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CALDERÓN-ZYGMUND OPERATORS IN THE BESSEL SETTING

J.J. BETANCOR, A.J. CASTRO, AND A. NOWAK

Abstract. We study several fundamental operators in harmonic analysis related to Bessel

operators, including maximal operators related to heat and Poisson semigroups, Littlewood-

Paley-Stein square functions, multipliers of Laplace transform type and Riesz transforms. We

show that these are (vector-valued) Calderón-Zygmund operators in the sense of the associated

space of homogeneous type, and hence their mapping properties follow from the general theory.

1. Introduction

In their seminal article [14] Muckenhoupt and Stein investigated in a systematic way har-

monic analysis associated with ultraspherical expansions and their continuous counterparts,

Hankel transforms. That paper is considered as a starting point of an important development

connecting harmonic analysis and discrete and continuous orthogonal expansions. Later many

authors contributed to the subject by studying various questions in different settings, includ-

ing in particular expansions into classical orthogonal polynomials; see [3, Section 1] for sample

references. In the recent years one can observe an increasing interest in harmonic analysis of

orthogonal expansions, as confirmed by the attention of many mathematicians and numerous

papers.

In this article we study several fundamental harmonic analysis operators in the n-dimensional

setting related to Hankel transforms. This framework is connected with the Bessel operator

∆λ = −∆−
n
∑

i=1

2λi
xi

∂

∂xi
,

where λ ∈ [0,∞)n is a multi-index. The operator ∆λ will play in our considerations a similar

role to that of the Euclidean Laplacian in the classical setting. It is formally self-adjoint and

nonnegative in L2(Rn
+, dµλ), where R

n
+ = (0,∞)n and

dµλ(x) = x2λ1
1 · . . . · x2λn

n dx, x ∈ R
n
+.

The spectral decomposition of ∆λ, or rather its suitable self-adjoint extension, is given via the

Hankel transform, see Section 2 for details. Moreover, ∆λ admits the decomposition ∆λ =
∑

iD
∗
iDi, where Di = ∂/∂xi are the usual partial derivatives, and D∗

i are their formal adjoints

in L2(Rn
+, dµλ). Thus Di, i = 1, . . . , n, are naturally associated derivatives with the Bessel

operator.
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The main objects of our study are the following operators related to ∆λ (see Section 2 for

strict definitions):

• maximal operators

W λ
∗ : f 7→

∥

∥ exp(−t∆λ)f
∥

∥

L∞(dt)
, P λ

∗ : f 7→
∥

∥ exp
(

− t
√

∆λ

)

f
∥

∥

L∞(dt)
,

• Littlewood-Paley-Stein type square functions

gλ,Wm,k,r : f 7→
∥

∥Dm∂kt exp(−t∆λ)f
∥

∥

Lr(t(|m|/2+k)r−1dt)
,

gλ,Pm,k,r : f 7→
∥

∥Dm∂kt exp
(

− t
√

∆λ

)

f
∥

∥

Lr(t(|m|+k)r−1dt)
,

• multipliers of Laplace transform type

T λ
MW

: f 7→ ∆λ

∫ ∞

0
exp(−t∆λ)f ψ(t) dt,

T λ
MP

: f 7→
√

∆λ

∫ ∞

0
exp

(

− t
√

∆λ

)

f ψ(t) dt,

• Riesz transforms

Rλ
m : f 7→ Dm(∆λ)

−|m|/2f.

We treat all these operators in a unified way, by means of the Calderón-Zygmund theory. Our

main result, Theorem 2.1, says that these are either scalar-valued, or can be viewed as vector-

valued, Calderón-Zygmund operators in the sense of the triple (Rn
+, dµλ, | · |), where | · | stands

for the ordinary distance. According to the terminology of Coifman and Weiss [11], this triple

forms a space of homogeneous type (this means, in particular, that the measure µλ possesses

the doubling property). Consequences are then delivered by the general theory. In particular,

we conclude mapping properties in weighted Lp spaces.

Typically the main difficulty related to the Calderón-Zygmund approach is to show suitable

kernel estimates. Inspired by earlier ideas used in certain Laguerre settings [17, 21, 24], we

present a convenient and transparent technique based on an integral representation of the Bessel

heat kernel that emerges from Schläfli’s Poisson type formula for the modified Bessel function of

the first kind, see Section 3. It is remarkable that a similar method has been developed recently

by Nowak and Sjögren [16] in the more complex setting of classical Jacobi expansions.

Our present results constitute a continuation and extension of many earlier investigations in

the Bessel setting. This concerns the fundamental paper [14] as well as more recent articles, see

for instance [1, 2, 6, 7, 8, 9, 10, 23]. In all the mentioned cases, the one dimensional situation was

considered. The study of the multi-dimensional Bessel setting has been undertaken only recently

by Betancor, Castro and Curbelo [3, 4], and by methods not involving the Calderón-Zygmund

theory. The results of this paper are also related to those of [3, 4].

The paper is organized as follows. Section 2 contains the setup, strict definitions of the

investigated operators and statements of the main results. In Section 3 we gather various

preparatory facts and results needed to furnish the proof of the main theorem, which is then

done in Section 4.

Throughout the paper we use a standard notation with essentially all symbols referring to

the space of homogeneous type (Rn
+, dµλ, | · |). Thus C∞

c (Rn
+) denotes the space of smooth and

compactly supported functions in R
n
+. By 〈f, g〉dµλ

we mean
∫

Rn
+
f(x)g(x)dµλ(x) whenever the

integral makes sense. Further, Lp(wdµλ) stands for the weighted L
p space, w being a nonnegative
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weight on R
n
+. Given 1 ≤ p < ∞, p′ is its adjoint exponent, 1/p + 1/p′ = 1. For 1 ≤ p < ∞,

we denote by Aλ
p = Aλ

p(R
n
+, dµλ) the Muckenhoupt class of Ap weights related to the measure

dµλ. While writing estimates, we will use the notation X . Y to indicate that X ≤ CY

with a positive constant C independent of significant quantities. We shall write X ≃ Y when

simultaneously X . Y and Y . X.

2. Preliminaries and main results

Let λ ∈ [0,∞)n. For z ∈ R
n
+, consider the functions

ϕλ
z (x) =

n
∏

i=1

(xizi)
−λi+1/2Jλi−1/2(xizi), x ∈ R

n
+,

where Jν denotes the Bessel function of the first kind and order ν, cf. [25]. It is well known that

for each z ∈ R
n
+, the function ϕλ

z is an eigenfunction of the n-dimensional Bessel operator ∆λ,

and the corresponding eigenvalue is |z|2 = z21 + . . .+ z2n,

∆λϕ
λ
z = |z|2ϕλ

z , z ∈ R
n
+.

The n-dimensional Hankel transform hλ defined by

hλf(z) =

∫

Rn
+

ϕλ
z (x)f(x) dµλ(x), z ∈ R

n
+,

plays in the Bessel context a similar role as the Fourier transform in the Euclidean setting. It is

well known that hλ is an isometry in L2(dµλ) and it coincides there with its inverse, h−1
λ = hλ.

Moreover, for sufficiently regular functions f , say f ∈ C∞
c (Rn

+), we have

hλ(∆λf)(z) = |z|2hλ(f)(z), z ∈ R
n
+.

Note that in dimension one and for λ = 0 one recovers here the setting of the cosine transform

on the positive half-line.

We consider the nonnegative self-adjoint extension of ∆λ (still denoted by the same symbol)

defined by

(1) ∆λf = hλ(|z|2hλf), f ∈ Dom(∆λ),

on the domain

Dom(∆λ) =
{

f ∈ L2(dµλ) : |z|2hλf ∈ L2(dµλ)
}

.

Then the spectral decomposition of ∆λ is given via the Hankel transform.

