), 1)-

is defined as the composition
ARJ(ARN {w}) —2— BlowwAl x A%/ (BlowwAl x AR\ i AL x w])
= Bu/(Bw\{®})

s Py /Py \ {(1:0:...:0)}

Tw

—~— (Phy/Hirw),1)-
In case w is an F-rational point of A%, we have another description of mu,.
The map
gt o (Xo: X1(w):...: Xp(w)) : Al x Ay \{0x w} = By

extends to a morphism
Pw : BloxwA' x A — E,,

making Blox,A' x A% an A'-bundle over E,, with section ,,, and thus p,, induces
an isomorphism in He (k)

Puw @ BloxwA! X AT/ (BloxwA' x A%\ p AT x w]) = Ey/(Ey \ {0})

inverse to i,,. Thus
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Lemma 4.4. Suppose w is in A™(F). Then
MUy = r;l O Gw © Pw o{l.
We can further simplify the above description of mwv,, by noting:
Lemma 4.5. Suppose w is in A™(F). Let
(4.2) fu s AR/ (AR {w}) = Pi/Pi\ {(1:0:...:0))
be the map induced by
(1: Xy (w):...: Xp(w)) : AR — PR
Then Yu = qu © Puw © 001, hence Mmuy, = r," 0y .

Proof. The identity muv,, = r' o ¢, follows directly from our description above of
the maps ¢, and p,, and lemma [£.4] O

Altogether, this gives us the formula, for w € A™(F),
(4.3) PTr(w) =1, 0y ocyoor.
5. (P"/H,1) AND X2GH™
Our main task in this section is to construct an explicit isomorphism
a: (P"/H,1) = SIGH".

We first recall some elementary constructions involving homotopy colimits over
subcategories of the n-cube. Let C be a small category and let F : C — Spc(k) be
a functor. Let N : A°P — Sets be the nerve of C. For

= (s0 L5 81 = ... I s,) € ML(O)
define F(o) := F(so). Bousfield-Kan [2] define hocolim F to be the simplicial object
of Spc(k) with n-simplices
hocolim F,, := Hyepn, (0)F (0);

for g : [n] = [m] in A,

hocolim F(g) : hocolim F,,, — hocolim F,,
is the map sending (F(s9),0 = (S0,---,5m)) to (F(s3),0" = (s4,...,8))), with
o' =N(g)(0), s5 = s4(0) and the map F(so) — F(s0) is F(s0 = sg4(0))- hocolim F
is the geometric realization of hocolim F.

For a functor F : C — Spc,(k) we use essentially the same definition of
hocolim F as a simplicial object of Spc, (k), replacing disjoint union IT with pointed
union V, and we use the pointed version of geometric realization to define hocolim F
in Spc, (k). Concretely, hocolim F is the co-equalizer of

V g:[n]—mjhocolim Fry A AT} T2V, hocolim F,, A AT}
The essential property of hocolim we will need is the following:

Proposition 5.1 ([2]). Let C be a finite category, F,G : C — Spc,(k) functors,
and ¥ : F — G a natural transformation. Suppose that ¥(c) : F(c) — G(c) is an
isomorphism in He(k) for each ¢ € C. Then

hocolim ¥ : hocolim F — hocolim G

is an isomorphism in He(k). The analogous result holds after replacing Spc, (k)
and He (k) with Spc(k) and H(E).
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This is of course just a special case of the general result valid for functors from
a small (not just finite) category to a proper simplicial model category. See for
example [4] for details.

Remark 5.2. Let F : C — Spc(k) be a functor. Suppose our index category C is a
product C; x Co. We may form the bi-simplicial object hocolim? F of Spc(k), with
(n, m)-simplices

hocolim® F,, ,,, := oy 00)eN (CL)n x N (Ca)m F (01, 02)

where F(01,02) = F(sox sy) if o = (so — ...) and 0/ = (s, — ...); the morphisms
are defined similarly.

As N(Cy x C2) is the diagonal simplicial set associated to the bi-simplicial set
N (C1) x N(C2), it follows that hocolim F is the diagonal simplicial object of Spe(k)
associated to the bi-simplicial object hocolim?® F, and thus we have the natural
isomorphism of geometric realizations

hocolim F = |hocolim F| 2 |[hocolim? F|
in Spc(k). Similar remarks hold in the pointed case.

Let 0" be the poset of subsets of [n], ordered under inclusion. For J C J' C

{0,...,n}, we let D’};igj, be the full subcategory of subsets I with J C I C J',

D?Zi&]’ the full subcategory of subsets I with J C I C J’, etc. We sometimes
omit J if J = or J' if J' = [n].

If|J| =r+1, welet i’; : {0,...,r} — J be the unique order-preserving bijection,
and let 35 : O™t — Dfi‘} be the resulting isomorphism of categories. Clearly i

r+1 n+1
*<[r] - D*<J'
+1

We will be using the following elementary constructions. Let F : DQ[T] —

Spc,(k) be a functor and take n > r. Identifying D:ib} with Dfi[lﬂ via the

induces the isomorphism of subcategories i; : [J

inclusion [r] C [n], extend F to a functor

o™ "F 0" — Spe, (k)

+<[n]
by setting o™ " F(J) = x if J is not a proper subset of [r].
Similarly, let G : D:gﬂ x[0° — Spc, (k) be a functor and take n > r. Identifying
D:i[lﬂ x 0% with a full subcategory of D:i[lﬂ x O"~"*% via the inclusion [s] C
[n —r + s], extend G to a functor

"G D:ib} x 0" "% — Spc, (k)

by setting ¢"""G(J,I) =« if I ¢ [s].

Ezample 5.3. Let X be in Spc,(k). Noting that D1<[0] is the one-point category,

we write X for the functor (! ) Spc, (k) with value X. This gives us the

*<[0
functors

X 0" = Spe, (k),
o"X 05 — Spe, (k).

[n]

Explicitly, ¢"X(0) = o™X (0) = X and both functors have value * at J # 0.
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Lemma 5.4. There are natural isomorphisms
II.. : hocolim ¢~ "G — hocolim G A ([0, 1],1)"" "
II; : hocolim ™" F — X7~ " hocolim F.

in Spc, (k)

Proof. We proceed by induction on n — r; it suffices to handle the case r = n — 1.
We first take care of the isomorphism II,.
Via remark [5.2] it suffices to give an isomorphism

|hocolim? ¢! G| 2 hocolim G A ([0, 1], 1),
where we use the product decomposition D::[lﬂ x O+ = (D:I%T] x [0%) x O, Fix
an m simplex o of N(D:gﬂ x [0%) and let

cG, : ' = Spc, (k)

be the functor ¢G,(0) = G(o) A A, ¢G5 ([0]) = *. Then

hocolim ¢G, = G(o) A AT A ([0,1], 1)
with the isomorphism natural in ¢. The result follows directly from this.

Next, given 7 : 0%, ;) — Spc,(k), let ¢/F : 0" — Spc, (k) be the extension
of F to O™ defined by setting ¢ F([n — 1]) = *. We claim there is a natural
isomorphism

hocolim ¢/ F 2 hocolim F A ([0,1],1)
in Spe, (k).

Indeed, we have the bijection (for m > 0)

N(Dn)m = N( :}<[n71])m HN(DZ<[n71])m_1

with the first component coming from the inclusion of 07 <[n—1] in 0%, and the
second arising by sending o = (89 = ... = $m—1) t0 (80 = ... = Sm—1 — [n—1]).

For m = 0, the same construction gives
N(@")o = N (O <)o T {[n — 1]}

As, for a simplicial set C, the m-simplices of C' x [0,1]/C x 1 have exactly the same
description, our claim follows easily.

Finally, we can write the category sz[ln | as a (strict) pushout

x O'.

