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The Nonlinear Schroedinger Equation:

Existence, Stability and Dynamics of Solitons

Vieri Benci ∗ Marco Ghimenti † Anna Maria Micheletti‡

Abstract

In this paper we present some recent results concerning the ex-
istence, the stability and the dynamics of solitons occurring in the
nonlinear Schroedinger equation when the parameter h → 0.

We focus on the role played by the Energy and the Charge in
the existence, the stability and the dynamics of solitons. Moreover,
we show that, under suitable assumptions, the soliton approximately
follows the dynamics of a point particle, namely, the motion of its
barycenter q(t) satisfies the equation

q̈(t) +∇V (q(t)) = Hh(t)

where
sup
t∈R

|Hh(t)| → 0 as h → 0.

Mathematics subject classification. 35Q55, 35Q51, 37K40, 37K45,
47J35.
Keywords: Soliton dynamics, Nonlinear Schroedinger Equation, or-
bital stability, concentration phenomena, semiclassical limit.

1 Introduction

Roughly speaking a solitary wave is a solution of a field equation whose
energy travels as a localized packet and which preserves this localization in
time.
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By soliton we mean an orbitally stable solitary wave so that it has a
particle-like behavior (for the definition of orbital stability we refer e.g. to
Ref. [2, 3, 8, 14, 15, 24, 25]).

The aim of this paper is to review some recent results about the existence,
the stability and the behavior of the solitary waves relative to the equation







ih∂ψ
∂t

= −h2

2
∆ψ + 1

2hα
W ′(|ψ|) ψ

|ψ|
+ V (x)ψ

ψ (0, x) = ϕ(x)

(1)

where ϕ(x) is a suitable initial data.
In the first section we examine the case V ≡ 0 and h = 1 (see Ref. [3]).

Under suitable assumption on W , there exists a stationary solution of the
form ψ (t, x) = U(x)e

i
h
ωt, where U is a radial function decaying at infinity

which solves the equation

−∆U +W ′(U) = 2ωU. (2)

This solution is found by a constrained minimization method that involves
two prime integrals of the motion: the Charge and the Energy. By a con-
centration compactness argument it is proved that this stationary wave is
stable, so this solution is a soliton.

In the second part, we consider V 6= 0 and h small (see Ref. [4]). The

stationary solution U(x)e
i
h
ωt becomes

ψ(t, x) = U
( x

hβ

)

e
iωt

hα+1 (3)

where

β = 1 +
α

2
. (4)

If β > 0, the stationary solution concentrate as h→ 0. Also, we can give
a precise estimate of the behavior of the Energy and the Charge.

These estimates are the key ingredient to study the case V 6= 0. For h
sufficiently small, a solution of (1) with initial datum ϕ(x) =

[

U
(

x−q0
hβ

)]

e
1

h
v·x

is a soliton which travels like a point particle under the action of the potential
V . In fact, in the last section of this review, we define the barycenter q(t) of
a soliton (see Ref. [4]) as

q(t) =

∫

x|ψ(t, x)|2dx
∫

|ψ(t, x)|2dx
(5)
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and we prove that it evolves approximatively like a point particle in a poten-
tial V . More exactly, q(t) satisfies the Cauchy problem







q̈(t) +∇V (q(t)) = Hh(t)
q(0) = q0
q̇(0) = v

where
sup
t∈R

|Hh(t)| → 0 as h→ 0.