The semigroup {W λ
t } = {exp(−t∆λ)} generated by −∆λ is usually referred to as the heat

semigroup associated with the Bessel operator, or simply the Bessel heat semigroup. It has the

integral representation

(2) W λ
t f(x) =

∫

Rn
+

W λ
t (x, y)f(y) dµλ(y), f ∈ L2(dµλ), x ∈ R

n
+, t > 0,

where the associated heat kernel is given by (see [25, p. 395])

W λ
t (x, y) =

∫

Rn
+

e−t|z|2ϕλ
z (x)ϕ

λ
z (y) dµλ(z)

=
1

(2t)n
exp

(

− 1

4t

(

|x|2 + |y|2
)

)

n
∏

i=1

(xiyi)
−λi+1/2Iλi−1/2

(xiyi
2t

)

, x, y ∈ R
n
+, t > 0;
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here Iν denotes the modified Bessel function of the first kind and order ν (cf. [25]). It may be

deduced that the integral in (2) actually converges for more general functions from weighted Lp

spaces with Muckenhoupt weights, producing always smooth functions of (x, t) ∈ R
n
+×R+, and

thus providing a good definition of W λ
t on these spaces, see Lemma 3.5 below. Moreover, (2)

defines a symmetric diffusion semigroup in Lp(dµλ), 1 ≤ p ≤ ∞, in the sense of Stein [22, p. 65],

which is Markovian; see for instance [18, Section 6]. The semigroup {P λ
t } = {exp(−t√∆λ)}

generated by the square root of the Bessel operator is called the Poisson-Bessel semigroup. By

the subordination principle, it is related to {W λ
t } by

P λ
t f(x) =

∫ ∞

0
W λ

t2/(4u)f(x)
e−udu√
πu

, x ∈ R
n
+, t > 0.

The maximal operators of these semigroups are defined by

W λ
∗ f = sup

t>0
|W λ

t f |, P λ
∗ f = sup

t>0
|P λ

t f |.

As is well known, mapping properties of W λ
∗ and P λ

∗ are connected with the boundary behavior

of the semigroups. Notice that P λ
∗ f ≤W λ

∗ f , by subordination.

Littlewood-Paley-Stein square functions based on {W λ
t } and {P λ

t } have the general form

gλ,Wm,k,r(f)(x) =
∥

∥∂mx ∂
k
tW

λ
t f(x)

∥

∥

Lr(t(k+|m|/2)r−1dt)
, x ∈ R

n
+,

gλ,Pm,k,r(f)(x) =
∥

∥∂mx ∂
k
t P

λ
t f(x)

∥

∥

Lr(t(k+|m|)r−1dt)
, x ∈ R

n
+,

where 2 ≤ r < ∞, k ∈ N, m ∈ N
n is a multi-index, |m| = m1 + . . . + mn is its length, and

∂mx = ∂m1
x1

. . . ∂mn
xn

. Square functions of this form are important tools in harmonic analysis.

Given a bounded measurable function M on R
n
+, the associated Hankel multiplier T λ

M is

defined by

T λ
Mf = hλ(Mhλf), f ∈ L2(dµλ).

Clearly, T λ
M is well defined in L2(dµλ). We say that M is of Laplace transform type when it

can be represented as

M(z) = MW (z) = |z|2
∫ ∞

0
e−|z|2sψ(s) ds, z ∈ R

n
+,

or as

M(z) = MP (z) = |z|
∫ ∞

0
e−|z|sψ(s) ds, z ∈ R

n
+,

for some bounded function ψ on R+. An important special case here is the choice ψ(s) = s−iγ/

Γ(1 − iγ), γ real, producing the multiplier MW (z) = |z|2iγ that corresponds to the imaginary

power ∆iγ
λ of the Bessel operator.

Riesz transforms in the Bessel setting are formally given, according to a general concept, by

Rλ
m = ∂m∆

−|m|/2
λ ,

where m ∈ N
n and |m| is the order of the transform. To give this definition a strict meaning,

we introduce the space

Cλ =
{

f ∈ C∞(Rn
+) : hλf ∈ C∞

c (Rn
+)

}

.

This space is a dense linear subspace of L2(dµλ). We have, see (1),

∆
−|m|/2
λ f = hλ(|z|−|m|hλf), f ∈ Cλ.
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If f ∈ Cλ, then ∆
−|m|/2
λ f ∈ C∞(Rn

+) and therefore Rλ
m is well defined on Cλ. Then Rλ

m can

be extended uniquely to a bounded linear operator on L2(dµλ). All these properties will be

justified in detail in Section 4.4.

We shall treat all the operators

W λ
∗ , P

λ
∗ , g

λ,W
m,k,r, g

λ,P
m,k,r, T

λ
M, Rλ

m,

in a unified way, by means of the general Calderón-Zygmund theory. Clearly, the maximal

operators and the g-functions are not linear. They are, however, associated with vector-valued

linear operators taking values in some Banach spaces B, where B = Lr(t(k+|m|/2)r−1dt) in case of

gλ,Wm,k,r and B = Lr(t(k+|m|)r−1dt) in case of gλ,Pm,k,r. ForW
λ
∗ and P λ

∗ we shall, for technical reasons,

choose B not as L∞(dt) but as the closed and separable subspace C0 ⊂ L∞(dt) consisting of

all continuous functions f on R+ which have finite limits as t → 0+ and vanish as t → ∞. In

all the cases we shall say that the operator is associated with the corresponding Banach space

B. Similarly, the linear operators T λ
M and Rλ

m will be said to be associated with the Banach

space B = C. To obtain mapping properties of our operators, we shall prove that they are

Calderón-Zygmund operators in the sense that we now explain.

Let B be a Banach space and let K(x, y) be a kernel defined on R
n
+ × R

n
+\{(x, y) : x = y}

and taking values in B. We say that K(x, y) is a standard kernel in the sense of the space of

homogeneous type (Rn
+, dµλ, | · |) if it satisfies the growth estimate

(3) ‖K(x, y)‖B .
1

µλ(B(x, |x− y|))
and the smoothness estimates

‖K(x, y)−K(x′, y)‖B .
|x− x′|
|x− y|

1

µλ(B(x, |x− y|)) , |x− y| > 2|x− x′|,(4)

‖K(x, y)−K(x, y′)‖B .
|y − y′|
|x− y|

1

µλ(B(x, |x− y|)) , |x− y| > 2|y − y′|;(5)

here B(x,R) denotes the ball in R
n
+ centered at x and of radius R. When K(x, y) is scalar-

valued, i.e. B = C, the difference conditions (4) and (5) are implied by the more convenient

gradient condition

(6) |∇x,yK(x, y)| . 1

|x− y|µλ(B(x, |x− y|)) .

Suppose that, for some 1 < r < ∞, T is a linear operator assigning to each f ∈ Lr(dµλ)

a measurable B-valued function Tf on R
n
+. Then T is said to be a (vector-valued) Calderón-

Zygmund operator in the sense of the space (Rn
+, dµλ, | · |) associated with B if

(a) T is bounded from Lr(dµλ) to L
r
B
(dµλ),

(b) there exists a standard B-valued kernel K(x, y) such that

Tf(x) =

∫

Rn
+

K(x, y)f(y) dµλ(y), a.e. x /∈ supp f,

for every f ∈ L∞
c (Rn

+), where L
∞
c (Rn

+) is the subspace of L
∞(Rn

+) of bounded measurable

functions with compact supports.

Here integration of B-valued functions is understood in Bochner’s sense. For the theory of

Bochner integrals we refer to [27]. The Bochner-Lebesgue spaces Lp
B
(dµλ), 1 ≤ p ≤ ∞, are
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defined to consist of all strongly measurable functions f : Rn
+ → B such that ‖f‖Lp

B
(dµλ)

< ∞,

where

‖f‖Lp
B
(dµλ)

=







(

∫

Rn
+
‖f(x)‖p

B
dµλ(x)

)1/p
, 1 ≤ p <∞

ess supx∈Rn
+
‖f(x)‖B, p = ∞

.

According to [12] and [14], we define the atomic Hardy space H1,λ
B,at of B-valued functions on

R
n
+ to consist of these f ∈ L1

B
(dµλ) which admit the atomic decomposition

f =

∞
∑

j=1

αjaj ,

the series being convergent in L1
B
(dµλ), where αj ∈ C are scalars such that

∑∞
j=1 |αj | <∞, and

aj are atoms in the sense we now describe. A strongly measurable B-valued function a is an

atom in the context of (Rn
+, dµλ, | · |) if

(A1) there exist x0 ∈ R
n
+ and r0 > 0 such that supp a ⊂ B(x0, r0),

(A2) ‖a‖L∞
B
(Rn

+) ≤ 1/µλ(B(x0, r0)),

(A3)
∫

Rn
+
a(x) dµλ(x) = 0.