[n]

00 = 0" oy, B
This leads to an isomorphism of hocolim ¢! F as a pushout
hocolim o' F 2 hocolim ¢/ F Viocolim # hocolim ¢F
= hocolim F A ([0, 1], 1) Vhocolim Fao,. hocolim F A ([0, 1],1)
= %! hocolim F.

(I
As in section d] let H C P" be the hyperplane > "' | X; = X, and let 1 := (1:
follows:

Let U; C P™ be the standard affine open subset X; # 0. We identify U; with A"
in the usual way via coordinates (Xo/X;,... Xi/Xi,...,X,/X;), which we write
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as x%,..., %, or simply z1,...,x,. For each index set I C {0,...,n}, we have the
intersection
Ur := NierUs.
For I = {i; <... <.}, we use coordinates in U;, to identify
~ —1 —17 ~ An— -
Ur = Speck[z1, ..., Tn, @ ...,z | Z A" ITI+1 G‘,,{L‘ 1

The open cover U := {Uy,...,U,} of P" identifies P" (in H(k)) with the homo-

topy colimit over Dfi‘[ln] of the functor

P Dfil — Spc(k)

[n]

Py(J) :=Uye.
We thus have the functor
P, O — Spe, (k)

[n]

Plai(J) = (Uje, 1)

and the isomorphism in He(k), hocolim Pj; ; = (P, 1).
Next, we note that the hyperplane H C P™ is covered by the affine open subsets
Ui,...,U,. The open cover Uy := {HNUy,...,HNU,} of H identifies H (in H(k))

with the homotopy colimit over sz[ln ] of the functor

Hy, 00— Spe(k)

[n]

HNUje for0eJ
Hy, (J) =
4 (J) {(ZJ for 0 ¢ J.
Let
P/ Huw - DL, — Spe, (k)

be the functor defined by

(Use/HNUye,1) for0eJ
iy J) =
Pl /Haa () {(UJC, 1) for 0 & J.

By our discussion, the maps Py ;/Hu, (J) — (P"/H, 1) induced by the inclusions
Uje < P™ give rise to an isomorphism in He (k)

€1 : hocolim Py 4 /Hy, — (P"/H, 1).

To simplify the notation, we denote P} 4 /Huy, by F for the next few paragraphs.

We claim that, for each J # () with 0 € J, we have (U;/(HNUy),1) & % in
He (k). Indeed, suppose for example that n € J, and use coordinates (z7,...,2"") =
(Xo/Xn,..., Xn-1/X,) on U;. We have the projection

pZUJ%UJﬁ(XOZO)
p(zy, ... zn) = (0,25,...,25).

Since 0 ¢ J, 2} is not inverted on U, and thus p makes U; an Al-bundle over
Uj N (Xp=0). p has the section

s(0,zh, ..., xn) == (1—}—290?,903,...,:52),
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identifying Uy N (Xo = 0) with H N Uy; this together with homotopy invariance in
He (k) proves our claim. Thus F(J) = % in He(k) for all J with 0 € J. In addition
F({1,2,...,n}) = (Uy, *) = (A", x), which is also isomorphic to * in He(k).

Let do : OO}, _y) = D:I[ln  inclusion functor induced by the inclusion [n—1] —

[n] sending ¢ € [n — 1] to ¢ + 1, and let w : D:}:l — D:}:l be the automorphism

(n] (n]
induced by the cyclic permutation w of [n],

. {i+1 for 0 <i<n
w(i) ==

0 for 1 = n.

Let
]:IO : D:}<[n71] — SpC.(kJ)

be the functor F oiy. We have the evident quotient map ¢ : Fow — 01f|0, which
by our discussion above is a term-wise isomorphism in He(k). By lemma B4 ¢
induces the isomorphisms in H, (k)

5.1 hocolim F — hocolim o' Fjy — ! hocolim Fj,.
| s |

We now turn to the functor Fjo. This is just the punctured n-cube corresponding
to the open cover U’ := {UyNUy,...,UsNU,} of Ug\ (1:0:...:0) (with base-point
1), i.e. (A™\0,1). We thus have the isomorphism in H4 (k)

hocolim Fjo = (Up \ (1:0:...:0),1) = (A" \ 0,1).

Let C C Up\(1:0:...:0) be the union of the affine hyperplanes z¥ = 1,i =1,...,n.
As the inclusion 1 — C' is an isomorphism in #H(k), we have the isomorphism in

He (k)

Letting ]:"‘0 be the quotient of F|y given by
FiolJ) = Uiy(1)e/C N Uiy (1ye,

we thus have the isomorphisms in He (k)

On the other hand, for each J C {1,...,n}, the inclusion CNUyNU; — UyNU;
is an isomorphism in H(k), and thus Fjo(J) = « for all J # 0. Since Fjo(0) = G,
we have the quotient map f'|0 — 0"~ 1GA"; our discussion together with lemma [5.4]
thus gives us the isomorphism in He (k)

hocolim Fjg 2 hocolim Fjo = X7 'G)".
Together with (5.1I), this gives us the sequence of isomorphisms in He (k)
(P"/H,1) = hocolim Pj; ; /Hy, = ¥ hocolim Fjg = X1G))".
We denote the composition by
(5.2) a: (P/H, 1) = SnGAn.
Now that we have defined «, we can complete our definition of the purity iso-
morphism (B.4)):
(5.3) MV, = (idy, Aa)omu,
(see definition 3] for the definition of mu,).
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Remark 5.5. Take n > 1. Let Ho C P™ be the hyperplane Xy = 0 and for let
C1 C U; be the union of the hyperplanes z} =1, i=1,...,n. Let G : Dfi[ln] —
Spc, (k) be the functor

0o UJC/HOOQUJC fOI'].EJ
G (J) =
U{]c/[(Hoo U Ol) N U{]c] for 1 & J.

using this it is easy to modify the arguments used in this section to show that the
identity map G () — G)™ extends to a map of functors G2° — o™ G,A", which is
a termwise isomorphism in He(k), giving us the isomorphism
hocolim G° = X G,

in He (k). Furthermore, we have the sequence of isomorphisms in He(k):

P"/Hoo = P"/[Hoo Ueynm.,nu, C1] — hocolim G2°.
Putting these together gives us the isomorphism
(5.4) Qoo : P"/Hoo — XGO"

in He(k).

For n = 1, we note that H = 1, so (P*/H,1) = (P!, H). To define ay,, we just
compose « : (P1/H,1) — 3G, with the isomorphism 7 : (P}, Hy) — (P!, H)
given by

T(XO ZXl) = (Xl - X()ZXl).

We will use these models for X7G/™ to construct transfer maps in §8

6. THE SUSPENSION OF A SYMBOL

Let p: V,, = G}, be the map
Uq Unp

plug, ..., up) == ( w7 u

Composing with the quotient map G, — GA" gives us the map p : V,+ — GA™.

Our next main task is to give an explicit algebro-geometric description of X% p.

More generally, for f: T — V,, a morphism in Sm/k, we will give a description of

X™(po f). We begin by giving a description of ¥7T'; as a certain homotopy colimit.
For this, consider the scheme A! x A", with coordinates x,tg, ..., t,:

Al ><A":Speck[x,to,...,tn]/Zti—1.

