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THE BLOCH-KATO CONJECTURE AND GALOIS

THEORY

DIKRAN KARAGUEUZIAN, JOHN LABUTE, AND JÁN MINÁČ

To Paulo Ribenboim who showed us the Galois road

Abstract. We investigate the relations in Galois groups of maxi-
mal p-extensions of fields, the structure of their natural filtrations,
and their relationship with the Bloch-Kato conjecture proved by
Rost and Voevodsky with Weibel’s patch. Our main focus is on
the third degree, but we provide examples for all degrees.

1. Introduction

Let p be a fixed prime number and let F be a field such that F
contains a primitive p-th root of unity ζp. Let Fs be the separable
closure of F and Gal(Fs/F ) be the absolute Galois group of F . Let
H∗(F ) = H∗(Gal(Fs/F ),Z/pZ) be the Galois cohomology of F in co-
efficients Z/pZ. (From now on we shall omit the coefficients of our
cohomology groups as they will always be Z/pZ.) In [Mi], Milnor de-
fined the group KnF by generators and relations for any n ∈ N ∪ {0}.
The generators are n-tuples {a1, . . . , an} of elements of F ∗, and the
defining relations are the multiplicativity in each component and the
Steinberg relation {a1, . . . , an} = 0 if ai + aj = 1 for some i 6= j. Set
knF = KnF/pKnF and k∗F =

⊕

n≥0 knF . Thus k∗F is the Milnor
K-theory of F modulo p. In the same paper Milnor defined a graded
homomorphism h∗ : k∗F → H∗(F ) and implicitly conjectured that it
is an isomorphism when p = 2. Because of the later important work of
Bloch and Kato for any prime p, the general case is now known as the
Bloch-Kato conjecture.

Let F (p) be the maximal p-extension of F . This means that F (p) is
a union of Galois extensions K/F , such that Gal(K/F ) is a p-group,
in a fixed Fs of F . Let G be the Galois group of F (p)/F . Observe
that inf : H1(G) → H1(F ) is an isomorphism and the Steinberg
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relations hold in H2(G). Then h∗ : k∗F → H∗(F ) factors through
h∗ : k∗F → H∗(G). A simple application of the Hochschild-Serre spec-
tral sequence shows that if hn : knF → Hn(F ) is isomorphic for all
fields F then hn : knF → Hn(G) is an isomorphism for all fields F .
Also see [G-M, page 97, for the case p = 2]. In the paper [M-S], Merkur-
jev and Suslin proved that h2 is an isomorphism. Recently Rost and
Voevodsky, with Weibel’s patch, proved that hn is an isomorphism for
all n ∈ N. (See [Ha-W], [Ro1], [Ro2], [Voe1], [Voe2], [Voe3], and [Wei1],
[Wei2].) The cohomology of Galois groups of maximal pro-p-extensions
of fields reflects some properties that the class of these groups share.
The relationship between the structure of groups and their cohomol-
ogy groups is in general nontrivial and it is quite mysterious. We are
interested in the group theoretic meaning of the Bloch-Kato conjecture.

We investigate some strong, and at the same time simple conditions
on the relations of Gal(F (p)/F ) for any field F which is closely related
to the Bloch-Kato conjecture. These conditions say that all relations of
G = Gal(F (p)/F ) are generated by relations of small weight. This will
be made more precise in section 4. For related work on the structure
of Gal(F (p)/F ) and its relations with cohomology, see [A-K-M], [J-W],
[Ko1], [Ko2], [Mi-Sp1] and [N-S-W].

Let {σi}i∈I be a minimal set of generators of G. (See [Ko1, Chap-
ter 4].) We assume that I is well ordered. Let S be a free pro-p-group
with a minimal set of generators {si}i∈I . By sending si to σi we obtain
a continuous homomorphism π : S → G. We set R = Ker(π).