The norm in H1,λ
B,at is defined by

‖f‖
H1,λ

B,at
= inf

∞
∑

j=1

|αj |,

where the infimum is taken over all atomic decompositions f =
∑∞

j=1 αjaj of f . Note that the

condition (A2) above may be replaced by

(A2’) ‖a‖Lr
B
(Rn

+) ≤ (µλ(B(x0, r0)))
1/r−1 for some fixed 1 ≤ r <∞.

In the one-dimensional case and for B = C the atomic Hardy space in the Bessel setting was

investigated in [5, 13, 26].

The space BMOB(dµλ) is defined to consist of all locally dµλ-integrable B-valued functions f

on R
n
+ such that

‖f‖BMOB(dµλ) = sup
1

µλ(B)

∫

B
‖f(x)− fB‖B dµλ(x) <∞,

where the supremum is taken over all balls B in (Rn
+, dµλ, | · |), and fB is the mean value of f

over B, fB = 1
µλ(B)

∫

B f(y) dµλ(y). When B satisfies certain mild conditions, the dual of H1,λ
B,at

is BMOB∗(dµλ), with B
∗ being the dual of B.

It is well known that a large part of the classical theory of Calderón-Zygmund operators

remains valid, with appropriate adjustments, when the underlying space is of homogeneous type

and the associated kernels are vector-valued, see for instance [19, 20]. In particular, if T is a

Calderón-Zygmund operator in the sense of (Rn
+, dµλ, | · |) associated with a Banach space B,

then (see [8, Theorem 1.1] and references given there)

(M1) T extends to a bounded operator from Lp(wdµλ) to L
p
B
(wdµλ), for every 1 < p <∞ and

every w ∈ Aλ
p ,

(M2) T extends to a bounded operator from L1(wdµλ) to weak L1
B
(wdµλ), for every w ∈ Aλ

1 ,

(M3) T extends to a bounded operator from H1,λ
C,at to L

1
B
(dµλ),

(M4) T extends to a bounded operator from L∞
c to BMOB(dµλ).
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In (M1)-(M4) it is implicitly assumed that T is given initially on dense subspaces being inter-

sections of the relevant spaces with Lr(dµλ).

The main result of the paper reads as follows.

Theorem 2.1. Let λ ∈ [0,∞)n, m ∈ N
n, k ≥ 0, k + |m| > 0, 2 ≤ r < ∞, M = MW or

M = MP . Then each of the operators

W λ
∗ , P

λ
∗ , g

λ,W
m,k,r, g

λ,P
m,k,r, T

λ
M, Rλ

m,

can be interpreted as a Calderón-Zygmund operator in the sense of the space of homogeneous

type (Rn
+, dµλ, | · |) associated with a Banach space B, where B is C0, C0, L

r(t(k+|m|/2)r−1dt),

Lr(t(k+|m|)r−1dt), C, C, respectively.

Consequently, each of the operators listed above satisfies (M1)-(M4), with appropriately cho-

sen B in each case. When B 6= C, these mapping properties can be translated to the following.

Corollary 2.2. Let λ ∈ [0,∞)n, m ∈ N
n, k ≥ 0, k + |m| > 0 and 2 ≤ r < ∞. Then

the operators W λ
∗ , P

λ
∗ , g

λ,W
m,k,r, g

λ,P
m,k,r, viewed as scalar-valued operators, satisfy (M1)-(M4) with

B = C. Moreover, the resulting extensions are given by the formulas defining initially these

operators in Lr(dµλ) (with r = 2 in case of the maximal operators), where the relevant integrals

converge.

Proof. The first statement is straightforward. The second one is justified by standard arguments,

with the aid of Remark 3.6 below; see for instance the proofs of [17, Theorem 2.1] and [24,

Corollary 2.5]. �

The proof of Theorem 2.1 will be given in Section 4. Treatments of each of the operators are

naturally divided into the following three steps.

Step 1. The operator is bounded from Lr(dµλ) to L
r
B
(dµλ) for some 1 < r <∞.

Step 2. The operator is associated with an integral kernel in the sense of (b) above.

Step 3. The kernel satisfies the standard estimates (3), (4) and (5).

In the next section we gather various facts and lemmas that will be needed in the proof of

Theorem 2.1.

3. Preparatory facts and results

The modified Bessel function Iν has the following Poisson-type integral representation ob-

tained by Schläfli, see [25, Chapter VI, Section 6·15]. For ν > −1/2,

(7) Iν(z) = zν
∫ 1

−1
e−zs dΩν+1/2(s), z > 0,

where Ωη is the measure on [−1, 1] given by the density

dΩη(s) =
(1− s2)η−1 ds√
π2η−1/2Γ(η)

, η > 0.

In the limit case η = 0 we put Ω0 = (δ−1 + δ1)/
√
2π, where δ−1 and δ1 are the point masses

at −1 and 1, respectively, so that (7) holds also for ν = −1/2. Then, for any λ ∈ [0,∞)n, the

Bessel heat kernel can be written as

(8) W λ
t (x, y) =

1

(2t)n/2+|λ|

∫

exp
(

− 1

4t
q(x, y, s)

)

dΩλ(s), x, y ∈ R
n
+, t > 0,
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where |λ| = λ1 + . . .+ λn, the function q is given by

q(x, y, s) = |x|2 + |y|2 + 2

n
∑

j=1

xjyjsj, x, y ∈ R
n
+, s ∈ [−1, 1]n,

and Ωλ denotes the product measure
⊗n

i=1Ωλi
on the cube [−1, 1]n.

The following result is a crucial point in our method of estimating kernels. It relates expres-

sions involving certain integrals with respect to dΩλ with the standard estimates for the space

(Rn
+, dµλ, | · |).

Lemma 3.1 ([17, Proposition 5.9]). Assume that λ ∈ [0,∞)n. Then
∫

(

q(x, y, s)
)−n/2−|λ|

dΩλ(s) .
1

µλ(B(x, |x− y|)) , x 6= y,

∫

(

q(x, y, s)
)−n/2−|λ|−1/2

dΩλ(s) .
1

|x− y|µλ(B(x, |x− y|)) , x 6= y.

At this point it is perhaps interesting to observe that, see [17, Proposition 3.2],

µλ(B(x,R)) ≃ Rn
n
∏

j=1

(xj +R)2λj , x ∈ R
n
+, R > 0.

The result below will come into play when proving the smoothness estimates (4) and (5) in

cases when B 6= C. It will enable us to reduce the difference conditions to certain gradient

estimates, which are easier to verify.

Lemma 3.2 ([24, Lemma 4.5]). If x, x′, y ∈ R
n
+ are such that |x − y| > 2|x − x′| and θ =

αx+ (1− α)x′ for some α ∈ [0, 1], then

1

4
q(x, y, s) ≤ q(θ, y, s) ≤ 4q(x, y, s), s ∈ [−1, 1]n.

The same holds after exchanging the roles of x and y.

The following technical result will be used repeatedly while showing the relevant kernel esti-

mates. To prove it, and also for future use, we introduce some additional notation. Given two

multi-indices m,M ∈ N
n, the relation M ≤ m means that Mi ≤ mi for all i = 1, . . . , n. We

write (∂xq)
m to denote the quantity (∂x1q)

m1 · . . . · (∂xnq)
mn .

Lemma 3.3. Let A > 0, m, r ∈ N
n and k ∈ N be fixed. Then

∣

∣

∣

∣

∂kt ∂
m
x ∂

r
y

(

t−A exp
(

− 1

4t
q(x, y, s)

)

)∣

∣

∣

∣

. t−A−k−(|m|+|r|)/2 exp
(

− 1

8t
q(x, y, s)

)

,

uniformly in x, y ∈ Rn
+, t > 0 and s ∈ [−1, 1]n.

Proof. Taking into account the inequality

|a+ bs| ≤ (a2 + b2 + 2abs)1/2, a, b ≥ 0, s ∈ [−1, 1],

we see that it is sufficient to show that

∂kt ∂
m
x ∂

r
y

(

t−A exp
(

− 1

4t
q(x, y, s)

)

)

=
∑

Cj,M,R(s) t
−A−k−j−(|m|+|r|+|M |+|R|)/2

×
(

∂xq(x, y, s)
)M(

∂yq(x, y, s)
)R(

q(x, y, s)
)j

exp
(

− 1

4t
q(x, y, s)

)

,
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where the (finite) summation runs over 0 ≤ j ≤ k, M ≤ m, R ≤ r, and Cj,M,R are polynomials.