For i = 1,...,n, let U/ C A' x A™ be the subscheme defined by t; = 0, and
let U) C A! x A™ be the subscheme defined by z = 1. For I C {0,...,n}, let
U} := N;erU], the intersection taking place in A x A™. This gives us the punctured
n + l-cube

Gr .ot — Spe(k)

*<[n]
with GT'(J) := T x U’..
As above, use barycentric coordinates ug, . .., u, for V,,. We pull these back to
T via f, and write u; for f*(u;), letting the context make the meaning clear. Set

tl_ul tn_un

(z, ey )

Uo Uo

(Xo,Xl,...,Xn) .
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and set

(:vll, ,Tl) = (XO/Xi7"'7mi7'"7Xn/Xi); i=0,...,n.

rn

Inside T x A x A", we have the “hyperplane” H(T) defined by

zn:Xi = Xo.
=1

Fix an index I = (ig,...,4,) with 0 < ip < ... <4, < n, and write the comple-
ment of I in {0,...,n} as I° = (j1,...,jn—r) with j1 < ... < jn—. We have the
isomorphism

oro=id x (2, 2 ):T xU;—»T x A"

In addition, let H; C A™™" be the hyperplane defined by

n—r n—r
dwe=1ifig=0, > wp=a if ig>0.
=1 =2

Then ¢ restricts to an isomorphism of H(T)NT x U; with T x Hy, and thus the
projection p1 : H(T)NT x Uy — T and inclusion ¢ : H(T)NT x U; — T x Uy are
isomorphisms in H(k).

For J C [n], J # 0, define G1'(J) to be the pushout in the diagram

H(T)NT x Uy “——GT(J) =—=T x U.
I
P1 | 3(J)
<4
T— 7~ + G (J).

Since ¢ is a cofibration and a weak equivalence in Spe(k), so is s;. As p;p is also a
weak equivalence in Spc(k), i(J) is a weak equivalence in Spc(k) as well.
We set
GI'(0) = GT(0) = T x UL,y = T.
This defines for us the functor

gy -Ortl — Spe(k)

[n]

that fits into a diagram (7" the constant functor)
GT
T——G,'

with ¢ and s term-wise isomorphisms in H(k) and s a term-wise cofibration in

Spc(k).
For n = 1, define

v JGU()/s(T)  for J#0
i {g?%vm >T, for J=0.

giving us the functor
gr Dz<[1] — Spc, (k)
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For n > 1, take 0 # J C [n] and let II', C P™ be the dimension n — |J| linear
subspace defined by N;cs(X; = 0). Let II; C P™ be the dimension n — |J| + 1
linear space spanned by 1 and II’; and let A; C II; be the affine space II; \ IT/;.
Since II; is not contained in H, the intersection A ;N H is a codimension one affine
space Ay g in Ay. Clearly Ay D Ay for J C J', so we have the functor

A/Ay 0%, — Spe(k)

J = AJC/AJC)H.

Let x; be the base-point in A;/A ;g and let s, : T — T x Ay/A; g be the
morphism identifying T with T' x % ;. Let 1; be the image of 1 € A ; in the quotient
Ay/A;p. We have the morphism SIJ,1 : T — T x Ay/A g identifying T with
T x 1. For J # 0, let GI'(J) be the push-out in the diagram

sexs’e o
THT—)TXAJc/AJc’H

|
SJHPJ( |
B

GIN() s — — — — = GT(J).

where p : T — * is the canonical map; we give GI (J) the base-point x. We set
GI'() = T with its canonical base-point. Using the functoriality of G’ and A/A gy
defines the functor

(6.1) Gy .Ortl . — Spe, (k).

[n]
Lemma 6.1. For each J # 0, GL'(J) 2 * in He(k).
Proof. Take J C [n], J #0. Forn=1,s:T — GI'(J) is a cofibration and weak
equivalence in Spc(k), and thus the quotient G’ (.J)/T is contractible.

For n > 1, the morphisms s; : T — GI'(J), s, : T — T x A;/A;p and
sy T — T xAy/Aj g are cofibrations and weak equivalences in Spc(k); since
1y € AJyH, the map

S{] X S{],l THT - T X AJ/A‘LH

is a cofibration.
Let GI"(J) be the push-out in the diagram

T—"2 T xAse/Ajey

J |
SJ | ¢
3
G,'(J)====26,"(J).
Then ¢ is a cofibration and a weak equivalence, hence the same is true for the
composition

T l) T x AJ/A(LH L) gg;”(J)
As GI(J) = GL"(J)/T, it follows that GI (.J) is contractible. O
Letting T : Di<[o] — Spc, (k) be the functor T () = T, we have the evident

quotient map GI' — o"T, i.e., we send G, () = Ty to o"T () = T, by the identity
map, and the other maps are the canonical ones G (I) — *.
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By lemma .4 and lemma [6.I] this map induces an isomorphism
(6.2) BT : hocolimGE — ¥ T,
in He (k).

Remark 6.2. The functors GT, GT” and G are all functors in T, where for example
g:T' — T gives the morphism G, (f) : T — GT by the collection of maps

fxid: T xUle =T x Ule.
The map G’ — GI' is natural in 7T, as is the map 87.

Let A(V,,) C V,, x A" be the graph of the inclusion V,, — A™; by a slight abuse
of notation, we write 0 x A(V,,) C V,, x Al x A" for the image of 0 x A(V,,) C
Al x V,, x A" under the exchange of factors A! x V,, x A" — V,, x Al x A",

Define the morphism ¢ : V,, x Al x A"\ 0 x A(V,,) — P" by

O(UQ, oy Up, Ty, -y tn) = (Xo: X1: 1 X)),
where as above Xog =z, X; = (t; —w;)/ug, i =1,...,n.

Since V,, x U/ N0 x A(V,,) = 0 for each i = 0,...,n, the restriction of ¢ to
Ul oV x U/ is thus a morphism, and therefore gives a well-defined morphism of
functors Dfi‘[ln] — Spc(k), Px : GV» — P", where P is the constant functor.

Given a morphism f : T — V,,, we compose ¢  with f xid, giving the morphism
of functors @I : GI' — P". Adjoining the projections T' x U’. — T gives us the
morphism of functors (py, 1) : QZ — T x P". Passing to the quotients, (p1,@?)
induces the map of functors (py, ") : G/ — T x (P"/H).

We extend (p1,¢l’) to a map of functors Dfi[ln] — Spc, (k)

piA@l  GE — Ty A(P"/H,1)
by using the inclusions A jc — P, and sending the base-point in T} to the base-
point in Ty A (P™/H,1). This gives us the map in Spc, (k)

(6.3) @7 : hocolimGT — T, A (P"/H,1).
Lemma 6.3. Let f : T — V,, be a morphism in Sm/k. Then the diagram
sy, S0 eneen) SrGAn

BTT Tid/\a

hocolim g;{ T} T+ AN (]P:'n/ff7 1)

commutes in He(k).

Proof. We work through our description of a and 87, adding some intermediate
steps.
We introduce an additional functor

(P"™/Hy, 1) :D:Il — Spc, (k)

[n]

JH(UJC/HQUJc,l)

By Mayer-Vietoris, the canonical map hocolim(P"/Hy, 1) < (P™/H, 1) induced by
the cover U is an isomorphism in He (k). The collection of quotient maps Uje —
Uje/H N Uje or identity maps give the map v : Py 1 /Hy, — (P"/Hu, 1).
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We also have the functor c"G/"™. Identifying Uy, ,, with G?, via the coordinates
(29,...,29), the quotient map Uy, = G, — G)" extends canonically to the
quotient map ¢ : Pfj | /Hy, — o"G*. From our discussion on the isomorphism a,
we have the commutative diagram of isomorphisms in He (k)

(6.4)

(P"/H,1)

hocolim(P" /My, 1) «—— hocolim Py | /Hu, —— hocolim a"GL

SrGAR,

[

Note that, for each .J # 0, [n], we have A; C Uy, since for j € .J, the intersection
II;N(X; = 0) is equal to IT’;. Also, the map ¢ : G,(J) — P™ has image contained
in Uj.. We define the map of functors

Ui Gy = Ty A(P™Hu, 1)
as follows: for J # 0, [n], we use the map
(P1,95') 2 G (J) = T x Uge/(Uge N H)
on GI'(J), and the map
T x Aye X 7y U

induced by the inclusion iy : A je < Ujc. One checks that these descend to a well
defined map on the quotient

V5 Gy (1) = T A (P Ha, 1)(J).