In the last years there are some result about existence and dynamics of
soliton for the Nonlinear Schroedinger Equation (see, for example Ref. [6,
7, 10, 11, 17, 18, 21, 22]), in particular there are results which compare the
motion of the soliton with the solution of the equation

Ẍ(t) +∇V (X(t)) = 0 (6)

for t ∈ (0, T ] for some constant T <∞.
The result of Bronski and Jerrard [7] deals with a pure power nonlinearity

and a bounded external potential. The authors have shown that if the initial
data is close to U(x−q0

h
)ei

v0·c

h in a suitable sense then the solution ψh(t, x) of
(1) satisfies for t ∈ (0, T ]

∥

∥

∥

∥

1

hN
|ψh(t, x)|

2 −

(

1

hN

∫

RN

|ψh(t, x)|
2dx

)

δX(t)

∥

∥

∥

∥

C1∗

→ 0 as h→ 0. (7)

Here δX(t) is the Dirac “δ-function”, C1∗ is the dual of C1 and X(t) satisfies

the equation (6) with X(0) = q0, Ẋ(0) = v0.
In related papers of Keraani [17, 18] there are slight generalizations of the

above result. Using a similar approach, Marco Squassina [22] and Alessan-
dro Selvitella [21] described the soliton dynamics in an external magnetic
potential.

Other results on this subject are in Ref. [10, 11]. In Ref. [10] the authors
study the case of bounded external potential V .

In Ref. [11] the authors study the case of confining potential. They as-
sume the existence of a stable ground state solution with a null space non
degeneracy condition of the equation

−∆ηµ + µηµ +W ′(ηµ) = 0. (8)

The authors define a parameter ε which depends on µ and on other parame-
ters of the problem. Under suitable assumptions they prove that there exists
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T > 0 such that, if the initial data ψ0(x) is very close to eip0·(x−a0)+iγ0ηµ0(x−
a0) the solution ψ(t, x) of problem (P1) with initial data ψ0 is given by

ψ(t, x) = eip(t)·(x−a(t))+iγ(t)ηµ(t)(x− a(t)) + w(t) (9)

with ||w||H1 ≤ ε, ṗ = −∇V (a) + o(ε2), ȧ = 2p + o(ε2) with 0 < t < T
ε
for ε

small.
In our paper[4] we do not require the uniqueness of the ground state

solution which is, in general, not easy to verify, and we formulate our result
such that it holds for any time t.

2 Main assumptions

In all this paper we make the following assumptions:

(i) the problem (1) has a unique solution

ψ ∈ C0(R, H2(RN)) ∩ C1(R, L2(RN)) (10)

(sufficient conditions can be found in Kato [16], Cazenave [9], Ginibre-
Velo [13]).

(ii) W : R+ → R is a C3 function which satisfies:

W (0) =W ′(0) = W ′′(0) = 0 (11)

|W ′′(s)| ≤ c1|s|
q−2 + c2|s|

p−2for some 2 < q ≤ p < 2∗ =
2N

N − 2
. (12)

W (s) ≥ −c|s|ν , c ≥ 0, 2 < ν < 2 +
4

N
and s large (13)

∃s0 ∈ R
+ such that W (s0) < 0 (14)

(iii) V : RN → R is a C2 function which satisfies the following assumptions:

V (x) ≥ 0; (15)

|∇V (x)| ≤ V (x)b for |x| > R1 > 1, b ∈ (0, 1); (16)

V (x) ≥ |x|a for |x| > R1 > 1, a > 1. (17)

(iv) the main assumption
α > 0 (18)

4



Let us discuss the set of our assumptions:
The first assumption gives us the necessary regularity to define the barycen-

ter and to prove that q(t) ∈ C2(R,RN). The hypotheses on the nonlinearity
are necessary in order to have a soliton type solutions. In particular, (12)
is a standard requirement to have a smooth energy functional, (14) is the
minimal requirement to have a focusing nonlinearity and (13) is necessary to
have a good minimization problem to obtain the existence of a soliton. We
require also that V is a confining potential (assumption (iii)). This is useful
on the last part of this paper, to prove the existence of a dynamics for the
barycenter.