Proceeding inductively, we arrive at the formula

(9) ∂kt

(

t−A exp
(

− 1

4t
q(x, y, s)

)

)

=
∑

0≤j≤k

αj,k t
−A−k−j

(

q(x, y, s)
)j

exp
(

− 1

4t
q(x, y, s)

)

,

where αj,k ∈ R. On the other hand, given i, j = 1, . . . , n, another inductive reasoning leads to

∂mi
xi
∂
rj
yj exp

(

− 1

4t
q(x, y, s)

)

=
∑

0≤Mi≤mi
0≤Rj≤rj

βMi,Rj (si, sj) t
−(mi+rj+Mi+Rj)/2(10)

×
(

∂xiq(x, y, s)
)Mi

(

∂yjq(x, y, s)
)Rj exp

(

− 1

4t
q(x, y, s)

)

,

where βMi,Rj (si, sj) are polynomials of two variables (some of them being null polynomials).

The conclusion follows by combining (9) with (10). �

The next result provides a useful decomposition of ∂mx ϕ
λ
x. This will be necessary to prove L2-

boundedness of operators involving higher order ‘horizontal’ derivatives, that is the g-functions

and the Riesz transforms.

Lemma 3.4. Let λ ∈ [0,∞)n. Given m ∈ N
n, there exist numbers cj ∈ R, j ≤ m, such that

(11) ∂mx ϕ
λ
x(z) = zm

∑

j≤m

cj(xz)
jϕλ+j

x (z), x, z ∈ R
n
+,

with the notation zm = zm1
1 · . . . · zmn

n and (xz)j = (x1z1)
j1 · . . . · (xnzn)jn.

Proof. By the tensor product structure of ϕλ
x it is enough to prove the result in the one-

dimensional case. Then we proceed by induction on m. Using the identity (cf. [25, Chapter III,

Section 3·2])
d

dz

(

z−νJν(z)
)

= −z−νJν+1(z),

we get ∂xϕ
λ
x(z) = −z(xz)ϕλ+1

x (z). Suppose that (11) holds for certain m ∈ N. Then, with the

aid of the recurrence relation (cf. [25, Chapter III, Section 3·2])
Jν(z) =

z

2ν

(

Jν−1(z) + Jν+1(z)
)

, ν > 0,

it follows that

∂m+1
x ϕλ

x(z) = zm
( m
∑

j=1

jcjz(xz)
j−1ϕλ+j

x (z)−
m
∑

j=0

cjz(xz)
j+1ϕλ+j+1

x (z)

)

= zm+1

( m
∑

j=1

jcj
2λ+ 2j − 1

(

(xz)j−1ϕλ+j−1
x (z) + (xz)j+1ϕλ+j+1

x (z)
)

−
m
∑

j=0

cj(xz)
j+1ϕλ+j+1

x (z)

)

.

Thus we conclude that (11) is satisfied with m replaced by m+ 1. �

To prove the remaining two lemmas we will need the estimate

(12)
∣

∣ϕλ
x(z)

∣

∣ . 1, x, z ∈ R
n
+.

This is easily obtained from the following basic asymptotics for the Bessel function Jν (cf. [25,

Chapter III, Section 3·1 (8), Chapter VII, Section 7·21]): for ν > −1 we have

Jν(z) ≃ zν , z → 0+, Jν(z) = O
( 1√

z

)

, z → ∞.
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Lemma 3.5. Let λ ∈ [0,∞)n and assume that f ∈ Lp(wdµλ), w ∈ Aλ
p , 1 ≤ p < ∞. Then the

heat integral of f ,

W λ
t f(x) =

∫

Rn
+

W λ
t (x, y)f(y) dµλ(y), x ∈ R

n
+, t > 0,

is a well-defined C∞ function of (x, t) ∈ R
n
+×R+. Moreover, given m ∈ N

n and k ∈ N, we have

∂mx ∂
k
tW

λ
t f(x) =

∫

Rn
+

∂mx ∂
k
tW

λ
t (x, y)f(y) dµλ(y), x ∈ R

n
+, t > 0.

Furthermore, if f ∈ L2(dµλ), then we also have

∂mx ∂
k
tW

λ
t f(x) =

∫

Rn
+

∂mx ∂
k
t

(

e−t|z|2ϕλ
x(z)

)

hλf(z) dµλ(z), x ∈ R
n
+, t > 0.

Proof. Let E ⊂ E ⊂ R
n
+ and F ⊂ F ⊂ R+ be bounded subsets of Rn

+ and R+, respectively.

Observe first that by (8) and the fact that q(x, y, s) ≥ |x− y|2, s ∈ [−1, 1]n, we have

W λ
t (x, y) .

1

tn/2+|λ|
exp

(

− 1

4t
|x− y|2

)

, x, y ∈ R
n
+, t > 0.

This implies the estimate

W λ
t (x, y) . e−c|y|2 , y ∈ R

n
+, x ∈ E, t ∈ F,

where c > 0 is a constant depending, in particular, on E and F . Moreover, combining (8) with

Lemma 3.3 we see that, given m ∈ N
n and k ∈ N,

(13)
∣

∣∂mx ∂
k
tW

λ
t (x, y)

∣

∣ . e−c|y|2 , y ∈ R
n
+, x ∈ E, t ∈ F.

Next we observe that the function y 7→ e−c|y|2 belongs to all Lp(wdµλ), w ∈ Aλ
p , 1 ≤ p < ∞.

This can be easily verified by splitting R
n
+ into dyadic ‘rings’,

R
n
+ = {x ∈ R

n
+ : |x| < 1} ∪

∞
⋃

j=0

{

x ∈ R
n
+ : 2j ≤ |x| < 2j+1

}

and using the estimate

w(B(0, R)) =

∫

B(0,R)
w(x) dµλ(x) . R(n+2|λ|)p, R ≥ 1,

see for instance [15, Section 4]. Similarly one can show that the function y 7→ e−c|y|2/w(y) is

essentially bounded if w ∈ Aλ
1 , and to do that one uses the dyadic decomposition above and the

estimate

‖χB(0,R)w
−1‖∞ . Rn+2|λ|, R ≥ 1,

following from the Aλ
1 condition, see [15, Section 4].

Now let f ∈ Lp(wdµλ), w ∈ Aλ
p , 1 ≤ p < ∞. By the above observations and Hölder’s

inequality we can write
∫

Rn
+

W λ
t (x, y)|f(y)| dµλ(y) .

∫

Rn
+

e−c|y|2 |f(y)| dµλ(y)

≤ ‖f‖Lp(wdµλ)

∥

∥e−c|·|2
∥

∥

Lp′ (w−p′/pdµλ)
, x ∈ E, t ∈ F,

and the last expression is finite since w−p′/p ∈ Aλ
p′ (for p = 1 the Lp′ norm here must be replaced

by ‖e−c|·|2w−1‖∞). Thus W λ
t is well defined for functions from the weighted Lp spaces. The
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fact that W λ
t f(x) is a smooth function of (x, t) ∈ R

n
+ × R+ and the possibility of passing with

the derivatives ∂mx ∂
k
t under the integral sign are proved inductively, by considering one partial

derivative at a time and then using (13) and the dominated convergence theorem. Here, and

also elsewhere, the possibility of applying this theorem for differentiating under integral signs is

justified with the aid of the Mean Value Theorem.

Finally, we verify the last statement of the lemma. For f ∈ L2(dµλ) we have

W λ
t f(x) = hλ

(

e−t|z|2hλf
)

(x) =

∫

Rn
+

e−t|z|2ϕλ
z (x)hλf(z) dµλ(z), x ∈ R

n
+.

Further, by Lemma 3.4 and (12)

∣

∣∂mx ∂
k
t

(

e−t|z|2ϕλ
x(z)

)∣

∣ . e−c|z|2 , z ∈ R
n
+, x ∈ E, t ∈ F,

for some constant c > 0, and the function z 7→ e−c|z|2hλf(z) is integrable against dµλ, as can be

easily seen by means of Hölder’s inequality and the L2-boundedness of hλ. In this position we

can proceed inductively as before. �

Remark 3.6. From the proof of Lemma 3.5 we can conclude immediately the following con-

vergence result. Assume that λ ∈ [0,∞)n and fN → f in Lp(wdµλ) for some w ∈ Aλ
p and

1 ≤ p <∞. Let m ∈ N
n and k ∈ N be given. Then, with t > 0 fixed,

∂mx ∂
k
tW

λ
t fN → ∂mx ∂

k
tW

λ
t f, as N → ∞,

pointwise, and even uniformly on bounded subsets E ⊂ E ⊂ R
n
+.