For J = 0, we use
(idr, 5" ) : T =T x Up..n/JHN U,

This gives us the commutative diagram of functors

T
gr v e N (P Hu, 1)

Tid/\v

T+ N PZ{LJ/HZ/Q

lid/\é

n - nIAn
g T idpAc™(pof) T+ o Gm

which induces the commutative diagram (in He(k)) on the homotopy colimits

T
hocolim G —— T, A hocolim(P™/Hyy, 1)

5Tl lid/\ﬁoéo'yl

n n /\n.
BTy g T A TG,
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Combining this with our diagram (6.4)) and noting that ®7 = (id A €) o U7 yields
the commutative diagram in He (k)

q>T

T .
hocolim GT —— T A hocolim(P™/Hy, 1) ~L% T, A (P7/H, 1)

T . —1
B j{ lldA(ﬂW

»nT nIAn
s+ + S (idApof) T+/\ESGm )

completing the proof. O

7. COMPUTING THE COLLAPSE MAP

We retain the notation from §§4 [l and Our task in this section is to use
lemma to give an explicit computation of @Qp(w) as the nth suspension of a
map py, : Spec Fy — wy AGA", at least for w an F-point of A™ \ JA™. In general,
we will need to take a further P'-suspension before desuspending, which we do in
the next section.

For F' a finitely generated field extension of k and w a closed point of A%\ A,
we have the Pontryagin-Thom collapse map (definition A.T])

PTr(w) : 37 Spec Fy — (P )/ Hp(w): 1)
We have as well the map (B3]
Qr(w) : " Spec Fy — wy AXIGI™ = wy A S2"
It follows from the definition of MV, (&3), PTr(w) and muv,, (definition @3)) that
(7.1) Qr(w) = (idw, A @) o PTp(w),
where we identify (P% )/ HF(w), 1) with wi A(P"/H, 1) and where o : (P"/H, 1) —
YG)™ is the isomorphism (5.2).

Consider an F-point w : Spec F' — A" of A™. Given elements z1, ..., 2z, of F'*,
we have the corresponding map

[21] AF ... AF [2n] : Spec Fy — Spec Fy. A G
given as the composition

NGz, Spec Fy A (G, 1) — Spec Fy A G

We use the notation Ap to denote the smash product for points F-schemes (X, ),
(Y.y):

Spec Fy

(X,CL‘) AF (Y,y) =X XFY/(X XpyVvae XFY),
and note that [z1] Ap ... Ap [2,] really is the Ap-product of the maps [z;].
Proposition 7.1. Take w = (wo,...,wy) € (A" \ IA™)(F). Then
Qr(w) = X0 [—wi/wo| Ap ... Ap [—wn/wo].

Proof. We have for each V,,-scheme T' — V,, the functor (G.I)); applying this con-
struction for the morphism w : Spec F' — V,,, gives us the functor

Gy - 015, — Spe, (k).

We recall the subschemes U/, i = 0,...,n and H of A! x A" from {6l
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We note that Uj = 1 x A", H N Uy is the face to = 0, and that Uj N U/ is the
face t; = 0, for ¢ = 1,...,n. Thus, collapsing the U/, i = 1,...,n, HN U} and all
the A to a point, and sending U to A™ by the projection map gives a well defined
morphism in Spc, (k),

a : hocolim GY — Spec FL A A™/OA™,
which is an isomorphism in H. (k). In addition, we have the commutative diagram
of isomorphisms in He (k)

(7.2) hocolim G¥ —%— Spec F;, A A" /OA™
ﬂ“’lrw /
3% Spec Fy,

where o is the isomorphism (1)) and 3“ is the isomorphism (6.2)).
Let

T : Spec By A (P*/H, 1) = PL/(PR\{(1:0:...:0)})
be the composition of the isomorphism Spec Fiy A (P"/H,1) = (P%%/Hp, 1) followed
by the quotient map ry, : (P%/Hp,1) — PL/(PE\{(1:0:...:0)}). It follows

directly from the definition of the map ®* (3] and the map ¢, [@2]) that the
diagram

hocolim G o Spec Fy A (P"/H, 1)

Spec Fly A A™/OA™ —— AL /AL {w} — Pr/(P\ {(1:0:...:0)}).

commutes. Combining this with the diagram (2]) and our description {3]) of
PTr(w) gives us the commutative diagram

27 Spec Fy
BMTN PTr(w)

hocolim G — Spec Fy A (P"/H, 1)

But by lemma [6.3]
(X5 [—w1/wo] AF ... Ap [—wn/wo)]) o B = (idgpec 7y A ) 0 DY
since Y is an isomorphism, this gives us
Yy [—w1/wo] AF ... AR [—wn/wo] = (idspec 7, A @) 0 PTr(w).
Our formula (1)) for Qp(w) completes the proof. O

8. TRANSFERS AND P!-SUSPENSION

We now consider the general case of a closed point w € V,p C A%
Consider the map

ji A" P
Jtoyeostn) = (1 ty,. .. ty);
j is an open immersion, identifying A™ with Uy and V,, with Uy, ,, \ H C P".
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We define the transfer map
Trp(w) : S*™™ A Spec Fy — S?™™ A Spec F(w)

associated to a closed point w € A, separable over F', as the composition

n,n Qoo Nid Cjw n /TN . poj n n
S*mASpec Fy £ P/ Hoop 5 P /PR\{j(w)}) +=— A/ (Al \{w})

o Aid
s By Hoor () s S A\ Spec F(w)...
The map j is induced from j, p is induced from the projection p : A’},(w) — A%, and
w E A’},(w)
is an isomorphism by Nisnevich excision (which is where we use the separability of

w over F'). The map mv° is the Morel-Voevodsky purity isomorphism, where we
use the generators (t1 — w1, ..., t, — wy) for my,, together with the isomorphism

is the canonical lifting of w € A% to AL,y = w xp A The map poj

induced by the identity on P’}(w). The map @ is the isomorphism (G.4).

Lemma 8.1. Suppose that w is in V,(F). Then Trp(w) = id.

Proof. Let wo = (1:0:...:0) € Uy C P*(k), giving us the purity isomorphism
mug, U/ (Uo \ wo) — P"/Huo

defined via the choice of generators (x1,...,x,) for my,. The morphism

mi= (x:xlz...:xn):BIOXwoAl x Uy — P"

Furthermore, the restriction of m to 1 x Uy extends to the identity map P" — P™.
From this, it follows that morphism in He(k),

Trp(wp) : S2m — §2nom

is the identity. On the other hand, let T, : P% — P% be the automorphism
extending translation by w on Uy. Then T, acts by the identity on P%L/Hop, as
we can extend Ty, to the A family of automorphisms ¢ — T},, connecting T}, with

id. Furthermore, T*  (z1,...,2,) = (1 — w1,...,2, — wy,). From this it follows
that
Trp(w) =Ty o Trp(wy) o T_yy = id.
O
Proposition 8.2. Let w = (wy,...,w,) be a closed point of Vy,r, separable over

F. Then the S*™"-suspension of Qr(w):
idgzn.n A Qp(w) : S*™™ A Spec Fy A S™0 — §2mm A qp, A G200

is equal to the map X7 ((ids2n.n A [—w1/wo] Ap(w) - - - Ap(w) [~wn/wo]) o Trp(w)).
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Proof. Write xp for Spec F'. We have the commutative diagram