In our approach, the assumption α > 0 is crucial. In fact, as we will
see in Section 3.1, the energy Eh of a soliton ψ is composed by two parts:
the internal energy Jh and the dynamical energy G. The internal energy is
a kind of binding energy that prevents the soliton from splitting, while the
dynamical energy is related to the motion and it is composed of potential
and kinetic energy. We have that (see Section 4)

Jh (ψ) ∼= hNβ−α

and
G (ψ) ∼= ||ψ||2L2

∼= hNβ

Then, we have that
G (ψ)

Jh (ψ)
∼= hα

So the assumption α > 0 implies that, for h ≪ 1, G (ψ) ≪ Jh (ψ), namely
the internal energy is bigger than the dynamical energy. This is the fact that
guarantees the existence and the stability of the travelling soliton for any
time.
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2.1 Notations

In the next we will use the following notations:

Re(z), Im(z)are the real and the imaginary part of z

B(x0, ρ) = {x ∈ R
N : |x− x0| ≤ ρ}

Sσ = {u ∈ H1 : ||u||L2 = σ}

Jch = {u ∈ H1 : Jh(u) < c}

∂tψ =
∂

∂t
ψ

m = mσ2 := inf
u∈H1,

∫
u2=σ2

J(u)

β = 1 +
α

2

3 General features of NSE

Equation (1) is the Euler-Lagrange equation relative to the Lagrangian den-
sity

L = Re(ih∂tψψ)−
h2

2
|∇ψ|2 −Wh(ψ)− V (x) |ψ|2 (19)

where, in order to simplify the notation we have set

Wh(ψ) =
1

hα
W (|ψ|) (20)

Sometimes it is useful to write ψ in polar form

ψ(t, x) = u(t, x)eiS(t,x)/h. (21)

Thus the state of the system ψ is uniquely defined by the couple of variables
(u, S). Using these variables, the action S =

∫

Ldxdt takes the form

S(u, S) = −

∫
[

h2

2
|∇u|2 +Wh(u) +

(

∂tS +
1

2
|∇S|2 + V (x)

)

u2
]

dxdt

(22)
and equation (1) becomes:

−
h2

2
∆u+W ′

h(u) +

(

∂tS +
1

2
|∇S|2 + V (x)

)

u = 0 (23)

∂t
(

u2
)

+∇ ·
(

u2∇S
)

= 0 (24)
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3.1 The first integrals of NSE

Noether’s theorem states that any invariance under a one-parameter group
of the Lagrangian implies the existence of an integral of motion (see e.g.
Gelfand-Fomin[12]).

Now we describe the first integrals which will be relevant for this paper,
namely the energy and the “hylenic charge”.

Energy The energy, by definition, is the quantity which is preserved by the
time invariance of the Lagrangian; it has the following form

Eh(ψ) =

∫
[

h2

2
|∇ψ|2 +Wh(ψ) + V (x) |ψ|2

]

dx. (25)

Using (21) we get:

Eh(u, S) =

∫
(

h2

2
|∇u|2 +Wh(u)

)

dx+

∫
(

1

2
|∇S|2 + V (x)

)

u2dx

(26)
Thus the energy has two components: the internal energy (which,
sometimes, is also called binding energy)

Jh(u) =

∫
(

h2

2
|∇u|2 +Wh(u)

)

dx (27)

and the dynamical energy

G(u, S) =

∫
(

1

2
|∇S|2 + V (x)

)

u2dx (28)

which is composed by the kinetic energy 1
2

∫

|∇S|2 u2dx and the poten-
tial energy

∫

V (x)u2dx.

Hylenic charge Following Ref. [2] the hylenic charge, is defined as the
quantity which is preserved by by the invariance of the Lagrangian
with respect to the action

ψ 7→ eiθψ.

For equation (1) the charge is nothing else but the L2 norm, namely:

H(ψ) =

∫

|ψ|2 dx =

∫

u2dx.

Momentum If V = 0 the Lagrangian is also invariant by translation. In
this case we have the conservation of the momentum

Pj(ψ) = hIm

∫

ψxj ψ̄dx, j = 1, 2, 3 (29)

hence we have the first Newton law for the barycenter.
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4 The case h = 1, V = 0

In this section we present some results contained in Ref. [3]. We minimize
the internal energy J(u) on the constraint {u ∈ H1 : ‖u‖L2 = σ} for some σ
fixed. If U is the minimizer and if 2ω is the Lagrange multiplier associated
to U , ψ(t, x) = U(x)eiωt is a stationary solution of (1).