For a pro-p-group G, we define G(n+1) = (G(n))p[G(n), G] and G(1) =
G. Then G(n) is a closed normal subgroup of G. We denote the quotient
by G[n]. We set R(1,S) = R and R(n+1,S) = (R(n,S))p[R(n,S), S] for
n ≥ 1. Since S and G have the same cardinality of the minimal set
of generators, then R ⊂ S(2). In general, we see by induction on n
that R(n,S) ⊂ R ∩ S(n+1). Lemma 3.2 says that if h2 is surjective, then
R(2,S) = R ∩ S(3).

Example A. The equality R(2,S) = R ∩ S(3) implies that every
σ ∈ G = Gal(F (p)/F ) of finite order 6= 1 has order p as follows.
Suppose that σ has order ≥ p2. The subgroup of G generated by σ is a
closed subgroup of G and if L is its fixed field, we have L(p) = F (p) and
Gal(L(p)/L) = 〈σ〉. Hence we may assume that F = L and G = 〈σ〉.
Moreover by taking a suitable power of σ we may assume that σ has
an order p2. Then σp2 ∈ R ∩ S(3) but σp2 /∈ R(2,S) as σp2 generates R
as a normal subgroup of S. Hence the order of σ is p. This fact also
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follows from the work of Becker [Be] where he also shows that p = 2
and that two elements of G order 2 cannot commute. In fact the only
non-trivial finite subgroup of G is the cyclic group of order 2.

Example B. (See [Ch-E-M, Section 9] for more examples.) One can
also deduce from the equality R(2,S) = R ∩ S(3) that a minimal se of
relations among the σi cannot contain a relation of the form [[σ1, σ2], σ3]
with σ1, σ2, σ3 distinct. Indeed, such a relator would be in R∩S(3) but
not in Rp[R, S] = R(2,S).

Our first result is

Theorem 1.1. Assume that G is GF (p) for some field F containing a
primitive pth-root of 1. Then R(3,S) = R ∩ S(4).

Theorem 1.1 is proved in section 3. It is natural to ask the following
question.

Question 1.2. Let G be isomorphic to a Galois group of a maximal
p-extension of a field. Under which condition is R(n,S) = R∩S(n+1) for
all n ≥ 1?

More generally we ask:

Question 1.3. Let G be isomorphic to the Galois group of the maximal
p-extension of a field. Describe the quotients R ∩ S(n+1)/R(n,S) for all
n ≥ 1.

In the first two sections we show that R(n,S) = R ∩ S(n+1) for n ≤ 3.
In section 4, we give an equivalent description of Question 1.2 in the
language of Lie algebras. We prove that, for quadratically defined pro-
2-groups as well as for G = Gal(F (2)/F ) when F is a totally imaginary
number field, the relation R(n,S) = R ∩ S(n+1) is valid for each n ≥ 1.
For all odd primes p we show the same holds for G = Gal(F (p)/F )
where F is any local or global field.

2. Preliminaries

We use the following usual notation: [a] means both an element of
F ∗/F ∗p and its corresponding element (a) inH1(F ) or more generally in
H1(Gal(T/F )) where T/F is any Galois extension of F which contains
F (2): = compositum of all cyclic extensions of degree p of F , and
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is a subfield of F (p). Observe that by Kummer theory we have the
canonical isomorphism F ∗/F ∗p → H1(Gal(T/F )), which justifies our
identification mentioned above.

We will work in the category of pro-p-groups and make the usual con-
ventions that by “subgroup” we mean “closed subgroup”, by “gener-
ated” we mean “topologically generated” and by “morphism” we mean
“continuous morphism”. We shall always work with mod p coho-
mology except when we explicitly mention other coefficients. For the
standard facts for Galois cohomology we refer to [Se2] and [N-S-W].

For an extension 1 → A → B → C → 1 of profinite groups and a
discrete B-module M we have the corresponding Lyndon-Hochschild-
Serre (LHS, for short) spectral sequences {Ep,q

r , dp,qr } where Ep,q
2 =

Hp(C,Hq(A,M)) ([H-S] and [N-S-W]). Using LHS we also have the
five-term exact sequence

0 → H1(C,MA)
inf−→ H1(B,M)

res−→ H1(A,M)C
d0,12−→ H2(C,MA)

inf−→ H2(B,M)

where inf is the inflation map and res is the restriction map.