Trr(w)Aid

S2n,n A Ky A Sn,O S2n,n A wy A Sn,O
a;l Nop idAo
P"/Hoo A xpy A A™ /DA™ S2m A wy A AT /OA™

idAca, P /(P j(w)) A A™ /DA™

idAcqy, idAcy,

P/ Hoo A AT /(AR ) 285 BB\ j(w)) A A"/ (A" \ w)

idAMvy,
(aooom i,y )Aid
P"/Hoo ANwy A (P"/H, 1) idAMDy, S Ay AA™ /(AT w)
Cj(w)/\id
P /(P \ §(w)) Aws A (P/H, 1) Ao
Qoo Nidy | Ax
+ (Crocom,,) )Ad
S Awy A (P?/H, 1)
id/\iduUr Ao
SQn,n A wy A SQn,n SQn,n A wy A SQn,n;

the commutativity follows either by definition of Trr(w), or by identities of the
form (aA1)o (1 AD) = (1ADb)o(aAl), or (in the bottom pentagon) lemma Rl
The composition along the left-hand side is idgzn.n A [(idw, A @) o PTr(w)]; along
the right-hand side we have idgzn.» A [(idw, A @) 0 PTr(y)(w)]. Since w is F(w)-
rational, we may apply proposition[II]and our formula (I)) for Q¢ (w) to complete
the proof. O

9. CONCLUSION

We can now put all the pieces together. For E € Sptg. (k) fibrant, we have the
associated fibrant object Q7 E := Homsgpk) (S?mn E), that is, Q% E is the presheaf
(QLE)(X) := E(X4 A S?m). For each n > 1, we have the canonical map

tn B — QpYTLE.
Replacing S?™" with S™" = G/", we have the fibrant object
Og, E = Homgpem) (S™", E),

defined as the presheaf (Qf FE)(X):= E(X; AGp).
Given a closed point w € V,,, we define the map

Tre(w)” : mm(QpE(w)) = mm (Qp E(F))
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as the composition
T (U E(w)) = Homgyy , (1) (52° (S Awy ), ;™ E)

m HomSHsl(k)(E;’O(S%’" A Spec F1), 5. ™E)

= T (QULE(F)).
Definition 9.1. Take F € SHg1(k) and let n > 1 be an integer. An n-fold T-

delooping of E is an an object wy"E of SHg1(k) and an isomorphism ¢, : £ —
Qpwr"E in SHe (k).
Given an n-fold T-delooping of E, ¢, : E — Q}w;"E, the map Trp(w)* for
Qhwr"E induces the “transfer map”
o Trp(w)* oty : T (E(w)) — 7 (E(F)),

which we write simply as Trp(w)*.

Remarks 9.2. 1. The transfer map Trp(w)* : mp(E(w)) — 7y (E(F)) may possi-
bly depend on the choice of n-fold T-delooping, we do not have an example, however.

2. An n — b-fold T-delooping of E gives rise to an n-fold T-delooping of QfémE.
Thus, via the adjunction isomorphism

M, E =7, 0% E
we have a transfer map
Trp(w)* : g pE(w) — M,y E(F)

for w a closed point of V,,, separable over F.

3. If E=Q¥E for some £ € SH(k), then E admits canonical n-fold T-deloopings,
namely
wr"E = QFYTE.
Indeed, in SH(k), Er is the inverse to Qp and QF commutes with Q7.
For a morphism ¢ : X{°wy — E, we have the suspension X7.¢ : X7.5°w; —
Y1 E, the composition
T o XTrp(w)” : XX° Spec Fy — X F
and the adjoint morphism
(Xnp o XXTre(w)*) : ¥2° Spec Fy — QFSLE.
Suppose we have an n-fold de-looping of E, ¢, : E — QFw;"E. This gives us
the adjoint
u,  SHE — wi"E
and
Wiy, PEHE — Qtwr"E.
Let 6,, : E — QX% E be the unit for the adjunction.

Lemma 9.3. 1. v, = QL) 06,

2. 110 Q2 o (ERpo ZTrp(w)) = Trr(w)*(¢).

Proof. The two assertions follow from the universal property of adjunction. O
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Before proving our main results, we show that the transfer maps respect the
Postnikov filtration Fi, . mm .

Lemma 9.4. Suppose E admits an n-fold T-delooping v, : E — QFw;"E. Then
for each finitely generated field F' over k and each closed point w € A% separable
over F, we have

TTF(w)*(F%ateme(w)) C F%ateﬂmE(F)'
Proof. Take ¢ > 0, and let 7, : fo £ — E be the canonical morphism. As above, let

v, ¥ E — wp"E be the adjoint of ¢, and let 6, : E — Q7.X2E be the unit of the
adjunction. By lemma [0.3] we have the factorization of ¢,, as

Qn !
E 2 QuynE I QnusE.
This gives us the commutative diagram
-
fiF ————E

WY fo B —— QFwi"E,

/o n,/ n \n 3 . n, ,—n : : :
where 7, := Q7p1;, 0 QpX07,. Since v, 1 E — Qpw;"E is an isomorphism, the

composition

tnoTy: foF = Qpwr"E
satisfies the universal property of f,Qpw,"E — Qpw,"E. By [0, theorem 7.4.1],
Q3L foE is in 1.8H g1 (k), hence there is a canonical morphism

0: QrYtfoF — foF

extending our first diagram to the commutative diagram

quT;}E

il

Y7 foB —— Qtwi"E.
Tq
Using the universal property of 74, we see that 6 o, =idy, g, i.e.,
QrYXrfoE = f{E® R
and the restriction of Té to R is the zero map. We define the transfer map
Tre(w)* : T foE(w) — T foE(F)

by using the transfer map for Q0737 f, &/ and this splitting.
The second diagram thus gives rise to the commutative diagram

T fo E(W0) —— T E(w)
Trp(w)*J/ lTrp(w)*
T fqE(F) — T E(F),

which yields the result. (I
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Remark 9.5. One can define transfer maps in a more general setting, that is, for
a closed point w € A’ and any choice of parameters for m,, C Oan . The same
proof as used for lemma shows that these more general transfer maps respect
the filtration Fif, . mmE.

Theorem 9.6. Let E € Spt(k) be fibrant, and let F be a field extensions of k.

1. For each w = (wo, ..., wn) € V,(F), and each p € moQg E(F), the element
poX([—wi/wo] AF ... Ap [—wn/wo]) : B Spec Fy — E
is in F} , moE(F).

2. Suppose that E admits an n-fold T-delooping tn, : E — Qpwr"E. Then for
w = (wo, ..., wn) a closed point of V., separable over F, and p,, € TS, E(w)
(91) Trp(w)*[pw o E:O([—’wl/’LUo] AF ... \F [—wn/wo])]

is in F} , moE(F).

3. Suppose that E admits an n-fold T-delooping tn, : E — QFw;"E. and that
I, .E =0 for all a < 0. Suppose further that F is perfect. Then F},, moE(F) is
generated by elements of the form (@), as w runs over closed point of Vu,r and py,
over elements of w023 E(w).

Proof. (1) follows directly from proposition B4l and proposition[II] noting that the
isomorphism Qf B = YO E gives the identification
W_nQ%E(’w) = FQQEmE(U}) = HOIHS';.[Sl (k) (EEOU}+ AN G;\ln, E)

For (2), the fact that this element is in F7, mo(E(F)) follows from (1) and
lemma

For (3), that is, to see that these elements generate, take one of the generators
v =&y 0 EXQr(w) of B, moE(F), as given by proposition B7] that is, w is a
closed point of V,,p and &, is in m_,,(Q}p E(w)) = mo (g, E(w)). Since F is perfect,
w is separable over F. Take the n-fold T-suspension of ~y

STy X°(XT Spec Fy ) — ST E,
giving by adjunction and composition with Q% (¢, ) the morphism
Q7 () o (Zhy) : B2° Spec Fy — Qfw "E.
It follows from the universal properties of adjunction that
(X77) =dno,
hence by lemma we have
(9.2) Q7 (i) 0 (B77) = Q1) 0 n oy = tn o7
Write
77 = (E7éw) o (BTE7Qr (w)).
By proposition we have
SEQr(w) = X0 (X [—wi/wo] Ap ... Ap [—wn /wo] o Trp(w)),
and thus
Shy = X5 (€w o X0 [—w1 /wo] AF ... AF [—wp /wg]) o X0 Tre(w).
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Using (@.2) and lemma @3, we have
tn 0y = Q7 (1) 0 (B77)
— () 0 [ (Ew 0 S0 (w1 /o] Ar .. A [~ f1]) 0 ST rp(w)
=tp o Trp(w)* (& o X [—wi/wo] AF ... Ap [—wn/wol),
or

v =Tre(w)"[pw o X ([—wi/wo] Ar ... Ap [=wn /wo])].
(]

We now assume that E = QFE for some fibrant T-spectrum & € Spty(k). Let
Sk denote the motivic sphere spectrum in Spt(k), that is, Sy is a fibrant model of
the suspension spectrum X559, We proceed to re-interpret theorem in terms
of the canonical action of moQ3FS,(F) on moE(F'), which we now recall, along with
some of the fundamental computations of Morel relating the Grothendieck-Witt
group with endomorphisms of the motivic sphere spectrum.