Lemma 3.7. Let λ ∈ [0,∞)d and assume that f ∈ C∞
c (Rn

+). Then hλf ∈ C∞(Rn
+) and, given

m ∈ N
n,

∂mz hλf(z) =

∫

Rn
+

∂mz ϕ
λ
z (x)f(x) dµλ(x).

Proof. The arguments are based on Lemma 3.4, the estimate (12) and the dominated convergence

theorem. We leave elementary details to the reader. �

4. Proof of Theorem 2.1

In this section we prove our main result, Theorem 2.1. In the following subsections we treat

separately the cases of the maximal operators, the g-functions, the Laplace transform type

multipliers and finally the Riesz transforms.

In the sequel we will often omit the arguments and write shortly q instead of q(x, y, s). We

will also make a frequent use, without further mentioning, of the fact that for A ≥ 0 and

B > 0, supt>0 t
Ae−Bt = CA,B < ∞. We shall sometimes tacitly assume that passing with the

differentiation in x, or y or t, under the integral against dΩλ or against dt is legitimate; similarly

for changing orders of integrals. This is indeed the case in all the relevant cases, which may be

verified in a straightforward manner by means of the estimates obtained in the proof of Theorem

2.1 and the dominated convergence theorem. On the other hand, in more subtle cases we will

always comment in detail operations of this kind.
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4.1. Maximal operators W λ
∗ and P λ

∗ .

First, recall that {W λ
t } is a symmetric diffusion semigroup in the sense of Stein’s monograph

[22]. Then the maximal theorem [22, p. 73] applies showing the boundedness of W λ
∗ on Lp(dµλ),

1 < p ≤ ∞. The same is true for P λ
∗ , by subordination. Theorem 2.1 complements these results

by admitting weights and providing some further mapping properties of the maximal operators,

see Corollary 2.2.

We treat in detail only the heat semigroup maximal operator and then only indicate how to

make the arguments go through in case of P λ
∗ .

Step 1. We want to view W λ
∗ as a vector-valued operator Wλ, assigning to any f ∈ L2(dµλ)

the function

R
n
+ ∋ x 7→ Wλf(x) = {W λ

t f(x)}t>0,

and bounded from L2(dµλ) to L2
C0
(dµλ). We first ensure that Wλ indeed takes its values in

L2
C0
(dµλ). Here the arguments are analogous to those from the proof of [17, Theorem 2.1]. To

make them work one needs two ingredients. The first one is the fact that, given f ∈ L2(dµλ) and

x ∈ R
n
+, the function W λ

t f(x) is continuous in t ∈ (0,∞), which we already know (see Lemma

3.5). To get the remaining ingredient, it is enough to check that for f ∈ L2(dµλ)

(14) lim
t→0+

W λ
t f(x) = f(x), lim

t→∞
W λ

t f(x) = 0, a.e. x ∈ R
n
+.

This, however, is rather straightforward. We have

W λ
t f = hλ(e

−t|z|2hλf), f ∈ L2(dµλ), t > 0.

Then (14) for f ∈ Cλ follows by the dominated convergence theorem. Since Cλ is dense in

L2(dµλ) (see Section 4.4 below) and the maximal operator W λ
∗ is bounded on L2(dµλ), standard

arguments show that (14) holds for f ∈ L2(dµλ).

Thus Wλ is a linear mapping from L2(dµλ) to L2
C0
(dµλ), and as such is bounded, by the

corresponding property of the scalar-valued operator W λ
∗ .

Step 2. The fact that Wλ is associated with the vector-valued kernel {W λ
t (x, y)}t>0 is justified

exactly in the same way as the corresponding fact in the proof of [17, Theorem 2.1].

Step 3. We prove the standard estimates for the kernel {W λ
t (x, y)}t>0. By (8) we have

‖W λ
t (x, y)‖L∞(dt) = sup

t>0

1

(2t)n/2+|λ|

∫

exp
(

− q

4t

)

dΩλ(s)

≤
∫

1

qn/2+|λ|
sup
t>0

(

q

t

)n/2+|λ|
exp

(

− q

4t

)

dΩλ(s) .

∫

1

qn/2+|λ|
dΩλ(s)

and the growth estimate (3) with B = C0 follows from Lemma 3.1.

To show the smoothness estimates (4) and (5) it is enough, by symmetry reasons, to consider

(4). Then using the Mean Value Theorem we get

∣

∣W λ
t (x, y) −W λ

t (x
′, y)

∣

∣ ≤ |x− x′|
∣

∣

∣
∇xW

λ
t (x, y)

∣

∣

x=θ

∣

∣

∣
,

where θ is a convex combination of x and x′ that depends also on t. Thus it suffices to show the

estimates

∥

∥∂xiW
λ
t (x, y)

∣

∣

x=θ

∥

∥

L∞(dt)
.

1

|x− y|µλ(B(x, |x− y|)) , i = 1, . . . , n,
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for all x, x′, y satisfying |x− y| > 2|x− x′|. Using (8) and applying Lemma 3.3 we get

|∂xiW
λ
t (x, y)| ≤

1

(2t)n/2+|λ|

∫

∣

∣

∣
∂xi exp

(

− q

4t

)
∣

∣

∣
dΩλ(s)

.
1

tn/2+|λ|+1/2

∫

exp
(

− q

8t

)

dΩλ(s) .

∫

1

qn/2+|λ|+1/2
dΩλ(s).

Now the desired bound follows by Lemma 3.2 and Lemma 3.1. This finishes Step 3.

Treatment of P λ
∗ goes along the same lines. One has to combine the arguments given above

with the subordination principle. In Step 1 the relevant identity is P λ
t f = hλ(e

−t|z|hλf), f ∈
L2(dµλ). We leave further details to interested readers.

4.2. Square functions gλ,Wm,k,r and gλ,Pm,k,r.

We analyse in detail only the square function gλ,Wm,k,r based on the heat semigroup. The Poisson

semigroup based g-function is treated in a similar way, by means of the subordination principle

(see for instance [24, Section 4.3]), hence the details are omitted.

Step 1. We interpret gλ,Wm,k,r as the vector-valued operator Gλ,W
m,k , assigning to any f ∈ Lr(dµλ)

the function

R
n
+ ∋ x 7→ Gλ,W

m,k f(x) =
{

∂mx ∂
k
tW

λ
t f(x)

}

t>0
.

We will show that Gλ,W
m,k is bounded from Lr(dµλ) to Lr

B
(dµλ), 2 ≤ r < ∞, where B =

Lr(t(k+|m|/2)r−1dt). Actually, this task amounts to showing that the g-function gλ,Wm,k,r is bounded

on Lr(dµλ), 2 ≤ r <∞.

We first deal with the case r = 2. Let f ∈ L2(dµλ). By Lemma 3.5 and Lemma 3.4 we see

that

∂mx ∂
k
tW

λ
t f(x) =

∑

j≤m

cj

∫

Rn
+

(xz)jϕλ+j
x (z)zm(−1)k|z|2ke−t|z|2hλf(z) dµλ(z).

Then
∥

∥gλ,Wm,k,2(f)
∥

∥

2

L2(dµλ)

=

∫

Rn
+

∫ ∞

0

∣

∣

∣

∣

∑

j≤m

cj

∫

Rn
+

(xz)jϕλ+j
x (z)zm(−1)k|z|2ke−t|z|2hλf(z) dµλ(z)

∣

∣

∣

∣

2

t2k+|m|−1dt dµλ(x)

.
∑

j≤m

∫ ∞

0

∫

Rn
+

∣

∣

∣

∣

∫

Rn
+

(xz)jϕλ+j
x (z)zm(−1)k|z|2ke−t|z|2hλf(z) dµλ(z)

∣

∣

∣

∣

2

dµλ(x) t
2k+|m|−1dt

=
∑

j≤m

∫ ∞

0

∫

Rn
+

∣

∣hλ+j

(

zm−j |z|2ke−t|z|2hλf
)

(x)
∣

∣

2
dµλ+j(x) t

2k+|m|−1dt.