Observe that knF is isomorphic to the factor group of

F ∗/F ∗p ⊗ · · · ⊗ F ∗/F ∗p

by the subgroup generated by [a1]⊗· · ·⊗ [an] where a1 is a norm in the
extension F ( p

√
aj)/F of degree p, for some j = 2, . . . , n. (If F ( p

√
aj)/F

is not an extension of degree p, then [aj ] = [1] and [a1]⊗· · ·⊗ [an] = 0.)

Indeed let lnF be this factor group. Because all relations in lnF are
valid in knF , we see that knF is a naturally homomorphic image of
lnF . (See [F-V, page 303, Exercise 6].) In order to show that this
homomorphism is actually an isomorphism, it is enough to show that
the Steinberg relations which generate the relations in knF are valid in
lnF also. Let a1, . . . , an ∈ F ∗. We denote as 〈a1, . . . , an〉 the image of
[a1]⊗ · · · ⊗ [an], [ai] ∈ F ∗/F ∗p in lnF .

We want to show that if 1 = ai + aj , 1 ≤ i < j ≤ n, then

〈a1, . . . , an〉 = 0 in lnF.
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Because this is trivially true if aj ∈ F ∗p we shall assume that aj /∈ F ∗p.
If i = 1 then this is true by our definition of the relations in lnF as

1− aj =

p−1
∏

i=0

(1− ζ ip p
√
aj)

= NF ( p
√
aj)/F (1− p

√
aj).

Hence it is enough to show that if

1 < i < j ≤ n

then

〈a1, . . . , ai, . . . , aj , . . . , an〉 = −〈ai, . . . , a1, . . . , aj, . . . , an〉.
However using the equation

−a = (1− a)/(1− a−1) for a 6= 1,

we see that

〈a, . . . ,−a, . . . 〉 = 0 in lnF for all a ∈ F ∗.

Hence

0 = 〈a1ai, . . . ,−a1ai, . . . an〉
= 〈a1, . . . ,−a1, . . . 〉+ 〈a1, . . . , ai, . . . 〉+
〈ai, . . . , a1, . . . 〉+ 〈ai, . . . ,−ai, . . . 〉
= 〈a1, . . . , ai, . . . 〉+ 〈ai, . . . , a1, . . . 〉,

as required.

Hence lnF = knF .

3. The proof of Theorem 1.1

We divide our proof into several lemmas. Lemma 3.5 shows that it is
enough to prove that inf : H2(S [3]) → H2(S/R(2,S)) is surjective. This
is proved by considering certain spectral sequences below.

Lemma 3.1. R(n,S) ⊂ R ∩ S(n+1).

Proof. Our inclusion is true if n = 1. Assume that it is true for k ≤ n.
Then R(n+1,S) = (R(n,S))p[R(n,S), S] ⊂ (S(n+1))p[S(n+1), S] = S(n+2). So
R(n+1,S) ⊂ R ∩ S(n+2). �
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Lemma 3.2 below was observed in [Wür, page 102] under an addi-
tional hypothesis, and in [Mi-Sp2, page 57] for the case p = 2. This
lemma was also generalized in [G-M, page 207] in the case p = 2 and
in [Ch-E-M] for all p.

Lemma 3.2. If h2 is surjective then Rp[R, S] = R(2,S) = R ∩ S(3).

We consider the following pair of extensions

(3.3)

1 −−−→ R(2,S) −−−→ S −−−→ S/R(2,S) −−−→ 1




y





y





y

1 −−−→ S(3) −−−→ S −−−→ S [3] −−−→ 1 .

By applying the five-term exact sequence to (3.3), we obtain a com-
mutative diagram

(3.4)

H1(R(2,S))S/R
(2,S) ∼=−−−→ H2(S/R(2,S))

x





res

x





inf

H1(S(3))S
[3] ∼=−−−→ H2(S [3]) .

The surjectivities of both isomorphisms follow from the fact that
H2(S) = 0, because S is a free pro-p-group. The injectivities follow
from the fact that H1(S/R(2,S)) ∼= H1(S) and H1(S [3]) ∼= H1(S), since
both R(2,S) and S(3) are normal subgroups of S(2).