We recall the Milnor-Witt sheaves of Morel, KMW (see [8, section 2] for de-
tails). The graded sheaf KM"W .= @nezﬁyw has structure of a Nisnevich sheaf
of associative graded rings. For a finitely generated field F' over k, the graded
ring KMW(F) := KMW(F) has generators [u] in degree 1, for u € F*, and an
additional generator n in degree —1, with relations

o nlu] = [uln

e [u][l — u] =0 (Steinberg relation)
o [wv] = [u] + [v] + nlu][v]

e n(2+n[—1]) =0.

For later use, we note the following result:
Lemma 9.7. Let F be a field, uy, ..., u, € F* with ), u; = 1. Then [u1]-...-[u,] =
0 in KM (F).
Proof. We use a number of relations in KMW (F), proved in [8, lemma 2.5, 2.7].

For u € F* we let <u> denote the element 1 + n[u] € KMW(F). We have the
following relations, for a,b € F'*,

i) K}MW(F) is central in KMW (F)

ii) [a][l —a]=0fora #1
iii) [ab] = [a] + <a>[b]

iv) [a7! = —<a"'>[d]

v) [a][—a] = 0

vi) [1] = 0.

These yield the additional relation
vii) [a][-a™t] = 0.
This follows by noting that

la][~a™"] = [a](—<—a"">[~a]) (iv)
= (—=<—a7'>)[a][~d] (i)
=0 (v)

We prove the lemma by induction on n, the case n = 1 being the relation (vi),
the case n = 2 the Steinberg relation (ii). Induction reduces to showing

[u][v] = [u+ v][—v/u] for u+v #0
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(in case u + v = 0 we use (v) to continue the induction). For this, we have
[u][v] = [u][v] + <v>[u][~u""] (vii)

= [u]fv] + [u]<v>[-u] (i

o (i

[ul[—v/u] + <u>[1 +v/ull—v/u) (i

= [u+ v][—v/u] (iii

)
)
)
)

d

For u € F*, let <u> denote the quadratic form uy? in the Grothendieck-Witt
group GW(F). Sending [u]n to <u> — 1 extends to an isomorphism [8| lemma 2.10]

Yo : KYW(F) — GW(F).
In addition, for n > 1, the image of xn" : KMW(F) — K}MW(F) is an ideal
" KMW(F) in KMW(F) and 99 maps " KMW (F) isomorphically onto the ideal
I(F)™, where I(F) C GW(F) is the augmentation ideal of quadratic forms of virtual

rank zero.
For each u € F'*, we have the corresponding morphism

[u] : Spec Fy — Gy,

We have as well the canonical projection 1’ : A2\ {0} — P!. Using a construction
similar to the one we used to show that P?/H = $2G/?, one constructs a canonical
isomorphism in He(k), (A% \ {0},1) 2 31GA2, and thus 1’ yields the morphism
n:2GN? - %G,

in He (k).

For E,F € Sptgi(k), let Hom(FE, F') denote the Nisnevich sheaf associated to
the presheaf

U I’IOIIISHS1 (k) (U+ A\ E, F)
We have the fundamental theorem of Morel:

Theorem 9.8 (|8, corollary 3.43]). Suppose chark # 2. Let m,p,q > 0, n > 2
be integers. Then sending [u] € KMW(F) to the morphism [u] and sending n €
KMW(F) to the morphism n yields isomorphisms

{O ifm<n

Ho Spec F A S™ A GAP, S™ A GNY) =
mH.(k)( p + m m) K(;\{‘;V(F) ifm=n and g > 0.

As we will be relying on Morel’s theorem, we assume for the rest of the paper
that the characteristic of k is different from two.
Passing to the S!-stabilization, theorem gives

(9.3) o, XXGLe = Ké\@g/ for p>0,q > 1,
HamE?OG,/,\f =0 forp>0,g>1,a<0.
Passing to the T-stable setting, Morel’s theorem gives
(9.4) TppSG, Sk K for p,q € Z
TatppDg, Sk =0 for p,q € Z,a < 0.

Composition of morphisms gives us the (right) action of the bi-graded sheaf of
rings 7y «Sk on my € for each T-spectrum &, and thus, the action of Kﬂw on
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T xE. If we let E be the Sl-spectrum QFE, then I, , ' = mqyppE for all b > 0.
Thus, via lemma 2:2/(2) we thus have the right multiplication

Ha,b—mE ® Kﬁ{nw — Ha,bE-

Let 7 C K (1)\4 W be the sheaf of augmentation ideals. The K If[*w-module structure
on II, . E gives us the filtration F,i‘/[WHaybE of I,  E, defined by

FMWIL, F = im[ll, ., E @ KM — 1, ,E]; n>0.

Lemma 9.9. Suppose E = QFE for some £ € SH(k). For integers n,b,p > 0,
with n — p,b—p > 0, the adjunction isomorphism 11, y B = Ha,bprg;mE induces
an isomorphism

FY W E 2= FY W, Q08 E.
Proof. This follows easily from the fact that the adjunction isomorphism
My B =1, . Q8 E

is a K™Y _module isomorphism. O

Definition 9.10. Let E = Q€ for some £ € SH(k), F' a field extension of k.
Take integers a,b,n with n,b > 0. Following remark [@.2(2), we have the transfer
maps

Trp(w): M, s E(F(w)) = I, , E(F)

for each closed point w € V,,r, separable over F.

1. Let FMW rr1], ,E(F) denote the subgroup of 11, , F(F) generated by elements
of the form

Tre(w)*(z); =€ FMVII, ,E(F(w))
as w runs over closed points of V, r, separable over F.

2. Let [[I,3E - Z"] 7~ (F) denote the subgroup of I1, ; E(F) generated by elements
of the form

Tre(w)(z-y); =€ llapE(F(w)),y € I(F(w))",

as w runs over closed points of V,,, separable over F.

Remark 9.11. It follows directly from the definitions that, for w a closed point of
Vor, v € KMY(F), y € Uy, E(F(w)), we have

Tre(w)*(y-pz) = Tre(w)"(y) -z,

where p*z € KMW (F(w)) is the extension of scalars of of z. In particular, [II, ,E -
7" 7 (F) is a KMW (F)-submodule of I, , E(F) containing I, , E(F)I(F)™.

Theorem 9.12. Let k be a perfect field of characteristic # 2. Let E = QFE for
some € € SH(k) with I1,,E = 0 for alla < 0, b > 0. Let n > p > 0 be integers
and let F be a perfect field extension of k. Then

F'?“ateHQPE(F) = Fvi\/[WATTHOﬁDE(F)'

For p > n > 0, we have the identity of sheaves Fi,, 1o p 8 =1l , .
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Proof. First suppose n > p. By lemma and lemma 0.9 we reduce to the case
p=0.
The fact that we have an inclusion of K}W (F)-submodules of Iy o E(F),

Fr o oE(F) c EMW ], o E(F),

follows from theorem Indeed, as F is perfect, each element of the form (@.1))
is of the form Trg(w)(pw - 2), with p, € Iy, E(w), 2 € KMW(F(w)), hence in
EMW 1y o E(F).