Since hλ+j is an isometry on L2(dµλ+j), this implies

∥

∥gλ,Wm,k,2(f)
∥

∥

2

L2(dµλ)
.

∫

Rn
+

x2m|x|4k
∫ ∞

0
e−2t|x|2t2k+|m|−1dt |hλf(x)|2 dµλ(x).

The integral in t here is equal Γ(2k + |m|)/(2|x|2)2k+|m| and we conclude that

∥

∥gλ,Wm,k,2(f)
∥

∥

2

L2(dµλ)
.

∫

Rn
+

x2m|x|4k
|x|4k+2|m|

|hλf(x)|2 dµλ(x) ≤ ‖hλf‖2L2(dµλ)
= ‖f‖2L2(dµλ)

.

Notice that when there is no horizontal component, i.e. m = (0, . . . , 0), then ‖gλ,Wm,k,2(f)‖L2(dµλ)

is equal to ‖f‖L2(dµλ), up to a factor independent of f .
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Considering the boundedness for 2 < r < ∞, it is enough to show that it follows from the

Lr-boundedness of gλ,Wm,k,2 and the maximal operator W λ
∗ . To begin with, observe that by (8)

and Lemma 3.3

∣

∣∂mx ∂
k
tW

λ
t (x, y)

∣

∣ .
1

tn/2+|λ|+k+|m|/2

∫

exp
(

− q

8t

)

dΩλ(s),

so tk+|m|/2|∂mx ∂ktW λ
t (x, y)| .W λ

2t(x, y). Consequently, for suitable f ,

tk+|m|/2
∣

∣∂mx ∂
k
tW

λ
t f(x)

∣

∣ .W λ
2t|f |(x), x ∈ R

n
+, t > 0.

Using this observation and Hölder’s inequality we obtain, for f ∈ Lr(dµλ),

∥

∥gλ,Wm,k,r(f)
∥

∥

r

Lr(dµλ)

=

∫

Rn
+

∫ ∞

0

∣

∣tk+|m|/2∂mx ∂
k
tW

λ
t f(x)

∣

∣

r dt

t
dµλ(x)

≤
∫

Rn
+

∫ ∞

0

∣

∣tk+|m|/2∂mx ∂
k
tW

λ
t f(x)

∣

∣

2 dt

t

(

sup
t>0

tk+|m|/2
∣

∣∂mx ∂
k
tW

λ
t f(x)

∣

∣

)r−2
dµλ(x)

≤
(
∫

Rn
+

(
∫ ∞

0

∣

∣tk+|m|/2∂mx ∂
k
tW

λ
t f(x)

∣

∣

2 dt

t

)r/2

dµλ(x)

)2/r

×
(
∫

Rn
+

(

sup
t>0

tk+|m|/2
∣

∣∂mx ∂
k
tW

λ
t f(x)

∣

∣

)r
dµλ(x)

)1−2/r

.
∥

∥gλ,Wm,k,2(f)
∥

∥

2

Lr(dµλ)

∥

∥W λ
∗ |f |

∥

∥

r−2

Lr(dµλ)
.

Thus if gλ,Wm,k,2 and W λ
∗ are bounded on Lr(dµλ), then so is gλ,Wm,k,r.

Step 2. We verify the fact that Gλ,W
m,k is associated with the kernel {∂mx ∂ktW λ

t (x, y)}t>0. Note

that the integral connecting Gλ,W
m,k with the kernel must be understood in Bochner’s sense, and

the underlying Banach space is B = Lr(t(k+|m|/2)r−1dt). By density arguments it suffices to

show that

(15)
〈

{

∂mx ∂
k
tW

λ
t f

}

t>0
,H

〉

=

〈
∫

Rn
+

{∂mx ∂ktW λ
t (x, y)}t>0f(y) dµλ(y),H

〉

for every f ∈ C∞
c (Rn

+) and H(x, t) = H1(x)H2(t), where H1 ∈ C∞
c (Rn

+), H2 ∈ C∞
c (R+) and

supp f ∩ suppH1 = ∅. Here 〈·, ·〉 means the standard Banach space pairing between L2
B
(dµλ)

and its dual L2
B∗(dµλ), with B

∗ = Lr′(t(k+|m|/2)r−1dt).

We start by considering the left-hand side of (15),
〈

{

∂mx ∂
k
tW

λ
t f

}

t>0
,H

〉

=

∫ ∞

0
t(k+|m|/2)r−1H2(t)

∫

Rn
+

∂mx ∂
k
tW

λ
t f(x)H1(x) dµλ(x) dt

=

∫ ∞

0
t(k+|m|/2)r−1H2(t)

∫

Rn
+

∫

Rn
+

∂mx ∂
k
tW

λ
t (x, y)f(y) dµλ(y)H1(x) dµλ(x) dt.

The second identity above follows from Lemma 3.5. The change of the order of integration in

the first identity is justified by Fubini’s theorem. Its application is indeed legitimate since by
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Hölder’s inequality
∫

Rn
+

∫ ∞

0

∣

∣∂mx ∂
k
tW

λ
t f(x)

∣

∣ |H1(x)H2(t)|t(k+|m|/2)r−1 dt dµλ(x)

≤
∥

∥gλ,Wm,k,2(f)
∥

∥

L2(dµλ)
‖H1‖L2(dµλ)

∥

∥t(k+|m|/2)(r−1)−1/2H2

∥

∥

L2(dt)
,

and this quantity is finite in view of the L2-boundedness of gλ,Wm,k,2.

Now we focus on the right-hand side of (15). Interchanging the order of integrals we get
〈
∫

Rn
+

{∂mx ∂ktW λ
t (x, y)}t>0f(y) dµλ(y),H

〉

=

∫ ∞

0
t(k+|m|/2)r−1H2(t)

∫

Rn
+

∫

Rn
+

∂mx ∂
k
tW

λ
t (x, y)f(y) dµλ(y)H1(x) dµλ(x) dt,

which confirms that both sides of (15) coincide. Here application of Fubini’s theorem is possible

since
∫

Rn
+

∫

Rn
+

∫ ∞

0
t(k+|m|/2)r−1

∣

∣∂mx ∂
k
tW

λ
t (x, y)f(y)H1(x)H2(t)

∣

∣ dt dµλ(y) dµλ(x)

≤ ‖f‖∞‖H1‖∞‖H2‖B∗

∫

suppH1

∫

supp f

∥

∥∂mx ∂
k
tW

λ
t (x, y)

∥

∥

B
dµλ(y) dµλ(x)

.

∫

suppH1

∫

supp f

1

µλ(B(x, |x− y|)) dµλ(y) dµλ(x) <∞,

where we made use of the growth estimate for the kernel {∂mx ∂ktW λ
t (x, y)}t>0 proved in Step 3

below and the fact that the supports of f and H1 are disjoint and bounded.

Step 3. We verify the standard estimates for the kernel {∂mx ∂ktW λ
t (x, y)}t>0 taking values in

B = Lr(t(k+|m|/2)r−1dt), where 1 ≤ r <∞. By (8) and Lemma 3.3 we have

∣

∣∂mx ∂
k
tW

λ
t (x, y)

∣

∣ .
1

tn/2+|λ|+k+|m|/2

∫

exp
(

− q

8t

)

dΩλ(s).

This combined with Minkowski’s integral inequality gives

∥

∥∂mx ∂
k
tW

λ
t (x, y)

∥

∥

B
.

∫

∥

∥

∥

1

tn/2+|λ|+k+|m|/2
exp

(

− q

8t

)
∥

∥

∥

B

dΩλ(s).

The change of variable t 7→ qt shows that the norm under the last integral is equal to q
−n/2−|λ|,

up to a multiplicative constant. Thus now the growth estimate (3) follows from Lemma 3.1.