Observe that H1(S(3)/S(4)) ∼= H1(S(3))S
[3]

and H1(R(2,S)/R(3,S)) ∼=
H1(R(2,S))S/R

(2,S)
. The restriction H1(S(3)/S(4)) → H1(R(2,S)/R(3,S)) is

given by the composite

H1(S(3)/S(4))
res−→ H1(R(2,S)S(4)/S(4))

∼=−→ H1(R(2,S)/R(2,S) ∩ S(4))

inf−→ H1(R(2,S)/R(3,S)) .

The restriction H1(S(3)/S(4)) → H1(R(2,S)S(4)/S(4)) is surjective. If
R(2,S) = R ∩ S(3), then R(2,S) ∩ S(4) = (R ∩ S(4)) = R ∩ S(4). Then
R(3,S) = R ∩ S(4) iff R(3,S) = R(2,S) ∩ S(4). Also the last inflation
map is surjective iff R(2,S) ∩ S(4) = R(3,S). Thus the last map inf :
H1(R(2,S)/R(2,S) ∩ S(4) → H1(R(2,S)/R(3,S)) is surjective iff R(3,S) =
R ∩ S(4). Therefore we obtain

Lemma 3.5. Assume that R(2,S) = R ∩ S(3). The following are equiv-
alent
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(1) R(3,S) = R ∩ S(4).
(2) R(3,S) = R(2,S) ∩ S(4).
(3) inf : H1(R(2,S)/R(2,S) ∩ S(4)) → H1(R(2,S)/R(3,S)) is surjective.
(4) res : H1(S(3)/S(4)) → H1(R(2,S)/R(3,S)) is surjective.
(5) inf : H2(S [3]) → H2(S/R(2,S)) is surjective.

We have a pair of extensions

(3.6)

1 −−−→ R/R(2,S) −−−→ S/R(2,S) −−−→ S/R = G −−−→ 1




y





y





y

1 −−−→ S(2)/S(3) −−−→ S [3] −−−→ S [2] −−−→ 1 .

To prove (5) in Lemma 3.5 we can compare the LHS spectral se-
quences corresponding to (3.6). We set Ep,q

r (S [3]) (or Ep,q
r (S/R(2,S)))

the Ep,q
r −term corresponding to the bottom extension (or the top ex-

tension).

Observe that H1(R/R(2,S)) ∼= H1(R)G and H1(R)G ∼= H2(G), the
last isomorphism follows from the five-term exact sequence correspond-
ing to the extension 1 → R → S → G → 1. Then H1(R/R(2,S))G =
H1(R/R(2,S)) ∼= H2(G). Similarly we have H1(S(2)/S(3)) ∼= H2(S [2]).
Therefore the transgression maps d0,12 in both spectral sequences are
surjective. Thus we obtain

Lemma 3.7. E2,0
∞ (S [3]) = E2,0

∞ (S/R(2,S)) = 0.

To prove the surjectivity of inf : H2(S [3]) → H2(S/R(2,S)), it is
enough to show the surjectivities of the homomorphism corresponding
to E1,1

∞ -terms and the homomorphism corresponding to E0,2
∞ -terms.

Assume that R(2,S) = R ∩ S(3). Observe that

H1(R/R(2,S)) = H1(R/R ∩ S(3)) ∼= H1(RS(3)/S(3)) .

Thus we obtain

Lemma 3.8. res : H1(S(2)/S(3)) → H1(R/R(2,S)) is surjective.