To show the other inclusion, it suffices by lemma and theorem to show

that, for each field K finitely generated over k, the elements [—uy /ug]-. . .- [—uyn /uo),
with (uo, ..., un) € V,,(K), generate KMW (K) as a module over KMW (K).

We note that the map sending (uo,...,un) to (1/ug, —u1/ug,..., —un/ug) is
an involution of V;,, so it suffices to show that the elements [uj] - ... - [uy], with

(g, ..., un) € Vo (K), generate.

Sending (ug, ..., us) to (ui,...,uy) identifies V,, with (A!\ {0})"\ H. But by
definition KW (K) is generated by elements [uq] - ... - [u,] with u; € K*; it thus
suffices to show that [u]-...-[u,] = 0 in KMW(K) if 3", u; = 1; this is lemma[0.7]

If p > n > 0, the universal property of f,EF — E gives us the isomorphism for
UeSm/k

I{OIHS'HS1 (k) (E?Eém U+, E) = I’IOIIISHS1 (k) (E?Eém U+, an),

since ¥°X Uy is in X5.8Hgi (k) for U € Sm/k. As these groups of morphisms
define the presheaves whose respective sheaves are Iy , E(F) and Il , f,, E, the map
Iy pfrnld = Ilg p E is an isomorphism, hence Fif,, Ilg p & = Ilg , . O

Remark 9.13. The reader may object that the collection of transfer maps used to
define FMW T, ,E(F) is rather artificial. However, the fact that the general
transfer maps mentioned in remark respect the filtration F7,  mm F, together
with theorem [@.12] shows that, if we were to allow arbitrary transfer maps in our

definition of FMW 11, , E(F), we would arrive at the same subgroup of Il ,,, E(F).

Our main result for a T-spectrum, theorem [2 follows easily from theorem [3.12

Proof of theorem[3. Using lemma [2.2] we reduce to the case p = 0. Essentially the
same argument as used at the end of the proof of theorem proves the part of
theorem 2l for n < 0.

If n > 0, then for b > 0, we have

Ta b = T p QT E (lemma 2.2))
Tabfn€ = Ta pQF [n€ = Mo b fn QT E (lemma 22)) and 27))
Thus, in case n > 0, theorem [ for £ is equivalent to theorem [0.12 for QFE,
completing the proof. O

Finally, we can prove our main result for the motivic sphere spectrum, theorem/[I]
Let € = ¥¢ Sg. Then Morel’s isomorphism (@.4) and lemma give

Ké\@f fora=0,b>0

II, ,QFE =
b {O fora < 0,b>0.
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Theorem 9.14. Let k be a perfect field of characteristic # 2.
1. For alln >p >0, q € Z, and all perfect field extensions F of k, we have

Fioe Mo pQF S, Sk(F) = KoL (F)I(F)Y € KU (F),
where N = N(n — p,n — q) := max(0, min(n — p,n — q)). In particular,
F?‘ateWO,OSk (F) = I(F)n C GW(F)

2. For n < p, we have the identity of sheaves F%ateﬂoypﬂ%oxfémSk = Ké\@g.

3. In case k has characteristic zero, we have the identity of sheaves
F?’atenoypg%oz?(}mgk = K‘?{IQ/IN C K‘]I\{Q/
with N as above.

Proof. Let N be as defined in the statement of the theorem. We first note (3)
follows from (1), in fact, from (1) for all fields extensions F' finitely generated over
k. Indeed, Fi,; Jlo,QF X Sy is the image of the map

HO,pan%oE?GmSk — Ho)pQ%oE?GmSk

induced by the canonical morphism f,QFXE Sy — QF¥EL Sy, By results of
Morel [9] theorem 3 and lemma 5], both homotopy sheaves are strictly Al-invariant
sheaves of abelian groups. But the category of strictly Al-invariant sheaves of
abelian groups is abelian [J] lemma 6.2.13], hence F}, Io ,25° Z(‘ém Sk is also strictly
Al-invariant. It follows, e.g., from Morel’s isomorphism

TQPSE Sy S = KN

that the sheaves K%W are strictly Al-invariant; as K(]Z\{‘ZIN is the image of the
map
Ky = K15
where M = Nif ¢—p >0, M =p—q+ N if ¢ — p < 0, it follows that K"V TN
is strictly Al-invariant as well. Our assertion follows from the fact that a strictly
Al-invariant sheaf F is zero if and only F(k(X)) = 0 for all X € Sm/k, which in
turn is an easy consequence of [I1} lemma 3.3.6].

Next, suppose n —p < 0. Then N =0 and

xnM:

F%atel'lo,in}oE(‘émSk = F%;SHO,QQ%TR Q%OE?GmSk (lemma [222))
= HO,OQ%mQ%OEémSk (n —p< 0)
= HO,pQ%OE(‘émSk (adjunction)
= Kéw_‘g/ (Morel’s theorem)

proving (2); we may thus assume n —p > 0.

By (0.4)), we may apply theorem .12 which tells us that Fif, o ,Q7 3¢ Sk (F)
is the subgroup of Iy ,QF XY, Si(F) = KMV (F) generated by elements of the form
Tre(w)*(y - z) with

y € Mo nQFEL Sp(F(w)) = K1Y (F(w))
T € K,Q{VX(F(w))
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Suppose that n — ¢ < 0,s0 N =0. Then ¢ —n > 0 and n — p > 0, and thus the
product map

Hn—pa—n : Kl (F(w)) ® K@UV (F(w)) = KLY (F(w)) = Lo ,QFBE Si(F(w))
is surjective. Since the map Trpr(w) is an isomorphism for w € V,,(F), we see that
Floello pQFEE Sp(F) = Tlo p,QFSE Si(F).

Suppose n — g > 0. Then
<"~ KT (F(w)) — KUY (F(w))

is surjective. If n —p > n — g, then the image of f,,—p q—» is the same as the image
of the triple product

K1Y (F(w) @ KU (F(w)) @ KU (F(w) — K1Y (F(w));
as the image of
fn-qq—n * Knlg (F(w)) @ KUY (F(w)) = Ko™ (F(w))

is I(F(w))"~?, we see that the image of fin_p¢—p is K0 (F(w))I(F(w))"~? and
thus

FiooIlo pQF 5L Sp(F) = [, Q5L SN 77 (F).
Similarly, if n — ¢ > n — p, then the image of ji,—p ¢—p is the same as the image of
the triple product

KW (F(w) @ KM (Fw) @ KM (Fw) — K2 (F(w))
which is K}V (F(w))I(F(w))" 7. Thus
FiyellopQF S, Sk(F) = [Mo,QF g SN ™ (F)

in this case as well.
Thus, to complete the proof, it suffices to show that, for w a closed point of V,, r,
and N > 0 an integer, we have

(9.5) Tre(w)* (KM (F(w)I(Fw)™) c KXY(F)I(F)N.
First suppose that g—p > 0. Take a closed point w € V,,r and elements z1,...,zx €
F(w)*, y € KMYV(F(w)). We have

Trp(w)*(y-[ealn - ...~ [ex]n) = Tre(w) (y - [a1] ... - [on]n®™

1 )
=Trp(w) (y-[a] ... [en]) - 0™
where we use remark @I in the last line. Since ¢ —p > 0, KMW (F)I(F)N is the
image in K'Y (F) of the map
—x N K N (F) = KUV (F),
which verifies ([@.5]).