To show the smoothness estimates, we focus ourselves only on (5); the reasoning proving (4)

is essentially the same. By the Mean Value Theorem,
∣

∣∂mx ∂
k
tW

λ
t (x, y)− ∂mx ∂

k
tW

λ
t (x, y

′)
∣

∣ ≤ |y − y′|
∣

∣

∣
∇y∂

m
x ∂

k
tW

λ
t (x, y)

∣

∣

y=θ

∣

∣

∣
,

where θ is a convex combination of y and y′ depending also on t. Thus is suffices to show the

estimates
∥

∥

∥
∂yi∂

m
x ∂

k
tW

λ
t (x, y)

∣

∣

y=θ

∥

∥

∥

B

.
1

|x− y|µ(B(x, |x− y|)) , i = 1, . . . , n,

for all x, y, y′ satisfying |x− y| > 2|y − y′|. Using (8) and Lemma 3.3 we see that

∣

∣∂yi∂
m
x ∂

k
tW

λ
t (x, y)

∣

∣ .
1

tn/2+|λ|+k+|m|/2+1/2

∫

exp
(

− q

8t

)

dΩλ(s).
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This together with Lemma 3.2 produces (under assumption |x− y| > 2|y − y′|)
∣

∣

∣
∂yi∂

m
x ∂

k
tW

λ
t (x, y)

∣

∣

y=θ

∣

∣

∣
.

1

tn/2+|λ|+k+|m|/2+1/2

∫

exp
(

− q

32t

)

dΩλ(s).

From here we proceed as in the proof of the growth estimate above. This leads to
∥

∥

∥
∂yi∂

m
x ∂

k
tW

λ
t (x, y)

∣

∣

y=θ

∥

∥

∥

B

.

∫

1

qn/2+|λ|+1/2
dΩλ(s),

and the desired bound follows by Lemma 3.1. Step 3 is complete.

4.3. Multipliers of Laplace transform type T λ
M.

We will consider multipliers M of the form

M(z) = MW (z) = |z|2
∫ ∞

0
e−|z|2sψ(s) ds, z ∈ R

n
+,

where ψ is a bounded function on R+. The arguments given below and the subordination

principle allow to treat in a similar way the multipliers M = MP obtained from the formula

above by replacing |z|2 by |z| (this change corresponds to replacing the heat kernel by the Poisson

kernel in the expression defining the associated integral kernel).

Step 1. The fact that the operator T λ
Mf = hλ(Mhλf) is bounded on L2(dµλ) is clear, in view

of the boundedness of M and Plancherel’s theorem for the Hankel transform.

Step 2. We will show that T λ
M is associated with the kernel

Kλ
M(x, y) = −

∫ ∞

0
ψ(t) ∂tW

λ
t (x, y) dt, x, y ∈ R

n
+, x 6= y.

By density arguments, it suffices to verify that

(16)
〈

T λ
Mf, g

〉

dµλ
=

∫

Rn
+

∫

Rn
+

Kλ
M(x, y)f(y)g(x) dµλ(y) dµλ(x)

for all f, g ∈ C∞
c with disjoint supports. We focus on the left-hand side of (16). By the definition

of T λ
M and Plancherel’s theorem for the Hankel transform we get

〈

T λ
Mf, g

〉

dµλ
=

∫

Rn
+

hλ
(

Mhλf
)

(z)g(z) dµλ(z)

=

∫

Rn
+

M(z)hλf(z)hλg(z) dµλ(z)

=

∫ ∞

0
ψ(t)

∫

Rn
+

|z|2e−t|z|2hλf(z)hλg(z) dµλ(z) dt.(17)

To write the last equality we used Fubini’s theorem. Its application is justified since
∫

Rn
+

∫ ∞

0

∣

∣ψ(t) |z|2e−t|z|2hλf(z)hλg(z)
∣

∣ dµλ(z) dt ≤ ‖ψ‖∞
∫

Rn
+

∣

∣hλf(z)hλg(z)
∣

∣ dµλ(z)

≤ ‖ψ‖∞‖f‖L2(dµλ)‖g‖L2(dµλ) <∞.

We next analyse the inner integral in (17). Plugging in the integrals defining hλf and hλg and

then using Fubini’s theorem we arrive at
∫

Rn
+

|z|2e−t|z|2hλf(z)hλg(z) dµλ(z)
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=

∫

Rn
+

∫

Rn
+

∫

Rn
+

|z|2e−t|z|2ϕλ
z (x)ϕ

λ
z (y) dµλ(z) f(y)g(x) dµλ(y) dµλ(x)

=

∫

Rn
+

∫

Rn
+

−∂tW λ
t (x, y)f(y)g(x) dµλ(y)dµλ(x).

The application of Fubini in the first identity above is legitimate since, taking into account (12)

and that t > 0,
∫

Rn
+

∫

Rn
+

∫

Rn
+

∣

∣

∣
|z|2e−t|z|2ϕλ

z (x)ϕ
λ
z (y)f(y)g(x)

∣

∣

∣
dµλ(z) dµλ(y) dµλ(x)

. ‖f‖L1(dµλ) ‖g‖L1(dµλ)

∫

Rn
+

|z|2e−t|z|2 dµλ(z) <∞.

The second identity above is a consequence of the equality

−∂t
∫

Rn
+

e−t|z|2ϕλ
z (x)ϕ

λ
z (y) dµλ(z) =

∫

Rn
+

|z|2e−t|z|2ϕλ
z (x)ϕ

λ
z (y) dµλ(z), t > 0.

Here passing with ∂t under the integral can be easily justified by (12) and the fact that for

t > ε > 0 we have |z|2e−t|z|2 < |z|2e−ε|z|2, z ∈ R
n
+.

Summing up, we proved that

〈

T λ
Mf, g

〉

dµλ
= −

∫ ∞

0
ψ(t)

∫

Rn
+

∫

Rn
+

∂tW
λ
t (x, y)f(y)g(x) dµλ(y)dµλ(x) dt.

To see that this expression coincides with the right-hand side in (16) it is now enough to inter-

change the order of integrals. An application of Fubini’s theorem is again possible because
∫

Rn
+

∫

Rn
+

∫ ∞

0

∣

∣ψ(t)∂tW
λ
t (x, y)f(y)g(x)

∣

∣ dt dµλ(y) dµλ(x)

. ‖f‖∞‖g‖∞
∫

supp f

∫

supp g

1

µλ(B(x, |x− y|)) dµλ(y) dµλ(x) <∞,

where we used the assumptions on f and g and the estimate
∫ ∞

0

∣

∣ψ(t)∂tW
λ
t (x, y)

∣

∣ dt .
1

µλ(B(x, |x− y|))
obtained implicitly in Step 3 below. The verification of (16) is finished.

Step 3. We show the standard estimates for the (scalar-valued) kernel Kλ
M(x, y). By (8) and

Lemma 3.3 we have

|∂tW λ
t (x, y)| .

1

tn/2+|λ|+1

∫

exp
(

− q

8t

)

dΩλ(s).

Using the boundedness of ψ and changing the variable of integration t 7→ qt we get

|Kλ
M(x, y)| .

∫ ∫ ∞

0

1

tn/2+|λ|+1
exp

(

− q

8t

)

dt dΩλ(s) .

∫

1

qn/2+|λ|
dΩλ(s).

Now the growth estimate (3) with B = C follows by Lemma 3.1.

To prove the gradient estimate (6), by symmetry reasons we may consider only the derivatives

∂xi , i = 1, . . . , n. Then Lemma 3.3 gives

|∂xi∂tW
λ
t (x, y)| .

1

tn/2+|λ|+3/2

∫

exp
(

− q

8t

)

dΩλ(s)
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and hence, proceeding as above,

|∂xiK
λ
M(x, y)| .

∫ ∫ ∞

0

1

tn/2+|λ|+3/2
exp

(

− q

8t

)

dt dΩλ(s) .

∫

1

qn/2+|λ|+1/2
dΩλ(s).

The conclusion follows by Lemma 3.1.

4.4. Riesz transforms Rλ
m.

Recall that, see Section 2, we defined

(18) Rλ
mf = ∂m∆

−|m|/2
λ f = ∂mhλ

(

|z|−|m|hλf
)

, f ∈ Cλ.

First of all, we ensure that this definition is correct and that Cλ is dense in L2(dµλ). Indeed,

given f ∈ Cλ, hλf , and thus also |z|−|m|hλf , belong to C∞
c (Rn

+), by the definition of Cλ. Then

by Lemma 3.7 the function hλ(|z|−|m|hλf) is smooth, so the formula defining Rλ
m makes sense.