Since both extensions in 3.6 are central extensions, then E0,2
2 (S [3]) ∼=

H2(S(2)/S(3)) and E0,2
2 (S/R(2,S)) ∼= H2(R/R(2,S)). Let {zc}c∈C be a ba-

sis for H1(R/R(2,S)) and {wd}d∈D be a basis for H1(S(2)/S(3)). Let βwd

and βzc be Bocksteins of wd and zc in H2(R/R(2,S)) = E0,2
3 (S/R(2,S))

andH2(S(2)/S(3)) = E0,2
3 (S [3]) respectively. Then {βwd}d∈D and {βzc}c∈C

generate E0,2
3 (S/R(2,S)) and E0,2

3 (S [3]) respectively. This follows from
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a standard argument exploiting the fact that d2 is a derivation with
respect to the multiplicative structure of Ep,q

2 and the fact that d0,12 is
injective. However using the fact that d1,12 is surjective, we see that
d0,23 (S [3]) = 0. Hence E0,2

3 (S [3]) = E0,2
∞ (S [3]). In Lemma 3.9 we denote

the natural map E0,2
3 (S [3]) → E0,2

3 (S/R(2,S)) as res because it is induced
by the restriction map S(2)/S(3) −→ R/R(2,S). By Lemma 3.8, and our
discussion above, we obtain

Lemma 3.9. res : E0,2
3 (S [3]) → E0,2

3 (S/R(2,S)) is surjective and E0,2
3 (S [3]) =

E0,2
∞ (S [3]).

We have a commutative diagram

E0,2
∞ (S/R(2,S)) −−−→ E0,2

3 (S/R(2,S))
x





x





E0,2
∞ (S [3]) E0,2

3 (S [3]) .

Using Lemma 3.9 we deduce the following corollaries.

Corollary 3.10. res : E0,2
∞ (S [3]) → E0,2

∞ (S/R(2,S)) is surjective.

Corollary 3.11. E0,2
∞ (S/R(2,S)) = E0,2

3 (S/R(2,S)).

Since both extensions in the above are central, then

d1,12 : H1(G,H1(R/R(2,S))) → H3(G)

is the compositeH1(G,H1(R/R(2,S)))
(1,d0,12 )−→∼= H1(G)⊗H2(G)

∪−→ H3(G).

Also d1,12 : H1(S [2], H1(S(2)/S(3))) → H3(S [3]) is the composite

H1(S [2], H1(S(2)/S(3)))
(1,d0,12 )−→∼= H1(S [2])⊗H2(S [2])

∪−→ H3(S [2]) .

We may abuse notation by setting

E1,1
∞ (S/R(2,S)) = Ker(∪ : H1(G)⊗H2(G) → H3(G))

and E1,1
∞ (S [3]) = Ker(∪ : H2(S [2]) ⊗ H2(S [2]) → H3(S [2])). We have a

commutative diagram
(3.12)

0 −−−→ E1,1
∞ (S/R(2,S)) −−−→ H1(G)⊗H2(G)

∪−−−→ H3(G) −−−→ 0
x





u

x





v

x





inf

0 −−−→ E1,1
∞ (S [3]) −−−→ H1(S [2])⊗H2(S [2])

∪−−−→ H3(S [2]) −−−→ 0.
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Here u and v are natural maps induced by inflation maps. Recall that
S [2] ∼= G[2] under our projection map S → G. In the next lemma we
use both the injectivity of h3 and the surjectivity of h2.

Lemma 3.13. The map u : E1,1
∞ (S [3]) −→ E1,1

∞ (S/R(2,S)) is surjective.

Proof. We consider E1,1
∞ (S/R(2,S)) as a subgroup of H1(G) ⊗ H2(G).

Using the surjectivity of h2, we see that each element in H1(G)⊗H2(G)
can be written as a sum of elements of the form α ⊗ (β ∪ γ) where
α, β, γ ∈ H1(G). As we remarked at the end of Section 2, the injectivity
of h3 implies that E1,1

∞ (S/R(2,S)) is generated by the elements z1⊗ (z2∪
z3) such that z1∪z2 = 0 inH2(G). (Since h2 is the isomorphism, we can
work in H1(G) rather than in k2F .) Because the map inf : H1(S [2]) −→
H1(G) is an isomorphism, we see that for the element z1 ⊗ (z2 ∪ z3)
as above we can find yi ∈ H1(S [2]), i = 1, 2, 3 such that inf(yi) = zi.
Using our assumption that z1 ∪ z2 = 0 in H2(G) we see that

u((y1 ⊗ (y2 ∪ y3)− y3 ⊗ (y1 ∪ y2)) = z1 ⊗ (z2 ∪ z3).