We get the following result

Lemma 1. Let W satisfy (12), (13) and (14). Then, ∃ σ̄ such that ∀ σ > σ̄
there exists ū ∈ H1 satisfying

J(ū) = mσ2 := inf
{v∈H1, ||v||

L2=σ}
J(v),

with ||ū||L2 = σ. Then, there exist ω and ū that solve (2), with ω < 0 and ū
positive radially symmetric.

In order to have stronger results, we can replace (14) with the following
hypothesis

W (s) < −s2+ǫ, 0 < ǫ <
4

N
for small s. (30)

In this case we find the following results concerning the existence of the
minimizer of J(u) for any σ.

Corollary 2. If (12), (13) and (30) hold, then for all σ, there exists ū ∈ H1,
with ||ū||L2 = σ, such that

J(ū) = inf
{v∈H1,||v||

L2=σ}
J(v).

In particular, for N = 3 we have

Corollary 3. Let N = 3. If (12) and (13) hold and W ∈ C3, with W ′′′(0) <
0, then for all σ, there exists ū ∈ H1 with ||ū||L2 = σ such that

J(ū) = inf
{v∈H1,||v||

L2=σ}
J(v).

We sketch briefly the steps of the proof for Lemma 1.

Step 1: If W satisfies (14) then mσ2 :=infSσ
J(u) < 0

Step 2: If W satisfies (13) then mσ2 > −∞, any minimizing Palais Smale se-
quence un is bounded in H1 and the Lagrange multipliers ωn associated
to un are bounded in R.
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Step 3: Any minimizing Palais Smale sequence converges in H1 to a minimizer.

We point out that (14) is a fundamental requirement for the existence of a
minimizer. In fact, if W ≥ 0, then by Pohozaev identity we can prove that
U ≡ 0 is the unique radial solution of (2).

Concerning the stability of stationary solution we set

S = {U(x)eiθ, θ ∈ S1, ‖U‖L2 = σ, J(U) = mσ2} (31)

Definition 4. S is orbitally stable if

∀ε, ∃δ > 0 s.t. ∀ϕ ∈ H1(RN), inf
u∈S

‖ |ψ0| − u‖H1 < δ ⇒

∀t inf
u∈S

‖ |ψ(t, ·)| − u‖H1 < ε

where ψ is the solution of (1) with initial data ϕ.

Using concentration compactness[19, 20] arguments we prove the follow-
ing (see Ref. [3], Sect. 3)

Theorem 5. Let W satisfy (12), (13) and (14). Then S is orbitally stable.

This variational approach can be successfully used to find stable solitary
waves for the nonlinear Klein Gordon equation

�ψ = W ′(|ψ|)
ψ

|ψ|
. (32)

Again, the crucial assumption to obtain solitons is (14) (see Ref. [1] for
details).

We obtain a concentration result for a minimizer U crucial for this work
(see Ref. [4]).

Lemma 6. For any ε > 0, there exists an R̂ = R̂(ε) and a δ = δ(ε) such
that, for any u ∈ Jm+δ ∩ Sσ, we can find a point q̂ = q̂(u) ∈ R

N such that

1

σ2

∫

RNrB(q̂,R̂)

u2(x)dx < ε. (33)

We give a sketch of the proof.

Proof. Firstly we prove that for any ε > 0, there exists a δ such that, for any
u ∈ Jm+δ ∩ Sσ, we can find a point q̂ = q̂(u) ∈ R

N and a radial ground state
solution U such that

||u(x)− U(x− q̂)||H1 ≤ ε. (34)

9



We argue by contradiction: if (34) do not hold, we can construct a minimizing
sequence which not converge. At this point, given ε, there exist a point
q̂ = q̂(u) ∈ R

N and a radial ground state solution U such that

u(x) = U(x− q̂) + w and ||w||H1 ≤ Cε. (35)

Now, we choose R̂ such that

1

σ2

∫

RNrB(0,R̂)

U2(x)dx < Cε (36)

for all U radial ground state solutions. This is possible because if U is a
minimizer for J constrained on Sσ, then there exists two constants C,R, not
depending on U such that

U(x) < Ce−|x| for |x| >> R.