For the density of Cλ, observe that hλ(C
∞
c (Rn

+)) ⊂ Cλ; this follows from the definition of Cλ,

Lemma 3.7 and the fact that hλ coincides with its inverse in L2(dµλ). Since C∞
c (Rn

+) is dense

in L2(dµλ) and hλ is an isometry there, the conclusion follows.

Step 1. We verify that Rλ
m is bounded from Cλ ⊂ L2(dµλ) to L2(dµλ). In consequence, it

extends uniquely to a bounded linear operator on L2(dµλ).

Let f ∈ Cλ. Using Lemma 3.7 and Lemma 3.4 we can write

Rλ
mf(x) =

∫

Rn
+

∂mx ϕ
λ
x(z)|z|−|m|hλf(z) dµλ(z)

=
∑

j≤m

cjx
j

∫

Rn
+

ϕλ+j
x (z)|z|−|m|zm+jhλf(z) dµλ(z)(19)

=
∑

j≤m

cjx
jhλ+j

(

|z|−|m|zm−jhλf
)

(x).

Then, taking into account that the Hankel transform is an L2-isometry, we see that

∥

∥Rλ
mf

∥

∥

2

L2(dµλ)
.

∑

j≤m

∥

∥hλ+j

(

|z|−|m|zm−jhλf
)
∥

∥

2

L2(dµλ+j)

=
∑

j≤m

∥

∥|z|−|m|zmhλf
∥

∥

2

L2(dµλ)
. ‖hλf‖2L2(dµλ)

= ‖f‖2L2(dµλ)
.

Step 2. We show that Rλ
m is associated with the kernel

Rλ
m(x, y) =

1

Γ(|m|/2)

∫ ∞

0
∂mx W

λ
t (x, y) t

|m|/2−1 dt, x, y ∈ R
n
+, x 6= y.

By density arguments, it is enough to justify the identity

(20)
〈

Rλ
mf, g

〉

dµλ
=

∫

Rn
+

∫

Rn
+

Rλ
m(x, y)f(y)g(x) dµλ(y) dµλ(x)

for all f, g ∈ C∞
c (Rn

+) such that supp f ∩ supp g = ∅.
First we focus on the left-hand side of (20). Notice that here we cannot apply (18) directly

to Rλ
mf because f is not necessarily in Cλ. To overcome this obstacle, we shall use a limiting

argument to express 〈Rλ
mf, g〉dµλ

by a sum of certain integrals. Let {fN} ⊂ Cλ be a sequence
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approximating f in L2(dµλ). Clearly, in view of the L2-boundedness of Rλ
m, 〈Rλ

mfN , g〉dµλ
→

〈Rλ
mf, g〉dµλ

as N → ∞. On the other hand, for each N we can write (see (19))

〈

Rλ
mfN , g

〉

dµλ
=

∑

j≤m

cj

∫

Rn
+

∫

Rn
+

(xz)jϕλ+j
x (z)zm|z|−|m|hλfN (z) dµλ(z) g(x) dµλ(x).

Then interchanging the order of integrals we get

(21)
〈

Rλ
mfN , g

〉

dµλ
=

∑

j≤m

cj

∫

Rn
+

zm+j |z|−|m|hλfN (z)hλ+j

(

x−jg
)

(z) dµλ(z).

Here the application of Fubini’s theorem is legitimate since
∫

Rn
+

∣

∣zm+j |z|−|m|hλfN (z)hλ+j

(

x−jg
)

(z)
∣

∣ dµλ(z)

≤
∥

∥|z|−|m|zmhλfN
∥

∥

L2(dµλ)

∥

∥hλ+j(x
−jg)

∥

∥

L2(dµλ+j)
≤ ‖fN‖L2(dµλ) ‖g‖L2(dµλ) <∞.

This chain of estimates shows also that one can pass to the limit with N in (21). Thus we get

〈

Rλ
mf, g

〉

dµλ
=

∑

j≤m

cj

∫

Rn
+

zm+j |z|−|m|hλf(z)hλ+j

(

x−jg
)

(z) dµλ(z).

We next analyse the right-hand side of (20). Taking into account the assumptions imposed

on f and g and the estimate
∫ ∞

0

∣

∣∂mx W
λ
t (x, y)

∣

∣t|m|/2−1 dt .
1

µλ(B(x, |x− y|))
proved in Step 3 below, we may apply Fubini’s theorem to get
∫

Rn
+

∫

Rn
+

Rλ
m(x, y)f(y)g(x) dµλ(y) dµλ(x)

=
1

Γ(|m|/2)

∫ ∞

0
t|m|/2−1

∫

Rn
+

∫

Rn
+

∂mx

∫

Rn
+

e−t|z|2ϕλ
x(z)ϕ

λ
y (z) dµλ(z) f(y)g(x) dµλ(y) dµλ(x) dt.

We now focus on the three inner integrals entering the last expression. Observe that we may

exchange ∂mx with the integral against dµλ(z); this can be justified by means of Lemma 3.4, (12)

and the dominated convergence theorem. Then an application of Lemma 3.4 leads to
∫

Rn
+

∫

Rn
+

∂mx

∫

Rn
+

e−t|z|2ϕλ
x(z)ϕ

λ
y (z) dµλ(z) f(y)g(x) dµλ(y) dµλ(x)

=

∫

Rn
+

∫

Rn
+

∫

Rn
+

e−t|z|2zm
∑

j≤m

cj(xz)
jϕλ+j

x (z)ϕλ
y (z) dµλ(z) f(y)g(x) dµλ(y) dµλ(x)

=
∑

j≤m

cj

∫

Rn
+

e−t|z|2zm+jhλf(z)hλ+j(x
−jg)(z) dµλ(z).

The last identity is a consequence of Fubini’s theorem, and its application is possible because,

in view of the assumptions imposed on f and g, (12) and the fact that t > 0,
∫

Rn
+

∫

Rn
+

∫

Rn
+

e−t|z|2zm+jxj
∣

∣ϕλ+j
x (z)ϕλ

y (z)f(y)g(x)
∣

∣ dµλ(z) dµλ(y) dµλ(x) <∞.
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Summing up, we proved that the right-hand side of (20) is equal to

∑

j≤m

cj
1

Γ(|m|/2)

∫ ∞

0
t|m|/2−1

∫

Rn
+

e−t|z|2zm+jhλf(z)hλ+j(x
−jg)(z) dµλ(z) dt.

To finish the proof of (20) it suffices now to justify the possibility of exchanging the order of

integrals in the last expression. This, however, follows readily by means of the estimate enabling

the application of Fubini’s theorem leading to (21).

Step 3. We prove the standard estimates for the kernel Rλ
m(x, y). By (8) and Lemma 3.3 we

have
∣

∣∂mx W
λ
t (x, y)

∣

∣ .
1

tn/2+|λ|+|m|/2

∫

exp
(

− q

8t

)

dΩ(s).

This implies
∣

∣Rλ
m(x, y)

∣

∣ .

∫ ∫ ∞

0

1

tn/2+|λ|+1
exp

(

− q

8t

)

dt dΩ(s),

and the right-hand side here was already estimated in the required way in Step 3 of Section 4.3

above.

To show the gradient bound, we observe that again by (8) and Lemma 3.3

∣

∣∇x,y ∂
m
x W

λ
t (x, y)

∣

∣ .
1

tn/2+|λ|+|m|/2+1/2

∫

exp
(

− q

8t

)

dΩ(s)

and consequently

∣

∣∇x,yR
λ
m(x, y)

∣

∣ .

∫ ∫ ∞

0

1

tn/2+|λ|+3/2
exp

(

− q

8t

)

dt dΩ(s).

Now the conclusion follows as in Step 3 of Section 4.3.
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CALDERÓN-ZYGMUND OPERATORS IN THE BESSEL SETTING 21

[12] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83

(1977), 569–645.
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[16] A. Nowak and P. Sjögren, Calderón-Zygmund operators related to Jacobi expansions, preprint 2010.

arXiv:1011.3615v1

[17] A. Nowak and K. Stempak, Riesz transform for multi-dimensional Laguerre function expansions, Adv.

Math. 215 (2007), 642–678.

[18] A. Nowak and K. Stempak, On L
p-contractivity of Laguerre semigroups, preprint 2010. arXiv:1011.5437v1

[19] J.L. Rubio de Francia, F. Ruiz, and J.L. Torrea, Les opérateurs de Calderón-Zygmund vectoriels, C. R.
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