Therefore we see that our map u is surjective. �

4. Graded Lie Algebras

Here we give an equivalent description of Question 1.2 in Lie algebra
language. A convenient reference is Lazard’s paper [Laz1]. As usual,
we consider a minimal presentation of G.

(4.1) 1 −→ R −→ S −→ G
π−→ 1 .

Let S and G admit the usual filtrations

S(1) = S, . . . , S(n+1) = (S(n))p[S(n), S], . . .

G(1) = G, . . . , G(n+1) = (G(n))p[G(n), G], . . . .

The formulaeG(n+1) ⊂ G(n), [G(n), G(m)] ⊂ G(n+m) imply that grn(G) =
G(n)/G(n+1) (denoted additively) is an vector space over Fp and that the
graded algebra gr(G) =

∑

grn(G) is an algebra over Fp where multipli-
cation of homogenous elements of gr(G) is induced by the commutator
operation. This operation satisfies the Jacobi identity and hence is a



10 D. KARAGUEUZIAN, J. LABUTE, AND J. MINÁČ

Lie bracket. The p-th power map in G induces an operator P on gr(G)
making it a Lie algebra over Fp[π] if p 6= 2 and a mixed Lie algebra if
p = 2 (cf. [Laz1]). Similarly, the induced filtration {R ∩ S(n)} yields
the graded Lie algebra gr(R)ind. The extension 4.1 induces an exact
sequence of (mixed) Lie algebras

0 → gr(R)ind → gr(S)
φ→ gr(G) −→ 0.

Since the filtration of G is discrete the map φ is surjective. (See pages
428-430 in [Laz1] for details.)

On the other hand, the filtration {R(n,S)} yields another Lie algebra
gr(R, S). The inclusion R(n,S) ⊂ R ∩ S(n+1) (see Lemma 3.1 induces
the homomorphism ιn : grn(R, S) → grn+1(R)ind and therefore a Lie
algebra homomorphism ι : gr(R, S) → gr(R)ind. Let U be the envelop-
ing algebra of gr(S). Then U is the free associative Fp[π]-algebra on
the free generators of S. There is a canonical embedding of gr(S) into
U with P (x) = πx if p 6= 2. If p = 2 we have P (x) = x2 + πx if x is of
degree 1 and P (x) = πx if x is of degree > 1. Note that gr(R, S) and
gr(R)ind are U -modules via the adjoint representation and that ι is a
homomorphism of U -modules.

Theorem 4.2. The following are equivalent

(A) We have R(n,S) = R ∩ S(n+1) for n ≥ 1.
(B) The homomorphism ι is injective.
(C) The homomorphism ι is surjective.

Proof. Note that (A) holds for n = 1 since R ⊂ S(2).

Assume that ι is injective and that (A) holds for some n ≥ 1. Let
x ∈ R ∩ S(n+2). Then x ∈ R ∩ S(n+1) = R(n,S). If ξ is the image of x
in grn(R, S) we have ιn(ξ) = 0 which implies x ∈ R(n+1,S). Hence (A)
holds for n+ 1 and by induction for all n.

Assume that ι is surjective and let x ∈ R∩S(n+1). Then there exists
y0 ∈ R(n,S) such that x1 = y−1

0 x ∈ R∩S(n+2). In the same way we define
inductively yi such that yi ∈ R(n+i,S) and xi+1 = y−1

i xi ∈ R ∩ S(n+2+i)

for i ≥ 0 with x0 = x. Then x =
∏

yi ∈ R(n,S). �

Corollary 4.3. Let G = S/R be a minimal presentation of G of finite
type. Then i is surjective if ι(gr1(R, S)) generates gr(R)ind as an ideal
of gr(S).
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The elements of i(gr1(R, S)) ⊂ gr2(S) are images of elements r of
R under the canonical mapping of S(2) onto gr2(S). These images are
called initial forms of the elements r. If ι is bijective and R 6= 1 then R
has a minimal generating set whose initial forms are of degree 2. In this
case the presentation G = S/R is called quadratic. If G = F/R is of
finite type we say it is quadratically defined if it is quadratic and the
set of initial forms of a minimal generating set for R generate gr(R)ind
as an ideal of gr(S). The latter is true if the set of initial forms is
strongly free, cf. [LM], [Lab2]. The group G is said to be quadratically
defined if it has a minimal presentation which is quadratically defined.