By this fact we get the claim.

We remark that, depending on the nonlinearity W , it is possible that the
minimizer of the constrained problem is not unique. Anyway, by Lemma 6,
R̂ does not depend on the minimizer.

5 The case h small enough

We present now the main results contained in Ref. [4]. We recall some in-
equalities which are useful in the following. Let it be

u(x) := v
( x

hβ

)

.

We have

||u||2L2 =

∫

v
( x

hβ

)2

dx = hNβ
∫

v (ξ)2 dξ = hNβ||v||2L2.

and

Jh(u) =

∫

h2

2
|∇u|2 +

1

hα
W (u)dx =

=

∫

h2

2

∣

∣

∣
∇xv

( x

hβ

)
∣

∣

∣

2

+
1

hα
W

(

v
( x

hβ

))

dx =

=

∫

hNβ+2−2β

2
|∇ξv (ξ)|

2 + hNβ−αW (v (ξ)) dξ =

= hNβ−α
∫

1

2
|∇ξv (ξ)|

2 +W (v (ξ)) dξ = hNβ−αJ1(v).

(37)
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We give now some results about the concentration property of the solu-
tions ψ(t, x) of the problem (1). Given K > 0, h > 0, we put

BK
h =































































ϕ(x) = ψ(0, x) = uh(0, x)e
i
h
Sh(0,x)

with uh(0, x) =
[

(U + w)
(

x
hβ

)]

U is a minimizer of J constrained on Sσ

||U + w||L2 = ||U ||L2 = σ and J(U + w) ≤ m+Khα

||∇Sh(0, x)||L∞ ≤ K for all h

∫

RN V (x)u2h(0, x)dx ≤ KhNβ−2α































































. (38)

Considering the set BK
h as the admissible initial data set, we get

Theorem 7. Assume V ∈ L∞
loc

and (15). Fix K > 0, q ∈ R
N . Let α > 0.

For all ε > 0, there exists R̂ > 0 and h0 > 0 such that, for any ψ(t, x)
solution of (1) with initial data ψ(0, x) ∈ BK

h with h < h0, and for any t,
there exists q̂h(t) ∈ R

N for which

1

||ψ(t, x)||2L2

∫

RNrB(q̂h(t),R̂hβ)

|ψ(t, x)|2dx < ε. (39)

Here q̂h(t) depends on ψ(t, x).

We give the proof because it is simple and quite interesting.

Proof. By the conservation law, the energy Eh(ψ(t, x)) is constant with re-
spect to t. Then we have

Eh(ψ(t, x)) = Eh(ψ(0, x))

= Jh(uh(0, x)) +

∫

RN

u2h(0, x)

[

|∇Sh(0, x)|
2

2
+ V (x)

]

dx

≤ Jh(uh(0, x)) +
K

2
σ2hNβ +KhNβ

= hNβ−αJ (U + w) + ChNβ

where C is a suitable constant. Now, by rescaling, and using that ψ(0, x) ∈
BK,q
h , we obtain

Eh(ψ(t, x)) ≤ hNβ−αJ(U + w) + ChNβ

≤ hNβ−α(m+Khα) + ChNβ (40)

= hNβ−α(m+Khα + Chα) = hNβ−α
(

m+ hαC1

)

11



where C1 is a suitable constant. Thus

Jh(uhn(t, x)) = Eh(ψ(t, x))−G(ψ(t, x)

= Eh(ψ(t, x))−

∫

RN

[

|∇Sh(t, x)|
2

2
+ V (x)

]

uh(t, x)
2dx

≤ hNβ−α
(

m+ hαC1

)

(41)

because V ≥ 0. By rescaling the inequality (41) we get

J
(

uh(t, h
βx)

)

≤ m+ hαC1 (42)

So, if α > 0, for h small by a simple argument and Lemma 6 we get the
claim.