In case ¢ — p < 0, write y = yonP~ %, with yo € KW (F(w)). As above, we have
Tre(w)*(y- [z1]n- ... - [en]n) = Tre(w) (yo - [11] - ... - [an]) - P~ 7Y,
which is in P9 - [KANW(F)pN] = K) (F)I(F)N, as desired. O

Theorem yields the main result for the S'-spectra £°G/Y by using the
Sl-stable consequences of Morel’s unstable computations, theorem
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Corollary 9.15. Let k be a perfect field of characteristic # 2.
1. For alln >p >0, q>1, and all perfect field extensions F of k, we have

Fioellop S Gl (F) = KU (F)I(F)NC =0 ¢ KUV (F),
with N(n — p,n — q) as in theorem [9.1]].

2. For n <p, we have F}_, Iy ,X°G)1 =TI ,X° G4,

3. If chark = 0, we have the identity of sheaves
F?’ateHO,ngoG;\mq _ K(JZ\{%/IN(nfp,nfq) C K{;\{Vg_
Proof. As in the proof of theorem [0.14] it suffices to prove (1).

The main point is that Morel’s unstable computations show that the G,,-stabilization
map

Homsg.[sl (k)(zglzgo@ﬁ,f A Spec Fy, X°GM9)
— Homgy, (0) (ST EFGPH! A Spec Fy, 5°G 0 )
is an isomorphism for all m <0, p > 0 and ¢ > 1.
Let E(p,q) = Q, X°G7, and let
E(q —p) = QF P BF G = QF XY Py
Then
7TaEv(pa q) = Ha,pzzoG:;Lq-
Thus I, .E(p,q) = 0 for m < 0 and so we may apply proposition 34 to give
generators of the form &, o X°Qpr(w) for

FroelooQf, SXGRH(F) = Fro lop B Grl (F).
But &, is in
Tn+pSp "E(p, ¢)(w) = 70.n—pE(p, q)(w).
Similarly, we have generators &/, 0 X°Qp(w) for Ff PmoE(p — q)(F), with
& € mon—pE(p — q)(w).
But the stabilization map
Ton—pE(p, @) (w) = mon—pE(p+ 1,0+ 1)(w)

is an isomorphism, and hence we have an isomorphism from the generators for
Fi PmoE(p, q)(F) to the generators for

Tate
FraemoE(q — p)(F) = lim Fr 'm0 E(p +m, g +m)(F).
As the map
m0E(p, q)(F) = mE(q — p)(F) = KLY (F)
is an isomorphism, it follows that the surjection
FryemoE(q — p)(F) = FrmoE(q — p).
is an isomorphism as well. By theorem [@.14] we have
FraemoB(q —p) = KU (F)I(F)Y ¢ KLU (F),
completing the proof. (|
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Theorem [0.14] also gives us the T-stable version

Corollary 9.16. Let k be a perfect field of characteristic # 2. For n,p,q € Z, and
F a perfect field extensions of k, we have

Fiatemp S8, Sk(F) = KU (F)I(F)NC=pe=a) ¢ KUY (F)
For n < p, we have Fif,, 7, ;X4 Sk = Ké\@g/. If chark =0, we have
MW —p,n— MW

Fgatewng}mgk = KM ZN(=—p,n—q) ~ K.

Proof. Using lemma and lemma as in the proof of theorem [0.12] we have
FlateTppS¢,, Sk = F%L;g”mvrzg;;pwgk
for all integers r. As our assertion is also stable under this shift operation, we may
assume that p, ¢ > 0. We note that Sy, is in SH// (k), hence so are all E?GmSk for
q > 0, and thus
F"Fate”p,pz?(;mgk = Wp,pE?GmSk

for n < 0, p,q > 0. The truncation functors f,, n > 0, on SH(k) and SHg: (k)
commute with QF, and 7, ,QFE = 7, ,€ for £ € SH(k), p > 0. This reduces us to
computing computing Ff, mp ,QFEE Sy forn, p, ¢ > 0, which is theorem[0.14 [

10. EPiLOG: CONVERGENCE QUESTIONS

Voevodsky has stated a conjecture [I4], conjecture 13] that would imply that for
€ =3PX,, X € Sm/k, the Tate Postnikov tower is convergent in the following
sense: for all a,b,n € Z, one has

m
ﬁmFTatcﬂ-a,bfng =0.
Our computation of F} m, ¥ G/ gives some evidence for this convergence con-

jecture.

Proposition 10.1. Let k be a perfect field with chark # 2. For all p,q > 0, and
all perfect field extensions F of k, we have

mnF?‘ateﬁpﬁx%oGﬁmq(F) =0.
Proof. In light of theorem 0.4 the assertion is that the I(F)-adic filtration on
KMV (F) is separated. By [10, théoreme 5.3], for m > 0, K)W(F) fits into a
cartesian square of GW(F')-modules

KW (F) ——— K3/(F)

| |~

I(F)" —— I(F)™ /I(F)™",

where KM (F) is the Milnor K-group, ¢ is the quotient map and Pf is the map
sending a symbol {uy,...,u;} to the class of the Pfister form <<uy,...,u,>>
mod I(F)™*!. For m < 0, KMW(F) is isomorphic to the Witt group of F, W(F),
that is, the quotient of GW (k) by the ideal generated by the hyperbolic form 22 —y?.
Also, the map GW(F) — W(F) gives an isomorphism of I(F)" with its image in
W(F) for all » > 1. Thus

I(F)» C W(F) form < 0,n>0

KMW(RYI(F)* =
m (D) {I(F)"erCGW(F) for m > 0,n > 1.
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The fact that N,I(F)™ = 0 in W(F) or equivalently in GW(F') is a theorem of
Arason and Pfister [1]. O

Remarks 10.2. 1. The proof in [10] that KXW (F) fits into a cartesian square as
above relies the Milnor conjecture.

2. Voevodsky’s conjecture [loc. cit.] asserts the convergence for a wider class
of objects in SH(k) than just the T-suspension spectra of smooth k-schemes. The
selected class is the triangulated category generated by L2X%° X, X € Sm/k,
n € Z and the taking of direct summands. However, as pointed out to me by Igor
Kriz, the convergence fails for this larger class of objects. In fact, take £ to be the
Moore spectrum Sy /¢ for some prime ¢ # 2. Since II, ,S; = 0 for a < 0, propo-
sition shows that Il, 4 fnSr = 0 for @ < 0, and thus we have the right exact
sequence for all n > 0

70,0./nSk =4 70,0 /nSk = 70,0 fn€ — 0.
In particular, we have
F’{‘lateﬂ-O,Og(k) =1im (F’]rj‘LateWO,OSk(k) — Woyogk(k)/g) =1im (I(k)n — GW(]C)/K) .

Take k = R. Then GW(R) = Z & Z, with virtual rank and virtual index giving the
two factors. The augmentation ideal I(R) is thus isomorphic to Z via the index
and it is not hard to see that I(R)" = (2"~ !) € Z = I(R). Thus 7o o€ = Z/{ DL/l
and the filtration FiL, m,0€ is constant, equal to Z/¢ = I(R)/¢, and is therefore
not separated.

The convergence property is thus not a “triangulated” one in general, and there-
fore seems to be quite subtle. However, if the I-adic filtration on GW(F') is finite
(possibly of varying length depending on F') for all finitely generated F' over k,
then our computations (at least in characteristic zero) show that the filtration
F} oo Tpp 2 G4 is at least locally finite, and thus has better triangulated proper-
ties; in particular, for £ # 2,

7T070(Sk/€) = Z/g, F’{‘lateWO,O(Sk/e) =0 forn > 0,

as the augmentation ideal in GW (F') is purely two-primary torsion, and Zmg ¢Sk /¢ =
0. One can therefore ask if Voevodsky’s convergence conjecture is true if one as-
sumes the finiteness of the I(F')-adic filtration on GW(F') for all finitely generated
fields F over k.
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