Theorem 4.4. Let G = S/R be a minimal presentation of G of finite
type. Then i is bijective iff R = 1 or G = S/R is quadratically defined.

Proof. If G = S/R is quadratically defined then i(gr1(R, S)) is a gen-
erating set for gr(R)ind as an ideal of gr(S). Then i is surjective since
it is a U -module homomorphism and hence bijective by Theorem 4.2.

Conversely, suppose that i is bijective and identify gr(R, S) with its
image in gr(S). To prove that G = S/R is quadratically defined it
suffices to prove that gr1(R, S) generates gr(R, S) as a U -module. Let
M be the U -submodule of gr(R, S) generated by gr1(R, S). We have
M1 = gr1(R, S). Suppose that Mn = grn(R, S) and let ξ ∈ grn+1(R, S),
ξ 6= 0. If x ∈ R(n+1,S) is a representative of ξ then x is a product of
elements of the form up, [u, v] with u ∈ R(n,S), v ∈ S. Since i is injective
these elements lie in grn+1(S) unless the degree of u is n and the degree
of v is 1. It follows that ξ is a linear combination of elements of the
form πη, [η, ζ ] with η ∈ Mn, ζ ∈ U1 and hence that ξ ∈ Mn+1. �

Question 4.5. Let G be isomorphic to the Galois group of a maxi-
mal p-extension of a field, and let i be a natural graded Lie algebra
homomorphism i : gr(R, S) → gr(R)ind. When is i an isomorphism?

If F is a global field of characteristic 6= p which is totally imaginary
if F is a number field and p = 2, then by the results of [LM] and
[Sch], G = Gal(F (p)/F ) is a projective limit of quadratically defined
presentations. More precisely, the group G has a presentation S/R
where S = ∪Si i ≥ 1 with Si ⊂ Si+1 finitely generated and, if Ri is
the image of R under the canonical projection of S onto Si, we have
Si/Ri quadratically defined for all i. By Theorem 4.2 this means that

R
(n,Si)
i = Ri ∩ S

(n+1)
i for all i, n which implies R(n,S) = R ∩ S(n+1) for

all n since S is the projective limit of the Si. Hence, by Theorem 4.2,
the map ι is an isomorphism. The same is true if F is a local field with
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ζp in F since then G = Gal(F (p)/F ) is a Demushkin group which is
quadratically defined by [LM], [Lab2]. We thus obtain the following
result.

Theorem 4.6. Let F be a field containing a primitive p-th root of
unity. If F is a global field, which is totally imaginary if F is a number
field and p = 2, or a local field containing a primitive p-th root of unity
then F is quadratically defined.

Question 4.7. Is Gal(Q(2)/Q) quadratically defined?
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[G-M] W. Gao and J. Mináč, Milnor conjecture and Galois theory I, Fields
Institute Communications, AMS 16 (1997), 95–110.

[Ha-W] C. Haesemeyer and Ch. Weibel. Norm varieties and the chain lemma
(after Markus Rost). Proc. Abel Symposium, to appear.

[H-S] G. Hochschild and J-P. Serre, Cohomology of group extensions, Trans.
AMS 74 (1953), 110–134.

[J-W] B. Jacob and R. Ware, A recursive description of the maximal pro-2-
group via Witt rings, Math. Zeit. 200 (1989) 379–396.

[Ko1] H. Koch, Galoische theorie der p-Erweiterungen, Grundlehren der math-
ematische Wissenchaften, Springer-Verlag, 1970.

[Ko2] , On p-extensions with given ramification, Appendix 1 in K.
Haberland, VEB Deutscher Verlag Der Wissenchaften, Springer-Verlag,
1978.
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