Roughly speaking we have that Jh(ψ) ∼= hNβ−α and G(ψ) ∼= hNβ and this
is the key of the proof.

To simplify in the following we take an initial data of the type

ϕ(x) = U

(

x− q

hβ

)

eiv·x, (43)

where q, v are fixed. Obviously ϕ(x) ∈ BK
h for some K.

5.1 Existence and dynamics of barycenter

We recall the definition of barycenter of ψ

qh(t) =

∫

RN

x|ψ(t, x)|2dx
∫

RN

|ψ(t, x)|2dx

. (44)

The barycenter is not well defined for all the functions ψ ∈ H1(RN). Thus
we need the following result:

Theorem 8. Let ψ(t, x) be a global solution of (1) such that ψ(t, x) ∈
C(R, H2(RN)) ∩ C1(R, L2(RN)) with initial data ψ(0, x) such that

∫

RN

|x||ψ(0, x)|2dx < +∞.

Then the map qh(t) : R → R
N , given by (44) is C2(R,RN) and it holds

q̇h(t) =
Im

(

h
∫

RN ψ̄(t, x)∇ψ(t, x)dx
)

||ψ(t, x)||2L2

. (45)

q̈h(t) =

∫

RN V (x)∇|ψ(t, x)|2dx

||ψ(t, x)||2L2

. (46)

12



We have the following corollary

Corollary 9. Assume (16) and the assumptions of the previous theorem;
then

q̈h(t) = −

∫

RN

∇V (x)|ψ(t, x)|2dx

||ψ(t, x)||2L2

. (47)

6 The final result

6.1 Barycenter and concentration point

We have two quantities which describe the properties of the travelling soliton:
the concentration point q̂ and the barycenter q. If we want to describe the
particle-like behavior of the soliton the concentration point q̂ seems to be
the natural indicator: it localize at any time t the center of a ball which
contains the larger part of the soliton. Unfortunately we do not have any
control on the smoothness of q̂(t) (indeed q̂ is nor uniquely defined). The
barycenter, at the contrary, for a very large class of solutions has the required
regularity, and the equation (47) is very similar to the equation of the motion
we want to obtain. In this paragraph, we estimate the distance between the
concentration point and the barycenter of a solution ψ(t, x) for a potential
satisfying hypothesis (15) and (17), say a confining potential.

The assumption (17) is necessary if we want to identify the position of
the soliton with the barycenter. Let us see why. Consider a soliton ψ(x) and
a perturbation

ψd(x) = ψ(x) + ϕ (x− d) , d ∈ R
N

Even if ϕ (x) ≪ ψ(x), when d is very large, the “position” of ψ(x) and the
barycenter of ψd(x) are far from each other. In Lemma 12, we shall prove
that this situation cannot occur provided that (17) hold. In a paper [5] in
preparation, we give a more involved notion of barycenter of the soliton and
we will be able to consider other situations.

Hereafter, fixed K > 0, we assume that ψ(t, x) is a global solution of
the Schroedinger equation (1), ψ(t, x) ∈ C(R, H1)∩C1(R, H−1), with initial
data ψ(0, x) ∈ BK

h with BK
h given by (38). We start with some technical

lemma.

Lemma 10. There exists a constant L > 0 such that

0 ≤
1

hNβ−2α

∫

RN

V (x)u2h(t, x)dx ≤ L ∀t ∈ R.

13



The proof follows by estimating the energy.

Lemma 11. There exists a constant K1 such that

|qh(t)| ≤ K1 for t ∈ R.

The proof follows by Lemma 10 and by (17). Furthermore, we can choose
R2 such that

∫

|x|≥R2

u2h(t, x)dx

∫

RN

u2h(t, x)dx

≤
1

2

Lemma 12. Given 0 < ε < 1/2, and R2 as in the previous lemma.
We get

1. supt∈R |q̂h(t)| < R2 + R̂(ε)hβ < R2 + 1, for all h < h̄ and δ < δ̄ small
enough.

2. supt∈R
∣

∣qh(t)− q̂h(t)
∣

∣ < 3L
σ2Ra−1

3

+ 3R3ε+ R̂(ε)hβ, for any R3 ≥ R2, and

for all h small enough.

The hardest part of the proof is the estimate of

I1 =

∣

∣

∣

∫

RNrB(0,R3)
(x− q̂h(t))u

2
h(t, x)dx

∣

∣

∣

∫

RN u
2
h(t, x)dx

.

Using (17) and the previous estimates we can conclude.
We notice that R1, R2 and R3 defined in this section do not depend on ε.

6.2 Equation of the travelling soliton

We prove that the barycenter dynamics is approximatively that of a point
particle moving under the effect of an external potential V (x).

Theorem 13. Assume (i)-(iv). Given K > 0, let ψ(t, x) ∈ C(R, H2) ∩
C1(R, H1) be a global solution of equation (1), with initial data in BK

h , h <
h0. Then we have

q̈h(t) +∇V (qh(t)) = Hh(t) (48)

with ||Hh(t)||L∞ goes to zero when h goes to zero.

14



Proof. We know by Theorem 8, that

q̈h(t) +

∫

RN

∇V (x)u2h(t, x)dx
∫

RN

u2h(t, x)dx

= 0 (49)

Hence we have to estimate the function

Hh(t) = [∇V (q̂h(t))−∇V (qh(t))] +

∫

RN [∇V (x)−∇V (q̂h(t))]u
2
h(t, x)dx

∫

RN u
2
h(t, x)dx

.

(50)
By Lemma 11 and Lemma 12 we get

∣

∣∇V (q̂h(t))−∇V (qh(t))
∣

∣ ≤ max
i, j = 1, . . . , N
|τ | ≤ K1 +R2 + 1

∣

∣

∣

∣

∂2V (τ)

∂xi∂xj

∣

∣

∣

∣

|q̂h(t)− qh(t)| ≤

≤ M

[

3L

σ2Ra−1
3

+ 3R3ε+ R̂(ε)hβ
]

,

for any R3 ≥ R2 and some M > 0.
To estimate

∫

RN [∇V (x)−∇V (q̂h(t))]u
2
h(t, x)dx

∫

RN u
2
h(t, x)dx

we split the integral three parts.

L1 =

∫

B(q̂h(t),R̂(ε)hβ)
|∇V (x)−∇V (q̂h(t))|u

2
h(t, x)dx

∫

RN u
2
h(t, x)dx

;

L2 =

∫

RNrB(q̂h(t),R̂(ε)hβ)
|∇V (x)|u2h(t, x)dx

∫

RN u
2
h(t, x)dx

;

L3 =

∫

RNrB(q̂h(t),R̂(ε)hβ)
|∇V (q̂h(t))|u

2
h(t, x)dx

∫

RN u
2
h(t, x)dx

.

By the Theorem 7 and by Lemma 12 we have L3 < Mε.
We have also

L1 ≤ K1 +R2 + 1. (51)

Using hypothesis (16) we have

L2 ≤Mε +

[

L

σ2

]b

ε1−b, (52)

15



where b ∈ (0, 1) is defined in (16). Concluding we have

|Hh(t)| ≤
3LM

σ2Ra−1
3

+

[

L

σ2

]b

ε1−b +M(2 + 3R3)ε+ 2MR̂(ε)hβ. (53)

At this point we can have supt |Hh(t)| arbitrarily small choosing firstly R3

sufficiently large, secondly ε sufficiently small, and finally h small enough.�

Corollary 14. Let ψ(t, x) ∈ C(R, H2) ∩ C1(R, H1) be a global solution of

equation (1), with initial data ϕ(x) = U(x−q0
hβ

)e
i
h
v·x where U is a radial min-

imizer of J on Sσ, q0 ∈ R
N , v ∈ R

N , and h < h0. Then the barycenter q
satisfies the following Cauchy problem







q̈h(t) +∇V (qh(t)) = Hh(t)
qh(0) = q0
q̇h(0) = v

Proof. The initial data belongs to BK
h for some K. We apply the previous

results to obtain the equation for q̈. The initial data q(0) and q̇(0) are derived
with a direct calculation. �

7 The swarm interpretation

In this section we present a different point of view on our problem. Although
this approach is non rigorous, it provides some physical intuitions which
are inspiring for a better understanding of the general framework. We will
suppose that the soliton is composed by a swarm of particles which follow
the laws of classical dynamics given by the Hamilton-Jacobi equation. This
interpretation will permit us to give an heuristic proof of the main result.

First of all let us write NSE with the usual physical constants m and ℏ:

iℏ
∂ψ

∂t
= −

ℏ
2

2m
∆ψ +

1

2
W ′

ℏ
(ψ) + V (x)ψ.

Here m has the dimension of mass and ℏ, the Plank constant, has the di-
mension of action.

In this case equations (23) and (24) become:

−
ℏ
2

2m
∆u+

1

2
W ′

ℏ
(u) +

(

∂tS +
1

2m
|∇S|2 + V (x)

)

u = 0; (54)

∂t
(

u2
)

+∇ ·

(

u2
∇S

m

)

= 0. (55)
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The second equation allows us to interpret the matter field to be a fluid
composed by particles whose density is given by

ρH = u2

and which move in the velocity field

v =
∇S

m
. (56)

So equation (55) becomes the continuity equation:

∂tρH +∇ · (ρHv) = 0.

If

−
ℏ
2

2m
∆u+

1

2
W ′

ℏ
(u) ≪ u, (57)

equation (54) can be approximated by the eikonal equation

∂tS +
1

2m
|∇S|2 + V (x) = 0. (58)

This is the Hamilton-Jacobi equation of a particle of mass m in a potential
field V .

If we do not assume (57), equation (58) needs to be replaced by

∂tS +
1

2m
|∇S|2 + V +Q(u) = 0 (59)

with

Q(u) =
− (ℏ2/m)∆u+W ′

ℏ
(u)

2u
.

The term Q(u) can be regarded as a field describing a sort of interaction
between particles.

Given a solution S(t, x) of the Hamilton-Jacobi equation, the motion of
the particles is determined by Eq.(56).

7.1 An heuristic proof

In this section we present an heuristic proof of the main result. This proof
is not at all rigorous, but it helps to understand the underlying Physics.

If we interpret ρH = u2 as the density of particles then

H =

∫

ρHdx

17



is the total number of particles. By (59), each of these particle moves as a
classical particle of mass m and hence, we can apply to the laws of classical
dynamics. In particular the center of mass defined in (5) takes the following
form:

q(t) =

∫

xmρHdx
∫

mρHdx
=

∫

xρHdx
∫

ρHdx
. (60)

The motion of the barycenter is not affected by the interaction between
particles (namely by the term (59)), but only by the external forces, namely
by ∇V. Thus the global external force acting on the swarm of particles is
given by

−→
F = −

∫

∇V (x)ρHdx. (61)

Thus the motion of the center of mass q follows the Newton law

−→
F =Mq̈, (62)

where M =
∫

mρHdx is the total mass of the swarm; thus by (60), (61) and
(62), we get

q̈(t) = −

∫

∇V ρHdx

m
∫

ρHdx
= −

∫

∇V u2dx

m
∫

u2dx
.

If we assume that the u(t, x) and hence ρH(t, x) is concentrated in the
point q(t), we have that

∫

∇V u2dx ∼= ∇V (q(t))

∫

u2dx

and so, we get
mq̈(t) ∼= −∇V (q(t)) .

Notice that the equation mq̈(t) = −∇V (q(t)) is the Newtonian form of
the Hamilton-Jacobi equation (58).
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